Effect of Ag content on magnetic properties of (FePt)-Ag sputtered thin films

Paola Tiberto\textsuperscript{1}, Federica Celegato\textsuperscript{1}, Marco Coisson\textsuperscript{1}, Franco Vinai\textsuperscript{1}, Franca Albertini\textsuperscript{2}, Francesca Casoli\textsuperscript{2}, Simone Fabbrici\textsuperscript{2}, Paolo Allia\textsuperscript{3}

\textsuperscript{1} INRIM, Electromagnetism Division, Torino, Italy
\textsuperscript{2} IMEM-CNR, Parma, Italy
\textsuperscript{3} Politecnico di Torino, DISMIC Dept., Torino, Italy

Ordered FePt thin films deserved particular attention owing to their very large magneto-crystalline anisotropy making them attractive in high-density magnetic recording. The addition of an immiscible element such as Ag promotes the formation of a granular FePt phase displaying a significant magnetoresistance effect (MR). Selected (Fe\textsubscript{53}Pt\textsubscript{47})\textsubscript{100-x}Ag\textsubscript{x} multilayers (x = 0, 41, 54, 59, 70 at \%) were prepared by rf sputtering on a MgO\textsubscript{(100)} substrate. AFM/MFM imaging was exploited to study the topography and the magnetic structure of the samples. Room-temperature magnetization measurements were performed by an AGFM. A variety of magnetic phases characterised by different values of perpendicular anisotropy constant have been obtained by varying the Ag content. All multilayers containing Ag display a negative magnetoresistance effect at 300 K. The effect of Ag addition on the morphological and magnetic properties of the starting Fe\textsubscript{53}Pt\textsubscript{47} system will be clarified.