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1 Tolstoy’s dream 11

The agent-based approach to Economics and the Social Sciences is becoming
AQ1

12

more and more popular among scholars interested in going beyond mainstream 13

analyses [14]. This approach is trying to reconcile methodological individual- 14

ism [13] with the existence of emergent phenomena in social systems [2]. 15

Some of these concepts may appear brand new, but, at least, they can be 16

traced back to the philosophical and scientific discussions taking place in the 17

XIXth Century. The basic idea is that there is an analogy between human 18

societies where many individuals interact and gases where many atoms or 19

molecules interact. Indeed, as discussed by Hacking in The Taming of Chance 20

[8], Boltzmann himself used this analogy in order to justify the atomic hy- 21

pothesis. This idea was pervasive in XIXth Century thinkers. We like to think 22

of Tolstoy’s novel War and Peace [15] as an early agent-based simulation. The 23

author explores the behaviour and interactions of his 580 characters during 24

the Napoleonic invasion of Russia. More specifically, the second epilogue of the 25

novel reveals Tolstoy’s theoretical interests and his model of human history. 26

Let Tolstoy directly speak: 27

Speaking of the interaction of heat and electricity and of atoms, we 28

cannot say why this occurs, and we say that it is so because it is 29

inconceivable otherwise, because it must be so and that it is a law. 30

The same applies to historical events. Why war and revolution occur 31

we do not know. We only know that to produce the one or the other 32

action, people combine in a certain formation in which they all take 33

part, and we say that this is so because it is unthinkable otherwise, or 34

in other words that it is a law. 35

G. Naldi et al. (eds.), Mathematical Modeling of Collective Behavior
in Socio-Economic and Life Sciences, DOI 10.1007/978-0-8176-4946-3 5,
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2010
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Therefore, in the XIXth Century, the analogy on which current agent-based 36

simulations are grounded was so popolar that it found its way through liter- 37

ature. Unfortunately for Economics, the mechanical analogy was used in its 38

static version and the concept of statistical equilibrium remained unknown to 39

most economists troughout all the XXth Century and up to now. 40

2 Statistical equilibrium in economics 41

2.1 What is the common notion of equilibrium in economics? 42

The concept of equilibrium referred to in General Equilibrium Theory is taken 43

from Physics. It coincides with mechanical equilibrium. 44

When looking for mechanical equilibrium one minimizes a potential func- 45

tion subject to boundary conditions, in order to find equilibrium positions; 46

when looking for standard (micro)economic equilibrium, one maximizes a util- 47

ity function subject to budget constraints (this is the consumer side, in other 48

words, demand) and maximizes the profit subject to cost constraints (this 49

is producer side, in other words, supply); then one equates supply and de- 50

mand, and finds equilibrium quantities and prices. In both cases, the math- 51

ematical tool is optimization with constraints using the method of Lagrange 52

multipliers. 53

Walras and Pareto explicitly inspired their pioneering work on General 54

Equilibrium Theory to Physics and mechanical equilibrium. This was made 55

clear by Ingrao and Israel [9]. 56

2.2 What is statistical equilibrium? 57

Statistical equilibrium is another notion of equilibrium in Physics. It was de- 58

fined by Maxwell and Boltzmann in their early work on the theory of gases, 59

trying to reconcile mechanics and thermodynamics. In order to better un- 60

derstand this notion, it is useful to make use of a Markovianist approach to 61

statistical equilibrium as discussed by Oliver Penrose (the brother of Roger 62

Penrose) in his 1970 book [10]. By the way, a similar approach was pro- 63

moted by Richard von Mises (the brother of Ludwig von Mises) in a book 64

reprinted in 1945 (actually the book was written by R. von Mises before World 65

War II) [16]. 66

A finite Markov chain is a stochastic process defined as a sequence of 67

random variables X1, . . . , Xn on the same probability space that assume values 68

in a finite set S, known as the state space. For a Markov chain, the predictive 69

probability P(Xn = xn|Xn−1 = xn−1, . . . , X1 = x1) has the following simple 70

form: 71

P(Xn = xn|Xn−1 = xn−1, . . . , X1 = x1) = P(Xn = xn|Xn−1 = xn−1). (1)
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In other words, the predictive probability does not depend on all the past 72

states, but on the last state occupied by the chain. As a consequence of 73

the multiplication theorem, one gets that the finite-dimensional distribution 74

P(X1 = x1, . . . , Xn = xn) is given by: 75

P(X0 = x0, . . . , Xn = xn)
= P(Xn = xn|Xn−1 = xn−1) · · ·P(X1 = x1|X0 = x0)P(X0 = x0). (2)

