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ABSTRACT

Objectives. A statistically sound criterion for identifying implausible birthweights for

gestational age.

Methods.  Data are from Italian 1990-94 vital statistics and concern 42 063 single 1st and

2nd liveborn preterm babies. Two-component Gaussian mixture models are used to

describe the birthweight distributions stratified by gestational age. Implausibly large

babies are identified through model-based probabilistic clustering.

Results. Gestational age appears underestimated of about six weeks in 12.3% of the

cases. Large babies are equally present in males and females, but are more frequent in

2nd borns than in 1st borns, even when parity specific models are fitted.

Conclusions. The approach allows for quantification of the gestational age

underestimate error and data correction through model-based clustering. Correct

birthweight distributions and growth curves are also provided.
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INTRODUCTION

Preterm deliveries are one of the main causes of perinatal mortality in developed

countries, and interventions aimed at improving both antenatal care and social

conditions of the mothers failed to substantially decrease their incidence.1,2 In particular,

in Italy the incidence has been almost constant since the middle eighties, and in 1995

amounted to 5.6%. In the evaluation of perinatal mortality risk, distinction between

smallness due to short gestation or to growth retardation may be obscured when only

weight categories are considered. The role of birthweight has been generally

emphasized and a value below the 10th centile of the overall birthweight distribution has

been considered a main predictor of the risk. The importance of the risk assessment on

the basis of the birthweight distributions by gestational age has been highlighted by

several authors in so far it can provide insight into the fetal growth and support either

prediction on the outcome of obstetrical choices, such as natural or cesarean deliveries,

or evaluation of the advantages of a longer gestation.3-7 Moreover, under the assumption

that the growth rate of neonates prematurely born be equal to that of fetuses of the same

gestational age who will eventually be born at term, ponderal growth curves based on

newborn cohorts by gestation age are largely adopted as reference for fetal growth.8-14

At national level, birthweight distributions relative to gestational age are built

with vital statistic data, where pregnancy duration is based on the last menstrual period

as reported by the mother and as such may particularly suffer from dating errors.

Several authors have observed asymmetry and even bimodality in birthweight

distributions of preterm babies and have suggested that the unreliable weights for

gestational age could be mainly attributable to erroneous reports of the last menstrual

period. 4,14-21 Unreliable estimates can be ascribed to biological and/or cultural maternal
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factors, and have also been found associated with an increased frequency of

unfavourable pregnancy outcome.22-26 The last menstrual period may be unknown or

misinterpreted because of hormonal unbalance associated with a short interval between

pregnancies or of unusual bleeding after conception; or it may be incorrectly reported

because of imprecision in the recall, misunderstanding in reporting the first missing

instead of the actual last menses, or even voluntary date postponement to mask a pre-

marriage conception.23,26 In spite of the general recourse to adjusting gestational age by

sonographic techniques, a non-negligible proportion of too large for gestational age

babies have been repeatedly found even in studies based on hospital records.15,16 In fact

ultrasound measures do not necessarily provide a true dating since they presumably

correct gestation length overestimates for delayed ovulation or missed spontaneous

abortions, but the reliability of the correction depends on the time the measures are

taken.27-30

In studies at population level the estimate of pregnancy duration based on last

menstrual period generally remains the only available datum, and its imprecision may

cause misclassification of preterm, term and post-term babies, and seriously impair the

description of fetal growth and jeopardize hypothesis testing.

The excess of anomalously heavy babies has been studied by several authors who

examined either the weight distributions stratified by weeks of pregnancy4,15,18 or,

conversely, the gestation week distributions stratified by birth weight19,31. Different

approaches have been proposed to correct errors in the gestational age estimates in order

to obtain reliable birth weight distributions and references for fetal growth curves. Just

smoothing the raw centile curves is considered inadequate to correct the distortion

introduced by the excess of implausible birthweight records for early gestational age.

