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SUMMARY
The mechanisms governing the energy dissipation in wave breaking processes are investigated numerically by a two-
fluid numerical model. The flow is assumed two-dimensional and both air and water are considered as incompressible.
Simulations are carried out for periodic wave trains with different initial amplitude. Attention is devoted to two cases in
which the wave train evolves toward a spilling and a plunging breaking event. The analysis covers: velocity and vorticity
field, work done against pressure forces, viscous dissipation and bubbles dynamics. It is shown that in gentle spilling
case, dissipation is mostly due to the viscous effects in the shear layer generated by the interaction between the fluid in
bulge and the flow underneath. This effect dissipates all the extra-energy and progressively reconducts the wave to the
highest non-breaking solution. In the plunging breaking case, the rather important role played by the entrainment of the
large air cavity at the breaking onset is highligthed. Results show that the work is initially spent in entraining the air
cavity against the bouyancy. In the next stage the cavity fragments into a cloud of small bubbles immersed in a highly
rotational flow and large velocity gradients. Most of the potential energy accumulated by the air cavity is thus dissipated
in the bubble cloud by the strong viscous effects, whereas only a little amount is returned to water in the degassing phase.

1. INTRODUCTION

The breaking of free surface waves plays an important role
on many exchange processes at the air-sea interface. In
wind generated waves in open ocean, the breaking governs
the mixing in the upper ocean layer but it also has a strong
effect of the wind-wave interaction. Detailed, non-intrusive,
experimental investigation of the above phenomena are not
always easy. This is particularly true in intense plunging
breaking where the light reflection from the large bubbles
make it hard to use optical instruments (Particle Image or
Laser Doppler Velocimetry). Measurements are presently
available only for times t > tb + 3T where tb is the time
of breaking onset and T is the period of the fundamental
wave. Something more is available for gentle spilling break-
ing (Duncan, 2001; Qiao and Duncan, 2001), but a more
quantitative analysis in terms of energy dissipation would
be necessary.

In the present paper, a two-fluid numerical approach is
adopted to model the air-water interaction taking place in
wave breaking processes. The method is applied to study
the evolution to breaking of periodic wave trains of differ-
ent initial amplitude. The details of the model and of the
simulation parameters are discussed in Iafrati (2009a) and
some results concerning the degassing phase were presented
at the Workshop in Saint Petersburg (Iafrati, 2009b). Here,
the attention is focussed on two breaking cases, i.e. a gentle
spilling and a plunging. The solutions are analysed in detail
in order to highlights the different dissipation mechanisms.

2. NUMERICAL MODEL

For the sake of the space, only few key points of the method
are discussed here whereas a more detailed description of the
model can be found in Iafrati (2009a). The method is based
on a Navier-Stokes solver for a single, incompressible, fluid
whose density and viscosity vary smoothly across a small
transition region about the interface. The transition region
is about ten grid cells thick. Surface tension effects are
appropriately modelled as a volume force acting in the same

region. Simulations are carried out within a two dimensional
assumption.

The interface is captured as the zero Level-Set of a signed
distance function d from the interface which is advected
with the flow, thus ensuring that particles lying on the free
surface at the beginning of the step keep the same value of
the distance d = 0. The distance function is reinitialized
at each time step in order to keep constant in space and
time the thickness of the transition region, thus avoiding an
excessive spreading of the interface.

The method is adopted to simulate the evolution to
breaking of periodic wave trains in a computational domain
with periodic boundary conditions. The solution is initial-
ized as a third order Stokes wave and the initial amplitude
is varied so that the initial steepness ranges between 0.2 and
0.65. Attention is here focussed on the solutions obtained
for 0.35 and 0.60 for which a gentle spilling and an intensive
pluging breaking are obtained, respectively.
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Figure 1: Time histories of the energy dissipated by the
breaking scaled by the initial energy content in water.
For the case at ε = 0.55 the solution at two different
Reynolds number are drawn.
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3. ENERGY DISSIPATED BY BREAKING

It is well accepted that the occurrence of breaking signifi-
cantly enhances the dissipation of the initial energy content.
In order to get a quantitative estimate of the energy por-
tion dissipated by the breaking occurrence it is necessary to
estimate the energy that would be dissipated in the same
time interval if the wave hadn’t broke.

Figure 2: Vorticity contours at different time instants
for the case ε = 0.35 (t/T = 1.596, 2.713, 5.186).
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Figure 3: Time histories of the total energy (left axis)
and of the energy accumulated in air (right axis) for
the steepest non-breaking solution (ε = 0.30) and for
the spilling breaking case.

This is done by using the theoretical estimate of the energy
decay rate derived in Landau and Lipshitz (1959) for a sinu-
souidal wave. Hence, the energy dissipated by the breaking
at a given time ED(t) is evaluated as the difference between
the total energy in water (including kinetic, potential and
surface tension) and the energy that would be dissipated by
a regular wave with the same amplitude and wavelength.

