
INTERIOR AND BOUNDARY CONTINUITY OF THE SOLUTION OF THE
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UGO GIANAZZA, BIANCA STROFFOLINI, AND VINCENZO VESPRI

Abstract. We extend some results of [DBV] proving the interior and boundary continuity of bounded
solutions of the singular equation (β(u))t = Lu where L is a second order elliptic operator with

bounded measurable coefficients that depend both on space and time in a proper way.

1. Introduction

Let β(s) be a maximal monotone graph in R× R satisfying

(1.1) β(s1)− β(s2) ≥ γo(s1 − s2) ∀si ∈ R γo > 0.

We also assume that

(1.2) for every M > 0, sup
−M≤s≤M

|β(s)| = γ1 <∞.

Let Ω be a Lipschitz domain in RN , let ΩT denote the cross product

ΩT = Ω× (0, T )

and consider the singular parabolic equation

(1.3) (β(u))t = Lu

where L is an elliptic operator with principal part in divergence form.
Needless to say, if β(u) = u we are dealing with the classical heat equation, for which we refer, for

example, to [LSU]. Here we want to consider more general expression for β and the reason lies in the
natural connections that equations like (1.3) have with the modelling of phase transitions or the flow
of fluids in porous media. For more details on these models, see, for example, [F] and [VFMV].

Questions of regularity for weak solutions of (1.3) have been considered since the early 80’s and a
certain number of results has been proved, even if things are far from being completely settled.

Without pretending to mention all the contributions, we can say that when β(s) exhibits a single
jump, say at s = 0, continuity in the interior and at the boundary were proved in [CE], [DB2], [DB3],
[S], [Z] and an explicit modulus of continuity was given.

A lot less is known for more general β and actually things lied still for a long while, from the late
80’s until the mid 90’s, when interior continuity was proved in [DBV] for β with superlinear growth.
It is worth mentioning that for N = 2 a general second order uniform elliptic operator is considered,
whereas for N ≥ 3 the method used heavily relies on the radial simmetry of L and therefore is limited
to the case of L = ∆.

Adapting the techniques of [DBV], more general (other than second order) operators have been
considered in [SaV], [S2] and [S1], where once more, local interior continuity is proved and a quantitive
estimate of the modulus of continuity is provided in the case of the p-laplacian, anisotropic p-laplacian
and non-standard growth operator respectively. In dimension N = 2 one can even consider a maximal
monotone graph β = βAC + βs of bounded variation, with βAC strictly increasing and βs ≥ 0 (see
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[EMS]). More recently, in [GV] we studied the case of a β which admits an arbitrary but finite number
of jumps.

As it should be clear by now, a lot still needs to be done, especially under the point of view of
boundary behavior. This paper is somehow a development of [DBV], in that we prove interior and
boundary continuity of weak solutions of (1.3) under the same hypotheses on β but working with a
more general elliptic operator. As a matter of fact, a lot of what we are considering here has been
already proved in [StV]. However, since the boundary continuity is new and some of the methods are
also new, we chose to prove all the results ex novo for the sake of completeness. On the other hand, we
decided to focus on what is really new with respect to [DBV], without entering too much into details
when things are simply adapted.

We can finally state the explicit assumptions and our precise results. Here we assume

Lu =
∑
ij

Di(aij(x, t)Dju+ ai(x, t)u) + bi(x, t)Diu+ e(x, t)u

where aij(x, t), ai(x, t), bi(x, t), e(x, t) are continuous functions with respect to the time variable and
are measurable functions with respect to the spatial variables satisfying

(1.4)
1
µ1
|ξ|2 ≤

∑
ij

aij(x, t)ξiξj ≤ µ1|ξ|2

(1.5) ‖
∑

a2
i ,
∑

b2i , e‖q,r,ΩT ≤ µ2,

with q and r such that
1
r

+
N

2q
= 1− κ1

and q ∈
[

N

2(1− κ1)
,∞
]

r ∈
[

1
1− κ1

,∞
]

0 < κ1 < 1, N ≥ 2.

Moreover we suppose that

(1.6) ∀ 0 < t < s < T

∫ s

t

∫
Ω

(ev −
∑
i

aiDiv) dx dt ≤ 0, ∀ v ≥ 0, v ∈ C1
0 (Ω× (t, s)).

As it will be clear in Section 4, we assume (1.6) in order to have the maximum principle in any parabolic
cylinder Q(ρ, θρ2) ⊂ ΩT .

The equation in (1.3) is meant weakly and in the sense of inclusion of graphs, namely

Definition 1. The function u ∈ L2(0, T ;W 1,2(Ω)) is a weak solution of (1.3) if there exists a selection
ξ ⊂ β(u), the inclusion being intended in the sense of the graphs, such that

t→ ξ(·, t) is weakly continuous in L2(Ω)

and ∫
Ω

ξφ|t2t1 +
∫

Ω

∫ t2

t1

{−ξφt +
∑
ij

(aijDju+ aiu)Diφ+ biDiuφ+ euφ}dxdt = 0

for all φ ∈W 1,2(0, T ;L2(Ω))
⋂
L2(0, T ;W 1,2

0 (Ω)) and for all intervals (t1, t2) ⊂ (0, T ).

Remark 1. Local summability can be considered both for u and φ if we are interested only in the
continuity in the interior of Ω (see for example [DBV]).

To simplify the presentation, we assume that u is bounded in the whole ΩT , so that

(1.7) ‖u‖∞,ΩT ≤M for some given constant M > 0.

As in [DBV] the continuity at a point P ∈ ΩT follows showing that the oscillation of u in a sequence of
shrinking boxes about P tends to zero as the size of such neighborhoods tends to zero and the following
theorem is the main result of this paper:
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Theorem 1. Let N ≥ 3 and u be a weak solution of (1.3) under structural assumptions (1.1) - (1.2)
and (1.4) - (1.6) in the sense of Definition 1 and assume that u satisfies (1.7). Then u is continuous
in ΩT . Moreover, for every compact subset K ⊂ ΩT , there exists a continuous, nonnegative, increasing
function

s 7→ ωdata,K(s), ωdata,K(0) = 0
that can be determined a priori only in terms of the data and the distance from K to the parabolic
boundary of ΩT s.t.

|u(x1, t1)− u(x2, t2)| ≤ ωdata,K(|x1 − x2|+ |t1 − t2|
1
2 )

for every pair of points (xi, ti) ∈ K, i = 1, 2.
The plan of the paper is the following: we first examine the case of time - independent coefficients

(Sections 2 - 5) and we prove Theorem 1 under this restrictive assumption; then we achieve the general
case using a proper approximation argument for coefficients continuous in t (Section 6); finally we
apply the previous results to prove the boundary continuity of u for homogeneous Dirichlet conditions
(For the precise statements of the assumptions and the theorem in this case and also for the difficulties
presented by the treatment of boundary conditions, we directly refer to Section 7).

We conclude this Section with some general remarks. First of all, even if we decided to concentrate
on a linear second order elliptic operator L with coefficients satisfying suitable summability hypotheses
as described above (see Remark 2 and Section 4 for some comments and further discussions), the same
techniques allow us to prove the continuity result in a more general context. As we try to highlight in
the proof, the only properties of L(x, t, u,Du) on which we will rely are the following:

(1) L satisfies the maximum principle;
(2) the coefficients of L are continuous in t;
(3) in the case of time - independent coefficients the elliptic operator L satisfies a uniform Harnack

inequality t by t.
The most important of the three assumptions is the last one and this shows once more how the Harnack
inequality is crucial when proving regularity results for solution of partial differential equations.
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2. Local Energy estimates

We assume that u can be constructed as the limit in the weak topology of L2(0, T ;W 1,2(Ω)) of a
sequence of local smooth solutions for smooth β(·). This is the same approach used in [DBV], to which
we refer for further details. Hence we will be working with smooth solutions of

(2.1) β′(u)ut =
∑
ij

Di(aij(x, t)Dju+ ai(x, t)u) + bi(x, t)Diu+ e(x, t)u

where β(·) is regular and satisfies

β′(s) ≥ γ0, ∀ s ∈ (−M,M).

However all our estimates depend only upon the data. Finally, we use the same notation of [DBV],
that we recall for sake of completeness.
For ρ > 0 we denote by Kρ the cube of wedge 2ρ centered at the origin, i.e.

Kρ = {x ∈ RN | max
1≤i≤N

|xi| < ρ}

and by [y+Kρ] the cube centered at y and congruent to Kρ. For θ > 0 denote by Q(ρ, θρ2) the cylinder
of cross section Kρ, height θρ2, and vertex at the origin, i.e.

Q(ρ, θρ2) = Kρ × (−θρ2, 0)

and for a point (y, s) ∈ RN+1 we let [(y, s)+Q(ρ; θρ2)] be the cylinder of vertex at (y, s) and congruent
to Q(ρ, θρ2).
The truncations (u− k)+ and (u− k)−, for k ∈ R, are defined by:

(u− k)+ = max{u− k; 0} (u− k)− = max{k − u; 0}.