Various rules have been proposed to identify spurious records by means of birthweight
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thresholds, either empirically defined5,20 or derived as meaningful points of deviations

from the expected normality pattern.4,14,15,18

More interesting approaches make use of finite mixture models21 to adequately

describe the observed birthweight distributions. Our study as well is based on a

Gaussian mixture model, which allows us to capture and identify the error component.

Aim of the present paper is on the one hand to provide a general criterion, both

population based and statistically sound, for identifying the babies that most likely got

downward misclassified with respect to gestational age, and on the other hand to obtain

reliable reference growth curves.

MATERIALS AND METHODS

         Individual birth records routinely collected in Italy during the years 1990-1994

were acquired from ISTAT, the Italian Central Institute of Statistics. Liveborns were

considered, and among them, to study the effect of birth order, single 1st and 2nd babies

were selected, 1,372,707 and 960,848 respectively, who account for over 85% of the

total liveborns and display the same male proportion (51.6 %).

A mixture model was applied to the birthweight distributions of 42 063 very

preterm babies stratified by gestational age, whenever the observed distribution shapes

suggested that data might arise from an underlying pattern of two overlapping bell-

shaped distributions. Due to their paucity, the babies less than 26 weeks were pooled

into one single class, labeled as 18-25 weeks.

 We fitted a mixture model of two Gaussian components to the data by the

maximum likelihood method, and its parameters, which include the mixing proportions

and the parameters of the component distributions, were estimated. Then, the data were
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clustered on the basis of the posterior probabilities of group membership, which were

estimated from the computed mixture model parameters.

More precisely, within each gestational age stratum we assumed that the

observations arose from a distribution G = (1- ps ) Gm +  ps Gs  , viewed as a mixture of two

normal distributions  Gm  and  Gs ,  in a proportion quantified by the stochastic weight  ps

(0 < ps < 1), and  with parameters  �m  ,  1m  and  �s  , 1s   respectively.  Mixture models

provide a useful way to identify homogeneous groups within a given population, whenever

there is no a priori knowledge of any group structure on the underlying population but

heterogeneity is suspected.32  Such an approach is also commonly applied to the

identification of outliers within a sample.33 In our case, mixture models were used to

identify, within early gestational age strata, the systematic error component likely

originated from underestimated gestational age. As we report in the next section, we

actually resorted to mixture models only before the 35th week, that is when the birthweight

distribution clearly displayed an excess of too large babies and its overall shape might arise

from two overlapping distributions. Maximum likelihood estimates of the mixture model

parameters were derived by the expectation maximization algorithm.34,35 Since the error

component is not yet well understood, no a priori constraints were assumed for the

unknown parameters. A probabilistic clustering of the observations was then obtained by

allocating each observation to either group according to the corresponding posterior

probability of group membership. In practice, we could estimate a weight value w that

represents the threshold beyond which an observation has a higher probability of belonging

from the secondary (Gs) rather than to the major (Gm) component of the distribution.

Consequently, a proportion cs of the observations, corresponding to birthweights greater

than the threshold values w, was allocated to the secondary cluster, and viewed as spurious.
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An estimate of the mean extent of the downward gestational age misclassification

was obtained by shifting a few weeks forward the curve defined by the secondary

component means over the 27-34 gestation weeks, and making it to match at best the

course of the major component within the variability limits of both distributions.

RESULTS

The weight distributions stratified by week of gestational age turn out to be

positively skewed before 30 weeks, and clearly bimodal between 30 and 32 weeks.

Bimodality progressively disappears in later distributions, which are approximately

Gaussian after the 34th week (see the four representative examples of Figure 1). The

shapes of the weight distributions clearly suggest that the observations in the early

gestational age classes are not really homogeneous, and are likely to arise from two

groups: a major component, which may be hypothesized to account for the actual

process of growth, and a secondary component, which is characterized by unacceptably

large weights.

