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Abstract The self-induced dynamics of a uniform planar vortex in an isochoric, inviscid fluid is analytically
investigated, by writing a new nonlinear integrodifferential problem which describes the time evolution of the
Schwarz function of its boundary. In order to overcome the difficulties related to the nonlinear nature of the
problem, an approximate solution of the above problem is proposed in terms of a hierarchy of linear integral
equations. In particular, the solution at the first order is here investigated and applied to a class of uniform
vortices, the kinematics of which is well known. A rich mathematical phenomenology has been found behind
the approximate dynamics. In particular, the motion of certain branch points and the consequent changes in
the algebraic structure of the Schwarz function appear to be its key features. The approximate solutions are
finally compared with the contour dynamics simulations of the vortex motion. The agreement is satisfactory
up to times of the order of a quarter of the eddy turnover time, while it becomes more and more qualitative
at later times. Eventually, the physical meaning of the approximate solutions is lost, the corresponding vortex
boundaries becoming non-simple curves.

1 Introduction

The two-dimensional dynamics of uniform vortices in an isochoric, inviscid fluid is a quite old issue (see e.g.
[1] for a recent worldwide view), so that nowadays the main mathematical features of such flows have been
well understood. Existence of a unique solution and conservation of its regularity properties have been proved
for all times [2–4], encouraged by numerical experiments [5,6]. One could conclude, at least from the point
of view of a pure Mathematician, that the problem has been solved.

Unfortunately, applications require much more than existence, uniqueness and regularity of the solutions,
so that the understanding of the dynamics of a uniform vortex (e.g. what is the mechanism responsible for
the formation of a filament?) still remains a formidable task. This is essentially due to the strongly nonlinear
nature of the integrodifferential problem that describes the vortex motion and to the lack of a simple rela-
tion between vortex shape and velocity. The second difficulty has recently been overcome, specifying the
relation between kinematics and shape of the vortex in a more general context with respect to the one in the
literature [7].

The time evolution of a uniform vortex P is on the whole defined by the motion of its boundary ∂P , which
is usually investigated by following the so-called contour dynamics approach. This method is based on an
one-dimensional form of the self-induced velocity u, which is reduced to a line integral on ∂P thanks to the
uniformity of the vorticity ω inside the vortex. In more detail, consider a material particle which starts from a
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point ξ on the initial (t = 0) boundary. At any successive time t (>0), its position x(ξ ; t) solves the strongly
nonlinear integrodifferential problem:

⎧
⎪⎨

⎪⎩

∂t x(ξ ; t) = u[x(ξ ; t); t] = − ω

2π

∫

∂P(t)

d y log |x(ξ ; t) − y|

x(ξ ; 0) = ξ .

(1)

In the numerical simulations of the motion [8,9], the solution of the problem (1) is approximated by con-
sidering only a finite set of points on ∂P , the velocities of which are given by suitable approximations of u.
Interpolation formulae are used to rebuild an approximation of ∂P , when it is needed. Finally, first integrals
of the motion (as the circulation and the second-order moment) are usually employed to check the overall
accuracy of the integration.

Despite its apparent simplicity, the velocity u in the problem (1) leads to formidable analytical difficulties
even in the study of the kinematics, the shape of the vortex playing a rather involved role. Progresses have
been recently achieved by means of the use of the Schwarz function1 of the curve ∂P . As is well known, the
Schwarz function Φ of the smooth curve ∂P in the plane of the complex variable x1 + i x2 = x satisfies the
request: Φ = x1 − i x2 = x in any point x belonging to that curve. Generally speaking, Φ can be analytically
continued on a suitable neighbourhood of ∂P . Its singularities can lie inside as well as outside the vortex.
Once the Schwarz function of the vortex boundary is known, the conjugate velocity u (i.e. the conjugate of
the velocity viewed as a complex number, instead of a two-dimensional vector) induced by the vortex in any
point x of the plane is written [11] as:

u(x, x; t) = ω

2i

⎡

⎢
⎣χP(t)(x) x + 1

2π i

∫

∂P(t)

d y
Φ( y; t)

x − y

⎤

⎥
⎦ , (2)

χP being the characteristic function of P (it holds 1 inside P , 0 outside P and just 1/2 on the boundary) and
the integral being evaluated in its principal value if x ∈ ∂ P . The new form (2) opens the way to understand the
kinematic role of the vortex shape, which is clearly involved in terms of the Schwarz function of the boundary.
Moreover, the analytical evaluation of the conjugate velocity (2) can be often performed by means of standard
tools of the complex analysis.

Irrespective of the form of the velocity that is used, the problem (1) fails to be useful from an analytical
point of view. As a matter of fact it is strongly nonlinear, so that its analytical integration is not possible, at
least for non-trivial initial vortex shapes. On the other hand, its numerical integration gives at any time t > 0
only a finite set of points, from which an approximate vortex boundary can be rebuilt. Nothing is known about
the analytical properties of ∂P(t): there is no way (at least, to the author’s knowledge) to define the Schwarz
function of this curve. As a consequence, almost all the analytical investigations about the dynamics in the
literature (see e.g. [12–15] among many others) concern (rotating) equilibria, in which the shape of the vortex
is retained. The studies in which it really changes are confined to small departures from circular or elliptical
shapes [16–18], essentially due to convergence problems in the series representations of the solutions.

The present paper adopts a rather different point of view. Instead of working on the contour dynamics
problem (1), in case with the aid of the new kinematic relation (2), this latter relation is used to deduce a new
evolution equation for the Schwarz function. In this way, the analysis is directly focused on the time evolution
of the vortex shape, overcoming any difficulty in identifying Φ from a finite set of points. The equation for Φ
is integrodifferential, singular (contains an integral that must be evaluated in its principal value) and strongly
nonlinear. However, it possesses an attractive structure: its nonlinearity is confined inside a single term. This
property opens the way to estimate its (analytical) solution through the method of successive approximations
(see [19] page 84, or [20] pages 5, 49), which leads to a hierarchy of linear equations. The 0th order equation
takes the nonlinear term as zero, while in the kth one (k = 1, 2, . . .), the nonlinear term is assumed as a forcing
one and evaluated in correspondence with the available (k − 1)th solution. Due to the fact that its complexity
quickly grows for increasing k, the present analysis is confined to the first-order equation.

The paper is organized as follows. The evolution equation for the Schwarz function is derived in Sect. 2
together with the hierarchy of linear singular equations. The 0th-and 1st-order solutions are then calculated
by solving the corresponding equations in Sect. 3. In Sect. 4, they are specified for a certain class of vortices,

1 An extensive theoretical background on the Schwarz function can be found in [10].
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the kinematics of which has been recently investigated [11]. Several important issues about these solutions are
discussed in Sect. 5, while in Sect. 6, they are compared with the numerical simulations. Finally, conclusions
are offered in Sect. 7 together with a plan of future researches.

2 An integral approach to the self-induced dynamics

In the present section, an equation describing the evolution in time of the Schwarz function of the vortex
boundary is proposed. It is integral, singular and strongly nonlinear. Although it is not aimed at replacing
the classical contour dynamics problem (1) in order to numerically integrate the vortex motion, it provides
powerful tools to analytically investigate some interesting features of the dynamics. A convenient analytical
approximation of its solution is also proposed.

