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ABSTRACT

The development of design-oriented modelling techniques
to predict Self-Pitching Propellers (SPP) hydrodynamic
and dynamic behaviour is here addressed. Two hydrody-
namics approaches are described and validated against lit-
erature data. Both Controllable-Pitch propellers (CPP) and
SPP test cases are considered. In addition a general theoret-
ical Reduced Order Model (ROM) for blade hydrodynam-
ics unsteady loads is proposed to investigate blade equi-
librium stability. Numerical results are shown in terms of
performance, spindle moment and pitch setting equilibrium
conditions.
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1 INTRODUCTION

Self-Pitching Propellers blades are free to rotate 360◦ about
the spindle axis. Actual blade pitch automatically adapts
to vessel speed conditions through a balance between cen-
trifugal forces due to blade inertial characteristics and hy-
drodynamic moment about the spindle axis. SPP can oper-
ate as propellers as well as energy generation devices thus
are widely recognised as an attractive propulsive solution
for small and medium size vessels and sailing boats.
Blade dynamics equation coupled with suitable hydro-
dynamics solvers is proposed to determine blade free-
pitching conditions and, in turns, equilibrium stability mar-
gins. Specifically, fast computational hydrodynamics ap-
proaches, based on Blade Element Momentum Theory
(BEMT) and Boundary Element Method (BEM), are herein
proposed; in this context BEM approach is quite new,
whereas BEMT has been applied by Miles et al (1992) in
the past for the design of self-pitching propellers. With
respect to Miles et al (1992), the BEMT approach used
throughout the paper enhances prediction of induced ve-
locity due to trailing wake affecting propeller performance.
To overcome BEMT unconservative margins predictions
related to three-dimensional unsteady wake shedding ef-
fects (see Gennaretti et al 2008), a Reduced Order Model
(ROM) based on BEM solver for propeller hydrodynamics
coupled to perturbative blade motion equation, is proposed
from a theoretical standpoint.

2 BLADE DYNAMICS

In the present section, the equations describing a gen-
eral rigid body motion are specialized to describe SPP be-
haviour and then the procedure for the identification of
the equilibrium condition and the stability margins is de-
scribed. In order to derive a mathematical description of

Figure 1: Depiction of frame of references.

blade kinematics, three different frames of reference are
introduced (see figure 1): i) disk reference O, xF , yF , zF
centered at the propeller disk plane and translating along
x axis with velocity V∞; ii) spindle reference O, x, y, z
rotating with blade angular velocity Ω about x axis and
traslating along x axis with velocity V∞; iii) blade refer-
ence O, xb, yb, zb, rigidly connected to the reference blade
following its rotation about the spindle axis. The image
of conservation of angular momentum equations into the
blade frame of reference yields the following equation de-
scribing blade motion about the spindle axis:

Jzz ε̈+ JxyΩ2cos(2ε) + (Jxx − Jyy)
Ω2

2
sin(2ε) =

= mz
O = (mz

H +mz
W )O (1)

where Jzz , Jxx, Jyy and Jxy are the components of the in-
ertia tensor, ε is the variation of angular pitch setting due
to the rotation about the spindle axis and Ω is propeller
angular velocity. The right hand side of Equation (1) rep-
resents the forcing term due to hydrodynamics and blade’s
weight moment about the spindle axis (mz

H and mz
W , re-

spectively). Note that, the spindle moment due to weight
is time dependent because of change of position of blade
center of gravity during propeller revolution.
Previous experimental and numerical research on SPP
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(Miles et al 1992) shows that blade oscillations frequencies
are rather less than once per rev; hence the static approxi-
mation may be reasonably adopted. Under this assumption,
the static approximation of Equation (1) recasts

JxyΩ2cos(2εe) + (Jxx − Jyy)
Ω2

2
sin(2εe) =

= mz
H(εe, θ) (2)

where εe is the variation of blade pitch setting at the equi-
librium condition and θ is the blade design angular pitch.
For a given propeller (whose geometrical and inertial fea-
tures are assumed to be known) working at a specified ad-
vance ratio J , the blade pitch equilibrium angle εe is ob-
tained numerically by solving Equation (2) through an iter-
ative procedure once the spindle momentmz