On the basis of these observations, a mixture model of two normal components

was applied to adequately capture the observed patterns. The model was fitted only to

the weight distributions of babies born before 35 weeks, where the secondary

component is not negligible. This sub-sample amounts to a total of 42 063 babies and

corresponds to 35% of all preterm (<37 gestation weeks) births. Although errors in

reporting gestational age may occur within each stratum, misclassification is more

evident in the earlier less numerous strata. In fact even a small percentage of

misclassification around term translates in a considerable excess of large babies in early

preterm groups.
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In Table 1 the sample sizes and the estimated parameters of both the main and the

secondary components are reported for each gestational age. The birthweight threshold

values approximately correspond to the 99th centile of the main component up to the

32nd week, and to the 98th centile thereafter. The resulting proportions of the secondary

cluster, corresponding to the abnormally heavy babies, are also shown: depending on

the gestation week, these proportions range from ~7% to ~ 27%, with a maximum at 30

weeks; altogether, from 18 to 34 weeks, the babies identified as being too large for their

gestational age amount to 12.3%.

We wondered whether the babies belonging to the spurious clusters, identified as

misclassified on the basis of the threshold values of Table1, were equally distributed

between sexes and between 1st and 2nd borns. While the proportion of the too heavy

babies was not significantly in males and in females (12.36% vs 12.35, χ2=0.019, 1df,

P=0.89), a significant difference was found between 1st and 2nd borns (11.2% vs 14.2%,

χ2= 65.523, 1df, P<0.001), the proportion of excluded 2nd borns being always higher but

in the 27th week.

In order to overcome the bias of considering as misclassified an excess of 2nd

borns due to the use of a unique weight threshold for 1st and 2nd borns, we applied the

mixture model to 1st and 2nd borns separately, and estimated proper threshold values for

gestational age (Table 2). In spite of the fitting improvement, for almost all gestational

ages the proportion of the secondary clusters was still higher in the 2nd than in the 1st

borns, with a proportion of misclassified babies of 13.9% and 11.5% respectively

(χ2= 42.957, df 1, P<0.001).  Not significant changes in the percentages of the

secondary clusters were obtained using either unique or parity specific threshold values.

On the basis of the above results, we did not consider necessary to adopt threshold
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values sex and/or parity specific and kept those reported in Table 1 to identify the

implausible weight for gestational age.

According to the mixture model, correct ponderal growth curves were obtained

from the major component, which has been assumed to model the actual pattern of

growth, and were compared with those obtained using the raw data. In Figure 2a we

report the 50°, 75° and 95° centiles of the observed and expected distributions. While

there is a good agreement between the observed and the expected 50th percentile curves,

in the highest centiles the observed curves appear strongly upward distorted, noticeably

between 28 and 32 weeks.

The means ± SD of both the major and the secondary model components are

drawn in Figure 2b. We notice that by shifting the secondary component curve six

weeks forward, its course almost matches that of the major component and is

compatible with the dispersion features of both distributions. The abnormally large birth

weights captured by the secondary distribution might therefore correspond to an actual

fetal growth if the babies were attributed an approximately six week longer gestation.

DISCUSSION

In order to capture implausible weights due to gestational age underestimate, we

applied a mixture model of two Gaussian components to the birthweight distributions

stratified by gestational age before the 35th week, and assumed that the major

component models the actual weight distribution while the secondary component

describes a systematic error in the gestational age datum. Such an error appears to be

consistent with a conjecture of about six-week underestimate of the pregnancy duration

(Fig.2b). With respect to the major component the secondary one has a non-negligible

relative weight (Table1), so that an effective criterion for separating and removing the

spurious data is in order. The weight thresholds, estimated on a probabili stic basis,
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provide a sound criterion for clustering appropriate for gestational age babies, and thus

may be helpful in driving neonatal medical care.

Reference fetal growth curves and birthweight percentiles are often reported by

sex, being males usually heavier than females.5,14,17,19,21 Yet, as reported by previous

studies, the percent difference between sexes in preterm babies is slight: it varies

approximately between 7% and 5% from the 10th to the 50th centile, and diminishes to

about 3% in the 90th centile.17,21 As a matter of fact, even by using a unique non sex-

specific model, we did not find any significant difference in the misclassification rate

between sexes.