Next, define
A±k,ρ(t) = {x ∈ Kρ|(u(x, t)− k)± > 0},

introduce the numbers

H±k = ‖(u− k)±‖∞,[(y,s)+Q(ρ;θρ2], q̂ =
2q(1 + κ)
q − 1

, r̂ =
2r(1 + κ)
r − 1

, κ =
2
N
κ1

and the function

Ψ(H±k , (u− k)±, c) = ln+

{
H±k

H±k − (u− k)± + c

}
0 < c < H±k .

Proposition 1. There exists constants γ = γ(data) and δ0 = δ0(data) such that for every cylinder
[(y, s)+Q(σρ, θσρ2)] ⊂ [(y, s)+Q(ρ; θρ2)], σ ∈ (0, 1) and for every level k satisfying ess supQ(ρ;θρ2) |(u−
k)±| = δ ≤ δ0 we get

sup
s−θρ2≤t≤s

∫
y+Kσρ

(u− k)2
±(x, t)dx+

∫ ∫
(y,s)+Q(σρ,σθρ2)

|D(u− k)±|2dxdt

≤ γ

(1− σ)2ρ2

∫ ∫
(y,s)+Q(ρ,θρ2)

(u− k)2
±dxdt+

γ

(1− σ)θρ2

∫ ∫
(y,s)+Q(ρ,θρ2)

(u− k)±dxdt

+‖
∑

a2
i +

∑
b2i + |e|‖q,r

(∫ 0

−θρ2
|A±k,ρ(τ)|

r̂
q̂ dτ

) 2(1+κ)
r̂

(2.2)

sup
s−θρ2≤t≤s

∫
y+Kσρ

Ψ2(H±k , (u− k)±, c)(x, t)dx ≤
γ(data)

(1− σ2)ρ2

∫ ∫
(y,s)+Q(ρ,θρ2)

Ψ(H±k , (u− k)±, c)dxdτ+

+
γ(data)

c

∫
y+Kρ

Ψ(H±k , (u− k)±, c)(x, s− θρ2) +
γ

c2
(1 +

lnH±k
c

)µ1

{∫ s

s−θρ2
|A±k,ρ(τ)|

r̂
q̂ dτ

} 2(1+κ)
r̂

.

(2.3)
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Proof. We may assume that (y, s) coincides with the origin. Let x → ζ1(x) be a nonnegative cut-off
function in Kρ such that 

ζ1 ≡ 1 on Kσρ, σ ∈ (0, 1)
ζ1(x) = 0 for x ∈ ∂Kρ

|Dζ1| ≤ 1
(1−σ)ρ

and t→ ζ2(t) the cut-off function

ζ2(t) =


0 t ∈ (−∞,−θρ2)
t+θρ2

(1−σ)θρ2 t ∈ (−θρ2,−σθρ2)

1 t ≥ −σθρ2.

We multiply (1.3) by the test function
±(u− k)±ζ2

1ζ
2
2

and integrate by parts over Kρ × (−θρ2, t) with t ∈ (−θρ2, 0). For simplicity we indicate by ζ the
product ζ1ζ2 and drop the explicit indication of the integration set.

I = ±
∫ ∫ ∑

ij

(aijDju+ aiu)Di[(u− k)±ζ2]dxdτ

≥ c
∫ ∫

|D(u− k)±|2ζ2dxdτ −
∫ ∫ ∑

a2
i ζ

2χ[(u− k)± > 0]dxdτ

−2C1

∫ ∫
|D(u− k)±|(u− k)±ζ|Dζ|dxdτ − 2

∫ ∫
(
∑

a2
i )

1
2 (u− k)±ζ|Dζ|dxdτ

We use twice Young’s inequality:

2C1

∫ ∫
|D(u− k)±|(u− k)±ζ|Dζ|dxdτ

≤ C0

∫ ∫
|D(u− k)±|2ζ2dxdτ + γ(C0)

∫ ∫
(u− k)2

±|Dζ|2dxdτ
(2.4)

2
∫ ∫

(
∑

a2
i )

1
2 (u− k)±ζ|Dζ|dxdτ

≤
∫ ∫

(u− k)2
±|Dζ|2dxdτ + γ

∫ ∫ ∑
a2
i ζ

2χ[(u− k)± > 0]dxdτ.
(2.5)

Therefore we get:

I ≥ C0

∫ ∫
|D(u− k)±ζ|2dxdτ

−γ
∫ ∫

(u− k)2
±|Dζ|2dxdτ − γ

∫ ∫ ∑
a2
i ζ

2χ[(u− k)± > 0]dxdτ.
(2.6)

II = ±
∫ ∫

[biDiu+ eu](u− k)±ζ2dxdt

≤ C2

∫ ∫
|D(u− k)±|2(u− k)±ζ2dxdτ +

∫ ∫
|
∑

b2i + |e||(u− k)±ζ2dxdτ

We impose to k the restrictions

ess sup
Q(ρ;θρ2)

|(u− k)±| ≤ δ0 =
C0

4C2

Then:
II ≤ C0

4

∫ ∫
|D(u− k)±ζ|2dxdτ +

∫ ∫
|
∑

b2i + |e||(u− k)±ζ2dxdτ

≤ C0

4

∫ ∫
|D(u− k)±ζ|2dxdτ + δ0

∫
|
∑

b2i + |e||χ[(u− k)±]dxdτ
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If we observe that

±β′(u)ut(u− k)± =
∂

∂t

∫ (u−k)±

0

β′(k ± s)s ds,

since t ∈ (−θρ2, 0) is arbitrary, we obtain

sup
−θρ2≤t≤0

∫
Kρ

(∫ (u−k)±

0

β′(k ± s)sds

)
ζ2
1 (x)ζ2

2 (t)dx+
∫ ∫

Q(σρ,σθρ2)

|D(u− k)±|2dxdt

≤ γ
∫ ∫

Q(ρ,θρ2)

(u− k)2
±|Dζ1|2dxdt+ γ

∫ ∫
Q(ρ,θρ2)

(∫ (u−k)±

0

β′(k ± s)ds

)
ζ2
1 (x)ζ2,t(t)dxdt

+
∫ ∫

Q(ρ,θρ2)

|
∑

a2
i +

∑
b2i + |e||χ[(u− k)± > 0]dxdτ

Taking into account that ∫ (u−k)±

0

β′(k ± s)sds ≥ γ0

2
(u− k)2

±∫ (u−k)±

0

β′(k ± s)sds ≤ sup|s|≤M |β(s)| (u− k)±

and using Hölder inequality, we reach the assertion (2.2).
To prove (2.3), take as test function ±ΨΨ′ζ2

1 (x) and integrate by parts over Kρ × (−θρ2, t] with
t ∈ (−θρ2, 0). Let us first remark that

±β′(u)utΨΨ′ =
∂

∂t

∫ (u−k)±

0

β′(k ± s)ΨΨ′ds, (ΨΨ′)′ = (1 + Ψ)(Ψ′)2.

Once more, since t ∈ (−θρ2, 0) is arbitrary, we get

sup
−θρ2≤t≤0

∫
Kσρ

(∫ (u−k)±

0

β′(k ± s)ΨΨ′ds

)
ζ2
1 (x)dx+

∫ ∫
Q(ρ,θρ2)

(1 + Ψ)Ψ
′2|D(u− k)±|2ζ2

1 (x)dxdt

≤
∫
Kσρ

(∫ (u−k)±

0

β′(k ± s)ΨΨ′ds

)
(x− θρ2)dx+ 2

∫ ∫
Q(ρ,θρ2)

∑
i

a2
i ζ

2(1 + Ψ)Ψ
′2dxdt+

+
∫ ∫

Q(ρ,θρ2)

∑
i

b2i Ψζ2dxdt+
c0
2

∫ ∫
Q(ρ,θρ2)

|Du|2(1 + Ψ)Ψ
′2ζ2dxdt+

+
1
c
log

(
H±k
c

)∫ ∫
Q(ρ,θρ2)

|e|χ[(u− k)± > 0]dxdt.

Using
∫ (u−k)±

0
β′(k ± s)ΨΨ′ds ≥ γ0

2 Ψ2, we get:

sup
−θρ2≤t≤0

∫
Kσρ

Ψ2(H±k , (u− k)±, c)(x, t)dx

≤ γ(data)
(1− σ2)ρ2

∫ ∫
Q(ρ,θρ2)

Ψ(H±k , (u− k)±, c)(x, t)dxdt+
γ(data)

c

∫
Kρ

Ψ(H±k , (u− k)±, c)(x, s− θρ2)dx

+
γ

c2

(
1 + log

(
H±k
c

))∫ ∫
Q(ρ,θρ2)

(
∑
i

a2
i +

∑
i

b2i + |e|)χ[(u− k)± > 0]dxdt

and this last term is substituted by

γ

c2

(
1 + log

(
H±k
c

))
‖
∑

a2
i +

∑
b2i + |e|‖q,r

{∫ t0

t0−θ
|A±k,ρ(τ)|

r̂
q̂ dτ

} 2(1+κ)
r

�

Remark 2. The estimate (2.2) holds true even in more general hypotheses, namely
a) div(a(x, t, u,Du)Du ≥ C0|Du|2 − φo(x, t),
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b) |a(x, t, u,Du)| ≤ C1|Du|+ φ1(x, t),
c) |b(x, t, u,Du)| ≤ C2|Du|2 + φ2;

where φ0, φ
2
1, φ2 ∈ Lq,r(ΩT ).