As a consequence of Kolmogorov’s representation theorem, this means that a 76

Markov chain is fully characterized by the knowledge of the functions P(Xm = 77

xm|Xm−1 = xm−1), also known as transition probabilities and P(X0 = x0), 78

also known as initial probability distributions. If the transition probabilities do 79

not depend on the index m but only on the initial and on the final state, then 80

the Markov chain is called homogeneous. In the following, only homogeneous 81

Markov chains will be considered. For the sake of simplicity, it is useful to 82

introduce the notation 83

P (x, y) = P(Xm = y|Xm−1 = x) (3)

for the transition probability and 84

p(x) = P(X0 = x) (4)

for the initial probability distribution. Note that P (x, y) is nothing else than 85

a matrix in the finite case under scrutiny, with the property that 86

∑

y∈S

P (x, y) = 1; (5)

in other words the rows of the matrix sum up to 1 as a consequence of the 87

addition axiom. Such matrices are called stochastic matrices (to be distin- 88

guished from random matrices which are matrices with random entries). Note 89

that the initial distribution can be written as a row vector, so that one can 90

obtain the marginal distribution of the random variable Xn as: 91

P(Xn = y) =
∑

x∈S

p(x)P (n)(x, y), (6)

where P (n)(x, y) represents the (x, y) entry of the n-step transition matrix. 92

Now, assume there is a distribution π(x) satisfying the equation: 93

π(y) =
∑

x∈S

π(x)P (x, y), (7)

then π(x) is called a stationary distribution or invariant measure. If at time 94

step t the chain is described by P(Xt = x) = π(x), then from (7), it follows 95

that P(Xt+1 = x) = π(x) = P(Xt = x); in other words, the distribution does 96



BookID 188554 ChapID 005 Proof# 1 - 06/05/10

U
nc

or
re
ct
ed

Pr
oo

f

Ubaldo Garibaldi and Enrico Scalas

not change as time goes by. Note that the states are jumping from one to 97

another one, but the probability of finding the system in a specific state does 98

not change. This is exactly the idea of statistical equilibrium put forward by 99

Ludwig Boltzmann. 100

However, more can and should be said. First of all, the stationary distri- 101

bution may not exist; secondly, the chain usually starts from a specific state, 102

so that the initial distribution is a vector full of 0’s and with a single 1 in the 103

initial state. The latter state of affairs can be represented by a Kronecker delta 104

π(x) = δ(x, x0), where x0 is the specific initial state. This is not a stationary 105

distribution and the convergence of the chain to the stationary distribution 106

is not granted at all. Fortunately, it turns out that under some rather mild 107

conditions: 108

• The stationary distribution exists and it is unique; 109

• The chain always converges to the stationary distribution irrespective of 110

its initial distribution. 111

It is indeed sufficient to consider a finite chain that is irreducible and aperi- 112

odic. A chain is irreducible if all the states are persistent; this is equivalent to 113

claim that any state can be reached from any other state with finite probabil- 114

ity in a finite number of steps. The chain is aperiodic if for any x, one has that 115

P (s)(x, x) > 0 for s > s0(x); in other words, after a possible transitory period, 116

the probability of return is positive. All these conditions essentially mean that 117

the s-step matrix P(s) no more has any zero entries after a sufficient number 118

of steps. 119

If the finite Markov chain is irreducible and aperiodic, then it has a unique 120

invariant distribution π(x) and 121

lim
n→∞ P (n)(x, y) = π(y) (8)

irrespective of the initial state x. This means that, after a transient period, 122

the distribution of chain states reaches a stationary distribution, which can 123

then be interpreted as an equilibrium distribution in the statistical sense. 124

2.3 Why and where statistical equilibrium may be useful 125

in economics? 126

There are several possible domains of application of the concept of statistical 127

equilibrium in Economics. Incidentally, note that many agent-based models 128

used in Economic theory are intrinsically Markov chains (or Markovian pro- 129

cesses). Therefore, the ideas discussed earlier naturally apply. Up to now, we 130

have used these concepts: 131

• To discuss some toy models for the distribution of wealth (not of income!) 132

as in Scalas et al. (2006) [11] and in Garibaldi et al. (2007) [6]. 133
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• To generalize a sectoral productivity model originally due to Aoki and 134

Yoshikawa [1], in Scalas and Garibaldi (2009) [12]. 135

In [6, 11, 12], we promote the use of a finitary approach to combinatorial 136

stochastic processes. This approach is the subject of a forthcoming book [7] 137

and will be illustrated by an example in the next section. 138

3 An example: the taxation-redistribution game 139

3.1 Basic descriptions 140

Consider a system of n coins to be divided into g agents. There are three levels 141

of description for the system. 142

• (individual descriptions) Let the integers from 1 to n denote the coins and 143

the integers from 1 to g denote the agents. Let us introduce the variables 144

V1, . . . , Vn whose values are given by the integers between 1 and g; by 145

Vi = j, we mean the the ith coin belongs to the jth agent. 146

• (frequency or occupation descriptions) If the names (or labels) of the coins 147

are irrelevant, it is possible to use the variables Y1, . . . , Yg where Yi = ni 148

is the number of coins in the pocket of the ith agent. In symbols, one can 149

write Yi = #{Vj = i, j = 1, . . . , n}. If the vector Y = n = (n1, . . . , ng) 150

denotes a particular frequency description, one has
∑g

i=1 ni = n. 151

• (frequency of frequencies or partitions) For k = 1, . . . , n, the variables 152

defined by Zk = #{Yi = k, i = 1, . . . , g} give the number of agents with k 153

coins. If the vector Z = z = (z0, . . . , zn) denotes a particular partition, it 154

must satisfy the two constraints
∑n

k=0 zk = g and
∑n

k=1 kzk = n. 155

Example (n = 3 objects (coins) into g = 2 categories) 156

• There are eight individual descriptions: (1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), 157

