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Abstract

In this paper we present a high-order accurate cell-centered finite vol-
ume method for the semi-implicit discretization of multidimensional hy-
perbolic systems in conservative form on unstructured grids. This method
is based on a special splitting of the physical flux function into a convec-
tive and a non-convective part. The convective contribution to the global
flux is treated implicitly by mimicking the upwinding of a scalar linear
flux function while the rest of the flux is discretized in an explicit way.
The spatial accuracy is ensured by allowing non-oscillatory polynomial re-
construction procedures, while the time accuracy is attained by adopting
a Runge-Kutta stepping scheme. The method can be naturally consid-
ered in the framework of the IMplicit-EXplicit (IMEX) schemes and the
properties of the resulting operators are analysed using the properties of
M-matrices.

1 Introduction

Let us consider the multidimensional first-order hyperbolic system in divergence
form

∂

∂t
U +∇ · F(U) = Q (1)

where the conservation of the solution vector U is governed by the divergence
of the physical flux vector function F(U) and the right-hand-side (r.h.s.) source
term Q. This latter one can be stiff and generally takes into account the inter-
actions among different conservative variables. Let us introduce the following
assumptions on (1):

(i) according with the definitions given in Reference [5], system (1) is hyper-
bolic; we do not assume a-priori strict hyperbolicity;

(ii) the physical flux function is the sum of a convective and a non-convective
part, denoted by F(c)(U) and F(nc)(U), i.e.

F(U) = F(c)(U) + F(nc)(U); (2)

(iii) the convective part of the flux is the tensor product of the conservative
solution vector U and a suitable convective velocity field v(U), i.e.

F(c)(U) = U⊗ v(U), (3)

where the definition of v(U) is clearly problem dependent;
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• the convection is neither faster than the fastest wave speed nor slower
than the slowest one; thus the following inequality must always hold

λmin(U,n) ≤ v(U) · n ≤ λmax(U,n), (4)

where λmin and λmax are the minimum and maximum real eigenvalue

fields of the Jacobian matrix
∂F(U)

∂U
· n, see Reference [5].

Many interesting physical models satisfy these constraints. For instance we
mention the Compressible Gas Dynamic Euler Equations and the Shallow Water
Equations. In the first case, U and F(U) are given by

U =




ρ
ρv
ρE


 , F(U) =




ρ
ρv
ρE


⊗ v + p




0
I
v


 , (5)

see Reference [6]. The conservative variables are the density ρ, the momentum
ρv, and the total energy ρE. The pressure field p is related to the conservative
variables U by a thermodinamic relation, such as the usual polytropic state
equation. In this case, the convective velocity field coincides with the fluid
velocity v and the non-convective contribution to the physical flux, that is
F(nc)(U), plays the role of a pressure correction to the fluid advection of the
conserved quantities. In the second case, U and F(U) are defined as

U =
(

h
hv

)
, F(U) =

(
h
hv

)
⊗ v +

1
2
gh2

(
0
I

)
, (6)

where h is the water depth, hv is the momentum, and g is the gravitational
constant. The non-convective part of the flux, that is F(nc)(U), plays the role
of the average water depth contribution to the physical flux.

Following a method-of-line approach, we numerically solve (1) by combining
a shock-capturing cell-centered Finite Volume (FV) discretisation of the flux
divergence term and an IMplicit-EXplicit Runge-Kutta (IMEX-RK) time
stepping scheme for the time derivative.

The semi-implicit FV discretisation which governs the time evolution of the
i-th cell-averaged vector Ui reads as

dUi

dt
+

1
Voli

∑

j∈σ(i)

Hij = Qi, (7)

where Voli is the measure (area in 2-D) of the cell i, Qi is the cell-average of the
source term, and Hij is the numerical flux from cell i to cell j. The numerical
flux balance of the cell i is given by summing the contributions of the numerical
fluxes between the cell i and all its adjacent cells, which are listed in the set
σ(i).