Remark 3. Along the proofs we will encounter quantities of the type AiρNκω−2, where Ai are constants
that can be determined a priori only in terms of the data and are independent of ω and ρ. We may
assume, without loss of generality, that they satisfy Aiρ

Nκω−2 ≤ 1. Indeed, if not, we would have
ω ≤ Cρε0 for C = maxAi and ε0 = Nk

2 and the first iterative step would be trivial.

Fix θ > 0 and consider [(y, s) +Q(2ρ, 2θρ2)] ⊂ ΩT , we put

µ+ = sup
[(y,s)+Q(2ρ,2θρ2)]

u µ− = inf
[(y,s)+Q(2ρ,2θρ2)]

u

and
ω = osc

[(y,s)+Q(2ρ,2θρ2)]
u = µ+ − µ−.

Let ξ± ∈ (0, 1) be properly chosen in order to satisfy the assumption H±k ≤ δ0 and define the following
level sets

A+
ξ+,ρ = {(x, t) ∈ [(y, s) +Q(ρ, θρ2] : u(x, t) > µ+ − ξ+ω},

A−ξ−,ρ = {(x, t) ∈ [(y, s) +Q(ρ, θρ2] : u(x, t) < µ− + ξ−ω}.
If we fix λ ∈ (0, 1) we have the following estimates
Proposition 2. There exists a number ν+ depending on the structure of β and λ, ξ+, θ, ω such that

measA+
ξ+,ρ < ν+|Q(ρ, θρ2)| =⇒ u(x, t) < µ+ − λξ+ω ∀(x, t) ∈ [(y, s) +Q(

ρ

2
,
θρ2

2
)].

Proposition 3. There exists a number ν− depending on the structure of β and λ, ξ−, θ, ω such that

measA−ξ−,ρ < ν−|Q(ρ, θρ2)| =⇒ u(x, t) > µ− + λξ−ω ∀(x, t) ∈ [(y, s) +Q(
ρ

2
,
θρ2

2
)].

Proof. We only prove the case +. The numbers ν± are given by the formula:

ν± =
c

θ

(
θξ±ω

1 + θξ±ω

) 1+κ
σ

σ = min{ 2
N
κ1;

2
N + 2

} c = c(data, λ).

Without loss of generality, we may suppose (y, s) = (0, 0) and ξ+ = ξ. For n = 0, 1, 2, . . ., we consider
the sequence of radii

ρn =
ρ

2
+

ρ

2n+1
ρ̃n =

ρn + ρn+1

2
and the sequence of numbers

ξn = λξ + (1− λ)
ξ

2n
kn = µ+ − ξnω

Q̃n = Kρ̃n × {−θρ̃n, 0} Qn = Kρn × {−θρn, 0}.
From (2.2), we get

sup
−θρ̃2

n≤t≤0

∫
Kρ̃n

(u− kn)+
2
dx+

∫ ∫
Q(ρ̃n,θρ̃2

n)

|D(u− kn)+|2dxdt

≤ γ 4nξ2ω2

ρ2
[1 + (θξω)−1]|Aξn,ρn |+ ‖

∑
a2
i +

∑
b2i + c‖q,r

×
{∫ 0

−θρ̃n
|A+

ξn,ρn
(τ)|

q−1
q

r
r−1 dτ

} r−1
r

.

(2.7)

Now, we are in the position to repeat the same argument as in [DBV]. Let ζ̃n(x) be a cut-off function
in Kρ̃n ,ζ̃n(x) = 1 on Kρn+1 and |Dζ̃n| ≤ 2n+3

ρ .
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The function (u− kn)+ζ̃n belongs to

L∞(−θρ̃2
n, 0;L2(Kρ̃n))

⋂
L2(−θρ̃2

n, 0;W 1,2
0 (Kρ̃n));

we apply the embedding theorem of Proposition 3.1, page 7 of [DB1] to obtain

(ξn − ξn+1)2ω2|Aξn+1,ρn+1 | ≤
∫ ∫

Qn+1

(u− kn)2
+dxdt

≤
∫ ∫

Q̃n

(u− kn)2
+ζ

2
ndxdt ≤

(∫ ∫
Q̃n

[(u− kn)+ζn]2
N+2
N dxdt

) N
N+2

|Aξn,ρn |
2

N+2

≤ γ
(∫ ∫

Q̃n

|D((u− kn)+ζ̃n)|2dxdt
) N
N+2

(
sup

−θρ̃2
n≤t≤0

∫
Kρ̃n

(u− kn)+
2
dx

) 2
N+2

|Aξn,ρn |
2

N+2 .

(2.8)

Now we compute∫ ∫
Q̃n

|D((u− kn)+ζ̃n)|2dxdt ≤
∫ ∫

Q̃n

|D(u− kn)+|2dxdt+
∫ ∫

Q̃n

|Dζ̃n|2(u− kn)2
+dxdt.

Taking into account inequality (2.7), yields∫ ∫
Q̃n

|D(u− kn)+ζ̃n|2dxdt ≤ γ
4nξ2ω2

ρ2
[1 + (θξω−1)]|Aξn,ρn |+

+‖
∑

a2
i +

∑
b2i + c‖q,r

{∫ 0

−θρ̃n
|A+

ξn,ρn
(τ)|

q̂
r̂ dτ

} 2
r̂ (1+κ)(2.9)

where q̂, r̂, κ = 2
N , κ1 have been introduced in Section 2.

Also the second term of the right-hand side in (2.8) can be estimated analogously; combining (2.7)
and (2.9), finally we get:

|Aξn+1,ρn+1 | ≤ γ
16n

ρ2
[1 + (θξω)−1]|Aξn,ρn |1+ 2

N+2 +

+γ16n‖
∑

a2
i +

∑
b2i + c‖q,r|Aξn,ρn |

2
N+2 ×

{∫ 0

−θρ̃n
|A+

ξn,ρn
(τ)|

q̂
r̂ dτ

} 2
r̂ (1+κ)

.

(2.10)

We put Yn = |Aξn,ρn |
|Qn| Zn = 1

|KRn |

{∫ 0

−θρ̃n |A
+
ξn,ρn

(τ)|
q̂
r̂ dτ

} 2
r̂

and divide (2.10) by |Qn| to obtain

Yn+1 ≤ γ16nθ
2

N+2 [1 + (θξω)−1]{Y 1+ 2
N+2

n + Y
2

N+2
n Z1+κ

n }.
By the embedding of Proposition 3.3 of Chapter I of [DB1] we get

Zn+1(kn − kn+1)2 ≤ |KRn+1 |−1‖(u− kn)‖2q,r,Qn+1

≤ |KRn+1 |−1‖(u− kn)ζ̃n‖2q,r,Qn ≤ γR
−N‖(u− kn)ζ̃n‖2V 2(Qn).

Therefore
Zn+1 ≤ γ16nθ

2
N+2 [1 + (θξω)−1]{Yn + Z1+κ

n }
and the sequences {Yn} and {Zn} tend to zero , provided

Y0 + Z1+κ
0 ≤ ν0

(see Lemma 4.2, page 12 in [DB1]). �

Fix θ > 0 and consider the cylinder [(y, s) +Q(ρ; θρ2)]; for ξ+ ∈ (0, 1) we set

Aξ+,ρ(t) = {x ∈ Kρ : u(x, t) > µ+ − ξ+ω}.

We assume that the function u(·, s − θρ2) does not exceed the value µ+ − ξ+
0 ω at the bottom of the

cylinder for some ξ+
0 ∈ (0, 1) properly chosen in order to satisfy the assumption H±k ≤ δ0, i.e.

u(x, s− θρ2) ≤ µ+ − ξ+
0 ω ∀x ∈ [y +Kρ].
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Proposition 4. For every ν+ ∈ (0, 1) there exists a number ξ+ ∈ (0, 1
4ξ

+
0 ) depending only upon the

data and the numbers ξ+
0 and θ such that

|Aξ+, 12ρ(t)| ≤ ν
+|K 1

2ρ
| ∀t ∈ (s− θρ2, s).

The number ξ+ is chosen to satisfy ν+ = γθ

ln(ξ+
0 /2ξ

+)
.