(2, 2, 1), (2, 1, 2), (1, 2, 2), (2, 2, 2). 158

• There are four occupation vectors: (3, 0) corresponding to (1, 1, 1); (2, 1) 159

corresponding to (1, 1, 2), (1, 2, 1) and (2, 1, 1); (1, 2) corresponding to 160

(2, 2, 1), (2, 1, 2) and (1, 2, 2); (0, 3) corresponding to (2, 2, 2). 161

• There are two partition vectors: (1, 0, 0, 1) corresponding to (3, 0) and 162

(0, 3); (0, 1, 1, 0) corresponding to (1, 2) and (2, 1). 163

The three basic descriptions define possible constituents of the sample 164

space for the individual descriptions. Note that: 165

• For each occupation vector n = (n1, . . . , ng) there are 166

n!∏g
i=1 ni!

(9)

corresponding individual descriptions; 167
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• For each partition vector z = (z0, . . . , zn) there are 168

g!∏n
i=0 zi!

(10)

corresponding occupation vectors; 169

• The total number of individual descriptions is gn; 170

• The total number of occupation vectors is (g + n − 1)!/[n!(g − 1)!]; 171

• For the total number of partition vectors, a closed formula is not available. 172

3.2 Taxation (destruction) and redistribution (creation) 173

In this section, a stylized probabilistic model for taxation and redistribu- 174

tion will be introduced, based on [6]. A taxation is a step in which a coin 175

is randomly taken out of n coins and a redistribution is a step in which 176

the coin is given back to one of the g agents. A taxation move is equiva- 177

lent to a destruction/annihilation and a redistribution move to a creation 178

[3–5]. This model is conservative as the numbers of agents g and of coins n 179

do not change in time. Moreover, it only includes so-called unary moves. If 180

the initial state is given by n = (n1, . . . , ni, . . . , nj , . . . , ng), the final state 181

is nj
i = (n1, . . . , ni − 1, . . . , nj + 1, . . . , ng), after taxation and redistribution. 182

Note that indebtedness is not possible. If a coin is randomly selected out of n 183

coins, the probability of selecting a coin belonging to agent i is ni/n. There- 184

fore, in this model, agents are taxed proportionally to their wealth measured 185

in terms of the number of coins in their pockets. The redistribution step is 186

crucial as it can favour agents with many coins (a rich gets richer mechanism) 187

or agents with few coins (a taxation scheme leading to equality). This can be 188

done by assuming that the probability of giving the coin taken from agent 189

i to agent j is proportional to wj + nj , where nj is the number of coins in 190

the pocket of agent j and wj is a suitable weight. Depending on the choice 191

of wj , one can obtain different equilibrium situations. Based on the previous 192

considerations, it is assumed that the transition probability is: 193

P(nj
i |n) =

ni

n

wj + nj − δi,j

w + n − 1
, (11)

where w =
∑g

i=1 wi and the Kronecker symbol δi,j takes into account the case 194

i = j. If the condition wj �= 0 is satisfied, then also agents without coins can 195

receive them. If all the agents are equivalent, one has wj = a, uniformly and 196

w = ga = θ, so that (11) becomes 197

P(nj
i |n) =

ni

n

a + nj − δi,j

θ + n − 1
. (12)

3.3 Statistical equilibrium 198

From (7), one can see that the invariant distribution is the left eigenvector 199

corresponding to eigenvalue 1 for the matrix of transition probabilities. How- 200

ever, the direct diagonalization of (11) is cumbersome. In this case, it is easier 201
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to use detailed balance. If a probability p(n) can be found satisfying detailed 202

balance, then this is an invariant distribution! In our case, if i �= j, the direct 203

flux is given by: 204

p(n)P(nj
i |n) = p(n)

ni

n

a + nj

θ + n − 1
(13)

whereas the inverse flux is given by: 205

p(nj
i )P(n|nj

i ) = p(nj
i )

nj + 1
n

a + ni − 1
θ + n − 1

. (14)

Equating the two fluxes, we get 206

p(n)
p(nj

i )
=

nj + 1
ni

a + ni − 1
a + nj

. (15)

The g-variate Pólya distribution discussed in the Appendix satisfies (15), so 207

that, eventually, we get the invariant distribution for the taxation-redistri- 208

bution model (it is the case α1 = α2 = · · · = αg = a) 209

p(n) =
n!
θ[n]

g∏

i=1

a[ni]

ni!
. (16)

Moreover, a little thought should convince the reader that the Markov chain 210

defined by (12) is irreducible and aperiodic. Therefore, the invariant distribu- 211

tion (16) is unique and it is also the equilibrium distribution. Three important 212

particular cases of (16) are: 213

• For a = 1 214

p(n) =
(

n + g − 1
n

)−1

; (17)

this is the uniform distribution on all occupation vectors n; 215

• For |a| → ∞ 216

p(n) =
n!∏g

i=1 ni!
1
gn

; (18)

this coincides with the multinomial distribution and corresponds to the 217

uniform distribution on the individual descriptions; 218

• For a = −1 219

p(n) =
(

g

n

)−1

; (19)

this is again the uniform distribution on the restricted support of all 220

occupation vectors n with ni = 0, 1. 221

The case a = 1 coincides with the so-called Bose-Einstein distribution, the 222

case |a| → ∞ with the so-called Maxwell-Boltzmann distribution, and the case 223

a = −1 leads to the so-called Fermi-Dirac distribution. As discussed in the 224
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Appendix, these three remarkable cases correspond to three urn models. The 225