H due to hydro-
loads is known.
Once the equilibrium condition is determined for a given
value of J , the stability analysis can be performed. To this
aim, Equation (1) is linearized about εe to obtain the equa-
tion of motion describing the dynamics of blade rigid body
perturbation motion about the spindle axis

Jzz ε̈+
[
Ω2(Jxx − Jyy)cos(2εe) −

−2JxyΩ2 sin(2εe)
]
ε = m̃z

H(ε, εe, θ) (3)

where m̃z
H is the spindle moment acting on the blade in-

duced by its perturbative motion; a suitable theoretical de-
scription of it as an explicit function of blade pitch degree
of freedom ε is presented in the following. It is worth not-
ing that time–dependent linear terms due to blade’s weight
are negligible with respect to centrifugal terms. The pre-
sented approach yields a linear differential equation de-
scribing perturbative blade pitch motion. Stability analy-
sis can be then performed through classical eigenvalue ap-
proaches.

3 HYDRODYNAMICS MODELS

3.1 Blade Element Momentum Theory

BEMT model is a widely used approach for the analysis
and design of SPP (see Miles et al 1992). This approach,
combining the basic principles from both blade element
(BET) and momentum theories, is inherently steady, two-
dimensional, stems from the equivalence between the cir-
culation and momentum theories of lift and allows to es-
timate the inflow distribution along the blade. It is well-
known that such 2D approaches over-predict thrust and
under-predict torque with respect to more complex and effi-
cient hydrodynamics modelling, yielding a rough estimate
of the hydrodynamic performance of a propeller. Despite
these intrinsic limitations, the simplified BEMT approach
may be yet used as an effective tool, during the pre-design
process, as far as complexity and computational efforts are
concerned; in fact, it provides a hydrodynamic predictor of
thrust, torque and efficiency of marine propellers under a
large range of operating conditions. In the following, some
main aspects concerning BEMT hydrodynamics modelling
used herein the paper are highlighted; details are found in
Leishmann (2006).

On the basis of one-dimensional momentum theory (MT)
(see Leishmann 2006) with the 2D assumption that suc-
cessive rotor annuli have no mutual effects on each other,
incremental thrust on a rotor annulus of the rotor disk and
torque absorbed by the annulus may be written as

dT

dr
= 4πρ rV 2

A(1 + a)a

dQ

dr
= 4πρ r3VA(1 + a)a′Ω

(4)

where ρ is the fluid density, r is the local distance of the an-
nulus from the rotatioanl axis, VA is the speed of advance,
Ω is rotational speed of the propeller, a = vi/VA is the
axial-inflow factor, vi indicates the induced-velocity at the
propeller blade and a′ is the rotational-inflow factor. From
Equation (4), the efficiency η = dT VA/Ω dQ of the annu-
lar element recasts

η =
V 2
A

Ω2r2
a

a′
(5)

Accounting for a Z-bladed propeller, thrust and torque re-
lated to a blade element of length dr in spanwise direction
as given by the BET model are

dT

dr
=

1

2
ρcZV 2

A(1 + a)2cl
cos(φ+ γ)

sin2φ cosγ

dQ

dr
=

1

2
ρcZrV 2

A(1 + a)2cl
sin(φ+ γ)

sin2φ cosγ

(6)

where c is the local chord of the blade section at radius r,
cl is the local lift-coefficient, φ is the local inflow-angle
whereas tgγ = cd/cl, being cd the sectional drag coef-
ficient. From the blade velocity diagram shown in Fig-
ure 2, the velocity of the fluid relative to the blade sec-
tion may be written as VR = VA(1 + a)/sinφ, the an-
gle of incidence α is (θ − φ) (θ represents the geometrical
pitch angle) and tgβ = VA/Ωr. Lift and drag coefficients
may be found from tabular data (once the angle of attack
(AOA) is known) for each blade section; alternatively, a
polynomial approximation such as cl ∼= clα(α − α0) and
cd ∼= c1 + c2α + c3α

2 may be reasonably used, where
α0 is the zero lift angle shown in Figure 2, clα is the lift
slope coefficient (a value between 5.7 and 2π is used) and
ci, (i = 1, 2, 3) are coefficients assumed to be known.
Akin to the MT model, from Equation (6) the efficiency
of the blade element recasts

η =
1− a′

1 + a

tgφ

tg(φ+ γ)
(7)

