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1 Abstract
By applying the eikonal approximation to the bidomain model of the cardiac tissue
we investigate the influence of the axially isotropic and orthotropic conductivity ten-
sors on the propagation of the excitation wave fronts and on the associated potential
distribution and electrograms.

2 Introduction
In recent years the effects of the anisotropic structure of the myocardial tissue on the
spread of excitation in the heart were investigated in depth, see e.g. [10, 6, 3, 12]. These
studies showed that the anisotropic spread of excitation, the potential distributions and
the shape of the EGs (electrograms) are strongly influenced by the direction and intra-
mural rotation of the myocardial fibers, by the anisotropy ratios of the intra and extra
cellular conductivities, by the presence of extracardiac conducting media and by the
reference potential. The modeling and simulation of the excitation process are impor-
tant tools for studing the anisotropic motion of the excitation wave front and for testing
the validity of many proposed criteria for the interpretation of experimental data, [10]
e.g., the shapes of the epicardial and intramural QRS complexes and the configurations
of the epicardial and intramural potential distributions.

In [2, 12] the influence of the rotational anisotropy in a large slab modeling the
myocardial wall was investigated and in [3, 6] the simulations were extended to an
anisotropic model of the left ventricle with ellipsoidal geometry. In agreement with
experimental findings, these studies showed that excitation spreads faster along than
across fibers and the QRS waveforms vary from monophasic to polyphasic as a function
of position of the unipolar electrode; more precisely, epicardial pacing gives rise to R
waves or to Q waves, humps and spikes, in EGs recorded from points reached by
excitation wave fronts that move along or across fibers.

In most previous simulations it was assumed that the conductivity tensors are axi-
ally isotropic, i.e. each media (i), (e) has the same conductivity cofficients along any
cross-fiber directions.

Recently in [8] it was shown that the architecture of the ventricular muscle fibers
and of the extracellular connective tissue matrix suggests a laminar organization of the
ventricular myocardium which would entails orthotropic conductivity tensors. These
studies challenge the assumption of axially isotropic conductivity tensors. An or-
thotropic simulation, related to endocardial pacing, is described in[17].
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In the present paper we use our previously described model of the left ventricle[3]
to investigate the influence of orthotropic conductivity tensors on the epicardial excita-
tion sequence and on the associated potentials, elicited by epicardial stimulus.

3 The eikonal approach
We briefly sketch the eikonal approach developed in [3] and we describe its extension
to the orthotropic tensors framework; the eikonal approach was used in [3, 6], assum-
ing axially isotropic tensors, for large scale simulations of the excitation sequences,
the potential patterns and electrograms and is based on a macroscopic analysis of the
so called bidomain model [11]. In the macroscopic bidomain representation of the car-
diac tissue, the anisotropic structure of the two averaged continuous media, the intra
and the extracellular medium, are characterized by the conductivity tensors Mi and
Me. The anisotropic conductivity is related to the arrangement of the cardiac fibers,
whose direction rotates counterclockwise from the epicardium to the endocardium see
[16].

From [8] it follows that the ventricular myocardium may be conceived as a set of
muscle sheets running radially from epi to endocardium. In this laminar organization
it is possible to identify three distinct principal axes at any point x. Let al, at, as

be a triplet of orthonormal vectors related to the structure of the myocardium, with
al parallel to the local fiber direction. This triplet may depend on the position x in
the myocardium. Let σi,e

l , σi,e
t , σi,e

s be the conductivity coefficients mesured along
the corresponding directions. Then the conductivity tensors Mi and Me, generally
dependent on the position x, are given by:

Mi,e(x) = σi,e
l al(x)aT

l (x) + σi,e
t at(x)aT

t (x) + σi,e
s as(x)aT

s (x) (1)

if σi,e
s = σi,e

t we recover the axially isotropic case. Imposing the conservation of cur-
rents, i.e. the interchange between the two media must balance the membrane current
flow per unit volume, one derives a reaction-diffusion system defined in the cardiac
tissue; denoting Ji = −Mi∇ui , Je = −Me∇ue the intra and extracellular current
densities, in terms of the intra and extracellular potentials ui(x, t), ue(x, t), we have
the following reaction-diffusion system in the myocardial tissue H :