Proof. Without loss of generality we can assume that (y, s) = (0, 0). Consider the logarithmic estimate
(2.3) for (u− k)+ with k = µ+ − ξ+

0 ω, σ = 1
2 , c = ξ+ω, where ξ+ need to be chosen. We first observe

that the integral on the right at the time level −θρ2 is zero. The first integral on the right is majorised
by 2γθ|log

(
ξ+
0

2ξ+

)
||Kρ|. The integral on the left hand side is minorised extending the integration over

a smaller set A+
ξ+, 12ρ

(t) On such a set Ψ ≥ log
(
ξ+
0

2ξ+

)
; therefore the logarithmic inequality (2.3) reads

as follows:

(log
(
ξ+
0

2ξ+

)
)2|A+

ξ+, 12ρ
(t)| ≤ γθ|log

(
ξ+
0

2ξ+

)
||K 1

2ρ
|

for all t ∈ (−θρ2, 0). The last term is estimated by

γ

(
1

ξ+ω

)2(
1 + log(

ξ+
0

ξ+
)
)
ρNκ|K ρ

2
|

and we can choose the parameters in order to make it ≤ 1. �

We conclude this section by stating a proposition that can be found in a more general way in [DBV]
Proposition 5. Let v ∈W 1,2(Kρ), satisfying∫

Kρ

|Dv|2dx ≤ γ

for a given constant γ and meas {x ∈ Kρ : v(x) < 1} ≥ α|Kρ| for a given α ∈ (0, 1). Then, for every
η ∈ (0, 1), and λ > 1, there exists x∗ ∈ Kρ and a number δ ∈ (0, 1) such that , within the cube Kδρ(x∗)
centered in x∗ with wedge 2δρ, there holds:

meas {x ∈ Kδρ(x∗) : v(x) < λ} > (1− η)|Kδρ|.
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3. On the sets where u is near µ+
or near µ−

If we define A+
ξ+,ρ(t) = {x ∈ Kρ : u(x, t) > µ+−ξ+ω} and A−ξ−,ρ(t) = {x ∈ Kρ : u(x, t) < µ−−ξ−ω},

we have

measA±ξ±,ρ =
∫ 0

−ρ2
|A±ξ±,ρ(t)|dt.

Observe that in the following the numbers ν± are the ones introduced in Proposition 2 and Proposition
3.
Proposition 6. If

(3.1) measA+
ξ+,ρ =

∫ 0

−ρ2
|A+

ξ+,ρ(t)|dt > ν+|Q(ρ, ρ2)|

holds, for every λ > 1 and η ∈ (0, 1) there exist a point (y∗+, s
∗
+) ∈ [(y, s) + Q(δ+ρ; δ2

+ρ
2)] ⊂ [(y, s) +

Q(ρ; ρ2)] such that

meas {(x, t) ∈ [(y∗+, s
∗
+) +Q(δ+ρ; δ2

+ρ
2)] : u(x, t) > µ+ − λξ+ω}

> (1− η)|[(y∗+, s∗+) +Q(δ+ρ; δ2
+ρ

2)]|.
(3.2)

The number δ+ depends upon the data and the numbers λ, η, ξ+ and ω.
Proposition 7. If

(3.3) measA−ξ−,ρ =
∫ 0

−ρ2
|A−ξ−,ρ(t)|dt > ν−|Q(ρ, ρ2)|

holds, for every λ > 1 and η ∈ (0, 1) there exist a point (y∗−, s
∗
−) ∈ [(y, s) + Q(δ−ρ; δ2

−ρ
2)] ⊂ [(y, s) +

Q(ρ; ρ2)] such that

meas {(x, t) ∈ [(y∗−, s
∗
−) +Q(δ+ρ; δ2

−ρ
2)] : u(x, t) < µ− + λξ−ω}

> (1− η)|[(y∗−, s∗−) +Q(δ−ρ; δ2
−ρ

2)]|.
(3.4)

The number δ− depends upon the data and the numbers λ, η, ξ− and ω.

Proof. We write (2.2) on Q(ρ, ρ2) and Q(2ρ, 2ρ2) respectively for the functions

(u− k+)+ with k+ = µ+ − ξ+ω

and
(u− k−)− with k− = µ− + ξ−ω

and take into account that the term
{∫ 0

−θρ̃n |A
+
ξn,ρn

(τ)|
q̂
r̂ dτ

} 2
r̂ (1+κ)

is controlled by γωρN . We obtain

(3.5)
∫ ∫

Q(ρ,ρ2)

|D(µ+ − u)|2dxdt ≤ γωρN ,

(3.6)
∫ ∫

Q(ρ,ρ2)

|D(u− µ−)|2dxdt ≤ γωρN .

We rewrite (3.5) and (3.2) in terms of v+ = µ+−u
ωξ+ , (3.6) and (3.4) in terms of v− = u−µ−

ωξ− to get

(3.7) meas {(x, t) ∈ Q(ρ; ρ2) : v± < 1} > ν±|Q(ρ; ρ2)|

(3.8)
∫ ∫

Q(ρ,ρ2)

|Dv±|2dxdt ≤ γ

ωξ±2
ρN .

For t ∈ (−ρ2, 0) we put

A±(t) = {x ∈ Kρ : v±(x, t) < 1} T± = {t ∈ (−ρ2, 0) : measA±(t) >
1
2
ν±|Kρ|}.
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Denote by T c± the complement of T± with respect to (−ρ2, 0) and compute

ν±|Q(ρ; ρ2)| ≤
∫ 0

−ρ2

∫
Kρ

measA±(t)dt =
∫
T±

∫
Kρ

measA±(t)dt+

+
∫
T c±

∫
Kρ

measA±(t)dt ≤ meas T±
ρ2

|Q(ρ; ρ2)|+ 1
2
ν±|Q(ρ; ρ2)|,

from which we get

meas T± ≥
1
2
ν±ρ2.

From this and (3.7) we get:
1
2
ν±ρ2 inf

t∈T±

∫
Kρ

|Dv±(x, t)|2dxdt ≤
∫
T±

∫
Kρ

|Dv±(x, t)|2dxdt

≤
∫ ∫

Q(ρ;ρ2)

|Dv±(x, t)|2dxdt ≤ γ

ξ±2ω
ρN .

Therefore there exist time levels s∗+ and s∗− for which∫
Kρ

|Dv±(x, s∗±)|2dx ≤ γ

ωξ±2
ρN−2

and
meas {x ∈ Kρ : v±(x, s∗±) < 1} ≥ 1

2
ν∗±|Kρ|.

Now we apply Proposition 5 to conclude exactly as in [DBV]. �

Let the cylinder [(y, s) +Q(ρ; ρ2)] be fixed and consider coaxial boxes of the type

(3.9) [(y, τ) +Q(r; r2)], 0 < r ≤ ρ.
The time-location of the vertices ranges over

(3.10) τ ∈ [s− (ρ2 − r2), s]

and r is a positive parameter ranging over

(3.11) r ∈ [δρ, ρ], where δ ∈ (0, 1) is to be chosen.

We assume that conditions (3.1) and (3.3) both hold for all cylinders of the type previously defined.
In such a case, we will identify two disjoint subcylinders within [(y, s) +Q(ρ; ρ2)], such that in one of
this u is all near µ+ and in the other one u is all near µ−.
Proposition 8. Let (3.1) and (3.3) both hold for all coaxial cylinders of the type previously defined.
There exist two points (y∗1 , s

∗), (y∗2 , s
∗), at the same time level s∗, a number δ ∈ (0, 1) and two cylinders

[(y∗1 , s
∗) +Q(r; r2)], [(y∗2 , s

∗) +Q(r; r2)] r = δρ

contained in [(y, s) +Q(ρ; ρ2)], such that

u(x, t) > µ− +
2
3

(1− λξ+)ω ∀(x, t) ∈ [(y∗1 , s
∗) +Q(r; r2)]

and
u(x, t) < µ+ − 2

3
(1− λξ−)ω ∀(x, t) ∈ [(y∗2 , s

∗) +Q(r; r2)].

The proof of this Proposition is the same of the Proposition 8.1 in [DBV].
Using Proposition 8 it is possible to derive a local estimate for the gradient Du exactly as in [DBV].
Proposition 9. Let (3.1) and (3.3) both hold for all coaxial cylinders previously defined and choose
ξ+ = ξ− = 1

12 and λ = 3
2 . There exists a constant γ depending only upon the data and ω such that

ρNω2γ ≤
∫ s

s−ρ2

∫
δρ<‖x−y‖<ρ

|Du|2dxdt.
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4. Comparison function

In [DBV] the key point in the proof of the continuity theorem are some estimates on a proper function
v, which is then compared with the solution u of the original singular parabolic equation. In these
estimates the radial simmetry of the problem is heavily used, but a careful examination of the whole
procedure shows that this assumption can be done away with, provided the maximum principle and a
Harnack inequality for the corresponding elliptic operator holds for all time levels. This is precisely the
way we will follow in the sequel. Without entering too much into details, let us just remark that the
basic reason to use the comparison function is to mimic a parabolic Harnack inequality, whose validity
is not known in this context.

4.1. Statement of the problem. For d > 1 and ε0 ∈ (0, 1), let Aε0,d denote the annulus Aε0,d ≡
{ε0 < |x| < d} and for k > 0 consider the cylindrical domain with annular cross section

C(ε0, 4d; k) ≡ Aε0,d × (0, k).

We consider the elliptic operator L introduced in (1.3) and state some further assumptions:
(1) (H1) The coefficients aij , ai, bi, e considered in (1.3), (1.4), (1.5) do not depend on time

[Notice that this hypothesis will be removed in the last sections].
(2) (H2) As a consequence of (H1), condition (1.6) becomes∫

Ω

(ev −
∑
i

aiDiv) dx ≤ 0, ∀ v ≥ 0, v ∈ C1
0 (Ω).