In order to avoid convective terms, a Lagrangian description of the vortex motion is here adopted. To this
aim, the analytic function S depending on the position ξ at the reference time (t = 0) and on the time t is
introduced. It is defined by means of the analytic continuation of its values on ∂ P(0), which are assigned
according to the relation: S(ξ ; t) = Φ[x(ξ ; t); t] in any ξ ∈ ∂ P(0). It is worth remarking that S(ξ ; t) is
different from Φ[x(ξ ; t); t] outside ∂ P(0), the flow x(ξ ; t) being a non-analytic function of the position ξ .
Nevertheless, in the following, S will be called Lagrangian Schwarz function of the curve ∂P .

The definition of S implies S(ξ ; t) = x(ξ ; t) in any ξ ∈ ∂ P(0). By deriving in time both sides of the
above relation, the evolution equation of S:

∂t S(ξ ; t) = u[x(ξ ; t); t] (3)

follows. It is valid on ∂ P(0) only. However, if the conjugate velocity at its right-hand side is replaced by the
analytic continuation of the function u[x(ξ ; t); t], it becomes valid on a suitable neighbourhood of ∂ P(0).

It is now interesting to use Eq. (3) in deducing Kirchhoff’s solution for a uniform elliptical vortex. To this
aim, its Eulerian analytic continuation is introduced:

∂tΦ(x; t) + U(x; t)∂xΦ(x; t) = U(x; t), (4)

x lying in a suitable neighbourhood of ∂ P(t). In the above equation, U and U (here the bar is just a symbol)
are the analytic continuations of the velocity u and of its conjugate u on the vortex boundary. U is different
from u inside the vortex (where U is analytic and u is not), while U is different from u everywhere. It is
worth stressing that, at least in general, the use of the dynamics (4) is not easy, U being related to the Schwarz
function in a very involved way. Nevertheless, it will be now employed in studying the motion of a uniform
elliptical vortex.

The vortex has its centre of vorticity on the origin. The lengths of its semi-axes are a and b (a > b), the first
one forming the angle α with respect to the positive real axis. As is well known, Kirchhoff’s solution states
that the vortex boundary rotates at the constant velocity � = ωab/(a + b)2, without deforming. This solution
is now recovered by using Eq. (4). As a matter of fact, the Schwarz function of the vortex boundary is given as

Φ(x; t) = a2 + b2

c2
︸ ︷︷ ︸

μ1

x −2ab

c2
︸ ︷︷ ︸

μ2

(x2 − c2

︸︷︷︸
μ3

)1/2, (5)

where c is a focus position, that is, c := c exp(iα) with c = √
a2 − b2, and the functions of time μ1,2,3 are

introduced here for later convenience. Moreover, an application of Eq. (2) leads to the analytic continuations
of velocity and conjugate velocity:

U(x; t) = i
ωab

c2

(
−x +

√
x2 − c2

)
, U(x; t) = i

ωab

(a + b)2

(
x +

√
x2 − c2

)
. (6)

Assume now that the algebraic structure of the Schwarz function (5) is retained during the motion and that
a, b and c depend on time. By inserting the functions (5, 6) in the dynamics (4), one easily obtains ȧ = ḃ = 0
and ċ = i�c, that is, the aforementioned Kirchhoff’s solution.

Coming back to the general case, the conjugate velocity on the current vortex boundary ∂ P(t) can be
written in terms of a Cauchy integral in the Schwarz function (2), as discussed in Sect. 1. By inserting in
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Eq. (3) this integral form of u and changing the variables from Eulerian to Lagrangian ones, the following
integrodifferential problem 2 is deduced:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂τ S(ξ ; τ) = −i

⎡

⎢
⎣S(ξ ; τ) − 1

π i

∫

−
∂P(0)

dη
S(η; τ)

η − ξ
− 1

π i

∫

∂P(0)

dηg(η, ξ ; τ)S(η; τ)

⎤

⎥
⎦

S(ξ ; 0) = S0(ξ) (given).

(7)

In the problem (7), the non-dimensional time τ = tω/4 has been used (it gives an eddy turnover time π
for a Rankine vortex and slightly larger rotation periods for non-circular ones). Moreover, the nonlinearity is
confined in the last term, which depends on the displacement ratio h(η, ξ ; τ) := [x(η; τ) − x(ξ ; τ)]/(η − ξ)
by means of the function g := ∂η log h. It is worth remarking that this term vanishes at the initial time, due to
the fact that h(η, ξ ; 0) ≡ 1 and then g(η, ξ ; 0) ≡ 0.

More complicated flows can also be investigated by using the above approach. For example, in the pres-
ence of strain [21], the term iγs x exp(−2iϕs) has to be added to the right-hand side of Eq. (3), γs and
ϕs being the (time-dependent) intensity and orientation of the strain field. Once this term is changed in
iγsξ exp(−2iϕs)+ iγs(x − ξ) exp(−2iϕs), the present approach can be easily extended. Indeed, the first term
is known and the second one is nonlinear and vanishes at the initial time.

As stated in Sect. 1, the initial value problem (7) is here proposed with the aim to investigate the vortex
motion in an analytical fashion. From this point of view, it appears more useful than the classical contour
dynamics one (1). As a matter of fact, the problem (7) focuses on the time evolution of the vortex shape, being
written in the corresponding Schwarz function. On the contrary, there is no way to understand the role of the
shape in the problem (1). This is a rather subtle consequence of the still unresolved difficulty in identifying
the Schwarz function of the curve ∂ P(t), as it follows from the numerical integration of the contour dynamics
problem at t > 0.

The integrodifferential problem (7) is now transformed into an integral equation by means of the Laplace
transform in time (the conjugate variable of τ is called σ ):

(iσ − 1)S̃(ξ ; σ ) + 1

π i

∫

−
∂ P(0)

dη
S̃(η; σ )

η − ξ
︸ ︷︷ ︸

SD[S̃]:singular dominant term

+ 1

π i

∫

∂ P(0)

dη g̃S(η, ξ ; σ )

︸ ︷︷ ︸

R[S̃]:regular term

= i S0(ξ)
︸ ︷︷ ︸

ID[S̃]:data

, (8)

S̃ being the transform of S. In the above equation, the singular contribution is linear, while the regular one is
strongly nonlinear, due to the presence of the function g.

An attempt to analytically approximate the solution of the Eq. (8) is now explored. It is based on the struc-
ture of the above equation, in which the nonlinearity is confined inside the regular term R, only. This attractive
feature suggests to build a hierarchy of linear singular integral equations by using the method of the successive
approximations, as is usually done for nonlinear integral equations. It is worth remarking that the present
approach is different from other analytical ones, which employ truncated Laurent series representations of the
solution in order to capture the deformations about a basic shape (circular or elliptical). In these approaches,
the departures from the fixed vortex geometry must be small, in order to ensure the convergence of the series.
Moreover, the algebraic structure of the approximate solution cannot be easily understood, being given by the
sum of a series. The present method does not require the deformations to be small, it does not perform any
linearization, and at least in principle, it leads to the algebraic structure of the approximate solution. The only
difficulty that is experienced lies in the algebraic complexity of the solutions, which quickly grows with the
order of the approximation.

The hierarchy of the linear approximating equations is built as follows. Equation (8) is first rewritten by
keeping R = 0 also for t > 0:

SD[S̃
(0)] = ID =: H(0). (9)

Once the above linear equation has been solved, the 0th order approximation of the Schwarz function
S(0) follows. This approximation is then employed to compute a less rough estimate of the regular term,

2 The bar superimposed to the integral symbol means that it is evaluated in its Cauchy principal value.
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by evaluating R in correspondence with S̃
(0)

. This approximation of the regular term, that is, R[S̃
(0)], is then

viewed as a forcing term for the first-order problem, which is formulated as follows:

SD[S̃
(1)] = ID − R[S̃

(0)] =: H(1). (10)

By solving this equation, a better approximation (S(1)) of the Schwarz function is obtained, and so on. How-
ever, the successive approximations are truncated at the 1st order in the present paper, due to the complicated

algebraic structure of the nonlinear regular term R[S̃
(0)]. Despite a mathematical proof of the convergence

of the successive approximations to the solution of the problem (7) is still lacking, S(1) (10) is expected to
be closer to the solution of the problem (7) than S(0) (9). In Sect. 6, the comparison with contour dynamics
simulations will give an experimental proof of this important conjecture.