{
cm ∂t(ui − ue)− div Mi∇ui + iion = 0 in H
cm ∂t(ue − ui)− div Me∇ue − iion = 0 in H

(2)

with cm and iion the capacitance and ionic current membrane per unit volume. When
a suitable stimulus is applied the presence of a slow diffusion and fast reaction terms
forces the development of a propagating excitation interface associated to a fast tran-
sition of the transmembrane potential v(x, t) = ui(x, t) − ue(x, t) from the resting
vr to the excited or plateau vp value. Since the excitation phase v exhibits a mono-
tonic time behavior we introduce the activation time ϕ(x) as the time instant at which
v(x, ϕ(x))=(vr + vp)/2; then we define the excitation wavefront as the level surface of
the activation time:

S(t) = {x ∈ H, ϕ(x) = t} (3)

In order to describe the wavefront motion we introduce the intra and extra conduc-
tivity coefficients measured along the direction ξ given by : σi,e(x, ξ) = ξTMi,e(x)ξ

with ξT ξ = 1; then we denote by σ(x, ξ) = (σi(x, ξ)−1 + σe(x, ξ)−1)−1 the har-
monic mean of σi,e(x, ξ). Finally we define the following Anisotropic Indicatrix:

Φ(x, ξ) =
√
σ(x, ξ) (4)
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For a cardiac tissue fully recovered and instantaneous ionic membrane current iion, i.e.
iion = F (v), in [2] we investigated the asymptotic behavior of traveling wavefronts
solutions of the R–D system; we showed that the velocity of the wavefront S(t) along
the Euclidean normal direction ν is given by θ(x,ν) = 1/|∇ϕ| where the activation
time ϕ(ξ) is a solution of the following eikonal-diffusion equation:

− 1

cm
div [Φ(x,∇ϕ)Φξ(x,∇ϕ)] + ρΦ(x,∇ϕ) = 1 (5)

Since the previous eikonal model is derived assuming that Mi,e are symmetric and
positive definite matrices, then (5) is valid also for the orthotropic case. The parameter
ρ = 1/

√
µ is related to the asymptotic velocity of the action potential traveling in an

infinite cable, i.e. (µ , A(τ)) is the unique bounded solution of the eigenvalue problem:
{
−µ A′′ + cm A′ + iion( A) = 0
A(∓∞) = vr or vp, A(0) = (vp + vr)/2

(6)

and the transmembrane potential v(x, t) is approximated by v(x, t) = A(t − ϕ(x))
Since the propagating front during the excitation phase admits a Cartesian representa-
tion, the previous eikonal–diffusion equation proved to be more convenient for com-
putational purposes than other eikonal approximations [1, 9]. We remark that the acti-
vation time τ = ϕ(x) is a smooth function, therefore the numerical simulation of the
eikonal equation can be performed on a quasi-uniform grid with mesh size greater than
1-2 mm. This allows a strong reduction of the computational complexity with respect
to the R-D system, when performing large scale simulations with a view to obtaining a
qualitative macroscopic description of the excitation phase in a normal ventricle.
The knowledge of v(x, t) = A(t−ϕ(x)) allows to simulate the time – space extracel-
lular potential on the QRS complex.
In the following we shall denote by H the heart tissue, by Ωb and σb the cavitary blood
and its conductivity, by Ωf and σf the fluid volume adjacent to the epicardium and its
conductivity, by Ω0 = Ωb ∪ Ωf the whole extracardiac medium in contact with H and
by Ω̄ = H̄∪Ω̄0. Let Γ = ∂Ω , ΓH = Γ∩∂H , Γ0 = Γ∩∂Ω0 and Σ = ∂H∩∂Ω0, i.e. Σ
represents the parts of the epi and/or endocardium in contact with Ω0. In particular the
epicardial surface will be denoted by Σepi. Denoting byM0 and by u0 the conductivity
tensor and potential in the extra-cardiac domain we set:

