Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

P. De Gregorio "RareNoise": L. Conti, M. Bonaldi, L. Rondoni

ERC-IDEAS: www.rarenoise.Inl.infn.it

Nonequilibrium Processes: The Last 40 Years and the Future Obergurgl, Tirol, Austria, 29 August - 2 September 2011

Modelling nonequilibrium macroscopic oscillators of interest to experimentalists.

P. De Gregorio "RareNoise": L. Conti, M. Bonaldi, L. Rondoni

ERC-IDEAS: www.rarenoise.Inl.infn.it

In celebration of Prof. Denis J. Evans' 60th birthday

GW detectors and fluctuations

Ground-based Detectors

- Often, can 'hear' their own thermal fluctuations.
- Expected to approach the quantum limit in the future.

Nonequilibrium stationary states and noise

Past studies had assumed the noise be Gaussian.
However the experimentalists' interest is in the tails of the distributions. There, they may be not.

Then the question

• We detect a rare burst. Is it of an external source? Or false positive due to rare nonequilibrium (and non-Gaussian) fluctuations? Knowledge correct statistics is indispensable.

イロト イポト イヨト イヨト

The idea behind the RareNoise project

The experiment

- A heated mass is appended to a high Q rod, generating a current. Few modes of oscillation are monitored.
- Experiment performed under tunable and controllable thermodynamic conditions.

As has been described in L. Conti's presentation and M. Bonaldi's poster.

For a nice outline of the experiment see: Conti, Bonaldi, Rondoni, Class. Quantum Grav. 27, 084032 (2010)

ヘロト 人間 ト ヘヨト ヘヨト

æ

GW detectors And nonequilibrium consideration

Thermal gradients are present in actual GW detectors

LCGT Project. From: T. Tomaru et al., Phys. Lett. A 301, 215 (2002)

・ 回 ト ・ ヨ ト ・ ヨ ト

Another experimental context - AURIGA

The AURIGA experiment

INFN Padova - Italy

2 tons - 3 meters long -Aluminium-alloy resonating bar cooled to an *effective* temperature of O(mK), via feedback currents (extra damping). The feedback employs a delay-line, generating effectively a nonequilibrium-state current.

Also in M. Bonaldi's poster

A. Vinante et al., PRL 101, 033601 (2008)

・ 同 ト ・ ヨ ト ・ ヨ ト

Feedback cooling - the two approaches

quasi harmonic appr.:
$$R \rightarrow R' = (R + R_d)$$

 $L\dot{I}(t) + R'I(t) + \frac{1}{C}q(t) = V_T(t)$

general case:

$$\overline{I(t) + \int_{-\infty}^{t} f(t - t')I(t')dt'} + \int_{-\infty}^{t} g(t - t')q(t')dt' = N(t)$$

< < >> < </>

(문)(문)

And nonequilibrium considerations

Work and heat distribution, from experiment to quasi-harmonic approximation

M. Bonaldi, L. Conti, PDG, L. Rondoni, G. Vedovato, A. Vinante et al (AURIGA team) PRL 103, 010601 (2009)

J. Farago J Stat Phys 107, 781 (2002)

De Gregorio, Conti, Bonaldi, Rondoni

Modelling nonequilibrium macroscopic oscillators.

ヘロア 人間 アメヨア 人口 ア

Feedback cooling - the two approaches

general case:

quasi harmonic appr.:
$$R \rightarrow R' = (R + R_d)$$

 $L\dot{I}(t) + \frac{R'}{L}I(t) + \frac{1}{C}q(t) = V_T(t)$

 $\overline{\dot{l}(t) + \int_{-\infty}^{t} f(t-t') l(t') dt'} + \int_{-\infty}^{t} g(t-t') q(t') dt' = N(t)$

Effective 'cooling'