Finally, the singular integral equations (9, 10) are solved once for all by using standard techniques [22],
and the following Laplace transform of the kth (k = 0, 1) approximation of the Schwarz function in any point
ξ ∈ ∂ P(0):

S̃
(k)

(ξ ; σ ) = − iσ − 1

σ (σ + 2i)
H(k)(ξ ; σ ) + 1

σ (σ + 2i)
1

π i

∫

−
∂P(0)

dη
H(k)(η; σ )

η − ξ
(11)

is obtained. The Laplace antitransforms of the above solutions are evaluated in the next section.

3 Approximate solutions at zero and first orders

In the 0th order problem (9), H (0) is simply given by i S0, for any σ . The Laplace antitransform of the cor-
responding solution (11), evaluated by using the result (23) of Appendix A, leads to the definition of the 0th
order Schwarz function in any point ξ on the initial boundary:

S(0)(ξ ; τ) = S0(ξ) + 1

2i
τ

1 + τ
u0(ξ), (12)

τ = exp(2iτ) − 1 being the “complexified” time and u0(ξ) the conjugate velocity u[ξ , S0(ξ); 0] (divided by
ω/4). The solution (12) is periodic in time with period3 T = 4π/ω.

Once the Schwarz function on ∂ P(0) is known, its conjugate gives the 0th order position as:

x(0)(ξ ; τ) = ξ + τ

2i
u0(ξ). (13)

As ξ runs on ∂ P(0), the point x(0)(ξ ; τ) (13) moves on the 0th order approximation of the boundary at
time τ , called ∂ P(0)(τ ) hereafter. The behaviour in time of this approximation is discussed in Sect. 6, where
it is evaluated in correspondence with sample vortices. In general, ∂ P(0) agrees in a quite unsatisfactory way
with the true boundary, obtained by means of an accurate contour dynamics simulation. Nevertheless, it is
very important from a theoretical point of view, in order to calculate the next approximation (∂ P(1)) of the
boundary and also for reasons that will be discussed in Sect. 7.

As a sample case, the 0th order solution (12) is now evaluated for a uniform elliptical vortex. Due to the
fact that it is periodic with period π , while the vortex rotates with a different (and shape-dependent) period,
Kirchhoff’s solution cannot be recovered. However, it is interesting to compare the true Schwarz function (5)
and the present 0th order one. It has the same algebraic structure, but with the following coefficients:

μ
(0)
1,2(τ ) = c2

2
[
(a − b)2 + 4abe2iτ

] ± 4ab + (a − b)2e2iτ

2c2e2iτ
, μ

(0)
3 (τ ) = a − b

a + b

[
(a − b)2 + 4abe2iτ

]
.

The above coefficients are compared with the true ones in Fig. 1 for small (first row) and large (second)
eccentricities (ε := c/a). It is worth noticing that for small ε, the agreement appears to be very satisfactory.
On the contrary, for increasing ε, the errors μk − μ

(0)
k (k = 1, 2 and 3) become larger and the 0th order

approximation quite poor.

3 It agrees with the one of the Kirchhoff solution [7] for an elliptical vortex. Indeed, the period of rotation of the elliptical
vortex boundary is given by Te = 2π(a + b)2/(ωab) � 2T , a and b being the semi-axes. Due to the fact that the motion of the
material particles inside the vortex is periodic with period Te/2, S(0) changes with a period close to T .
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Fig. 1 Coefficients μk in Eq. (5) (blue lines) and μ
(0)
k (red) for k = 1 (first column), 2 (second) and 3 (third) during a period of

rotation of the vortex. b is 1, while a is 1.2 (ε � 0.553) in the first row and 2 (ε � 0.866) in the second one

The first-order solution S(1) is now deduced. Its Laplace transform follows from the general form (11) of
the solution, once the right-hand side H (1) of Eq. (10) has been calculated. To this aim, the regular term R is
evaluated in correspondence with the solution (12,13), by introducing the following function:

N(ξ ; τ) := 1

π i

∫

∂ P(0)

d log h(0)(η, ξ ; τ)S(0)(η; τ), (14)

the Laplace transform of which just gives R[S̃
(0)]. In the above definition, h(0) is the 0th order displacement

ratio [x(0)(η; τ) − x(0)(ξ ; τ)]/(η − ξ). From the formula (14), it follows that N depends on the roots of the
equation in η: x(0)(η; τ) = x(0)(ξ ; τ) different from ξ , as it will be discussed in the next section.

Moreover, the calculation of the above nonlinear term must also take into account the topology of ∂P(0).
As a matter of fact, the part of N containing the differential dx(0)(η; τ) can be viewed as evaluated on the
curve ∂P(0) (oriented in a counterclockwise sense), so that it changes if this curve is simple or not. In the
first case, a straightforward application of the residue theorem leads to the value of N . In the second one,
∂P(0)(τ ) is the union of two simple and closed curves on which x(0)(η; τ) moves in opposite directions as η
runs counterclockwise on ∂P(0). As a consequence, the domain of integration ∂P(0) in Eq. (14) must be split
in two open arcs and the corresponding integrals have to be evaluated in a different way.

The 1st-order solution S̃
(1)

(11) is computed by using the Laplace transform of the function (14). Its Laplace
antitransform is evaluated through convolutions in time, as discussed in Appendix A. It follows the 1st-order
Lagrangian Schwarz function:

S(1)(ξ ; τ) = S(0)(ξ ; τ) + i
2

⎧
⎨

⎩

τ∫

0

dτ ′ [ 1 + e−2i (τ−τ ′) ] N(ξ ; τ ′)

+ 1

π i

∫

−
∂ P(0)

dη

η − ξ

τ∫

0

dτ ′ [ 1 − e−2i (τ−τ ′) ] N(η; τ ′)

⎫
⎪⎬

⎪⎭
, (15)

in any point ξ on ∂ P(0). By conjugating the above function, the 1st-order approximation ∂ P(1) of the vortex
boundary is also obtained. As will be discussed below, it behaves in a quite satisfactory way even at times
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Fig. 2 Vortex boundaries (black lines) at different times (indicated above, in sexagesimal degrees), obtained by means of contour
dynamics simulations. The initial Schwarz functions have the form (16), with a1 = 1 and: a2 = 0.2 + i , z1 = −0.7 + 0.05i ,
z2 = −1 + 1.5i (first row); a2 = 0.8 − 0.2i , z1 = 0.6 − 1.1i , z2 = −0.1 + 0.3i (second); a2 = 0.5 − 0.1i , z1 = 0.8 − 0.75i ,
z2 = 0.4 + 0.2i (third). The initial vortex boundaries (yellow lines) are also drawn. The simulations are performed with relative
errors on circulation and second-order moment smaller than 2 · 10−4

in which ∂ P(0) is non-simple. For this reason, its calculation in correspondence with sample vortices will be
discussed in some details.

The 0th- and 1st-order solutions (12,15) are now used for investigating the dynamics of vortices the bound-
aries of which possess Schwarz functions of simple forms.