As to parity, a significantly higher rate of misclassification is found among the 2nd

borns even when parity-specific threshold values are assumed for clustering. Thus

specific investigations on the causes that make gestational age more frequently

underestimated among the 2nd borns are in order.

The issue of eliminating unreliable birthweights for gestational age to define

correct centile values is long dating, and smoothing procedures of the centile growth

curves or cut-off rules based on the birthweight distributions have been proposed. The

advantages of the present model, and of similar ones based on finite mixture of

Gaussian distributions14,21 reside in the estimate, statistically sound and independent for

each gestational age, of the upper threshold for appropriate weighing babies. Moreover,

the mixture model allows for a quantification both of the babies’ misclassification rate

and of the gestational age underestimate error. Differently from Kramer21, we do not

perform any re-sampling of the original data to separate the correct from the incorrect

records, and we rather prefer a probabili stic clustering. By this strategy in defining cut-

off thresholds we aim to exclude only those birthweight records that have a higher

probabili ty of belonging to the spurious than to the major group. We then obtain the
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growth centile curves (Fig.2a) by plotting the major component theoretical centiles,

rather than using the polished data. By this choice our curves are eventually similar to

Kramer’s ones, obtained by making re-sampled data adhere to the major Gaussian

pattern.

Although the ponderal growth curves based on newborn data are usually assumed

to be representative of the fetal growth, they cannot provide normal standards, since

they account for both growth restrictions and maturation anomalies, even lethal when

still -borns are included in the data set, associated with a spontaneous or induced preterm

delivery. Nevertheless, at population level, preterm birth data provided by national vital

statistics are the only ones available to define reference curves for the fetal growth.

The high percentage of mothers of preterm babies who likely reported delayed

menses thus causing a gestational age underestimate, not adjusted by early ultrasound

examination, requires specific investigation on its biological and/or cultural

determinants.

Since delivery is expected 40 weeks after the first day of the last menstrual period

and conception generally occurs in the middle of the 28 day period, 38 weeks are

expected to be the gestational age at term. Few day deviations from expected ovulation

time correspond to physiological variabili ty within 1 week, and can be reliably

corrected by ultrasonografic measurements. On the other hand as generally reported4,15,

a 4-week underestimate can result from either mistaking some bleeding for menses at

the time of the first missed period, or reporting the date of f irst instead of last missed

period. In our data, the mean extent of gestational age underestimate is about 6 weeks

and even more for gestations between 28 and 31 weeks (Fig.2b). A so large gap is

diff icult to explain and might be due to some cultural and/or biological peculiarities of

the Italian mothers. Some intentional last period underreporting to mask premarital
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conception or low reliability in recall might be hypothesized in mothers of low

socioeconomic strata5,21, but our preliminary analyses suggested that the incidence of

implausible birthweights for gestational age is independent of the maternal education

and of the Italian spatial heterogeneity in socio-economic and sanitary conditions.

The excess of large for gestational age babies in the 2nd borns with respect to the

1st borns had been previously found also when implausible records had been identified

by means of different procedures.5 A more favorable pregnancy outcome, also in terms

of birthweight, is expected in 2nd borns than 1st borns36, but the higher rate of gestational

age misreporting in the 2nd pregnancies might be indicative of some specific

unfavourable conditions, such as a hormonal unbalance associated with a too short

interval between pregnancies, or an increased probability both of bleeding and of

inaccuracy in the last period date.

Preterm births are unfavourable outcomes from both a personal and a general

point of view and a correct estimate of their incidence at population level is important

for private and public choices of interventions in maternal and neonatal medical care.

Thus errors in estimating the pregnancy length have to be quantified and appropriate

birthweight distributions for gestational age must be provided, although the normal fetal

growth is imprecisely represented by references based on preterm birth data sets. The

proposed model adequately captures the underestimate errors frequently occurring in

preterm newborn data sets, thus providing appropriate upward birthweight cutoffs.