In Fig. 1 the time histories of the energy dissipated by
the breaking occurrence are drawn for different steepness.
In order to make results comparable, solutions are scaled
by the corresponding initial energy contents. For the con-
figuration adopted in this study, the spilling breaking case
dissipates a fraction of about 25 % of the initial energy con-
tent. The fraction rise up to 60 % in the plunging breaking
case. It is worth noticing that in the plunging breaking
regime the energy fraction dissipated by the breaking is al-
most independent of the breaking severity. In all cases, most
of the energy is dissipated within 3 fundamental wave pe-
riods from the onset of breaking (in the present result the
breaking starts for t/T ' 0.5 ÷ 1 depending on the wave
amplitude).

Figure 4: Contours of the local energy density for the
case ε = 0.35 (t/T = 1.596, 2.713, 5.186).



4. SPILLING BREAKING CASE

At ε = 0.35 and for the scale adopted in the simulations,
We=100 or 27 cm fundamental wavelength, the breaking
takes place with the formation of a bulge at the wave crest.
A shear layer develops between the fluid inside the bulge
and the upslope flow underneath (Fig. 2). This shear layer
gradually dissipates the extra-energy and drives the solu-
tion toward that of the highest non-breaking case. Simi-
lar conclusions can be drawn by looking at the comparison
in terms of the non-scaled total energy provided in Fig. 3,
where the solution obtained for ε = 030 (i.e. the steepest
non-breaking case among the available solutions) are also
drawn. Results indicate that in this gentle spilling breaking
case the energy is gradually dissipated until it reaches the
energy of the almost steepest non-breaking case. The figure
also indicates that the occurrence of breaking enhances the
energy transfer in air, but this transfer is only a negligible
fraction, order of 2.5 %, of the total energy dissipation.

Interesting conclusions can be drawn by looking at the
distribution of the energy density in the water domain. In
the three pictures in Fig. 4 the contours of the energy den-
sity are drawn in the top 90 % region, i.e. where the local en-
ergy density Ed is greater than E90

d = supEd−0.1(supEd−
inf Ed). The sequence indicates that the largest energy den-
sity is localized inside the bulge.

Figure 5: Contours of the work done against pressure
forces, −∇(pu). Solution refer to the case ε = 0.60
(t/T = 1.596, 1.995, 2.394).

Figure 6: Contours the viscous dissipation in the pure
water domain. The configurations refer to the same
time instant of Fig. 5.

Quantitative estimates showed that, for the first two pic-
tures in Fig. 4, a fraction between 10 to 14 % of the en-
ergy content in water is within the bulge. In the late stage
(Fig. 4c), once all the extra-energy is dissipated, the distri-
bution of the energy resembles that of non-breaking wave
(not shown here).

5. PLUNGING BREAKING CASE

When the steepness is beyond ε = 0.37, the breaking is of
the plunging type. In this case the energy fraction dissi-
pated by the breaking is much larger and can rise up to
60 % of the initial energy content. In this case the jet en-
compasses a large air cavity which is advected downward.
A large amount of energy is spent in entraining the air cav-
ity against the action of buoyancy. Unfortunately, the use
of a smooth density variation introduces a spurious velocity
component which make it difficult to get accurate estimates
of the momentum exchanges and of the work done by the
stresses at the interface.

A qualitative estimate of the phenomenon can be achieved
by looking at the distribution of the term −∇(pu), which is
the work done against pressure forces. The configurations
shown in Fig. 5 highlights the negative effect associated to
the downward advection of the air cavity. In the next stage
the potential energy accumulated by the air cavity should



be returned to water. However, the air cavity collapse and
fragments into a clouds of small bubbles immersed in a ro-
tating flow with large velocity gradients. As a consequence,
most of the potential energy of the bubbles is dissipated by
the viscuos effects. This is clearly shown by the pictures in
Fig. 6 where the countours of the viscous dissipation in pure
water domain are provided.

From the quantitative standpoint, in Fig. 7 the time
histories are shown for: energy dissipated by the breaking,
energy accumulated in air, surface tension energy and po-
tential energy in the bubbles. Among other considerations
that can be drawn, it can be seen that the potential en-
ergy accumulated in the bubble in the most energetic phase
of the breaking rise up to about 50 % of the total energy
dissipated by the breaking occurrence. This result agrees
with the experimental observation by Lamarre and Melville
(1991).

A more extensive discussion, with additional results, will
be presented at the Workshop.
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Figure 7: On top, time histories of the energy dissi-
pated by the breaking ED(t) (left axis) and of the en-
ergy accumulated in air EA(t)−EA(0) (right axis) for
the case ε = 0.60. On the bottom figure, time histories
of the potential energy of the bubbles (left axis) and
of the surface tension energy (right axis) for the same
simulation.
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