★ Ξ → ★ Ξ →

And nonequilibrium considerations

Feedback cooling via the full equation

$$\begin{split} L\dot{l}(t) + R \, l(t) + \frac{1}{C} \, q(t) &= V_T(t) & \leftarrow \text{ feedback off} \\ \gamma &= R/L; \ \omega_o^2 = 1/LC; \ \langle V_T(t)V_T(t') \rangle &= 2Rk_B T \delta(t - t') \\ (L - L_{in}) \, \dot{l}(t) + R \, l(t) + \frac{1}{C} \, q(t) = V_T(t) - L_{in} \, \dot{l}_S(t) \\ \hline I_S(t) &= I(t) + I_d(t) & \leftarrow \text{ feedback on } \uparrow \end{split}$$

$$\frac{\text{quasi harmonic appr.:}}{L\,\dot{I}(t) + \frac{R'}{C}I(t) + \frac{1}{C}q(t) = V_T(t)}$$

Effective 'cooling'

Shift of the resonance frequency. From the full equation

< 17 ▶

ヨトメヨト

ъ

general case:

$$\begin{split} \overline{\dot{l}(t) + \int_{-\infty}^{t} f(t - t') l(t') dt'} + \int_{-\infty}^{t} g(t - t') q(t') dt' &= N(t) \\ N(t) &= \int_{-\infty}^{t} h(t - t') \eta(t') dt' \\ \langle q(0)N(t) \rangle &\neq 0; \quad \langle l(0)N(t) \rangle \neq 0 \quad \text{Kubo's causality broken} \end{split}$$

An interesting problem in statistical mechanics in ots own right

PDG, Rondoni, Bonaldi, Conti, J.Stat.Mech., P10016 (2009)

The digital protocol

• Assume $I_d(t) = GI_s(t - t_d); x = L_{in}/L, y = 1 - x, |Gy| < 1$

$$\ddot{q}_{s}(t) + \gamma \dot{q}_{s}(t) + \omega_{0}^{2} q_{s}(t) - \frac{x}{y} \sum_{k=1}^{\infty} (Gy)^{k} [\gamma \dot{q}_{s}(t - kt_{d}) + \omega_{0}^{2} q_{s}(t - kt_{d})] = N(t)$$

• Generalized FDT (Kubo) would entail causality @ t > t'

$$\begin{cases} \langle N(t)q(t')\rangle = 0\\ \langle N(t)\dot{q}(t')\rangle = 0 \end{cases} \Rightarrow \langle N(t)N(t')\rangle = \langle \dot{q}^2 \rangle f(t-t') \end{cases}$$

But here

$$N(t) = \sum_{k=0}^{\infty} (Gy)^k \eta(t - kt_d) = \frac{1}{L} \sum_{k=0}^{\infty} (Gy)^k V_T(t - kt_d)$$

$$\Rightarrow \quad \exists \ k \ \text{ s.t.} \ (t - kt_d) < t'$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The digital protocol

• Assume $I_d(t) = GI_s(t - t_d); x = L_{in}/L, y = 1 - x, |Gy| < 1$

$$\ddot{q}_{s}(t) + \gamma \dot{q}_{s}(t) + \omega_{0}^{2} q_{s}(t) - \frac{x}{y} \sum_{k=1}^{\infty} (Gy)^{k} [\gamma \dot{q}_{s}(t - kt_{d}) + \omega_{0}^{2} q_{s}(t - kt_{d})] = N(t)$$

• Generalized FDT (Kubo) would entail causality @ t > t'

$$\begin{cases} \langle N(t)q(t')\rangle = 0 \\ \\ \langle N(t)\dot{q}(t')\rangle = 0 \end{cases} \Rightarrow \langle N(t)N(t')\rangle = \langle \dot{q}^2 \rangle f(t-t') \end{cases}$$

• But here

$$N(t) = \sum_{k=0}^{\infty} (Gy)^k \eta(t - kt_d) = \frac{1}{L} \sum_{k=0}^{\infty} (Gy)^k V_T(t - kt_d)$$

$$\Rightarrow \quad \exists \ k \ \text{ s.t.} \ (t - kt_d) < t'$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The digital protocol