(3) (H3) The local weak solution w of the elliptic equation

Lw = 0 in Ω

satisfies a Harnack inequality, namely, if w ≥ 0 and KR(y) ⊂ Ω, for any σ > 0 we have

sup
KσR

w ≤ C ( inf
KσR

w + χRα)

where χ, α and C depends only on the data. Strictly speaking, the ellipticity conditions and
the summability hypotheses on the coefficients ensure that w belongs to an elliptic De Giorgi
class, which in turns guarantees that w satisfies a Harnack inequality (under this point of view,
see for example [MZ], Chapter 3); therefore there would be no reason to assume this explicitely.
On the other hand, as we mentioned in the Introduction, we want to emphasize the structural
assumptions needed in the proof, so that for any other operator that satisfies them, Theorem
1 still holds.

Remark 4. As already mentioned in Section 1, the meaning of (H2) is to provide us with the maximum
principle. By no means it is the most general hypothesis under this point of view: in fact more general
conditions could be equally - well considered, but we will not take them into account here.
Let now v be the unique solution of the boundary problem

(β̃(v))t = Lv on Aε0,4d × (0, k)
v(x, t) = 0 in |x| = 4d
v(x, t) = 1 in |x| = ε0

v(x, 0) = 0

(4.1)

where β̃ is a maximal monotone graph in R× R satisfying:

β̃(s1)− β̃(s2)
s1 − s2

≥ γ̃0, sup
|s|≤M

|β̃(s)| ≤ γ̃1

for some given constants γ̃i. As discussed at the beginning of this Section, the function v will be used as
a local comparison function for the solution u of (1.3). Therefore the quantities ε0, d, γ̃i will be chosen
in dependance of the local oscillation of u. As in the previous Sections, in the following we assume β̃
to be smooth, so that

β̃′(s) ≥ γ̃0 ∀ s ∈ (−M,M).
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Thanks to the previous assumptions, we have
Proposition 10. Let v be the solution of (4.1). Then

0 ≤ v(x, t) ≤ 1 for a.e. (x, t) ∈ C(ε0, 4d; k).

Proof. Take (v−h)± with 0 ≤ h ≤ 1 as test function in (4.1) and then argue as in the proof of Theorem
7.2, Section III of [LSU]. Due to the smoothness assumptions on β̃, we have

(β̃(v))t = β̃′(v) vt

and

±β̃′(v) vt (v − h)± =
∂

∂t

∫ (v−h)±

0

β̃′(h± s)s ds.

Hence the only difference with the non - degenerate parabolic setting is the presence of the term∫ k

0

∫
Aε0,4d

∂

∂t

∫ (v−h)±

0

β̃(h± s) s ds

instead of the usual straight time derivative. However relying on

(4.2)
∫ (v−h)±

0

β̃′(h± s)s ds ≥ γ̃0

2
(v − h)2

±,

(4.3)
∫ (v−h)±

0

β̃′(h± s)s ds ≤ sup
|s|≤M

|β̃(s)| (v − h)±

we can conclude exactly as in [LSU]. �

The rest of this section will be devoted to the proof of the following
Proposition 11. There exist numbers σ0 > 0 and k > 0 such that for every y in the annulus {1 <
|y| < 2d} there exists a time level t ∈ (0, k) such that

(4.4) v(y, t) > σ0.

4.2. An auxiliary function. We consider an auxiliary function z constructed as the difference of the
solution v of the parabolic problem in the circular cylindric section considered in (4.1) and the solution
ζ of the following elliptic problem in the circular annulus Aε0,4d Lζ = 0 on Aε0,4d

ζ(x) = 0 in |x| = 4d
ζ(x) = 1 in |x| = ε0

(4.5)

Notice that by well - known classical result ζ is Hölder continuous. Moreover we have the following
Proposition 12. Under assumptions (H1) and (H2) (4.5) admits a unique weak solution in W 1,2(Ω)
and

(4.6) 0 ≤ ζ(x) ≤ 1 for a.e. x ∈ Ω.

Proof. For the existence and uniqueness, see [GT], Theorem 8.3. For the maximum principle stated in
(4.6), see [GT], Theorem 8.1. �

If we now put z = ζ − v and we set Γ(x, ·) = −β̃(ζ(x)− ·), it is easy to see that z satisfies
(Γ(z))t = Lz on Aε0,4d × (0, k)
z(x, t) = 0 in |x| = 4d
z(x, t) = 0 in |x| = ε0

z(x, 0) = 1 in |x| = ε0

z(x, 0) = 0 in |x| = 4d

(4.7)

in the sense specified in section 2. As with v above, z satisfies a proper maximum principle, namely
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Proposition 13. Let z be the solution of (4.7). Then

z(x, t) ≥ 0 for a.e. (x, t) ∈ C(ε0, 4d; k).

Proof. Things are pretty much the same as considered above in the proof of Proposition 10, to which
we refer. �

4.3. Basic energy estimates. Before coming to the proof of Proposition 11, we need some introduc-
tory estimates. For a cylinder [(y, s) +Q(2ρ; 2θρ2)] ⊂ C(ε0, 4d; k) we set

z+ = sup
[(y,s)+Q(2ρ;2θρ2)]

z; z− = inf
[(y,s)+Q(2ρ;2θρ2)]

z

and denote by w a number satisfying:

w ≥ z+ − z− = osc
[(y,s)+Q(2ρ;2θρ2)]

z.

As before, relying on the properties of β̃, we get

±Γ′(z) zt Ψ Ψ′ =
∂

∂t

∫ (z−k)±

0

β̃′(ζ − (k ± s))Ψ(s)Ψ′(s) ds.

Moreover

(4.8)
∫ (z−k)±

0

β̃′(ζ − (k ± s))s ds ≥ γ̃0

2
(z − k)2

±,

(4.9)
∫ (z−k)±

0

β̃′(ζ − (k ± s))s ds ≤ sup
|s|≤M

|β̃(s)|(z − k)±,

(4.10)
∫ (z−k)±

0

β̃′(ζ − (k ± s))Ψ(s)Ψ′(s) ds ≥ γ̃0

2
Ψ2.

Hence, by (4.8), (4.9) and (4.10), it is easy to see that the function z satisfies the energy estimates
of section 2. For the logarithmic estimate, Proposition 4 continues to hold for the function z. In
this context, having fixed ν± ∈ (0, 1), and ξ±0 ∈ (0, 1), the numbers ξ± for which the analogues of
Propositions 2 and 3 hold are chosen from the formulae

ν± =
γ(data, w)

ln( ξ
±
0
ξ± )

We extend z(·, t) for |x| < ε0 and t ∈ (0, k) by 0 and continue to denote by z such an extension.
Denoting by Bd the ball of radius d about the origin, we have:

z(·, t) ∈W 1,2
0 (B4d) for a.e. t ∈ (0, k)

We can then put z as test function in the equation to obtain∫ k

0

∫
Aε0,4d

(
∂

∂t

∫ z

0

β̃′(ζ + s)sds)
)
dxdt+

ν

2

∫ k

0

∫
Aε0,4d

|Dz|2dxdt

≤ 1
ν

∫ k

0

∫
Aε0,4d

(∑
a2
i +

∑
b2i + |e|

)
z2dxdt

If we now set D = 1
ν

∑
a2
i + 1

ν

∑
b2i + |e|, arguing as in [LSU], Chapter III, page 139-140 and taking

into account the analogous of (4.8) and (4.9) we obtain:

min{γ0, ν}

[
sup

0<t≤k

∫
Aε0,4d

z2(x, t) dx+
∫ k

0

∫
Aε0,4d

|Dz|2dxdt

]

≤ C
∫
Aε0,4d

z(x, 0) dx+ γ‖D‖q,r

[
sup

0<t≤k

∫
Aε0,4d

z2(x, t) dx+
∫ k

0

∫
Aε0,4d

|Dz|2dxdt

]
.
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If γ‖D‖q,r is less than min{γ0, ν} it is possible to estimate

sup
0≤t≤k

∫
Aε0,4d

z2(x, t) dx+
∫ k

0

∫
Aε0,4d

|Dz|2dxdt in terms of
∫
Aε0,4d

z(x, 0) dx

but in general this is not the case. Once more we argue as in [LSU]: we consider a partition of (0, k)
in a finite number of intervals in such a way that γ‖D‖q,r ≤ ν

2 and we get

(4.11) sup
0≤t≤k

∫
Aε0,4d

z2(x, t) dx+
∫ k

0

∫
Aε0,4d

|Dz|2dxdt ≤ C
∫
Aε0,4d

z(x, 0) dx

4.4. Proof of Proposition 11. We now have all the estimates we need to conclude. We can rewrite
(4.11) in the following way

(4.12)
∫ k

0

∫
Aε0,4d

|Dz|2 dxdt ≤ C.