Bose-Einstein distribution is related to the Pólya urn, the Maxwell-Boltzmann 226

distribution to the Bernoullian urn and the Fermi-Dirac distribution to the 227

hypergeometric urn. However, in this model, the parameter a needs not be 228

confined to the three values discussed earlier and it can assume any real posi- 229

tive value and any negative integer value. Moreover, in our stylized model, the 230

redistribution policy is characterized by the value of the parameter a. If a is 231

small and positive, on has that rich agents become richer, but for a → ∞ the 232

redistribution policy becomes random: any agent has the same probability of 233

receiving the coin. Eventually, the case a < 0 favours poor agents, but |a| is 234

the maximum allowed wealth for each agent. 235

3.4 Wealth (coin) distribution 236

As discussed in the Appendix, agents’ exchangeability lead to a simple re- 237

lationship between the joint probability distribution of partitions and the 238

probability of a given occupation vector. One has that 239

P(Z = z) =
g!∏n

i=0 zi!
P(Y = n) =

g!∏n
i=0 zi!

n!∏g
j=1 ni!

g∏

j=1

a[ni]

θ[n]

=
g!n!∏n

i=0 zi!(i!)zi

g∏

j=1

a[ni]

θ[n]
, (20)

where, as discussed in Sect. 3.1, zi is the number of agents with i coins. Now, 240

both (16) and (20) are multivariate distributions. In order to get a univariate 241

distribution, to be compared with empirical data, we consider the marginal 242

distribution that describes a single agent. Given that all the agents are char- 243

acterized by the same weight a, we can focus on the behaviour of the random 244

variable Y = Y1 representing the number of coins of agent 1. Starting from 245

Yt = k, one can define the following transition probabilities 246

w(k, k + 1) = P(Yt+1 = k + 1|Yt = k) =
n − k

n

a + k

θ + n − 1
, (21)

meaning that a coin is randomly selected among the other n−k coins belonging 247

to the other g − 1 agents and given to agent 1 according to the weight a and 248

to the number of coins k, 249

w(k, k − 1) = P(Yt+1 = k − 1|Yt = k) =
k

n

θ − a + n − k

θ + n − 1
, (22)

meaning that a coin is randomly removed from agent 1 and redistributed to 250

one of the other agents according to the weight θ− a and the number of coins 251

n − k, and 252

w(k, k) = P(Yt+1 = k|Yt = k) = 1 − w(k, k + 1) − w(k, k − 1), (23)
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meaning that agent 1 is not affected by the move taking place at step t + 1. 253

These equations define a birth–death Markov chain corresponding to a random 254

walk with semi-reflecting barriers. This chain represents the wealth dynamics 255

of a single agent interacting with a thermal bath consisting of the other g − 256

1 agents. Indeed, the invariant (and equilibrium) distribution of the birth- 257

death chain can be directly obtained marginalizing (16). This leads to the 258

dichotomous Pólya distribution (see the Appendix): 259

P(Y = k) = pk =
n!

k!(n − k)!
a[k](θ − a)[n−k]

θ[n]
. (24)

Equation (24) can be compared with the behaviour of the agent as time goes 260

by. As a consequence of the ergodic theorem for irreducible chains, it follows 261

that 262

lim
t→∞

#{Ys = k, s = 0, . . . , t}
t

= pk, (25)

where pk is given by (24). In other words, the marginal equilibrium proba- 263

bility is also the large-time limit of the hitting time relative frequency. These 264

consideration are important, in order to identify the probabilistic objects to 265

be compared to empirical (or to simulated) data. 266

The same procedure can be used for the wealth distribution z. The random 267

variable Zk counts the number of agents with k coins. Denoting by I
(k)
Yj

= 268

IYj=k the indicator function of the event {Yj = k}, the random variable Zk 269

can also be written as follows 270

Zk = I
(k)
Y1

+ I
(k)
Y2

+ . . . + I
(k)
Yg

; (26)

Therefore, we find that 271

E(Zk) =
g∑

j=1

E(I(k)
Yj

) =
g∑

j=1

P(Yj = k), (27)

where P(Yj = k) is the marginal distributions for the jth agent. As a con- 272

sequence of the equivalence of all agents, from (24) and (27), one gets that 273

274

E(Zk) = gP(Y = k) = g
n!

k!(n − k)!
a[k](θ − a)[n−k]

θ[n]
. (28)

Equation (28) gives the first moment of the probability function on all possible 275

wealth distributions (20) for the taxation-redistribution model. 276

The thermodynamic limit for (24) when n � 1, g � 1 and n/g = aχ leads 277

to the negative binomial distribution as an approximation of the dichotomous 278

Pòlya distribution (see the Appendix) 279

P
TL(Y = k) = NegBin(k|a, χ) =

a[k]

k!