4 First-order solution for a class of sample vortices

The 1st-order Schwarz function (15) is now specified for vortices the Schwarz functions of which possess
two simple poles in a transformed z-plane [11], the corresponding self-induced velocities being analytically
known. Samples of the dynamics of this kind of vortices are shown in Fig. 2. Before discussing this application,
a short overview of the kinematics of this kind of vortices is here offered.

The Schwarz function at the initial time is assumed in the following form:

S0[ξ(z)] := ξ(z) = a1

z − z1
+ a2

z − z2
, (16)

where z runs on the unit circle C (hereafter, z and ζ will be used for the images of ξ and η in the plane of the
circle). Introduced the image points w1,2 = 1/z1,2, residues and poles of S0 will appear often combined into
the constants α := a1w

2
1 + a2w

2
2, β := w1w2(a1w1 + a2w2) and γ := w2

1w
2
2(a1 + a2).

The initial vortex shape follows by conjugating the function (16):

ξ(z) = − a1w
2
1

z − w1
− a2w

2
2

z − w2
− β

w1w2
, (17)

having used the fact that z lies on C (i.e. z = 1/z).
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In order to evaluate the Schwarz function S0 or the corresponding self-induced conjugate velocity u0
outside the vortex boundary, the analytic continuation of the function (17) outside the unit circle is needed.
It follows from the above definition of ξ in the natural way, even if its domain D0 (and also its range R0, as
it will be shown below) of this map must be still identified. At the present stage, the only known properties
of D0 and R0 are that D0 includes C and R0 covers almost all the physical plane. It is shown in [11] that the
calculation of the inverse function z = z(ξ) leads also to the definition of D0 and R0. The main steps of this
calculation can be summarized as follows.

First, it is worth remarking that the equation in ζ : η(ζ ) = ξ(z) possesses two roots, the trivial one (ζ = z)
and the root:

ζ = ζ �(z) = β z − γ

αz − β
. (18)

Due to the fact that the function (17) maps the points z and ζ �(z) on the same ξ , the function (18) will be
also named as the pseudo-inverse of the function (17), even if it acts on z and not on ξ . A second important issue
concerns the requirement that the vortex boundary is a simple curve, or equivalently that the circle ζ �(C) =: C�

does not intersect C. It leads to constraints on residues and poles of the Schwarz function (16). A classification
based on the relative positions of C� with respect to C and on the properties of the map z �→ ξ (17) is also
introduced, in order to separate vortices having different kinematic properties.

The analysis of the pseudo-inverse map (18) shows that a one-parameter family of circles {Ci (μ), with
μ real} exists such that any circle of the family results to be an invariant curve for the function ζ �, that is,
ζ �(Ci ) = Ci . Furthermore, any Ci is mapped by the function (17) onto an arc of circle C̃i in the physical plane:
as z runs on Ci , the point ξ(z) moves on that arc first in a direction and then in the reverse one. All the circles of
the above family intersect on the two fixed points z∓

io of the map (18), which are transformed by the function
(17) in the endpoints ξ∓

io of the arc C̃i . As μ changes, different arcs C̃i are obtained, despite their endpoints
remaining fixed.

Any circle Ci divides the z-plane in two regions that are mapped one to the other one by the pseudo-inverse
function (18). The unit circle lies in one of them, which, therefore, is the domain D0 of the map (17). Its range
R0 is the plane cut4 along the arc C̃i . In other words, the inverse map ξ �→ z is defined almost everywhere in
the physical plane, its limit values from the two sides of C̃i leading to different points on Ci . As a final remark,
note that any choice of μ leads to different branches of the function z �→ ξ (17) and of its inverse ξ �→ z.

In the present paper, the first-order solution (15) is evaluated for three sample vortices, the dynamics of
which is shown in the three rows of Fig. 2. Despite these vortices are of different kinds with respect to the
classification in [11], they possess the same algebraic structure of the self-induced velocity u0:

u0[ξ(z)] = b1

z − w1
+ b�

2

z − w�
2

+ b0, (19)

in which w�
2 = 1/z�

2 with z�
2 := ζ �(z2). The coefficients b0, b1 and b�

2 depend on poles and residues of the
Schwarz function (16). In order to calculate the nonlinear term N , the 0th order displacement ratio h(0) is
specified in terms of the initial shape (17) and velocity (19):

h(0)[η(ζ ), ξ(z); τ ] = P(z; τ | ζ )

(z − ζ �∞)(z − w�
2)(ζ − w�

2)[ζ − ζ �(z)] . (20)

In the above formula, ζ �∞ stays for ζ �(∞) = β/α and P is a polynomial which is quadratic in ζ and z
and linear in τ . Due to the symmetry of h(0) with respect to η and ξ , P is also symmetric in z and ζ . Its roots
in ζ are named as F∓ (the sign + indicates that the principal branch of the square root of the discriminant
is used, while−refers to the secondary one) and depend on z and on τ . As functions of z, they possess four
time-dependent branch points z̃1, . . ., z̃4. Finally, the polynomial P together with its roots verifies the following
property:

P[F+(z; τ); τ | F−(z; τ)] ≡ 0 (21)

4 In all the sample vortices investigated in the present paper (of kinds (1, 1), (2, 2) and (3, 2) [11]), the value of µ can be
selected in such a way that the cut C̃i lies inside the vortex.
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for any z and τ . The identity (21) means that P vanishes when its coefficients are calculated in one root and
the polynomial in the other one: it is called reciprocity.

Once h(0) has been evaluated, the nonlinear term (14) follows at times in which ∂ P(0) is a simple curve as:

N = 1

π i

∫

C
dζ

(
1

ζ − F−
+ 1

ζ − F+
− 1

ζ − w�
2

− 1

ζ − ζ �

)

×
[

a2

ζ − z2
+ 1

τ + 1

(
a1

ζ − z1
+ τ c�

2

ζ − z�
2

+ τ c0

)]

,

where c�
2 and c0 are coefficients depending on poles and residues of the Schwarz function (16). If ∂ P(0) is

not a simple curve, N assumes a more complicated form, still depending on the roots F∓. In both cases, the
nonlinear term can be analytically evaluated only if the relative positions between F∓ and C are known. For
this reason, a preliminary analysis of the behaviour of the roots F∓ as functions of time and space is needed.
It is briefly summarized in the next section, before discussing the numerical results of the present approach.
For the sake of shortness, the analysis is here confined to the vortex in the first row of Fig. 2.

5 Behaviour of the maps F∓

It is worth remembering that these functions depend on the positions of four branch points z̃1, . . ., z̃4, which in
turn change in time. In Appendix B, the motion of these points is briefly investigated, by showing that two of
them run on large trajectories and intersect C at certain times τ �

2,3 (see Fig. 9 in Appendix C), while the other
two points move in small neighbourhoods of their initial positions.

A convenient way to begin the study of the functions F∓ during an eddy turnover time consists in consid-
ering their action on C. The unit circle is transformed into the time-dependent curves L∓ := F∓(C), which
play a special role in the 1st-order solution S(1) (15). In fact the nonlinear term N (14) depends on their relative
positions with respect to C.

These curves are drawn in Fig. 3 at several times during an eddy turnover period.
A quick look at these pictures leads to the identification of another couple of important times, at which L−

touches C and simultaneously a cusp appears or disappears on L+. These times are named as τ �
1,4 (see Fig. 9).

Finally, it is worth noticing that L∓ merge at time τ �
2 and then separate again at time τ �

3 . The motion of these
curves is now briefly described.