For a given propeller working at an advance ratio J =
VA/nD (D indicates the propeller diameter and n the rota-
tion speed in terms of rps), the performance of each blade
element can only be determined when values of the inflow
factors a, a′, the section AOA α and cl, cd are known; fur-
ther, rotor performance can be obtained by integrating the
sectional loads at each blade element over the length of the
blade. At this stage it is useful to highlight that the re-
moval of the 2-D restriction requires a considerably more



Figure 2: Flow vectors and angles.

advanced treatment of the problem using a vortex wake the-
ory; however, the problem of the loss of lift near the tip,
may be approximately predicted through the Goldstein fac-
tors (see Carlton 1994) kβ and kε at the propeller disk and
in the ultimate wake, respectively. Thus, the first equation
of Equation (4) becomes

dT

dr
= 4πρ rV 2

A(1 + a kβ)a kε (8)

where the Goldstein correction factors may be obtained
through tabular data as functions of blades number, boss
radius, inflow angle and radial station.
Equations (5), the first of (6), (7) and (8) define a non-
linear problem that might be solved iteratively for each
blade strip. However, by equating Equations (5) and (7),
using the relation (see Figure 2)

tgφ =
1 + a

1− a′
tgβ (9)

and equating the sectional thrust from MT and BET the-
ories, a non-linear equation in terms of the inflow an-
gle φ is derived. Its numerical solution is given by the
Newton-Raphson method. The choice of the starting point
φ0 for the solution seeking may be a crucial point; a rea-
sonably initial-guess is that coming from the linearized
BEMT approach. Under this assumptions, one obtains the
following relation in terms of nondimensional parameter
λ = (VA + vi)/ΩR ∼= φ0r/R (see Leishmann 2006)

λ(r) =

√(σclα
16
− VA

2ΩR

)2
+
σclα

8
θ
r

R
+

−
(σclα

16
− VA

2ΩR

)
(10)

where σ represents the ratio between the blade aerea and
the disk area. Once the converged solution of the inflow
angle is derived for each blade section, the local AOA
is known; integration of Equations (6) radially across the
blade yields the total thrust and torque delivered by the pro-
peller.
Thrust and torque allow the evaluation of spindle moment
representing the forcing term of blade equilibrium equation
about the bearing axis. For any blade section, elemental

thrust dT , torque dQ and centrifugal force dFc determine
the elemental moment contribution dMs about the pivot
axis. It is here assumed that thrust and torque delivered by
the section blade act at the centre of pressure of that sec-
tion whilst the centrifugal force acts at the centre of gravity
of each hydrofoil, (see Figure 3). Since the effect of the

Figure 3: Forces acting on a blade section: contribution to the
spindle moment.

centrifugal field is properly described by the left-hand side
of Equation (2), the emphasis is here on the hydrodynamic
moments induced by thrust and torque. Hence, the spindle
moment forcing Equation (2) is

mz
H =

∫ R

rboss

(dMT + dMQ)dr (11)

With respect to the body-frame of reference O,Xb, Yb, Zb,
(xp,yp,zp) define the location of the centre of pressure of
the elemental section; following Miles et al (1992), these
distances may be derived as a function of the blade shape.
Specifically, by assuming nose-up positive pitching mo-
ments, for any hydrofoil the sectional spindle moments are

dMT = dT yp
dMQ = −dFQ xp

(12)

where the local force dFQ = (dQ/r)cosξ is shown in Fig-
ure 3, whereas

yp = rsinξ

xp = −eh + rtgδ − ξrtgθ
(13)

with

dsp = dhd − dcp

ξ =
dsp

[r2 + (r tgθ)2]
1/2

(14)

The geometrical parameters appearing in Equations (13)
and (14) are described in the following: eh is the blade off-
set fom the pivot axis, δ is the rake angle, ξ is the projected
angle of pressure centre with respect to zb axis whereas dsp
defines the distance of pressure centre from the generator
line. Moreover, dhd represents the distance of the genera-
tor line from the leading edge of the section and dcp identi-
fies the location of the centres of pressure from the leading



edge. To determine dcp, the knowledge of the pitching mo-
ment coefficient (with respect to a given point) as a function
of the AOA and the Reynolds number is needed; function
cm = cm(α,Re) may be derived from tabular data, ex-
periments or by using a devoted hydrodynamic analysis of
blade sections. Whatever the choice is, the centre of pres-
sure position, measured from the leading edge, is given by

dcp ∼= c
cm

cl cosα
(15)