(
1

1 + χ

)a (
χ

1 + χ

)k

. (29)
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On the other side, the continuous limit for the wealth distribution is (see the 280

Appendix) 281

fB(x) =
Γ (θ)

Γ (a)Γ (θ − a)
xa−1(1 − x)θ−a−1, (30)

where x = k/n is the continous variable corresponding to the normalized 282

wealth of the first agent (0 ≤ x ≤ 1) and fB(x) is its Beta probability density 283

function. The thermodynamic limit of (30) leads to the Gamma(x|a, u) density 284

pTL(x) =
u−a

Γ (a)
xa−1 exp

(
−x

u

)
. (31)

where u = w/a, and the meaning of w is the expected value of the wealth 285

of the selected agent, which stays constant when the continuous thermostat 286

becomes infinite. (See the Appendix). 287

3.5 Block taxation and the convergence to equilibrium 288

Consider the case in which taxation is made in the following way: instead 289

of drawing a single coin from an agent at each step, m ≤ n coins are ran- 290

domly taken from various agents and then redistributed with the mechanism 291

described earlier, that is with a probability proportional to the actual number 292

of coins and to an a priori weight. If n = (n1, . . . , ng) is the initial occupation 293

vector, m = (m1, . . . , mg) (with
∑g

i=1 mi = m) is the taxation vector, and 294

m′ = (m′
1, . . . , m

′
g) (with

∑g
i=1 m′

i = m) is the redistribution vector, we can 295

also write 296

n′ = n− m + m′. (32)

The block taxation-redistribution model still has (16) as its equilibrium dis- 297

tribution, as the block step is equivalent to m steps of the original taxation- 298

redistribution model. However, the convergence rate to equilibrium is faster. 299

The marginal analysis for the block taxation-redistribution model in terms 300

of a birth–death Markov chain is more cumbersome than for the original model 301

because, now, the difference |ΔY | can vary from 0 to m. In any case, given 302

that (24) always gives the equilibrium distribution, this means that (see the 303

Appendix) 304

E(Y ) = n
a

θ
=

n

g
, (33)

and 305

Var(Y ) = n
a

θ

θ − a

θ

θ + n

θ + 1
=

n

g

g − 1
g

θ + n

θ + 1
. (34)

We can write 306

Yt+1 = Yt − Dt+1 + Ct+1, (35)

where Dt+1 is the random taxation for the given agent and Ct+1 is the ran- 307

dom redistribution to the given agent. The expected value of Dt+1 under the 308

condition Yt = k is 309

E(Dt+1|Yt = k) = m
k

n
; (36)
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this result is valid as m coins are taken at random out of the n coins and 310

the probability of removing a coin from the first agent is k/n under the given 311

condition. Moreover, if Yt = k and Dt+1 = d, we get that the probability of 312

giving a coin back to agent 1 is (a+k−d)/(θ+n−m), so that, after averaging 313

over Dt+1|Yt = k, we have 314

E(Ct+1|Yt = k) = m
a + k − m

k

n
θ + n − m

. (37)

The expected value of Yt+1 −Yt conditioned on Yt = k can be found from the 315

expectation of (35) and using (36) and (37). This yields: 316

E(Yt+1 − Yt|Yt = k) = − mθ

n(θ + n − m)

(
k − n

a

θ

)
. (38)

The following remarks on (38) are possible: 317

1. Equation (38) is analogous to a mean reverting equation. If, due to random 318

fluctuations, E(Yt+1|Yt = k) moves away from its equilibrium expected 319

value na/θ = n/g, it will then move back towards that value; 320

2. If k = na/θ then the chain is first-order stationary. If one begins with 321

n/g, then one always gets E(Yt+1 − Yt|Yt = k) = 0; 322

3. r = mθ/(n(θ + n−m)) is the intensity of the restoring force. The inverse 323

of r, gives the order of magnitude for the number of transitions needed to 324

reach equilibrium. 325

4. If m = n, meaning that all the coins are taken and then redistributed, the 326

new state has no memory of the previous one and statistical equilibrium 327

is reached in a single step (r−1 = 1)! 328

Before concluding this section, it is interesting to discuss the case θ < 0 in 329

detail. In this case the marginal equilibrium distribution becomes the hyper- 330

geometric one: 331

P(Y = k) =

(|a|
k

)(|θ − a|
n − k

)

(|θ|
n

) , (39)

with a = θ/g and θ negative integers. The range of k is (0, 1, . . . , min(|a|, n)). 332

The states with ni > |a| are transient and they do not appear any more as 333

times goes by. 334

If, for instance, |a| = 10n/g (ten times the average wealth), one has that 335

|θ| = 10n and r = 10m/(10n − n + m) � (10m)/(9n). If m � n, this is 336

not so far from the independent redistribution case. On the contrary, in the 337

extreme case |a| = n/g, the occupation vector n = (n/g, . . . , n/g) is obtained 338

with probability 1. If an initial state containing individuals richer than |a| 339
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is considered, that is if one considers (38) for k > |a|, then E(Dt+1|Yt = k) 340

is still mk/n but E(Ct+1|Yt = k, Dt+1 = d) = 0 unless k − d < |a|. More 341

precisely, one has 342

E(Ct+1|Yt = k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m
|a| − k + m

k

n
|θ| − n + m

if k − m
k

n
≤ |a|

0 if k − m
k

n
> |a|

(40)

If the average percent taxation is f = m/n, then one gets 343

E (Yt+1 − Yt|Yt = k)

=

⎧
⎨

⎩
− fθ

θ − n(1 − f)