There must exist a time level t∗ such that

(4.13)
∫
Aε0,4d

|Dz|2 dx =
∫
B4d

|Dz(x, t∗)|2 dx ≤ τ0

with τ0 a proper small quantity. In fact, if it were not so, integrating on (0, k) we obtain∫ k

0

∫
B4d

|Dz|2 dx ≥ kτ0

and it’s enough to choose k large enough to get a contradiction. Now we claim that a consequence of
(4.13) is that

∀x ∈ B2d (ζ − v)(x, t∗) ≤ η0

with η0 a positive quantity very close to zero. In fact, if it were not true, we would have

∀x ∈ B2d (ζ − v)(x, t∗) > η0,

which implies that

(4.14) |{x ∈ B4d : ζ(x)− v(x, t∗) > η0}| ≥ ν|B4d|.

for a proper ν. If (4.14) holds, reproducing the same argument of [DBV], Sections 6 - 8, we conclude
that there exist a y∗ ∈ B4d and a small cube Kρ(y∗) ⊂ B4d such that

(4.15) ∀x ∈ Kρ(y∗) (ζ − v)(x, t∗) >
η0

4
.

Due to the previous zero - extension of z, ∀x ∈ Bε0 we have that (ζ − v)(x, t∗) = 0. Hence, reducing
the diameter if necessary, we can single out a cube Kρ(0) with the same radius as the one in (4.15)
s.t. ∀x ∈ Kρ(0) we have (ζ − v)(x, t∗) = 0. Then we can work as in Section 9 of [DBV] and get a

lower bound for
∫
Aε0,4d

|Dz(x, t∗)|2 dx. Provided τ0 is chosen sufficienly small (or k sufficiently large),

we end up with a contradiction, so that eventually (4.14) cannot hold.
Hence we have

(4.16) 0 < (ζ − v)(x, t∗) ≤ η0 ∀x ∈ B2d ⇒ ζ(x)− η0 < v(x, t∗) ∀x ∈ B2d.

On the other hand, if we consider A2ε0,2d, there must exist y0 ∈ A2ε0,2d s.t.

0 < 2η0 < α ≤ ζ(y0) ≤ 1.

In fact, ζ is Hölder continuous up to the boundary and 0 ≤ ζ ≤ 1 by the maximum principle, as we
showed before.

Then, by the Harnack inequality, we conclude that there exists α̃ > 2η0 s.t.

(4.17) ∀x ∈ A2ε0,2d ζ(x) ≥ α̃.
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Hence, by (4.16) and (4.17) we obtain

v(x, t∗) ≥ α̃− η0 > η0 ∀x ∈ A2ε0,2d

wich implies that
v(x, t∗) > η0 ∀x ∈ Kρ(y0), ∀Kρ(y0) ⊂ A2ε0,2d.

We can now apply the logarithmic estimate, to deduce that ∀ν ∈ (0, 1) there exists a proper ξ, dependent
only on η0 and θ s.t.

|{x ∈ Kρ(y0) : v(x, t) < ξ}| < ν|Kρ| ∀ t ∈ [t∗, t∗ + θ].

But then, using standard argument (see for example [DB1], chapter III, paragraph 6), we obtain that

v(x, t) > ξ̃ ∀ (x, t) ∈ [(y0, t
∗ + θ) +Q(ρ/2, θ)]

and setting σ0 = ξ̃, from this follows

∀ t ∈ (t∗, t∗ + θ), ∀ y ∈ 1 < |y| < 2d v(y, t) > σ0.
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5. Proof of the Theorem for time - independent coefficients

To prove the continuity of u at a point (y, s) ∈ ΩT , let us first assume that such a point coincides
with the origin and work within a cylinder Q(ρ; θρ2), with θ positive number to be chosen. Without
loss of generality the number θ can be chosen as an integer, so the starting cylinder will be partitioned,
up to a set of measure zero, into disjoint layers of the type

(5.1) [(0, ti) +Q(ρ; ρ2)], ti = −iρ2, i = 0, 1, · · · θ − 1.

The numbers µ± and ω are defined in Section 2. We will show that within such a layer, we can locate
a small set where u is quantitatively bounded away, either from µ+ or from µ−.

We let ξ± and λ be defined as in Proposition 9 and δ be determined by Proposition 8. Notice that
the number δ depends upon ω and is independent of ρ.

Fix any box of the type (5.1) and assume, after a translation, that its vertex coincides with the
origin, so we can rewrite it as Q(ρ; ρ2). We partition the cylinder in two steps. First we partition the
cube Kρ, up to a set of measure zero, into mN pairwise disjoint subcubes of wedge 2

mρ, with m positive
integer to be chosen.

K̄ρ =
mN⋃
`=1

[x` + K̄ ρ
m

]

where x` are their centres. Then we partition the cylinder into mNm2 pairwise disjoint cylinders. We
denote by (x`, th) their vertices:

[(x`, th) +Q(
1
m
ρ;

1
m2

ρ2)],

where for each ` in the range ` = 1, · · · ,mN we have th = (1− h) ρ
2

m2 , h = 1, 2, . . . ,m2. Therefore

Q̄(ρ; ρ2) =
m2⋃
h=1

mN⋃
`=1

[(x`, th) + Q̄(
1
m
ρ;

1
m2

ρ2)].

Within each [(x`, th)+Q( 1
mρ; 1

m2 ρ
2)] consider coaxial cylinders of the type [(x`, τ)+Q(r; r2)]. The time

location of their vertices ranges over τ ∈ [th − ( 1
m2 ρ

2 − r2), th] and r is a positive parameter ranging
over the interval [δ 1

mρ,
1
mρ] where δ is the number determined in Proposition 8 for the proper choices

of ξ± and λ. These are cylinders of the type (3.9), (3.10), (3.11) where ρ has been replaced by 1
mρ.

For each of these cylinders Propositions 2 and 3 hold true for θ = 1. We assume that with the choice
ξ+ = ξ− = 1

12 the condition H±k is satisfied (otherwise we simply have to adjust the value). Since ξ+

and ξ− are the same, we denote by ν the common value of ν±. Now we have

Proposition 14. There exists a positive integer m than can be determined a priori only in terms of
ω and the data, such that for some cylinder [(x`, th) +Q( 1

mρ; 1
m2 ρ

2)] and for some cylinder [(x`, τ) +
Q(r; r2)] ⊂ [(x`, th) +Q( 1

mρ; 1
m2 ρ

2)] either

(5.2) meas{(x, t) ∈ [(x`, τ) +Q(r; r2)] : u(x, t) > µ+ − 1
12
ω} < ν|Q(r; r2)|

or

(5.3) meas{(x, t) ∈ [(x`, τ) +Q(r; r2)] : u(x, t) < µ− +
1
12
ω} < ν|Q(r; r2)|.

Proof. If both (5.2) and (5.3) are violated for every cylinder of the type [(x`, τ) + Q(r; r2)] and for
every [(x`, th) + Q( 1

mρ; 1
m2 ρ

2)], making up the partition of Q(ρ; ρ2), by virtue of Proposition 9 there
exists a constant that can be determined in terms of the data and ω and independent of ρ and m such
that: (

1
m
ρ

)N
ω2 ≤ γ

∫ th

th−( ρm )2

∫
[x`+K ρ

m
]

|Du|2dxdt ∀` = 1, · · ·mN , ∀h = 1, · · ·m2.
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Adding over such indices, we obtain:

m2ρNω2 ≤ γ
∫
Q(ρ;ρ2)

|Du|2dxdt.

We combine this with Propositions 6 and 7 and rewrite the resulting inequality as:

1 <
γ(data, ω)
ωm2

The proposition follows by choosing m so large that the right hand side does not exceed 1. It follows
also that ω → m(ω) is a decreasing function of ω and limω→0m(ω) =∞. �

Now let [(x`, τ) +Q(r; r2)] be a cylinder for which the alternative − holds. Then by Proposition 3
with λ = 2

3 , we have :

u(x, t) > µ− +
1
18
ω ∀(x, t) ∈ [(x`, τ) +Q(

δ

2m
ρ;

δ2

2m2
ρ2)].

On the other hand, if the alternative + holds true within [(x`, τ) +Q(r; r2)], then by Proposition 2 we
get

u(x, t) < µ+ − 1
18
ω ∀(x, t) ∈ [(x`, τ) +Q(

δ

2m
ρ;

δ2

2m
ρ2)].

We may assume that δ−1 is an integer. Then we further partition the starting cube Kρ up to a set of
measure zero into

q(ω) =
(

4m(ω)
δ(ω)

)N
disjoint cubes of wedge

δ(ω)
2m(ω)

ρ = 2δ0ρ.

We let x`, ` = 1, 2, · · · q(ω) denote their centres so that

K̄ρ =
q⋃
`=1

[x` + K̄ δ
2mρ

].

Analogously, we subdivide the cube Q(ρ; ρ2) into

p(ω) =
(

4m(ω)
δ(ω)

)N (4m(ω)
δ(ω)

)2

pairwise disjoint cylinders. If we denote by (x`, th) their vertices, they take the form:

(5.4) [(x`, th) +Q(
δ

2m
ρ; (

δ

2m
)2ρ2)]

where for each ` = 1, 2, · · · q(ω)

th = (1− h)
(

δ

2m

)2

ρ2 h = 1, 2, · · · , p(ω).