The effects induced by the variation of a and a′ across the
blade width on the pitching moment cm may be modelled
through the scheme proposed by Ludwieg and Ginzel (see
Miles et al 1992); specifically, the corrected pitching mo-
ment cmc is

cmc = cm (
m

c
) + µ(k1 k2− 1)cli (16)

where m/c is the camber-chord ratio, µ is a parameter de-
pending on the mean-line shape of the hydrofoil and oper-
ating conditions, k1 and k2 are the camber correction co-
efficients (see Eckhardt et al 1955) whereas cli is the ideal
lift coefficient.

3.2 Boundary Element Method

In the present work a propeller hydrodynamics model
based on a Boundary Element Method (BEM) is also
considered here as an approach to overcome limitations
of BEMT in providing a general representation of three-
dimensional flow effects around arbitrarily shaped bodies.
Starting from mass and momentum conservation equations
for an incompressible flow, a general formulation to de-
scribe a three-dimensional body arbitrarily moving with re-
spect to a fluid is derived. The methodology is applied here
to the case of a marine propeller. Assuming that the incom-
ing flow is inviscid and the velocity perturbation induced
by the body is irrotational except for a thin layer of vortic-
ity shed at propeller blades trailing edges, it is possible to
introduce a scalar potential ϕ and represent the perturba-
tion velocity in gradient form as v = ∇ϕ. Mass conserva-
tion equation yields that the velocity potential is governed
by the Laplace equation ∇2ϕ = 0, whereas the momen-
tum equation is manipulated to obtain a direct relationship
between velocity potential and flow pressure as

∂ϕ

∂t
+

1

2
q2 +

p

ρ
+ gz0 =

1

2
v2
I

+
p0
ρ

(17)

Equation (17), known as Bernoulli’s theorem, is written in
the rotating frame of reference (O, xb, yb, zb) introduced in
Figure 1. Quantity v

I
denotes the velocity of flow incom-

ing to the propeller disc, q = ∇ϕ+v
I

is the total velocity,
and gz0 is the hydrostatic head.
A classical derivation (see e.g., Morino 1993) yields that
the perturbation velocity ϕ can be determined from the
Laplace equation through the following elegant boundary
integral representation

ϕ(x) =

∮
S
B

(
∂ϕ

∂n
G− ϕ∂G

∂n

)
dS −

∫
S
W

∆ϕ
∂G

∂n
dS (18)

where S
B

denotes the body surface (i.e., , the propeller),
S

W
is the trailing vortical surface (the wake), and n is the

unit normal to these surfaces. The symbol ∆ denotes dis-
continuity of ϕ across the wake surface, and G, ∂G/∂n
are respectively unit source and dipole singularities in the
unbounded three-dimensional space. Under non-cavitating
flow assumptions, Equation (18) is used to evaluate ϕ and
hence the velocity field on the body surface and in the fluid
domain once quantity ∂G/∂n is determined by imposing
the impermeability condition on S

B
and ∆ϕ is determined

by using a Kutta-type condition. The extension of Equation
(18) to describe propeller cavitation is described in Salva-
tore et al (2003).
Once pressure on the solid surface is determined by the
Bernoulli Equation (17), and denoting by τ the tangential
(viscous) stress on S

B
, hydrodynamic forces f and mo-

ments mO acting on the propeller are computed as

f =

∮
S
B

(−pn + τ t) dS

mO =

∮
S
B

(−p r× n + τ r× t) dS (19)

where r = x − xO, t is the unit tangent to S
B

aligned
to local streamlines. Propeller thrust T and torque Q easily
follow by taking axial components of f and m respectively.
Next, spindle moment mz

H is evaluated as the component
of mO along the blade spindle axis.
Recalling BEM is based on inviscid-flow assumptions, ad-
ditional modelling is required to predict the tangential
stress τ and hence to estimate viscosity contributions to
propeller loads in Equation (19). The problem is analysed
in Salvatore et al (2003) where a coupled BEM/bounday-
layer solver formulation is described. In the present work,
a semi-empirical approach is used in which local distribu-
tion of τ on blade surface is derived from classical laws
for attached laminar and turbulent boundary layer on a flat
plate. If local effective angle of attack is higher than a pre-
scribed threshold, viscosity effects in Equation (19) are fur-
ther corrected to approximately account for the additional
drag induced by boundary layer flow separation.
The evaluation of the effective angle of attack implies that
a correct prediction of the velocity distribution induced by
the propeller wake is achieved. To this aim, a trailing wake
alignment procedure is used in which the location of the
wake surface S

W
in Equation (18) is determined as a part

of the flowfield solution. Details of this approach and nu-
merical applications are described in Greco et al (2004).