2 Numerical Convective/Non-Convective Flux
Splitting

In order to define completely the semi-implicit discretisation in (7), a suitable
numerical flux function for Hij has to be considered. This will be indicated
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by H(U,V,n). Its entries are the solution states U and V, and the vector
n, which defines the direction perpendicular to the cell interface where the
numerical flux integral is estimated. Since the physical flux function must satisfy
the convective/non-convective splitting and the constraints introduced in the
previous section, it becomes natural to assume that a similar splitting holds for
the numerical flux function. That is, we consider numerical flux functions that
can be written as

H(U,V,n) = H(c)(U,V,n) + H(nc)(U,V,n) (8)

where H(c) is the numerical correspondant of F(c) and H(nc) the one of F(nc).
We assume the following regularity constraints on H(c) and H(nc), which are
used in the theoretical analysis. Both the convective and the non-convective
part of the numerical flux indipendently satisfy

(i) the consistency relation

H(∗)(U,U,n) = F(∗)(U) · n (∗) = (c), (nc), (9)

for every physical solution state U and normal vector n;

(ii) the Lipschitz continuity condition

|H(∗)(U,V,n)−H(∗)(U′,V′,n)| ≤
≤ L (|U−U′|+ |V −V′|) , (∗) = (c), (nc),

with respect to their arguments, that is for every couple of physical so-
lution states (U,V), (U′,V′) and normal vector n, and with positive
Lipschitz constant L.

2.1 The linear upwind flux and its properties

Some insights about the formal consequences of the previous definitions and
assumptions can be obtained by considering the simplest case of the non-linear
scalar advection equation

ut +∇ · (v(u)u) = 0. (10)

In the conservation law (10) the scalar field u is advected by the non-linear
convective field v(u). In order to apply an upwind discretisation, let us first
introduce the upwind velocity along the normal direction n, that is

a(u,n) = (v(u) · n)+ =
v(u) · n + |v(u) · n|

2
, (11)

and which is also supposed to verify the regularity conditions of

• non-negativity, i.e. a(u,n) ≥ 0, for every u and n;

• consistency, i.e v(u) · n = a(u,n)− a(u,−n), for every u and n;

• Lipschitz continuity, i.e. |a(u,n)− a(v,n)| ≤ L|u− v|, for every pair u, v
and n.
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The upwind numerical flux can be written as a function of the solution states
uL and uR given at the two sides of the cell interface where the flux has to be
evaluated. Noting that

(v(u) · n)− = −(v(u) · (−n))+ = −a(u,−n), (12)

we obtain
H(uL, uR,n) = a(uLR,n)uL − a(uRL,−n)uR. (13)

The symbols uLR and uRL denote the same intermediate solution state between
uL and uR which is usually estimated by using a symmetric smooth function
of these latters – for instance, their arithmetic mean. The subscripts L and
R indicate respectively the left and the right side of the cell interface. This
definition is clearly arbitrary for each cell interface, but is unique when the
orientation of the vector n is introduced, because we assume that this latter one
always points from left to right.

The FV semi-discrete scheme can be written in the matrix-like compact form

D
du
dt

+ A(u)u = 0 (14)

by introducing the matrix operator A(u) which takes into account the FV
flux balance due to the summation term in the left-hand-side (l.h.s.) of equa-
tion (7). This approximation scheme is first order accurate in space when the
cell-interface states uL and uR coincides with the cell-average state within the
left and right adjacent cells.

If a semi-implicit Euler difference scheme is adopted for the time derivative
of u in (14), we obtain the globally first-order accurate scheme

(
I + ∆tD−1A(un)

)
un+1 = un. (15)

The most important issue of these two discretisations is that the spatial matrix
operator A(un) in (14) and in (15) is a singular M-matrix, and that the time
evolution matrix operator I + ∆tD−1A(un) is an M-matrix.

The accuracy in space can be increased by introducing a piecewise polyno-
mial representation of the solution field within each cell, while the accuracy in
time by adopting a multi-step Runge-Kutta method.

We shortly discuss the issue of the higher-order accuracy in space, while
the similar issue in time is delayed to section 3. To achieve higher-order accu-
racy in space the numerical flux function is estimated by using more accurate
cell-interface solution states. These ones are calculated by using a polynomial
reconstruction of the solution field within each cell. This piecewise polynomial
reconstruction is performed at each time step from the set of cell-averaged val-
ues which directly evolves in time. The integral of the numerical flux from the
cell i to the cell j is finally given by the numerical quadrature formula

Hij(u) = |fij |
Nq∑

k=1

ωkH(ui(·,xk
ij), uj(·,xk

ij),n), (16)

where |fij | is the measure (length in 2-D) of the face fij (edge in 2-D) shared
by the cells i and j, xk

ij is the k-th quadrature node on fij and ωk the k-
th quadrature weight. Separating the contribution to the flux balance that
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contains the first-order cell-averaged terms from the contribution that contains
higher-order terms, the semi-discrete scheme takes the compact form