We return to the original partition of Q(ρ, θρ2) with boxes of the type (5.1) and conclude
Proposition 15. For each box of the type (5.1) there exists a subcylinder of the type (5.4) for which
either

(5.5) u(x, t) < µ+ − 1
18
ω ∀(x, t) ∈ [(x`, th) +Q(δ0ρ; δ2

0ρ
2)]

or

(5.6) u(x, t) > µ− +
1
18
ω ∀(x, t) ∈ [(x`, th) +Q(δ0ρ; δ2

0ρ
2)]
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Let us now concentrate on the lower half of the cylinder Q(ρ; θρ2) i.e. [(0,− 1
2θρ

2)+Q(ρ; 1
2θρ

2)]. We
assume that the number θ has been chosen and let

(x`, τ) +Q(δ0ρ; δ2
0ρ

2)] ⊂ [(0,−1
2
θρ2) +Q(ρ;

1
2
θρ2)]

be a cylinder for which say (5.6) holds. We start from such a box and construct a long, thin cylinder
with vertex at the top of Q(ρ; θρ2) i.e.

[x` +K4r]× [τ, 0] 4r ≡ δ0ρ.
We rewrite this as

[(x`, 0) +Q(4r; 4θ̄r2)]
where

2δ−2
0 (θ − 1) ≤ θ̄ ≤ 4δ−2

0 θ.

Thanks to (5.6), we have

(5.7) u(x,−4θ̄r2) > µ− +
1
18
ω ∀x ∈ [x` +K4r]

Proposition 16. There exists a number ξ ∈ (0, 1
18 ) that can be determined a priori only in terms of

the data and ω such that

(5.8) u(x, t) > µ− + ξω ∀(x, t) ∈ [(x`, 0) +Q(r; θ̄r2)].

Proof. See [DBV], Proposition 24.1. �

Thanks to Proposition 16 we have thus isolated a long, thin cylinder where u is bounded below as
in (5.8). The abscissa of the vertex of such cylinder is not known; if x` ≡ 0 then it would imply a
decreasing of the oscillation of a factor (1− ξ) and we would be finished. However, since the location
of x` ∈ Kρ is not known, there is the necessity to show that a version of (5.8) holds within a small
thin cylinder with vertex at the origin. This is achieved into two stages. The first stage is some sort
of spreading of positivity, which we can describe in this way. Assume that of the two alternatives
(5.5) and (5.6) the second one holds; then there exists a time level t0 ∈ (−θρ2,− 1

2θρ
2) such that u is

quantitatively bounded below in the full cube [x` + Kδ0ρ]. Such positivity spreads sidewise to a full
smaller cube about the origin, after a sufficiently long time: this is precisely the content of the next
Proposition
Proposition 17. There exist numbers ξ0, δ∗ ∈ (0, 1) and θ > 1, that can be determined a priori in
terms of the data and ω, and a time level

−θρ2 ≤ t0 ≤ −
1
2
θρ2

such that either

(5.9) u(x, t0) < µ+ − ξ0ω ∀x ∈ [y +Kδ∗ρ]

or

(5.10) u(x, t0) > µ− + ξ0ω ∀x ∈ [y +Kδ∗ρ]

Proof. The essential tool is a sequential selection of blocks of positivity (see [DBV]).The number θ will
be a product of a finite, increasing sequence of positive integers θ =

∏
kj that determine a partition

of Q(ρ; θρ2) into disjoint stacks.
There are two alternatives: either among the stacks there exists one where the bound − (actually

(5.6)) is verified for the same abscissa x` for at least one cube within a smaller stack or the same with +
(actually (5.5)). In fact the case of neither of the two alternatives being verified cannot occur, because
otherwise we would have a contradiction with Proposition 15.

Coming to the details, everything runs exactly as in the proof of Proposition 24.2 of [DBV], except
for the part relative to the comparison function. Hence we will concentrate on this part, referring to
[DBV] for the rest: even if this makes this paper somehow not so self - contained, on the other hand,
we avoid the perfect reproduction of Sections 26 - 29 of [DBV].
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If we apply the change of variables

x→ 4x− x`
|x`|

t→ (tj+1 − t) + 16kj+1ρ
2

16ρ2

and introduce the function

ũ ≡ u− µ−

ωξj(ω)
(see [DBV] for the definition of ξj(ω)), we have that ũ(x, t) ≥ 1 in Bε0 × (0, kj+1); moreover ũ solves
the differential equation

(β̃(ũ))t = L̃(ũ)

where β̃ and L̃ satisfy the same structural conditions (1.1) - (1.2) and (1.4) - (1.6), where the corre-
sponding constants γ̃0, γ̃1, µ̃1 and µ̃2 all depend on ω, which however is to be considered fixed when
dealing with ũ.

Finally we are interested in the behaviour of ũ in an annulus contained in {1 < |x| < 2d}× (0, kj+1).
For this reason we introduce a proper comparison function. Namely, let

v ∈ C0(0, kj+1;L2(B4d)) ∩ L2(0, kj+1;W 1,2
0 (B4d))

solve the following boundary value problem
(β̃(v))t = L̃v on Aε0,4d × (0, kj+1)
v(x, t) = 0 in |x| = 4d
v(x, t) = 1 in |x| = ε0

v(x, 0) = 0

This is the comparison function studied in Section 4 with k replaced by kj+1. Thanks to Proposition
10, we have that 0 ≤ v ≤ 1. Moreover, By Proposition 11 there exist numbers σ0,j and kj+1 so that

(5.11) v(y, t) > σ0,j ∀1 < |y| < 2d and for some t ∈ (0, kj+1).

By the maximum principle ũ ≥ v. Hence the same lower bound as for v holds for ũ too and returning
to the original coordinates, we conclude that there exists a time level t0 such that

u(x, t0) > µ− + ξ0,jω ∀x ∈ Kδ∗,jρ

with ξ0,j ≡ σ0,jξj(ω) and a proper δ∗,j . The rest follows as in [DBV]. �

The second stage is the reduction of the oscillation of u near the top of the starting box Q(ρ; θρ2).
We have
Proposition 18. There exists numbers ξ∗, δ∗ ∈ (0, 1) and a number θ > 1 that can be determined a
priori in terms of the data and ω, such that either

(5.12) u(x, t) < µ+ − ξ∗ω ∀(x, t) ∈ Q(δ∗ρ; θδ2
∗ρ

2)

or

(5.13) u(x, t) > µ− + ξ∗ω ∀(x, t) ∈ Q(δ∗ρ; θδ2
∗ρ

2)

Proof. Exactly in the same way as in [DBV], Proposition 24.3, the proof starts from (5.10) and uses
the logarithmic estimate (Proposition 4) and Propositions 3 and 2 to conclude. �

We can finally conclude with the proof of Theorem 1. The argument consists in showing the existence
of a family of nested shrinking cylinders with the same vertex s.t. for each of them the oscillation is
controlled by a sequence ωn that tends to zero.

By the previous procedure, we have determined the functions ω → ξ∗(ω), δ∗(ω), θ(ω). Consider now
a cylinder with vertex at the origin, contained in ΩT of the form Q(2ρ; 2θ(ω)ρ2) where ω is any number
satisfying

osc
Q(2ρ,2θ(ω)ρ2)

u ≤ ω;
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applying the previous Proposition, we get

osc
Q[δ∗ρ;θδ2

∗ρ
2]
u ≤ (1− ξ∗(ω))ω.

Consider the sequence
ω0 = 2M, ωn+1 = (1− ξ∗(ωn))ωn.

By induction, as in [DBV] one constructs a sequence of cylinders Qn whose radii ρn and vertical heights
θ(ωn)ρ2

n decrease to zero. Therefore {Qn}n∈N is a family of nested shrinking cylinders with the same
vertex at the origin. For each of them we have

osc
Qn

u ≤ ωn.

and we are finished.
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6. Coefficients that depend on t

Now we want to remove hypothesis (H1) of Section 4 and assume that the coefficients are continuous
in time. The difficulty lies in this fact: whereas the estimates in Sections 2 and 3 hold both for time
- independent and time - dependent coefficients, the properties of the comparison function, studied
in Section 4 and applied in Section 5, heavily rely on the structure of an elliptic operator, whose
coefficients obviously do not depend on time.

The idea to deal with the new situation is simply stated: provided we work in a sufficiently small
cylinder, the time - dependent coefficients can be regarded as a small and controllable perturbation
to time - independent coefficients, so that everything can be brought back to the case previoulsy
considered.

This method is widely used in the context of variable coefficients, so that we will sketch the general
approach, without entering too much into details. It is worth remarking that the main point is in
checking that the ‘controllable perturbation’ mentioned above does not destroy assumptions (H2) and
(H3) of Section 4, which are crucial in proving the estimates on the comparison function v needed to
conclude about the continuity of u.