(
kt − n

g

)
if k(1 − f) ≤ |a|

= −k(1 − f) if k(1 − f) > |a|
(41)

As k(1 − f) is the average value of Y after taxation, even if the agent is 344

initially richer than |a| he/she can participate to redistribution when the mean 345

percentage of taxation is high enough. 346

Appendix: the Pólya distribution 347

Finite (n-step) stochastic processes 348

The sequence of individual random variables V1, . . . , Vn is an n-step stochas- 349

tic process. It is completely determined by the knowledge of all the finite 350

dimensional distributions of the kind: 351

pV1,...,Vm(v1, . . . , vm) = P(V1 = v1, . . . , Vm = vm), (42)

where 1 ≤ m ≤ n. The finite dimensional distributions are subject to 352

Kolmogorov’s compatibility conditions 353

pV1,...,Vm(v1, . . . , vm) = P(V1 = v1, . . . , Vm = vm)
= P(Vi1 = vi1 , . . . , Vim = vim) = pVi1 ,...,Vim

(vi1 , . . . , vim), (43)

where i1, . . . , im is any of the m! permutations of the indices, and 354

pV1,...,Vm−1(v1, . . . , vm−1) =
g∑

vm=1

pV1,...,Vm(v1, . . . , vm−1, vm). (44)

Finite dimensional distributions can be conveniently characterized in terms of 355

predictive probabilities. Indeed, as a consequence of the multiplication theo- 356

rem (and of Bayes’ theorem), one has 357

P(V1 = v1, . . . , Vm = vm) = P(V1 = v1)P(V2 = v2|V1 = v1) · · ·
· · ·P(Vm = vm|V1 = v1, . . . , Vm−1 = vm−1) (45)

and Kolmogorov’s compatibility conditions are automatically satisfied. 358
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Exchangeable processes 359

An exchangeable process is characterized by additional symmetry conditions 360

on the finite dimensional distributions 361

pV1,...,Vm(v1, . . . , vm) = P(V1 = v1, . . . , Vm = vm)
= P(Vi1 = v1, . . . , Vim = vm) = pVi1 ,...,Vim

(v1, . . . , vm), (46)

where i1, . . . , im is any of the m! permutations of the indices, Note that con- 362

dition (46) differs from condition (43). For an exchangeable process, the prob- 363

ability of an individual sequence V(m) = v(m) = (V1 = v1, . . . , Vm = vm) only 364

depends on the occupation vector of the sequence m = (m1, . . . , mg) with 365∑g
i=1 mi = m. This leads to: 366

P(V(m) = v(m)) =
(

m!∏g
i=1 mi!

)−1

P(Y = m) (47)

as a consequence of (9). 367

The Pólya process 368

The Pólya process is an exchangeable process characterized by the predictive 369

probability 370

P(Vm+1 = j|V1 = v1, . . . , Vm = vm) =
αj + mj

α + m
, (48)

where mj is the number of times in which category j has been observed up 371

to step j, α = (α1, . . . , αg) is a vector of parameters and α =
∑g

i=1 αi. If the 372

new parameters pj = αj/α are introduced, (48) becomes 373

P(Vm = j|V1 = v1, . . . , Vm = vm) =
αpj + mj

α + m
. (49)

pj = P(V1 = j) is the a priori probability of category j and (49) is nothing 374

else than a linear mixture between initial or a priori probabilities and the 375

observed frequencies. As a consequence of (48), and of exchangeability (see 376

(47)), one gets the following finite dimensional distributions 377

P(V(m) = v(m)) =
(

m!∏g
i=1 mi!

)−1

Polya(m|m; α), (50)

where the multivariate generalized Pólya sampling distribution is given by: 378

Polya(m|m; α) =
m!

α[m]

g∏

i=1

α
[mi]
i

mi!
, (51)

where x[n] = x(x + 1) · · · (x + n − 1) is the rising factorial. 379
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The Pólya process encompasses the following remarkable cases: 380

• The multivariate hypergeometric process for integer αj < 0, ∀j ∈ {1, . . . , g} 381

with the constraints mj ≤ |αj | and m ≤ α. In this case |αj | represents 382

the initial number of marbles of colour j in an urn from which they are 383

randomly drawn without replacement; this process is not extendible to 384

infinity and ends after n steps; 385

• The multinomial process in the limit |α| → ∞ and |αj | → ∞, with pj = 386

αj/α constant. In this case pj represents the probability of drawing a 387

marble of colour j with replacement from and urn; this process can be 388

exteded to infinity; 389

• The Pólya urn process for integer αj > 0, ∀j ∈ {1, 2, . . . , g}. In this case αj 390

is the initial number of marbles of colour j in an urn. They are randomly 391

drawn and replaced with another ball of the same kind. Also this process 392

is indefinitely extendible. 393

Marginal distributions 394

The marginal distributions for the g-variate generalized Pólya distribution 395

can be easily derived from the predictive probability given by (48). Consider 396

the probability P(Vm+1 ∈ A|V1 = v1, . . . , Vm = vm), where the set A is a set 397

of categories A = {j1, . . . , jr}. This new predictive probability is given by: 398