• Assume $I_d(t) = GI_s(t - t_d); x = L_{in}/L, y = 1 - x, |Gy| < 1$

$$\ddot{q}_{s}(t) + \gamma \dot{q}_{s}(t) + \omega_{0}^{2} q_{s}(t) - \frac{x}{y} \sum_{k=1}^{\infty} (Gy)^{k} [\gamma \dot{q}_{s}(t - kt_{d}) + \omega_{0}^{2} q_{s}(t - kt_{d})] = N(t)$$

• Generalized FDT (Kubo) would entail causality @ t > t'

$$\begin{cases} \langle N(t)q(t')\rangle = 0 \\ \\ \langle N(t)\dot{q}(t')\rangle = 0 \end{cases} \Rightarrow \langle N(t)N(t')\rangle = \langle \dot{q}^2 \rangle f(t-t') \end{cases}$$

But here

$$N(t) = \sum_{k=0}^{\infty} (Gy)^k \eta(t - kt_d) = \frac{1}{L} \sum_{k=0}^{\infty} (Gy)^k V_T(t - kt_d)$$

$$\Rightarrow \quad \exists \ k \ \text{s.t.} \ (t - kt_d) < t'$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Solving in Fourier space \rightarrow The power spectrum

Hyp.:
$$\langle \eta(t)\eta(t')\rangle = \frac{2k_{\mathsf{B}}T\gamma}{L}\delta(t-t')$$

$$\Rightarrow S_{I_s}(\omega) = \int_{-\infty}^{+\infty} e^{i\omega t} \langle I_s(0) I_s(t) \rangle dt = \left(\frac{2k_B T \gamma}{L}\right) \frac{\omega^2}{D(\omega)}$$

 $D(\omega) = \alpha^{2} + G^{2}\beta^{2} + (1 + G^{2})\gamma^{2}\omega^{2} \qquad \underline{\text{Def.}}: \quad \alpha = \omega^{2} - \omega_{0}^{2}$ $+2xG\gamma\omega^{3}\sin(\omega t_{d}) - 2G(\alpha\beta + \gamma^{2}\omega^{2})\cos(\omega t_{d}) \qquad \beta = y \ \omega^{2} - \omega_{0}^{2}$

• For very high quality factors

De Gregorio, Conti, Bonaldi, Rondoni

Modelling nonequilibrium macroscopic oscillators.

Solving in Fourier space \rightarrow The power spectrum

Hyp.:
$$\langle \eta(t)\eta(t')\rangle = \frac{2k_{\rm B}T\gamma}{L}\delta(t-t')$$

$$\Rightarrow S_{I_{s}}(\omega) = \int_{-\infty}^{+\infty} e^{i\omega t} \langle I_{s}(0)I_{s}(t)\rangle dt = \left(\frac{2k_{\mathsf{B}}T\gamma}{L}\right)\frac{\omega^{2}}{D(\omega)}$$

$$\begin{aligned} D(\omega) &= \alpha^2 + G^2 \beta^2 + (1 + G^2) \gamma^2 \omega^2 & \underline{\text{Def.}} : \quad \alpha &= \omega^2 - \omega_0^2 \\ + 2xG\gamma \omega^3 \sin(\omega t_d) - 2G(\alpha \beta + \gamma^2 \omega^2) \cos(\omega t_d) & \beta &= y \ \omega^2 - \omega_0^2 \end{aligned}$$