Let us now fix ρ < 1, choose θ of the order of the unity and fix (x0, t0) ∈ ΩT such that the parabolic
cylinder [(x0, t0) +Q(ρ, θρ2)] ⊂ Ω× (0, T ). We can rewrite the operator L in the following way

Lu =
∑
ij

Di(aij(x, t)Dju+ ai(x, t)u) + bi(x, t)Diu+ e(x, t)u =

=
∑
ij

Di(aij(x, t0)Dju+ (aij(x, t)− aij(x, t0))Dju+ ai(x, t0)u+ (ai(x, t)− ai(x, t0))u)+

+bi(x, t0)Diu+ (bi(x, t)− bi(x, t0))Diu+ e(x, t0)u+ (e(x, t)− e(x, t0))u.
If we now set

Ai(x, t, u,Du) = aij(x, t0)Dju+ (aij(x, t)− aij(x, t0))Dju+ ai(x, t0)u+ (ai(x, t)− ai(x, t0))u,

B(x, t, u,Du) = bi(x, t0)Diu+ (bi(x, t)− bi(x, t0))Diu+ e(x, t0)u+ (e(x, t)− e(x, t0))u
we can write

Lu = DiAi(x, t, u,Du) + B(x, t, u,Du).
Notice that we use the kind of notation which is fairly common for quasilinear elliptic equations in
divergence form for the sake of compactness, even if the operator we are dealing with is actually linear.

Thanks to the time continuity of the coefficients, with no loss of generality we can assume that

|aij(x, t)− aij(x, t0)| ≤ ω1(x, |t− t0|),

|ai(x, t)− ai(x, t0)| ≤ ω2(x, |t− t0|),
|bi(x, t)− bi(x, t0)| ≤ ω3(x, |t− t0|),
|e(x, t)− e(x, t0)| ≤ ω4(x, |t− t0|),

where ωi = ωi(x, s) : RN × R+ → R+ are measurable in x, continuous and increasing in s such that
ωi(x, 0) = 0. Moreover ω1 is bounded as the coefficients aij in (1.4), whereas ω2, ω3 and ω4 satisfy the
same summability conditions as stated in (1.5).

Let us now estimate Ai and B. We have

|Ai(x, t, u,Du)| = |aij(x, t0)Dju+ (aij(x, t)− aij(x, t0))Dju+ ai(x, t0)u+ (ai(x, t)− ai(x, t0))u|

(6.1) ≤ |aij(x, t0)||Du|+ |aij(x, t)− aij(x, t0)||Du|+ (
N∑
i=1

a2
i (x, t0))1/2|u|+ |ai(x, t)− ai(x, t0)||u|

≤ (µ+ ω1(x, θρ2))|Du|+ ((
N∑
i=1

a2
i (x, t0))1/2 + ω2(x, θρ2))|u|

= α1(x)|Du|+ α2(x)|u|.
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Analogously

|B(x, t, u,Du)| = |bi(x, t0)Diu+ (bi(x, t)− bi(x, t0))Diu+ e(x, t0)u+ (e(x, t)− e(x, t0))u|

(6.2) ≤ (
N∑
i=1

b2i (x, t0))1/2|Du|+ |bi(x, t)− bi(x, t0)||Du|+ |e(x, t0)||u|+ |e(x, t)− e(x, t0)||u|

≤ ((
N∑
i=1

b2i (x, t0))1/2 + ω3(x, θρ2))|Du|+ (|e(x, t0)|+ ω4(x, θρ2))|u|

= β1(x)|Du|+ β2(x)|u|.
Finally

Ai · Diu = aij(x, t0)DjuDiu+(aij(x, t)−aij(x, t0))DjuDiu+ai(x, t0)uDiu+(ai(x, t)−ai(x, t0))uDiu

≥ 1
µ1
|Du|2 − ω1(x, θρ2)|Du|2 − (

N∑
i=1

a2
i (x, t0))1/2|u||Du| − ω2(x, θρ2)|u||Du|

(6.3) ≥

(
1
µ1
− ω1(x, θρ2)− ε1(

N∑
i=1

a2
i (x, t0))1/2 − ε2ω2(x, θρ2)

)
|Du|2+

−

(
C(ε1)(

N∑
i=1

a2
i (x, t0))1/2 + C(ε2)ω2(x, θρ2)

)
|u|2 ≥ γ1(x)|Du|2 − γ2(x)|u|2.

With a proper choice of ε1 and ε2, provided that ρ is taken sufficiently small we have that

γ1 =
1
µ1
− ω1(x, θρ2)− ε1(

N∑
i=1

a2
i (x, t0))1/2 − ε2ω2(x, θρ2) > 0

and thanks to (1.4) and (1.5) the coefficients αi, βi and γi satisfy the same summability hypotheses as
aij , ai, bi, e but do not depend on t.

As we have already said at the beginning of this Section, to conclude the proof of the continuity of
u in the case of time - independent coefficients, we had to compare u with the solution v of an elliptic
equation, to which we were led after a suitable change of variables, namely

x→ 4x− x`
|x`|

t→ (tj+1 − t) + 16kj+1ρ
2

16ρ2
.

Let us repeat the same procedure in the new context of time - dependent coefficients we are considering
now.

Due to the smallness of the perturbation (remember that ρ is fixed), it’s easy to see that the
structural conditions (6.1) - (6.3) considered above still hold.

As largely discussed in [MZ], these are the natural assumptions under which a Harnack inequality,
like the one discussed in (H3) in Section 4, holds. The same can be said for the comparison principle,
which is implied by (H2).

Hence we are basically dealing with a time - independent operator, so that the whole procedure of
Sections 4 and 5 can be repeated here without any restriction. In this way we are brought back to the
case studied in the previous Section and we can conclude.
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7. Boundary regularity under homogeneous Dirichlet conditions

Boundary regularity for degenerate and singular parabolic equations is not a simple task. When
dealing with equations like

ut − div(|Du|p−2Du) = 0 in ΩT , p > 1

the proof of the interior continuity is based only on the energy and logarithmic estimates, like the ones
proved here in Section 2 (see [DB1] for all details under this point of view).

With this in mind, coming to boundary regularity for variational data for the same kind of problems,
one realizes that the only thing to do is to show the validity of the corresponding energy and logarithmic
boundary estimates.

In the case of Dirichlet data, things are slightly more difficult and a proper care has to be used with
the levels k, but once more basically the idea is to mimic what has been done in the interior.

For singular equations like the ones we are dealing with here, things are much more involved. In the
case of β with a single jump, interior regularity is again a matter of energy and logarithmic inequalities
and this allows a complete solution of boundary regularity for variational data, as in [DB2].

Even if we didn’t write it down explicitely anywhere, we feel that the same could be repeated for β
with an arbitrary but finite number of jumps, as considered in [GV].

Looking at things more properly, the main difficulty in the proof of continuity for weak solutions of

(β(u))t = Lu

lies in the term ∫ ∫
Q(ρ,θρ2)

(u− k)± dxdτ

in the right - hand side of the energy inequality like (2.2) here, as largely discussed in [DB3]. Roughly
speaking, this sets some constraints on the possible values of the levels k.

On the other hand the study of the boundary regularity for Dirichlet data poses further limits on
the levels k.

As a consequence, when switching from homogeneous to inhomogeneous Dirichlet data, a new
method is required, even if the interior regularity is purely based on the energy and logarithmic esti-
mates and this is precisely the case dealt with in [DB2] and [DB3].

In our case things are more difficult since the proof does not rely uniquely on suitable estimates
satisfied by u, but uses a proper comparison function v as discussed at a larger extent in the previous
Section.

Therefore if it remains an open problem to devise a proof technique based only on energy and
logarithmic estimates, more specifically, under our point of view, variational boundary conditions
cannot be treated simply referring to interior regularity and the same holds for general Dirichlet data.

The only thing we could do was to consider homogeneous Dirichlet boundary conditions under mild
assumptions on ∂Ω and following a strategy already outlined in [EMS], without taking into account
initial conditions, we could prove the following
Theorem 2. Let Ω be a bounded Lipschitz domain and let u be a weak solution of

(β(u))t = Lu in Ω× (0, T ),

u(·, t)|∂Ω = 0 a.e. t ∈ (ε, T ),
where with respect to Definition 1, we say that u(·, t) = 0 on ∂Ω in the sense of the traces of functions
in W 1,2(Ω). Moreover let us assume that

u ∈ L∞(Ω̄× [ε, T ]), ε ∈ (0, T ).

Then u ∈ C(Ω̄ × [ε, T ]) and there exists a continuous nonnegative, increasing function s → ωD(s) :
R+ → R+ with ωD(0) = 0 that can be determined a priori only in terms of the data such that

|u(x1, t1)− u(x2, t2)| ≤ ωD(|x1 − x2|+ |t1 − t2|
1
2 )

for every pair of points (x1, t1), (x2, t2) ∈ Ω̄× [ε, T ].
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Proof. Even if the theorem is stated in a global way, the proof has a typical local flavour. We limit
ourselves to a simple sketch.

Due to the compactness of Ω we can cover ∂Ω with a finite number of neighborhood centered at points
of ∂Ω. The Lipschitz continuity of the boundary allows us to find a map from every neighborhood into
a half ball of RN . The transformed equation via this map has coefficients which are still measurable
with respect to x, properly summable with respect to the couple (x, t), continuous with respect to t
and satisfy structural conditions (1.4) and (1.6). Now we reflect the operator through the entire ball
and notice that this reflection does not affect the (β(u))t term, since it’s done only with respect the x
variable. We have therefore reduced ourselves to study a problem in the interior and we can apply the
previous results to conclude. �
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