P(Vm+1 ∈ A|V(m)) =
r∑

i=1

P(Vm+1 = ji|V(m)), (52)

where, as usual, V(m) = (V1 = v1, . . . , Vm = vm) summarizes the evidence. 399

In the Pólya case, P(Vm+1 = j|V(m)) is a linear function of both the weights 400

and the occupation numbers; therefore, one gets: 401

P(Vm+1 ∈ A|V(m)) =

∑
j∈A αj +

∑
j∈A mj

α + m
=

αA + mA

α + m
, (53)

where α =
∑

j αj , αA =
∑

j∈A αj and mA =
∑

j∈A mj . As a direct conse- 402

quence of (53), the marginal distributions of the g-variate generalized Pólya 403

distribution are given by the dichotomous Pólya distribution of weights αi 404

and α−αi, where i is the category with respect to which the marginalization 405

is performed. In other words, one gets that 406

∑

mj , j �=i

Polya(m|m, α) = Polya(mi, m − mi; αi, α − αi)

=
m!

mi!(m − mi)!
α

[mi]
i (α − αi)[m−mi]

α[m]
. (54)
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Moments of the Pólya distribution 407

Consider the evidence vector V(m) = (V1 = v1, . . . , Vm = vm). In the general 408

case of g categories, it is natural to introduce the indicator function IXi=j(ω) = 409

I
(j)
i , and define S

(j)
m =

∑m
i=1 I

(j)
i . Therefore, the random variable S

(j)
m gives 410

the number of successes for the jth category out of m observations or trials and 411

S
(j)
m = mj . One can determine E(I(k)

i ) and E(I(k)
i I

(k)
j ) and derive E(S(k)

m ) as 412

well as Var(S(k)
m ). As for the expected value, one has that E(I(k)

i ) = 1·P(I(k)
i = 413

1) + 0 · P(I(k)
i = 0) = P(I(k)

i = 1) coinciding with the marginal probability 414

of success, that is the probability of observing category k at the ith step. 415

From (48), in the absence of any evidence, one has P(I(k)
i = 1) = P(Xi = 416

k) = αk/α = pk. Therefore, the random variables I
(k)
i are equidistributed and 417

exchangeable, and E(S(k)
m ) =

∑m
i=1 E(I(k)

i ) = mE(I(k)
1 ), yielding 418

E(S(k)
m ) = mpk. (55)

As for the variance Var(S(k)
m ), the covariance matrix of I

(k)
1 , . . . , I

(k)
m is needed. 419

Because of the exchangeability of I
(k)
1 , . . . , I

(k)
m , the moment E[(I(k)

i )2] is the 420

same for all i, and E(I(k)
i I

(k)
j ) is the same for all i, j, with i �= j. Note that 421

(I(k)
i )2 = I

(k)
i and this means that E[(I(k)

i )2] = pk; it follows that 422

Var(I(k)
i ) = E[(I(k)

i )2] − E
2(I(k)

i ) = pk(1 − pk) (56)

one can show that 423

E(I(k)
i I

(k)
j ) = P(Xi = k, Xj = k); (57)

now, from exchangeability, from (57), and from (48), one gets 424

E(I(k)
i I

(k)
j ) = P(Xi = k, Xj = k) = P(X1 = k, X2 = k)

= E(I(k)
1 I

(k)
2 ) = P(X1 = k)P(X2 = k|X1 = k) = pk

αk + 1
α + 1

. (58)

Therefore, the covariance matrix is given by: 425

Cov(I(k)
i , I

(k)
j ) = Cov(I(k)

1 , I
(k)
2 )

= E(I(k)
1 I

(k)
2 ) − E(I(k)

1 )E(I(k)
2 ) = pk

α − αk

α(α + 1)
. (59)

The variance of the sum S
(k)
m follows from (56) and (59) 426

Var(S(k)
m ) = mVar(I(k)

1 )+m(m−1)Cov(I(k)
1 , I

(k)
2 ) = mpk(1−pk)

α + m

α + 1
. (60)
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Thermodynamic limit 427

Let α1 denote the weight of the chosen category and let α − α1 denote the 428

weight of the thermostat. The thermodynamic limit is n, α � 1 with χ = n/α. 429

Consider that 430

(α − α1)[n−k]

α[n]
=

(α − α1)(α − α1 + 1) · · ·α(α + 1) · · · (α − α1 + n − k − 1)
α(α + 1) · · · (α + n − 1)

431

=
(α − α1)(α − α1 + 1) · · · (α − 1)
(α − α1 + n − k) · · · (α + n − 1)

. (61)

The numerator contains the product
∏α1

i=1(α − i) � αα1 , whereas at the 432

denominator, one has the product
∏α1+k

i=1 (α + n − i) � (α + n)α1+k and the 433

ratio is approximated by: 434
αα1

(α + n)α1+k
; (62)

therefore, we eventually get 435

P(k|n; α1, α) � NegBin(k|α1, χ)

= P(k|α1, χ) =
α

[k]
1

k!