D
du
dt

+ A(u)u = Ã(u)u. (17)

The matrix operator A(u) is the one already introduced in equation (14) while
the matrix operator Ã(u) takes into consideration all the effects due to the
reconstruction process. This latter operator also shows an important property,
because it is possible to demonstrate that when the reconstruction algorithm
satisfies the following condition

min{ui, uj} ≤ ui(·,x) ≤ max{ui, uj}, x ∈ fij , (18)

Ã(u) is a singular symmetric M-matrix, that is a singular Stieltjes matrix [1].
We shall refer to this operator by the wording reconstruction matrix.

2.2 The generalized convective upwind flux

In the system case (1) the numerical convective flux H(c)(UL,UR,n) is defined
first by introducing the numerical upwind convective field d(UL,UR,n) and
then by mimicking the flux form of the scalar case. Formally this yields the
expression

H(c)(UL,UR,n) = d(UL,UR,n)UL − d(UR,UL,−n)UR. (19)

This definition is completed by assuming that d(UL,UR,n) satisfies the regu-
larity conditions of

(i) non-negativity,
d(U,V,n) ≥ 0 ; (20)

(ii) Lipschitz continuity,

|d(U,V,n)− d(U′,V′,n)| ≤ L (||U−U′||+ ||V −V′||) , (21)

with positive Lipschitz constant L;

(iii) and consistency,

v(U) · n = d(U,U,n)− d(U,U,−n). (22)

Throughout the rest of the paper we shall refer to the flux form in (19) by
the wording generalized upwind flux form or numerical convective flux form.

Even though (19) and the constraints on d(UL,UR,n) can appear quite
restringent, many numerical fluxes of the literature actually fit in. For instances,
we can mention

• General multi-dimensional hyperbolic systems:

- the Rusanov-like numerical fluxes;

- the HLLE-like numerical fluxes [2, 3, 4, 13];
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• Compressible multi-dimensional Euler equations:

- the Steger & Warming flux splitting [14];

- the Van Leer flux splitting [7, 8, 15];

- the AUSM+ flux splitting [10, 16].

Let us consider for example the Rusanov numerical flux family. These fluxes
are of the form

H(UL,UR,n) =
1
2
(F(UL) + F(UR)) · n− 1

2
ξ(UL,UR,n)(UR −UL). (23)

In equation (23), the term ξ(UL,UR,n) is a scalar function, and the numerical
viscosity term is a multiple of the n× n identity matrix In, that is

Q(UL,UR,n) = ξ(UL,UR,n)In. (24)

This feature is actually common to all the numerical fluxes that can be written
in the generalized upwind form, see for more details Reference [1].

The generalized upwind form of the Rusanov flux is eventually given by
taking

d(UL,UR,n) =
1
2

[v(UL) · n + ξ(UL,UR,n)] , (25)

H(nc)(UL,UR,n) =
1
2
(F(nc)(UL) + F(nc)(UR)) · n. (26)

3 The high-order IMEX-RK FV Scheme

The semi-discrete form of the numerical scheme developed so far can be written
as

∂

∂t
U + a(U) = b(U) (27)

where
a(U) =

(
D−1A(U)⊗ In

)
U, (28)

and the r.h.s. term b(U) takes into account both the source terms and the high-
order corrections arising from the non-oscillatory reconstruction process. If we
apply the simplest implicit Euler discretisation method to the time derivative
by taking implicitly the l.h.s. term a(U) and explicitly the right-hand-side term
b(U), we have the semi-implicit discretisation

[
(I + ∆tD−1A(Un))⊗ In

]
Un+1 = Un + ∆t b(Un), (29)

which is first-order accurate in time. As in the scalar case discussed in sec-
tion (2.1) the matrix A(U) takes into account the FV flux balance contribution
of the summation term in (7). Clearly, this matrix differs from the one intro-
duced in (14), but since it refers to the same summation term of (7) we use
the same symbol. As in the scalar case, it is possible to demonstrate that this
matrix operators shows strong theoretical properties. That is,

– A(Un) is a singular M-matrix, and

– I + ∆tD−1A(Un) is an M-matrix.
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The accuracy in the time discretisation can be increased by adopting an
IMEX-RK advancing scheme. The r-stage IMEX-RK method is formally
given by

— for each i = 1, . . . , r + 1 solve for Wi:

Wi + ∆t α′ii a(Wi) = Un + ∆t

i−1∑

j=1

(
αijb(Wj)− α′ija(Wj)

)
(30)

— then compute

Un+1 = Un + ∆t

r+1∑

i=1

(
ωib(Wi)− ω′ia(Wi)

)
. (31)

The coefficients αij and α′ij completely define the scheme – for a list of these
latters see for example References [12, 11, 9].