• For very high quality factors

$$\begin{split} \frac{\omega_0}{\gamma} &\equiv \mathbf{Q} \gg \frac{1}{\mathbf{xG}} \gg \mathbf{1} \qquad \Rightarrow \qquad \mathbf{S}_{l_s}(\omega) \cong \frac{2 \ \mathbf{z} \ \omega^2}{(\omega^2 - \omega_r^2)^2 + \mu^2 \omega^2} \\ \text{and if } 2\mathbf{t}_{\mathrm{d}}\omega_0 &= \pi, \text{ then }: \qquad \omega_r^4 = \frac{1 + \mathbf{G}^2}{1 + y^2 \mathbf{G}^2} \ \omega_0^4; \qquad \mathbf{z} = \frac{k_{\mathrm{B}} \mathbf{T} \gamma}{L\left(1 + y^2 \mathbf{G}^2\right)} \\ \mu^2 &= 2\left(\frac{\sqrt{1 + \mathbf{G}^2}}{\sqrt{1 + y^2 \mathbf{G}^2}} - \frac{1 + y\mathbf{G}^2}{1 + y^2 \mathbf{G}^2}\right) \\ \omega_0^2 \xrightarrow{\mathbf{G}} \quad \mathbf{z} = \frac{\mathbf{x}^2 \mathbf{G}^2 \omega_0^2}{\mathbf{G}^2} \\ &= \mathbf{z} = \mathbf{G} \left(\frac{\sqrt{1 + \mathbf{G}^2}}{\sqrt{1 + y^2 \mathbf{G}^2}} - \frac{1 + y\mathbf{G}^2}{1 + y^2 \mathbf{G}^2}\right) \\ \omega_0^2 \xrightarrow{\mathbf{G}} \quad \mathbf{z} = \mathbf{G} \left(\frac{\mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2}{\sqrt{1 + y^2 \mathbf{G}^2}} - \frac{1 + y\mathbf{G}^2}{1 + y^2 \mathbf{G}^2}\right) \\ \mathbf{G} = \mathbf{G} \left(\frac{\mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2}{\sqrt{1 + y^2 \mathbf{G}^2}} - \frac{1 + y\mathbf{G}^2}{1 + y^2 \mathbf{G}^2}\right) \\ \mathbf{G} = \mathbf{G} \left(\frac{\mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2}{\sqrt{1 + y^2 \mathbf{G}^2}} - \frac{\mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2}{1 + y^2 \mathbf{G}^2}\right) \\ \mathbf{G} = \mathbf{G} \left(\frac{\mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2}{\sqrt{1 + y^2 \mathbf{G}^2}} - \frac{\mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2}{1 + y^2 \mathbf{G}^2}\right) \\ \mathbf{G} = \mathbf{G} \left(\frac{\mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2}{\sqrt{1 + y^2 \mathbf{G}^2}} - \frac{\mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2}{1 + y^2 \mathbf{G}^2}\right) \\ \mathbf{G} = \mathbf{G} \left(\frac{\mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2}{\sqrt{1 + y^2 \mathbf{G}^2}} - \frac{\mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2}{1 + y^2 \mathbf{G}^2}\right) \\ \mathbf{G} = \mathbf{G} \left(\frac{\mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2}{1 + y^2 \mathbf{G}^2}\right) \\ \mathbf{G} = \mathbf{G} \left(\frac{\mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2}{1 + y^2 \mathbf{G}^2}\right) \\ \mathbf{G} = \mathbf{G} \left(\frac{\mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2}{1 + y^2 \mathbf{G}^2}\right) \\ \mathbf{G} = \mathbf{G} \left(\frac{\mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2 \mathbf{G}^2}{1 + y^2 \mathbf{G}^2}\right) \\ \mathbf{G} = \mathbf{G} \left(\frac{\mathbf{G}^2 \mathbf{G}^2 \mathbf{G}$$

Modelling nonequilibrium macroscopic oscillators.