(
1

1 + χ

)α1 (
χ

1 + χ

)k

, k = 0, 1, 2, . . . ; (63)

this distribution is called negative binomial distribution; the geometric dis- 436

tribution is a particular case of (63) in which α1 = 1 and α = g. If α1 is 437

an integer number, the usual interpretation of the negative binomial random 438

variable is the description of the (discrete) waiting time of (i.e., the number of 439

failures before) the first α1th success in a Bernoullian process with parameter 440

p = 1/(1 + χ). The moments of the negative binomial distribution can be ob- 441

tained from the corresponding moments of the Polya(m1, m−m1; α1, α−α1) 442

in the limit n, α � 1, with χ = n/α yielding: 443

E(Y1 = k) = n
α1

α
→ α1χ, (64)

Var(Y1 = k) = n
α1

α

α − α1

α

α + n

α + 1
→ α1χ(1 + χ). (65)

Note that if α1 is an integer, k can be interpreted as the sum of α1 independent 444

geometric variables. 445

Continuous limit 446

Consider the multivariate generalized Pólya distribution given by (51). Noting 447

that 448

α[m] =
Γ (m + α)

Γ (α)
(66)
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(51) can be re-written as: 449

Polya(m|m; α) =
Γ (α)∏g

i=1 Γ (αi)
m!

Γ (m + α)

g∏

i=1

Γ (mi + αi)
mi!

. (67)

The variables xi = mi/m satisfy the following constraint 450

g∑

i=1

xi =
g∑

i=1

mi

m
= 1; (68)

moreover, ∀i ∈ {1, . . . , g}, we have that 0 ≤ xi ≤ 1. If one considers the 451

continuous limit in which m → ∞, mi → ∞ with constant xi = mi/m for all 452

the categories i, one finds that 453

Γ (mi + αi)
mi!

=
Γ (mi + αi)
Γ (mi + 1)

� mαi−1
i (69)

replacing (69) for any mi and for m in (67) leads to 454

Polya(m|m; α) � Γ (α)∏g
i=1 Γ (αi)

∏g
i=1 mαi−1

i

mα−1

=
Γ (

∑g
i=1 αi)∏g

i=1 Γ (αi)

g∏

i=1

xαi−1
i · 1

mg−1
. (70)

Equation (70) can be interpreted as follows; based on the exchangeability of 455

the variables Yi = mi, the probability of the variables Xi = Yi/m of assuming 456

values X1 = x1, . . .Xn = xn with xi = mi/m is 457

P(X1 = x1, . . . , Xn = xn) � Γ (
∑g

i=1 αi)∏g
i=1 Γ (αi)

g∏

i=1

xαi−1
i · 1

mg−1

� Γ (
∑g

i=1 αi)∏g
i=1 Γ (αi)

g∏

i=1

xαi−1
i dx1 · · · dxg−1, (71)

where the relationship becomes exact in the continuous limit. In fact, the 458

ratio 1/m can be interpreted as Δxi because Δmi = 1 and xi = mi/m. The 459

function 460

p(x1, . . . , xg; α1, . . . αg) = p(x; α) =
Γ (

∑g
i=1 αi)∏g

i=1 Γ (αi)

g∏

i=1

xαi−1
i (72)

defined on the simplex
∑g

i=1 xi = 1 and 0 ≤ xi ≤ 1 for all the i ∈ {1, . . . g} 461

is the probability density function for the so-called Dirichlet distribution. Let 462

X ∼ Dir(x; α) denote the fact that the random vector X is distributed ac- 463

cording to the Dirichlet distribution. As a consequence of the Pólya marginal- 464

ization property (53), we obtain the so-called aggregation property of the 465



BookID 188554 ChapID 005 Proof# 1 - 06/05/10

U
nc

or
re
ct
ed

Pr
oo

f

Ubaldo Garibaldi and Enrico Scalas

Dirichlet distribution: let X1, . . . , Xg be a sequence of random variables with 466

values on the simplex
∑g

i=1 xi with 0 ≤ xi ≤ 1, ∀i ∈ {1, . . . g} whose dis- 467

tribution is Dir(x1, . . . , xi, . . . , xi+k, . . . , xg; α1, . . . , αi, . . . , αi+k, . . . , αg), then 468

the new sequence X1, . . . , XA =
∑i+k

j=i Xj , . . . Xg is distributed according to 469

Dir(x1, . . . , xA =
∑i+k

j=i xj , . . . , xg; α1, . . . , αA =
∑i+k

j=i αj , . . . , αg). Thanks to 470

the aggregation property, we can find the marginal distribution of the Dirich- 471

let distribution, whose probability density function is nothing else than the 472

Beta distribution. If X1, . . . , Xg ∼ Dir(x1, . . . , xg; α1, . . . , αg) then 473

Xi ∼ Beta(xi; αi, α − αi). (73)

Starting from the probability density function Beta(x; a, b). 474

p(x) =
Γ (a + b)
Γ (a)Γ (b)

xa−1(1 − x)b−1. (74)

and defining y = Ax, then we get 475

f(y) =
Γ (a + b)
Γ (a)Γ (b)

1
A

( y

A

)a−1 (
1 − y

A

)b−1

, (75)

with y ∈ [0, A]. While x is the fraction of wealth belonging to the selected 476

agent, now y represents his absolute wealth, being A the total wealth. In the 477

limit A → ∞, b → ∞, A/b = w/a = u constant, the Beta density can be 478

approximated by the Gamma(y|a, u) density given by: 479

g(y) =
u−a

Γ (a)
ya−1 exp

(
− y

u

)
. (76)

The meaning of w is the expected value of the wealth of the selected agent, 480

which stays constant when the continuous thermostat becomes infinite. 481
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