3.3 Reduced-Order Hydrodynamics Model

In this section a theoretical discussion on the identification
of a linear Reduced Order Model (ROM) describing the un-
steady hydrodynamic forces arising on the propeller blades
of a SPP when perturbed from their equilibrium pitch set-
ting is outlined. The proposed methodology has been de-
veloped and fully validated for rotorcraft aeroelasticity ap-
plications (see Gennaretti et al 2005, 2008 and Serafini et
al 2009). It is valid for rotorcraft configurations where the
rotor wake develops along the axial direction.



For an isolated SPP propeller in cruise conditions in a po-
tential non–cavitating uniform flow, the image of pertur-
bation velocity of an arbitrary blade point ~x, in the blade
frame of reference, is given by

~vd(~x, t) = ~ω(t)× (~x−~xO) (20)

As shown in Gennaretti et al (2005), the velocity distri-
bution in Equation (20) can be expressed as ~vd(~x, t) =

q̇(t) ~Ψ(~x) where q(t) = ε(t) is the generalized coordinate
of blade rigid body motion and ~Ψ(~x) is a time-independent
vector spatial distribution derived from Equation (20).
Under the assumption of linear analysis, a suitable formu-
lation for Equation (18) in the frequency-domain is ob-
tained. Expressing blade surface boundary conditions ∂ϕ

∂n
as functions of blade’s point velocity ~vd, coupling the so-
lution for the velocity potential with Bernoulli’s theorem
and dropping reference–state terms, perturbation hydrody-
namic moment acting on each propeller blade correspond-
ing to perturbative blade rigid motion about the spindle axis
can be expressed, in the frequency domain, by the follow-
ing matrix form (see, for details, Gennaretti et al 2005)

m̃ = E(s) q̃ (21)

where E(s) is the [Z ×Z] hydrodynamic transfer-function
matrix that relates generalized coordinates of blade rigid
motion, to the corresponding hydrodynamic moment act-
ing on the blade. Note that the introduction of a BEM
3D solver capable to take into account mutual hydrody-
namic interference among the blades yields that the hydro-
dynamic moment acting on the n−th blade is influenced by
the motion of all the other blades about their spindle axis.
Thus in general the Z-element column matrix q collects
the Z generalized coordinates of blades rigid body motion
qn(t). Entries of matrix E are transcendental function of
the Laplace variable, s, because of the flow unsteadiness
induced by the vorticity shedding process behind and be-
low each rotor blade. Such aerodynamic operator would
give rise to an infinite-dimension state space problem in
the time-domain and is not convenient for direct inclusion
in the dynamics equations to be applied for stability anal-
ysis purposes. Thus, in order to identify the aerodynamic
ROM, rational expressions for approximating the transfer
functions in the aerodynamic matrix are used. As shown
in Morino et al (1995), the following approximate rational-
matrix expression is derived for the hydrodynamic transfer-
function matrix

E(s) ≈ s2 A2 + sA1+A0 + C [s I−A]
−1

B, (22)

where matrices A2,A1 and A0 have dimensions [Z ×
Z]. In addition, A is a square matrix with dimensions
[Na × Na], C is a [Z × Na] matrix, and B has dimen-
sions [Na×Z]. Next, combining Equation (22) with Equa-
tion (21) and transforming into time domain, the follow-
ing constant-coefficient ROM relating the generalized rigid
blade motion coordinates (and their time derivatives) with
the corresponding unsteady hydrodynamic moments aris-
ing on the perturbed blades is obtained:

m(t) = A2q̈ + A1q̇ + A0q + Cr

ṙ = Ar + Bq, (23)

where r is the column matrix that collects theNa additional
hydrodynamic states associated to the poles included in the
approximating aerodynamic matrix (a consequence of the
flow-memory effects included in matrix E).
The proposed model allows time–domain evaluation of the
hydrodynamic loads on propeller blades as explicit func-
tions of the system degrees of freedom q and of a finite
number of additional (hydrodynamic) states.