GW detectors And

$Q = 10^5$ - shift of the resonance frequency

ъ

And nonequilibrium considerations

Q = 1 - "transition" of the resonance frequency

Q = 1 - changing t_d

ъ

æ

And nonequilibrium considerations

Q = 1 - "transition" of the resonance frequency as $t_d \uparrow$

And nonequilibrium considerations

Q = 1 - "transition" of the resonance frequency as $t_d \uparrow$

And nonequilibrium considerations

Q = 1 - "transition" of the resonance frequency as $t_d \uparrow$

And nonequilibrium considerations

Q = 1 - "transition" of the resonance frequency as $t_d \uparrow$

The analog protocol

The feedback is implemented via a low-pass filter

$$\begin{split} \tilde{I}_{d}(\omega) &= \frac{A\Omega}{\Omega - i\omega} \tilde{I}_{s}(\omega) \\ & \downarrow \\ S_{l_{s}}(\omega) &= \left(\frac{2k_{B}T\gamma}{L}\right) \frac{\omega^{2} (\omega^{2} + \Omega^{2})}{B(\omega)} \\ B(\omega) &= \omega^{2} (\omega^{2} - F^{2})^{2} + (a\omega^{2} - b^{3})^{2} \\ F^{2} &= \omega_{0}^{2} + \gamma \Omega(1 - A); \qquad a = (1 - yA)\Omega + \gamma; \qquad b^{3} = \Omega \omega_{0}^{2}(1 - A) \end{split}$$

• For consistency with digital protocol we set $A\Omega = G\omega_0$

・ 同 ト ・ ヨ ト ・ ヨ ト

Analog vs digital @ $Q = 10^5$

ъ

And nonequilibrium considerations

Analog vs digital decreasing Ω/ω_0

ъ

And nonequilibrium considerations

Analog vs digital decreasing Ω/ω_0

ъ

Modeling the rod with one-dimensional chains

I

L as the observable

The idea is to define a variation of the celebrated FPU chain:

$$V_t(x) = h[(x-1)^2 - \lambda(x-1)^3 + \mu(x-1)^4]$$

to then compare it to a more 'phenomelogical' interaction potential, to overcome certain inconsistencies

De Gregorio, Conti, Bonaldi, Rondoni

Modelling nonequilibrium macroscopic oscillators.

GW detectors And nonequilibrium considerations

Comparing thermo-elastic properties

E, the elastic modulus: $F \simeq E (\Delta L/L)$, if $\Delta L \ll L$.

PDG, L.Rondoni, M.Bonaldi, L.Conti, to be published

ъ

Comparing thermo-elastic properties

E, the elastic modulus: $F \simeq E (\Delta L/L)$, if $\Delta L \ll L$.

Comparing thermo-elastic properties

E, the elastic modulus: $F \simeq E (\Delta L/L)$, if $\Delta L \ll L$. ω_0 resonance frequency of 1st mode.

De Gregorio, Conti, Bonaldi, Rondoni

Modelling nonequilibrium macroscopic oscillators.

GW detectors And n

And nonequilibrium considerations

Comparing thermo-elastic properties

E, the elastic modulus: $F \simeq E (\Delta L/L)$, if $\Delta L \ll L$. ω_0

 ω_0 resonance frequency of 1st mode. $Q = \omega_0 / \Delta \omega_{1/2}$

De Gregorio, Conti, Bonaldi, Rondoni

Modelling nonequilibrium macroscopic oscillators.

Effects of gradients (under investigation) - $\nabla T \equiv 0$

Effects of gradients on Q: $\nabla T \neq 0$ -vs- $\nabla T \equiv 0$

Effects of gradients on Q: $\nabla T \neq 0$ -vs- $\nabla T \equiv 0$

FP7 - IDEAS - ERC grant agreement n. 202680 INFN Padova - INFN Torino

The whole RareNoise team: L. Conti, L. Rondoni, M. Bonaldi and P. Adamo, R. Hajj, G. Karapetyan, R.-K. Takhur, C. Lazzaro Former: C. Poli, A.B. Gounda, S. Longo, M. Saraceni

Thanks to the AURIGA collaboration - INFN. G. Vedovato, A. Vinante, M. Cerdonio, G.A. Prodi, J.-P- Zendri,

.