At the initial time (τ = 0), the curve L+ collapses to the point w�
2 (external to C), while L− is superimposed

to C�, which in turn lies inside C. Afterward, L+ grows and L− approaches C, up to touch that circle at the
critical time τ �

1 and to cross it at later ones. In correspondence with the intersection between L− and C, the other
curve (L+) becomes non-simple (see Appendix C). The two curves L∓ remain separated, until two branch
points ( z̃3,4) lie inside C. At the critical time τ �

2 , one of them ( z̃4) crosses C and L∓ merge in a new non-simple
curve L. The curve L breaks again in two separated ones at the critical time τ �

3 , when a new branch point ( z̃2)
enters in the unit circle. At the successive critical time τ �

4 , L− touches C, lying inside C at later times. At the
same time, L+ becomes simple again. Finally, at the end of the period (τ = π), L+ collapses to the point w�

2
and L− superimposes to the circle C�.

The motion of the same curves for the vortices in the second and third rows of Fig. 2 is qualitatively
different from the one investigated above, but it is not described here for the sake of shortness. However, the
main differences are due to the fact that the point w�

2 and the circle C� are placed in different positions with
respect to the unit circle. In particular, w�

2 lies in both cases inside C and the circle C� includes C for the vortex
in the second row, while C� is external and it does not include the unit circle for the one in the third row.

About the behaviour of the roots F∓(z; τ) as functions of the point z in a certain neighbourhood of C
and at a fixed time τ , just few key definitions are given here, while a more detailed discussion can be found
in Appendix D. As described above, the algebraic structures of these functions contain the square root of a
time-dependent quartic polynomial, which has to be calculated by accounting for the motion of its zeros z̃1(τ ),
. . ., z̃4(τ ). A branch of the root is obtained by grouping these points into suitable pairs and joining the points
of each of the two pairs through arbitrary cuts, called T+ and T− (due to the fact that, in the early stages of
the motion, they are internal to the curves L+ and L−, respectively). These cuts must be thought as closed
curves having empty insides, their shapes defining the branch of the maps F∓ under consideration. The limit
values of the function F+ [F−] on two superimposed points of T+ [T−] from the two sides of the cut are in
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Fig. 3 Curves L∓ (red solid line) at different times in [0, 180◦), for the vortex in the first row of Fig. 2. The point w�
2 ≡ F+(C; 0)

and the circle C� = F−(C; 0) are drawn (green), together with the trajectories (yellow) of the branch points (their current positions
are indicated with black circles). L− lies inside C up to the time τ �

1 , at which a cusp appears on L+ (it becomes non-simple up to
the time τ �

4 ). Both curves L∓ remain separated up to time τ �
2 , when they merge in a non-simple closed one (L). In turn, L breaks

at time τ �
3 in two closed curves L+ (non-simple and external to C) and L− (crossing C). Finally, L− returns inside C at time τ �

4 ,
when also L+ becomes simple again

general different: the function experiences a finite jump in crossing the cut. As a consequence, the image curve
F+(T+) [F−(T−)] results to be simple and closed. Moreover, it can be shown that it is invariant for the other
map F− [F+]. For this reason, it will be called I− [I+]. Note also that if z̃1,2 are the endpoints of T+, the
transformed points Z̃1,2 := F−( z̃1,2) ∈ I− do not depend on the choice of the cut T+. They are fixed points
on the invariant curve I−. On the basis of the above definitions, the choice of one-to-one branches of the maps
F∓ becomes possible. It is briefly discussed in Appendix D.

6 Results

The above analytical approach is now applied to the study of the motion of non-trivial sample vortices. The
initial vortex shapes are chosen among the ones investigated in the paper [11], by giving suitable values to poles
and corresponding residues in their Schwarz functions (16). Other results obtained by applying the present
approach can be found in [23], even if they are there presented without discussing mathematical details.

In particular, three shapes have been selected (see Fig. 2). The first one has the circle C� inside C and the
point w�

2 outside, while the second vortex has C� external and including C and w�
2 inside the unit circle. Also,

the third vortex has C� external to C, but it does not include the unit circle in this case, while w�
2 still lies

inside C. As a consequence, the initial positions of the curves L− (superimposed to C�) and L+ (collapsed
on the point w�

2) with respect to C are different, as well as their dynamics. Different time behaviours of the
approximate solutions follow. Furthermore, it is worth remarking that each boundary possesses at the initial
time (τ = 0) a structure similar to the initial stage of a filament. It involves a large part of the boundary in the
second case, being very small in the first and third ones. However, the first shape is the more interesting one,
due to the fact that its initial filament has mean curvature which is opposite to the bulk angular velocity of the
vortex. It quickly disappears as the vortex begins to move and a new filament is produced in a different region
of the vortex boundary.

Due to the different dynamics of the curves L∓, the solutions at 0th and 1st orders approximate in more or
less satisfactory ways the numerical ones. In general, the agreement between analytical and numerical solu-
tions is kept until the curve L− intersects C. At later times, ∂ P(0) becomes non-simple, leading to large errors
in the 0th order solution. It will be shown below that the 1st-order solution strongly improves this behaviour.
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Fig. 4 In the first row, the numerical boundaries (black lines) are superimposed to the analytical ones at orders 0 (green) and 1
(red/blue) for the vortex in the first row of Fig. 2. As in this figure, the initial vortex shape is also drawn (yellow). In the second
row, the curves L∓ (red), I∓ (green) as well as the cuts T∓ (blue) are drawn at the same times. The unit circle is also drawn
(black), while symbols indicate the branch points z̃k (blue) and the corresponding invariant ones Z̃k (green) for k = 1, . . ., 4.
Times are indicated above, in sexagesimal degrees

Roughly speaking, it agrees with the numerical solution up to times of the order of one-fourth of the eddy
turnover period.

The analytical solutions for the vortex in the first row of Fig. 2 at orders 0 and 1 are shown in the first row
of Fig. 4. The numerical boundaries are also superimposed, together with the initial shape. In the second row,
the image curves L∓, the invariant ones I∓ and the cuts T∓ (assumed straight for the sake of simplicity) are
drawn at the corresponding times. The picture at time τ = 54◦ shows that the disappearance of the original
filament and the formation of the new one are accurately captured by the 1st-order solution. On the contrary,
the errors of the 0th order solution appear already quite large. The analysis of the corresponding curves L∓,
I∓ and T∓ in the second row shows that for a short time, a transition5 from the configuration in Fig. 11a
(Appendix D) to the one in Fig. 11b occurs, the cut T+ intersecting the curve L+. During this time, the maps
F∓ behave in a different way, by changing from the functions in the first row of Fig. 12 (Appendix D) to the
ones in the second row of the same figure. It follows that two different branches of the function F+ are now
needed in order to correctly draw the curve L+.

The successive motion of the new filament is captured by the approximate solutions in a more qualitative
way, as shown by the picture at time τ = 90◦ (just before τ �

1 ). At this time, the 0th order solution exhibits a
very thin filament with a large loss of circulation, while the 1st-order solution leads to errors in high curvature
regions of the vortex core. Note that the cut T+ does not more intersects L+, so that the maps F∓ still behave
as in the first row of Fig. 12 (Appendix D).