4 NUMERICAL APPLICATIONS

Theoretical and computational methodologies described
above are here applied to study the performance of two dif-
ferent kind of propellers in uniform flow conditions. A pre-
liminary analysis on conventional Controllable-Pitch Pro-
pellers is presented to assess spindle moment numerical
predictions. In fact, the analysis of CPP typically includes
estimations of blade spindle moments to achieve a correct
sizing of pitch control mechanisms.

Blades number, Z 5-CPP
Propeller diameter, D 234.29 mm
Nominal pitch, P/Dr07 1.061

Expanded area ratio 0.829

Skew (r/R = 0.7) 6.44◦

Rake (r/R = 0.7) 0.0 mm
Hub/Propeller diameter ratio 0.29

Blade sections airfoil NACA 16 (mod)
+ NACA65 meanline

Table 1: DTRC P4402 controllable-pitch propeller main
geometry parameters.

Figure 4: Three-dimensional model of DTRC-P4402
Controllable-Pitch Propeller.

An extensive experimental study on CPP has been doc-
umented by David Taylor Research Center (see Boswell
et al 1975). Among different propeller models tested, the
DTRC P4402 model is chosen here. Main geometry pa-
rameters are shown in table 1 whereas a three-dimensional
sketch of the propeller is shown in figure 4. Propeller open
water characteristics are shown in Figure 5. Experimental
data in Boswell et al (1975) describing propeller thrust,
torque and spindle moment coefficients (K

T
, K

Q
and K

S
,



Figure 5: DTRC P4402 CPP performance (KT and KQ ) and spindle moment (KS ): numerical predictions compared to measurements
at P/D = 0.8 (top), P/D = 1.061 (center) and P/D = 1.2 (bottom).

respectively) are compared to corresponding quantities
evaluated by BEMT and BEM. Three different blade
pitch settings are considered: P/D = 0.8, P/D = 1.061
(design) and P/D = 1.20. At P/D = 0.8 (see Figure
5, top) BEMT performance predictions show a general

good agreement with BEM predictions and with experi-
mental data. For low J values (minor than 0.4), BEMT
predictions tend to slightly underestimate K

T
and K

Q

whereas BEM overestimates K
Q

. These discrepancies
can be explained considering the difficulties in modelling



viscous flow phenomena in both models. Moreover, at
these low J values, the effect of trailing wake shed by
blades is more relevant; thus further enhancements of
BEMT capability to describe 3D inflow are expected to
improve numerical predictions. The comparison between
BEMT results and experimental ones in terms of spindle
moment are excellent; this is due to a tuning process on
flow-curvature correction tailored to fitting experiments.
On the contrary, the agreement between BEM results and
experimental data is satisfactory in terms of trend, even
though some discrepancies are evident. However, this
drawback in capturing pitching moments is within the
accuracy of BEM approaches. Note that plotted measured
spindle moment coefficient is magnified by a factor 50
whereas numerical predictions are multiplied by 20 in
order to fit into the same diagram as thrust and torque
coefficients. It is important to observe that BEMT and
BEM predicted KS sign inversion conditions are in good
agreement with results of model tests. Reliable predictions
of blade spindle moment values in the inversion region
are fundamental for a correct estimation of self-pitching
propeller behaviour. Finally, as J increases towards
the zero thrust point (J = 0.82), an increasing part of
the blade works at negative angles of attack. A careful
tailoring of the flow curvature modelling in BEMT is then
required. Figure 5 (center) shows that, for design pitch
setting P/D = 1.061, KT predictions by BEMT are in
good agreement with respect to BEM simulations and
experimental data. Discrepancies are highlighted at very
low values of J due to viscosity and trailing wake induced
phenomena not accurately modelled in the BEMT solver,
whereas, for J > 0.9 the lack of hub modelling can explain
the overestimated values of thrust (the presence of the hub
has the effect of a local acceleration of the inflow to blade
sections). Also in this case, spindle moment predictions by
BEMT are excellent with respect to measurements. Specif-
ically, J value corresponding to the inversion is very well
captured. Discrepancies in BEM predictions for J < 0.6
and 0.75 < J < 0.9 arise from the numerical issues
previously pointed out. Finally, P/D = 1.2 pitch setting
is considered. Figure 5 (bottom) confirms the capability of
the present BEMT to predict CPP performance and spindle
moment over a wide range of operating conditions. The
specific enhancements introduced in the BEMT model to
take into account flow curvature effects on spindle moment
yields thatKS predictions are in very good agreement with
respect to measurements even if some discrepancies at low
J , corrisponding to thrust vanishing region, are evidenced
on KT and KQ. For those operating conditions modelling
of viscous flow phenomena, hub presence effect, trailing
wake modelling and careful evaluation of blade hydrofoils
friction characteristics are crucial issues.
Since BEMT seems to be more adequate for the descrip-
tion of spindle moment, in the following the analysis
of SPP behaviour is addressed through this approach.
Next, BEMT predictions for an SPP propeller are com-
pared to experimental data in terms of performance and
prediction of equilibrium pitch setting. Among a wide
set of Self-Pitching Propellers considered in Miles et al