Although among preterm babies implausible birthweights have been a general finding

since the sixties, their determinants are still unknown. Because of the suggested

association with adverse perinatal outcomes26,31, investigations on the issue are in order

to distinguish between an unavoidable rate both of errors in last menstrual period recall

or of too large babies associated to mother and/or neonate pathologies, and the
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interrelated factors, as maternal socioeconomic status, age at delivery and reproductive

history, susceptible to public health interventions or to increased consciousness in

family planning.
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Figure 1.  Birthweight distributions in liveborn babies at four representative weeks

of gestation: observed (histogram), expected (solid line) and two Gaussian

component (dashed line) distributions.
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Figure 2  (a) Expected centile curves of fetal ponderal growth according to the

major distribution (solid lines), compared with the observed ones (dashed lines);

(b) Mean birthweight of the major component (solid line), and of the secondary

component (dashed line) by gestation week. By shifting the secondary component

six weeks upward, its course almost matches that of the major component,

compatibly with the dispersion of both distributions (grey area and vertical bars

indicates the standard deviations).
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gestation 
weeks

18-25 26 27 28 29 30 31 32 33 34

sample size 2 289 1 382 1 521 2 051 2 160 3 875 3 975 6 033 6 699 12 078

µ m 692.8 868.1 974.8 1 124.0 1 237.7 1 405.3 1 541.0 1 766.8 1 969.8 2 219.0

σ m 153.6 167,2 205.4 249.6 298.5 334.7 350.9 373.2 399.3 445.6

µ s 1 409.1 1 544.0 1 858.7 2 445.0 2 871.0 3 056.0 3 049.8 3 037.8 3 198.5 3 291.6

σ s 581.6 621.7 651.7 745.1 523.8 385.1 380.7 502.5 398.7 496.5

w 1 094.2 1 301.0 1 519.9 1 776.3 2 101.2 2 260.4 2 406.8 2 549.6 2 850.2 3 198.9

c s (%) 9.7 8.4 7.0 11.6 6.8 26.9 17.4 17.8 10.6 7.4

Table 1. Estimated parameters of the major (µ m ,σ m ) and secondary (µ s ,σ s ) components in the mixture 
model stratified by gestation week; threshold values for weight clustering (w ) and proportion of the resulting 
secondary cluster (c s ).
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gestation 
weeks

18-25 26 27 28 29 30 31 32 33 34

sample 
size

1,143 696 794 1,055 1,133 1,906 2,069 3,119 3,525 6,490

µ m 689.8 863.5 956.1 1,096.9 1,213.1 1,354.9 1,494.3 1,710.9 1,932.3 2,173.0

µ s 1,355.5 1,595.5 1,783.5 2,289.1 2,993.7 3,011.6 3,028.6 2,961.0 3,219.5 3,197.4

w 1,100.9 1,304.9 1,470.6 1,735.0 2,227.3 2,224.3 2,396.9 2,484.3 2,846.3 3,182.1

c s (%) 8.0 8.3 9.2 10.7 5.9 25.4 15.3 17.3 9.8 6.6

sample 
size

700 438 464 637 639 1,315 1,233 1,796 2,042 3,615

µ m 692.6 876.7 992.0 1,149.8 1,257.1 1,452.4 1,591.1 1,807.3 2,011.6 2,271.0

µ s 1,480.4 1,414.0 2,114.5 2,852.7 2,548.2 3,084.7 3,073.6 3,131.3 3,235.2 3,413.7

w 1,077.4 1,241.9 1,583.0 1,890.9 1,970.9 2,268.7 2,402.3 2,596.8 2,877.0 3,202.8

c s (%) 11.1 10.3 4.7 10.0 8.8 30.4 20.7 19.9 11.1 7.8

first borns

second borns

Table 2. Estimated means of both the major (µ m ) and the secondary (µ s ) components of the mixture 
models stratified by gestation week and birth order; threshold values for weight clustering (w ), and 
proportion of the resulting secondary cluster (c s ).