The IMEX-RK scheme solves at each internal step a non-linear system of
the form

W + ∆t α a(W) = r (32)

where α indicates the generic diagonal scheme coefficient and r the r.h.s. of
equation (30). The following argument demonstrates the existence and unique-
ness of the solution of this non-linear problem. Equation (32) defines a fixed
point problem whose mapping is

Φ(W) =
[
(I + ∆t αD−1A(W))−1 ⊗ In

]
r (33)

Since this mapping is a continuous function of its argument W from a convex
compact set into a convex compact set, the Brouwer fixed point theorem [17]
implies the existence of at least one fixed point, that is one solution of (32).
Furthermore, this fixed point is unique because the mapping defined by (33) is
contractive under the CFL-like condition

∆t <
1

Lα κ2||r||1 , (34)

where κ is a mesh size dependent parameter.
Solving non-linear systems like (32) by using standard non-linear techniques

such as the Newton method can be quite expensive from the computational
cost viewpoint. A more efficient strategy consists in approximating W by the
solution state Wk generated at the k-th step of the following IMEX-RK fixed-
point iterative scheme:

W0 = Un, (35)

Wi =
(
I + ∆t αD−1A(Wi−1)

)−1

r, i = 1, 2, . . . , k. (36)

In fact, by a straightforward Taylor development in time around tk+1, there
follows that Wk is an O(∆tk+1) approximation of the exact solution W of (32).
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4 Non-negativity results

Since the time evolution operator is tipically a non-singular M-matrix, its formal
inverse is a non-negative matrix, that is a matrix all of whose entries are non-
negative numbers. This implies almost straigthforwardly that the solution state
at time tn+1 must be non-negative when the r.h.s. at time tn is non-negative.
Thus under some quite general assumptions non-negativity results can be drawn
up. However, we emphasize that a deeper non-negativity analysis is inevitably
inherent to all that implies the non-negativity of the r.h.s. of the time stepping
scheme as function of the admissible solution states, which is of course problem
dependent.

We just mention here the two more general results that are consequence of
the M-matrix feature of the time evolution operators discussed in the previous
sections. The interested reader is referred to Reference [1].

– The first order IMEX-RK (no-spatial reconstruction) is unconditionally
non-negative i.e.

Un ≥ 0 =⇒ Un+1 ≥ 0 (37)

– Higher-order IMEX-RK schemes are non-negative if

(I + ∆tC(Un))Un ≥ 0. (38)

The non-linear matrix term C(Un) depends on the reconstruction matrix
Ã(u) in the r.h.s. of equation (17).

5 Conclusions

The semi-implicit IMEX-RK scheme discussed in this paper is based on a spe-
cial splitting of the physical flux vector function into a convective and a non-
convective part. A cell-centered FV discretisation is then coupled to IMEX-RK
time-stepping schemes. In this framework, the convective part is discretized in
an implicit way, while the non-convective one in an explicit way. This coupled
IMEX-RK FV integrator is strictly conservative, shock-capturing, formally n-th
order accurate in space and time, and does not require the evaluation of any
Jacobian matrix once re-formulated in accord with the generalized upwind form.

Several theoretical results have been summarized in this paper and are pre-
sented in details in Reference [1]. These results do not depend on

(i) the spatial dimension of the problem;

(ii) the numerical flux incorporated into the scheme if the flux can be re-
formulated in the generalized upwind form;

(iii) the cell-average polynomial reconstruction and monotonizing procedure
used to achieve high order accuracy in space.

Basically, this approach produces time evolution matrix operators with a
peculiar block structure which is tipically given by the tensor product of M-
matrices. This issue appears to be common to a wide family of numerical fluxes
and of spatial FV discretisations, and is the base for the development in the
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IMEX strategy context of simple and efficient resolution algorithms even for
high-order discretisation schemes.

Although this approach has been detailed for unstructured meshes all of the
theoretical insights that are mentioned here and proved in Reference [1] can be
straightforwardly extended to structured cartesian or curvilinear meshes.
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