(1992), test case no. 2 and 3 are herein addressed. Main
geometry parameters are shown in table 2 whereas a
sketch of a three-dimensional model of the propeller is
shown in figure 6. First, three different values of fixed

Blades number, Z 3-SPP
Propeller diameter, D 300.0 mm
Design nominal pitch, P/D 1.0 (const.)
Blade area ratio 0.39

Linear skew at tip −96.0 mm
Rake 8◦

Hub/Propeller diameter ratio 0.233

Offset 54.0 mm, 60.0 mm
Blade sections airfoil NACA symmetric

Table 2: P2 self-pitching propeller main geometry parame-
ters.

Figure 6: Three-dimensional model of P2 Self-Pitching Propeller.

pitch setting are considered: P/D = 0.4, P/D = 0.8
and P/D = 1.2. BEMT predictions in terms of KT

and KQ are compared to measurements and to numerical
results by Miles et al (1992) based on a BEMT approach
similar to the one proposed here (indicated with WU in
the following). From the physical standpoint, a different
propeller offset affects only spindle moment. Nevertheless
this is not confirmed by experimental results. In fact, there
is a relevant discrepancy between KT and KQ measured
on propeller no. 2 (eh = 54 mm) and no. 3 (eh = 60 mm).
This could be explained, as suggested by the authors, by
an uncertainty in the pitch/diameter ratio setting of about
0.05 around the nominal p/D at 70% of blade radius. For
these reasons the performed numerical analysis addresses
not only nominal pitch setting for propeller no. 2 but also
investigates the effect of a 0.05 change of pitch setting on
performance predictions.

Figure 7 (top) shows performance curves for propeller no.
2 at nominal p/D = 0.4. Experimental and numerical re-
sults given by Miles et al (1992) are compared to numeri-
cal results by the present BEMT approach. At this nominal
pitch condition only experimental and numerical results for
propeller no. 2 are available. BEMT predictions shown in
the figure are performed at p/D = 0.35, 0.40, and 0.45 to



Figure 7: SPP-P2 propeller performance (KT , top, and KQ , bottom): numerical predictions compared to measurements at P/D =

0.35, 0.40, 0.45 (top), P/D = 0.75, 0.80, 0.85 (center) and P/D = 1.15, 1.20, 1.25 (bottom).

investigate the effect of pitch uncertainty on loads predic-
tions. Both for KT and KQ the agreement between BEMT
predictions, measurements and numerical WU-BEMT data
is very good if p/D = 0.45 is considered in the simu-
lations. It should be noted that experimental KQ curve

shows a very unusual trend for J > 0.4. Next, p/D = 0.8
pitch setting is considered. In this case experimental data
are available for both propeller no. 2 and 3 and Figure
7 (center) clearly evidences discrepancies of KT and KQ