At the successive time τ = 108◦, the 0th order solution breaks down (τ �
1 � 100◦, see the table in Fig. 9),

∂ P(0) becoming a non-simple curve. At the same time, in the high curvature regions of vortex core, the errors
of the 1st-order solution grow and ∂ P(1) rotates somewhat faster than the numerical boundary. However, the
1st-order solution still represents a substantial improvement in the 0th order one. As discussed in Sect. 5, the

5 This behaviour is due to the present definition of the cuts. In principle, it can be avoided by adopting a curved cut T+.
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Fig. 5 As in Fig. 4, but for the vortex in the second row of Fig. 2
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Fig. 6 As in Fig. 4, but for the vortex in the third row of Fig. 2

curve L− intersects the unit circle and the curve L+ (still obtained by using two branches of the function F+)
becomes non-simple, intersecting the cut T+ in two points. The corresponding space behaviour of the maps
F∓ becomes much more complicated. In this condition, the nonlinear term N (14) has to be calculated in a
different way with respect to previous times. This fact is accounted for in the first row of Fig. 4 by using two
colours for drawing ∂ P(1). For ξ running counterclockwise on ∂ P(0), it is red (as before) if x(0)(ξ ; τ) belongs
to the counterclockwise oriented part of ∂ P(0)(τ ), while it becomes blue if x(0)(ξ ; τ) lies on the clockwise
oriented part of the same curve.

Finally, at time τ = 126◦, also the 1st-order solution breaks down, the corresponding vortex boundary
becoming non-simple.

The analytical approximate solutions for the vortex in the second row of Fig. 2 are drawn in Fig. 5. In this
case, the curve L− intersects the unit circle in the early stages of the motion (τ �

1 � 38◦, see the table in Fig. 9)
and the 0th order boundary becomes quickly non-simple. However, the 1st-order solution strongly improves
such behaviour, leading to an excellent agreement with the numerical one in the early stages (τ = 36◦, just
before τ �

1 ) of the motion. The error with respect to the reference numerical solution slowly grows at later times,
as shown by the picture at time τ = 54◦. Note that the vortex shape has been experienced a relevant change at
this time: the core is rather larger than the initial one as well as the filament appears to be thinner. Finally, the
agreement with respect to the reference solution becomes quite poor at later times, as shown by the picture at
time τ = 72◦.

The dynamics of the vortex in the third row of Fig. 2 is investigated in Fig. 6. This case is the most difficult
one, due to the fact that the intersection between L− and C occurs very early (τ �

1 � 23◦, see the table in
Fig. 9). As before, the agreement between analytical solutions and reference ones is satisfactory in the first
stages of the motion (see the time τ = 18◦) and errors grow only after τ �

1 , when the 0th order solution becomes
non-simple. Nevertheless, the 1st-order solution appears to be an excellent approximation at time τ = 36◦
and also at time τ = 54◦, which is just before the critical time τ �

2 (at which z̃4 goes into the unit circle). This
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solution captures easily the motion of the quasi-circular core, but it appears also able to follow the formation
of the filament as well as the early stages of its dynamics.

7 Concluding remarks and future work

A nonlinear singular integral equation describing the evolution in time of the Schwarz function of the boundary
of a two-dimensional, uniform vortex moving in an isochoric, inviscid fluid has been presented. The nonlinear
nature of the equation is due to just one term, involving also the positions on the vortex boundary at the current
time. In the author opinion, this equation partially overcomes the relevant difficulties in identifying the changes
in the Schwarz function, which occur during the vortex motion. By assuming that the solution of the above
equation exists and is unique, its approximation through a standard technique is also faced. The nonlinear
equation is replaced by a hierarchy of linear ones, each of them being forced by the nonlinear term evaluated
at the previous order. These linear equations are still singular and their solutions are easily written, leading to
new approximate solutions for the time evolution of the Schwarz function of the vortex boundary. In principle,
the convergence of the sequence of approximating solutions should be investigated. However, the algebraic
complexity of the forcing term grows very rapidly with the order of the approximation; therefore, this analysis
appears to be a difficult task at the present time. It is here replaced by the experimental comparison with the
numerical simulations of the vortex motion.

Solutions at the 0th and 1st orders are given. They are also applied to a class of vortices, the kinematics
of which is analytically known. The 0th order solution agrees with the numerical one for very small times,
the corresponding vortex shape becoming quickly non-simple. The 1st-order solution strongly improves this
behaviour. Its agreement with the numerical one appears to be very satisfactory for times of the order of one-
fourth of the eddy turnover period, becoming more and more qualitative at later times. However, the 1st-order
solution is able to follow larger changes in the vortex shape. To the best of the author’s knowledge, there is
not another analytical approach which behaves in the same way.

Behind the present solutions, a lot of interesting mathematical devices have been found. They are not
specific for the particular vortex shapes here investigated. First of all, on the periodic changes (having period
T = 4π/ω) of the 0th order solution S(0) (12), a non-periodic time evolution is superimposed, due to the pres-
ence of convolutions in time inside the 1st-order solution (15). As shown by the form (14) of the nonlinear term
N , the non-periodic time evolution is driven by the periodic motion of the curves on which the displacement
ratio h(0) vanishes. Moreover, two different algebraic structures of the 1st-order solution have been found. The
passage from one to the other is induced by a change in the nonlinear term N occurring at the time in which
the 0th order vortex boundary becomes non-simple (τ �

1 ). Finally, as it happens to the 0th order solution, the
physical meaning of the 1st order one is lost at the time in which ∂ P(1) becomes a non-simple curve.

What do we learn from the above solutions for the fluid dynamics?
A first important contribution concerns the filamentation of the vortex boundary. Its appearance is related

to the fact that ∂ P(0) becomes at a certain time a non-simple curve. As shown in Sect. 6, in this condition, the
1st-order solution (15) corrects the above unphysical behaviour of the 0th order one, so that a neighbourhood of
the double point on ∂ P(0) becomes a thin layer in ∂ P(1), that is, a filament. As a consequence, the appearance
as well as the time (τ ) and the Lagrangian position (ξ ) in which the filamentation occurs can be predicted,
by searching for the double point of the function x(0)(ξ ; τ). Note also that despite the filamentation can be
predicted by means of the linear solution (13), its description becomes possible if and only if nonlinear effects
are accounted for.

Another aspect of the self-induced dynamics that has been explained concerns the effects of the nonlinearity
(in particular, at the first order) on the motion of the vortex core. As a matter of fact, if the core is nearly circular
(as in the case of Fig. 6), the linear approximation (13) works very well (see also the discussion for the elliptical
vortex in Sect. 3). Perhaps, this behaviour could be related to the success in using series representations of
the solution in that case. On the other hand, when the core experiences large deformations (as in the case of
Fig. 4), or it grows due to an axisymmetrization process (like in Fig. 5), the linear approximation becomes
poor. The nonlinear term appears to be essential in order to properly follow the motion of these vortex cores.

Several issues still remain to be investigated. Firstly, it is important to analyse the initial stages of the
dynamics of the (Eulerian) Schwarz function Φ. This can be done by building the inverse of the relation
(13), so that the Lagrangian position ξ ∈ ∂ P(0) is rewritten at a time τ as a function of the Eulerian one
x ∈ ∂ P(0)(τ ). An approximation of the (Eulerian) Schwarz function on the current boundary follows from
Eq. (12) by assuming: Φ(x; τ) � S(0)[ξ(x; τ); τ ]. Its analytic continuation outside that boundary could give
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important information about the initial stages of the dynamics of Φ. In principle, the same can also be made
with the 1st-order solution, at least locally (i.e. in a neighbourhood of some special point of the vortex bound-
ary), even if huge algebraic difficulties must be overcome. The analysis of the spatial behaviour of the roots
F∓ outlined in Sect. 5 (and in Appendix D) represents a first important step along this way.

The present 1st-order solution can also be improved. As a matter of fact, the integral on ∂ P(0) in the
1st-order Schwarz function S(1) (15) is computed in a numerical way at the present time, despite it could be
written in terms of several elliptic ones by means of a lot of algebraic work.