measured data for these two propellers. For this configu-



ration KT BEMT numerical predictions for p/D = 0.75
and p/D = 0.80 fall within experimental uncertainty and
are comparable to WU-BEMT predictions. At nominal
p/D = 0.8 setting BEMT predictions tend to slightly over-
estimate measured propeller thrust whereas torque is very
well catpured if p/D = 0.75 and p/D = 0.80 BEMT sim-
ulations are considered. Finally, for p/D = 1.2, Figure 7
(bottom) shows the same comparison as above. In this case,
numerical KT predictions by the present BEMT model for
p/D = 1.15 are in good agreement with WU-BEMT re-
sults. Moreover, if p/D = 1.15 is considered, BEMT pre-
dictions tend to slightly overestimate thrust for J > 0.8.
This effect can be explained by considering the peculiar
geometry of SPP hubs that has a major impact on propeller
performance predictions at high values of J . Thrust under-
estimation due to viscosity and wake effects at J < 0.5
are evidenced. Torque predictions by BEMT are also in
good agreement with experimental and WU-BEMT numer-
ical results for propeller no. 2 whereas, viscosity and wake
induced effects on torque yield discrepancies for J < 0.6.

Finally, the equilibrium pitch setting for propeller no.

Figure 8: Numerical predictions of P2 free pitching equilibrium
conditions compared to measured data.

2 is addressed. Figure 8 shows BEMT numerical predic-
tions compared to measured data from Miles et al (1992).
In the operating range herein considered, BEMT hydrody-
namics solver shows a very good capability to capture ex-
perimental equilibrium conditions. It is worth noting that
the considered operating range is limited to J values yield-
ing equilibrium pitch settings where numerical predictions
by BEMT are reliable based on experience gained from the
previous fixed pitch analysis. At J values higher than 0.8
(and pitch settings greater than p/D = 1.2) further assess-
ment of BEMT capability to accurately describe SPP hy-
drodynamics is deemed necessary.

CONCLUSIONS

The development and assessment of computational
methodologies for the analysis and design of Self-Pitching
Propellers (SPP) has been presented to determine blade

free-pitching conditions. Two complementary hydrody-
namics approaches based on Blade Element Momentum
Theory (BEMT) and Boundary Element Method (BEM)
formulations, respectively, have been used to provide the
forcing terms in the blade motion equation. Moreover,
in order to address blade stability margins predictions, a
Reduced Order Model based on BEM for blade unsteady
loads to be coupled to the equation describing blade pertur-
bative motion about the spindle axis has been treated from
a theoretical point of view.

Numerical predictions by BEMT have been compared to
available experimental results and to numerical results by
BEM. An analysis on conventional Controllable-Pitch and
Self-Pitching Propellers has been presented to assess both
performance and spindle moment numerical predictions.
Numerical results show that the simplified BEMT model
is well suited to capture propeller performance as well as
spindle moment and blade equilibrium condition once a de-
voted tailoring process is performed on the flow-curvature
correction effects. In particular, numerical results demon-
strate that careful tuning of model parameters can provide
excellent agreement between measured and predicted spin-
dle moment values. A similar approach can be applied to
improve thrust and torque predictions. Nevertheless, more
consistent estimates of the induced velocity due to the shed
wake should improve capturing physical effects and should
reduce the impact on results of empirical corrections ap-
plied e.g., , to adjust the blade pitching moment. Present
computational studies also highlight that corrections to bet-
ter describe viscosity-induced features like cross flow on
the blade surface and boundary layer separation are also
important but they do not affect the overall quality of nu-
merical results as flow-curvature correction does.

A fully three-dimensional hydrodynamics model by BEM
has shown to be adequate to analyse major aspects affect-
ing CPP performance over a wide range of operating con-
ditions. The appeal of such a computational approach is
that a consistent description of three-dimensional, unsteady
flow around an arbitrarily shaped body is provided whilst
semi-empirical corrections are relevant only in those cases
where viscous-flow separation occours on large portions of
the blade surface. Calculated propeller thrust and torque
are typically reliable, whereas some numerical issues may
arise in the prediction of blade spindle moment.

In summary, the proposed theoretical and computational
methodology represents a sound basis for the analysis of
SPP performance, for the prediction of self-pitching con-
ditions and of the corresponding stability analysis of blade
equilibrium about the spindle axis.

Further research will be focused on the improvement of
BEM spindle moment predictions and the inclusion in
BEMT of the induced velocity calculated by the three-
dimensional hydrodynamics solver taking into account
trailing wake effects. Applications of the proposed ROM
to SPP stability margins will be also investigated.
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