Finally, it will be important to understand if the algebraic structure of the Lagrangian Schwarz function
changes abruptly once the motion starts, or if it is retained, at least for small times (as in the author opinion).
This issue is under investigation at the present time. It is approached by enforcing the conservation of the
structure of S in its evolution Eq. (3), which leads to a system of nonlinear ordinary differential equations
describing the time evolution of the poles (z1,2) and of the residues (a1,2) in the form (16) of the Schwarz
function. Also in this case, its physical meaning will be checked by means of experimental comparisons with
contour dynamics simulations of the vortex motion.

Acknowledgements The author would like to thank the anonymous Referees, whose suggestions greatly improved the paper.

Appendix A : Laplace antitransform of F̃( y)/( y + i a)

If F̃( y) := L[F]( y) is the Laplace transform of F(x) and a is an arbitrary real number, the following relation:

d

dx

{

eiaxL−1

[
F̃( y)

y + ia

]

(x)

}

= eiax F(x)

is valid. By integrating in x , it becomes

L−1

[
F̃( y)

y + ia

]

(x) = e−iax

⎧
⎨

⎩

x∫

0

dξ F(ξ)eiaξ + L−1

[
F̃( y)

y + ia

]

(0)

⎫
⎬

⎭
. (22)

The second term in the right-hand side of Eq. (22) vanishes. Indeed, by exchanging the singular and the
regular integrals that term becomes (μ is a real number greater than the abscissa of convergence of F̃):

L−1

[
F̃( y)

y + ia

]

(0) = 1

2π i

μ+i∞∫

μ−i∞
d y

F̃( y)
y + ia

=
+∞∫

0

dξ F(ξ)
1

2π i

μ+i∞∫

μ−i∞
d y

e− yξ

y + ia
,

in which the inner integral is zero. This fact can be proved by integrating (via the residue theorem) the function
e− yξ /( y + ia) on the rectangle in Fig. 7 and evaluating the limit as M → +∞:

1

2π i

μ+i∞∫

μ−i∞
d y

e− yξ

y + ia
+ 1

2π i

−μ−i∞∫

−μ+i∞
d y

e− yξ

y + ia
= eiaξ .

By performing the change of variable from y to y′ = − y in the second integral, it gives eiaξ , so that the
first integral in the above equation results to be zero. Equation (22) becomes

L−1

[
F̃( y)

y + ia

]

(x) = e−iax

x∫

0

dξ F(ξ)eiaξ . (23)

Note that the well known rule about the Laplace transform of the integral of F can be also obtained, by
enforcing a = 0 in Eq. (23).
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Fig. 7 Integration path

Appendix B : Branch points of the maps F∓

In the present appendix, the motion of the four branch points z̃1, . . ., z̃4 of the functions F∓ is investigated.
They are not calculated by their definition (i.e. as roots of the discriminant of P), being also roots of a

simpler quartic. Indeed, the quadratic equation P( z̃k, τ | ζ ) = 0 (k = 1, . . ., 4) possesses two superimposed
roots, say ζ̃ k (called kth image branch point), due to the fact that its discriminant vanishes. As a consequence,
the reciprocity (21) implies that ζ̃ k satisfies also the quartic equation P(ζ , τ | ζ ) = 0. Once a root ζ̃ k of that
equation has been calculated, the corresponding branch point z̃k follows, by using the symmetry of P .

In Fig. 8, the motion of the image branch points ζ̃ 1, . . ., ζ̃ 4 (column a) and of the branch points z̃1, . . ., z̃4

(b and c) during a period are shown for the vortices in the three rows of Fig. 2. The image point ζ̃ 1 starts from
z−

io (green symbol) in the column a and runs on the red curve, until it reaches z+
io (blue). The corresponding

branch point z̃1 moves on the red curve in the column b, by starting and ending on the point w�
2 (turquoise).

The image point ζ̃ 2 starts from z+
io (blue) and moves on the black curve (column a), until it reaches w�

2. In
correspondence with such a motion, the branch point z̃2 runs on the large black curve (column b). It starts
from w�

2, crosses C (green line) at time τ �
3 and reaches the point w��

2 = ζ �(w�
2) (green). The image point ζ̃ 3

runs on a closed trajectory (red), by starting and ending at w�
2. Also, the corresponding branch point z̃3 moves

on a closed curve (red), which starts and ends in w��
2 . The image point ζ̃ 4 starts from w�

2 and runs on the black
curve, until it reaches the point z−

io. In correspondence, the branch point z̃4 moves on the black curve starting
from w��

2 . It crosses C at time τ �
2 and then reaches the point w�

2. Note that the trajectories of z̃2 and z̃4 intersect,
but these points reach the intersection at different times.

Appendix C : Critical times evaluation

In the present appendix, the calculations of several quantities related to the motion of the curves L∓ (see
Sect. 5) are summarized.

As discussed in Sect. 3, the algebraic structure of the nonlinear term (14) depends on the topology of ∂ P(0),
which becomes non-simple at times τ �

1 < τ < τ�
4 . At these times, the points z�∓ = exp(iθ�∓) in which L−

intersects C are then needed for evaluating N . The corresponding angles θ�∓ are drawn versus time in Fig. 9
for the three vortices in Fig. 2. They are calculated in the following way.

As it occurs for any point on L−, also the intersection z�− comes from a certain point z ∈ C through the
map F−: z�− = F−(z) (hereafter, times will be omitted for the sake of shortness), see Fig. 10a. The other
root of P , that is, F+(z) =: χ , lies outside C. Examine now what happens if the coefficients of P are eval-
uated in z�−, instead of z. Due to the symmetry of P , P(z�− | z) = 0 so that F−(z�−) = z (F+(z�−) cannot
lie on C), that is, z is just the other intersection (called z�+) between L− and C. From the reciprocity (21):
P[F−(z�+) | F+(z�+)] = P(z�− | χ) = 0: F+(z�−) still gives χ , see Fig. 10b. In this way, the intersection
points {z�+, z�−} between L− and C are characterized by the fact that each point is a root of P , the coefficients
of which being evaluated on the other point, that is, F−(z�+) = z�− and F−(z�−) = z�+. The other root lies
always in χ (F+(z�+) = F+(z�−) = χ ). As a consequence, L+ intersects itself in correspondence with the
point χ and then it is a non-simple curve. Furthermore, due to the symmetry of P , the roots of the polynomial
evaluated in χ are just z�− and z�+, so that χ can be calculated by enforcing that both roots (in ζ ) of the
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Fig. 8 For the vortices in Fig. 2, the trajectories of ζ̃ 1,...,4 (column a) and of z̃1,...,4 (column b) are drawn during a period. Finally,
in (c), there are enlargements of the squares (blue dashed lines) in (b)

polynomial P(χ | ζ ) lie on C (see Fig. 10c). An easy way to perform this calculation consists in rewriting
the point ζ ∈ C as (1 + iη)/(1 − iη), η being a (unknown) real number. Hence, the equation P(χ | ζ ) = 0
becomes: v0η

2 + 2v1η + v2 = 0, the coefficients being quadratic polynomials in χ . Due to the fact that the
above equation has two real roots (η∓), its coefficients (viewed as vectors in the plane) must be parallel. As
a consequence, two real numbers t and s exist, such that v1 = tv0 and v2 = sv0. Once they are known, the
roots are η∓ = −t ∓ √

t2 − s.
The numbers t and s are determined by rereading the above two conditions on the coefficients v0, v1 and

v2 as a linear system in χ and χ2, so that

χ = m12 + m22t + m32s

m13 + m23t + m33s
, χ2 = m11 + m21t + m31s

m13 + m23t + m33s
, (24)

the quantity mkh (k, h = 1, 2, 3) depending on time, only. However, solutions (24) can be accepted if and only if
(

m12 + m22t + m32s

m13 + m23t + m33s

)2

= m11 + m21t + m31s

m13 + m23t + m33s
.
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Fig. 9 Angles θ�∓ (sexagesimal degrees) versus τ (sexagesimal degrees) for the sample vortices of Fig. 2 (from the left to the
right). Critical times and angles are also indicated with green lines and black symbols, respectively. Their numerical values (in
sexagesimal degrees) are given in the table

(a) (b) (c)

Fig. 10 At a time τ �
1 < τ < τ�

4 , assume that P(z�+; τ | ζ ) has one root on C, named as z�− := F−(z�+; τ) (red line, a) and another
one in χ := F+(z�+; τ) (blue, a), outside C. Hence, the polynomials evaluated in z�− (red, b) and in χ (green, c) have one of
their two roots in z�+. Moreover, χ is root of the polynomial evaluated in z�− (blue, b), as well as z�− is root of the polynomial
evaluated in χ (green, c)

In real terms, the above relation assumes the geometrical meaning of intersection between two conics in the
plane (t, s), leading to the definition of the numbers t and s such that s ≤ t2. The point χ follows by the
formula (24), as well as the numbers η∓ and the corresponding intersections z�∓ = (1 + iη∓)/(1 − iη∓) ∈ C.

The calculation of the critical times τ �
1,4 is performed by enforcing that s = t2 (η− = η+) and viewing the

above intersection between two conics as a system of quartic equations in t :
{

c′
0t4 + c′

1t3 + c′
2t2 + c′

3t + c′
4 = 0,

c′′
0 t4 + c′′

1 t3 + c′′
2 t2 + c′′

3 t + c′′
4 = 0.

the coefficients of which depend on the time τ and then are unknown. In order to calculate t and the time, a
“reduction” technique is employed, as summarized below. The above system is solved with respect to t3 and
t4, and this solution is handled to eliminate t4 = t3 · t , thus obtaining the new system of two cubics:

{
d ′

0t3 + d ′
1t2 + d ′

2t + d ′
3 = 0,

d ′′
0 t3 + d ′′

1 t2 + d ′′
2 t + d ′′

3 = 0.

Again, the above system is solved with respect to t2 and t3, and t3 is eliminated:
{

e′
0t2 + e′

1t + e′
2 = 0,

e′′
0 t2 + e′′

1 t + e′′
2 = 0.
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(a) (b)

Fig. 11 Sketches of the curves in the first and late stages of the motion, in the absence (a) and in the presence (b) of intersections
between I− and L−, C (or T+ and L+)

Fig. 12 Principal and secondary maps in the absence (first row) and in the presence of intersections (second) between I− and
L−, C. Each region in the domain is mapped onto the subset of the range having the same colour. Domains (first row) and ranges
(second) are listed below each figure. Regions belonging at the same time to the domains and to the ranges of the principal
branches are listed only one time (in the domain, or in the range), for the sake of shortness

Finally, the system is solved in t and t2, leading to the following definition of t and to the compatibility
constraint:

t = e′
2e′′

0 − e′′
2e′

0

e′
0e′′

1 − e′′
0e′

1
provided that: (e′

1e′′
2 − e′′

1e′
2)(e

′
0e′′

1 − e′′
0e′

1) = (e′
2e′′

0 − e′′
2e′

0)
2. (25)

The constraint (25) is reread as an algebraic equation in time, which is solved through a Newton method.
The times τ �

1,4 follow, as well as the points in which L− touches C.
Finally, the calculation of the critical times τ �

2,3 is performed by enforcing that the discriminant of the
polynomial P(z; τ | ζ ) (20) vanishes on a point z = (1 + iη)/(1 − iη) ∈ C. In this way, a complex quar-
tic equation in η is obtained. It is viewed as a system of two real ones, which is solved through the above
“reduction” technique.

Appendix D : Behaviour of F∓ as functions of z

In this appendix, several details about the behaviour of the maps F∓ as functions of z are given. The present
analysis is different from classical ones (e.g. see [24,25]) which are usually aimed at building a unique mono-
drome function on a two-sheeted Riemann surface by means of both the above roots. Instead, they are here
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investigated as two different functions of z and their one-to-one branches are identified. Time dependences
will be omitted for the sake of shortness.

In order to select one-to-one branches of the map F+ [F−], the following definitions are introduced. The
action of the map F+ [F−] on the complex plane is split in a principal branch (indicated with the superscript
“(p)”), defined on the domain bounded by the curves T+ [T−] and I− = F+(T+) [I+ = F−(T−)], and a
secondary one (“(s)”) defined on the complementary domain, bounded by the curves I− [I+] and T− [T+]. On
I− [I+], principal and secondary branches assume the same values. The range of F(p)

+ [F(p)
− ] coincides with

its domain, while the range of F(s)
+ [F(s)

− ] is the region bounded by the curves T+ [T−] and I+ [I−]. Note that:
I ) the unit circle, or a subset of it, lies always inside the domains of the principal branches; I I ) the domain of
F(s)

+ is the range of F(s)
− and vice versa.

By using the symmetry of P , it can be shown that the principal branches are self-inverse, that is, if I is
the identity, the following relations hold as follows: F(p)

+ ◦ F(p)
+ = I and F(p)

− ◦ F(p)
− = I . At the same time,

the secondary branches result to be one the inverse of the other, that is, F(s)
− ◦ F(s)

+ = I and F(s)
+ ◦ F(s)

− = I .
They can be also represented as compositions of the principal branches. Indeed, by using the reciprocity (21),
the relations F(s)

+ = F(p)
+ ◦ F(p)

− and F(s)
− = F(p)

− ◦ F(p)
+ are found.

The above positions, as well as their consequences, lead to a complete definition of the spatial behaviour
of the maps F∓. As a sample case, consider the vortex at the first row of Fig. 2. Figure 3 shows that at times
0 < τ < τ�

1 , or τ �
4 < τ < π , L− does not intersect C. Moreover, two branch points lie inside C and two

outside. In Fig. 11, the unit circle (black line), its images through the maps F∓ (L∓, red), the branch cuts (T∓,
blue) and their images through the maps F∓ (I∓, green) are sketched in the absence (a) and in the presence
(b) of intersections between I− and L− (or C). The names used for the different regions of the complex plane
are also indicated. For example, the regions between T∓ and L∓ are named as A∓, between L∓ and I∓ as
E∓ and the regions between I∓ and C as D∓. Unless the cuts are defined in an ad hoc way, T+ intersects L+
during the initial stage of the motion, so that the region E+ between I+ and L+ divides in the subsets E ′+ and
E ′′+, this latter just trapped between the cut and L+. Another important consequence is that I− cuts L−, so that
A− is in turn divided in two subsets, internal (A′−) and external (A′′−) to I−. This curve intersects also C, so
that the region E− inside I−, but outside L−, results to be divided in the subsets E ′− (internal to the unit circle)
and E ′′−.

From the above analysis, the action of the maps F∓ on the complex plane sketched in Fig. 12 is easily
deduced. In this figure, any subset of the domain is mapped onto the subset of the range having the same colour.
Furthermore, the action of the secondary branches (third and fourth pictures from the left) follows from the
above rules in terms of the principal ones.

By following these lines, the present analysis can be extended to any time, without substantial difficulties.
However, this extension is not discussed here for the sake of shortness.
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