M̂ =

{
Mi(x) +Me(x)
M0(x)

u(x, t) =

{
ue(x, t) x ∈ H
u0(x, t) x ∈ Ω0

Jv(x, t) = −Mi∇v(x, t)

Denoting by Ji, Je, J0 the intra, extracellular and extracardiac current densities re-
spectively and assuming that the extracardiac medium is insulated, then applying the
current conservation we have :{

div (Ji + Je) = 0 in H , div J0 = 0 in Ω0

n
T (Ji + Je) = n

T
J0 on Σ and ΓH , n

T
J0 = 0 on Γ0

(7)

recalling that Ji = −Mi∇ui, Je = −Me∇ue and J0 = −M0∇u0 then in terms of
the extracellular or extracardiac potential u(x, t) the equations (7) are equivalent to the
following differential formulation of the Bidomain Potential Model:





div M̂∇u(x, t) =

{
div Jv(x, t) in H
0 in Ω0

[[ u(x, t) ]]
Σ

= 0 [[ n
T M̂∇u(x, t) ]]

Σ
= n

T
Jv(x, t)

n
TM0∇u(x, t) = 0 on Γ0

(M∇u(x, t)) · n = n
T
Jv(x, t) on ΓH

(8)
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where [[ ϕ ]]
Σ

denotes the jump of ϕ through Σ, i.e. [[ ϕ ]]
Σ

= ϕ
Σ+

− ϕ|
Σ−

with ϕ|
Σ±

the traces taken on the positive and negative side of Σ with respect to the oriented nor-
mal. Therefore problem (8) provides the extracellular or extracardiac potential u(x, t)
from the knowledge of v(x, t).
Different mathematical approaches can be used to simulate EGs (see e.g. [7, 13]). An
integral formulation turns out to be more efficient for simulating accurately a limited
number of EGs than differential or variational representations for large scale simula-
tions [5, 13].

Each EG represents the time course of the potential difference between one point
of the domain, called observation point, and a reference potential. For unipolar EGs,
the reference potential is the potential at a remote site or, more frequently, is obtained
by averaging the potential values over a set of three or more points or over a surface.
Recent experimental observations showed that the potential of Wilson’s central termi-
nal is close to the average potential measured on the epicardial ventricular surface [14].
Setting

w(x, t) = u(x, t)− 1

|Σepi|

∫

Σepi

u(ξ, t) dσξ. (9)

we show that the following integral representation allows to compute EGs having as
reference potential the average potential on the epicardial surface Σepi the system :

w(x, t) =

∫

H

Jv
T ∇ξψ(ξ,x) dξ = −

∫

H

(∇v(ξ, t))T Mi(ξ)∇ξψ(ξ,x) dξ (10)

where the Green function or the so-called Lead Field ψ satisfies:





−divξM̂∇ξψ =





δ(ξ − x) for x ∈ Ω0 ∪H

0 for x ∈ Σ

[[ n
T M̂∇ξψ ]]

Σ
= |Σepi|−1

χ
Σepi

(ξ) +





0 for x ∈ Ω0 ∪H

δ(ξ − x) for x ∈ Σ

[[ ψ ]]
Σ

= 0 , n
T M̂∇ξψ = 0 on Γ

(11)

with χ
Σepi

(ξ) characteristic function of Σepi. The boundary condition imposed for
the “lead field” ψ actually reflects the property that w(x, t), has zero average on the
epicardium Σepi.

By applying the second Green formula to the couple (u, ψ) in Ω0 and in H with ψ
solution of (11) and adding these two relations we obtain:

∫

Ω0∪H

[
u div M̂∇ψ − ψ div M̂∇u

]
dξ =

∫

Γ

u n
T M̂∇ψ dσξ −

∫

Γ

ψn
T M̂∇u dσξ + (12)

+

∫

Σ

[[ n
T M̂∇ψ ]]

Σ
u dσξ −

∫

Σ

[[ n
T M̂∇u ]]

Σ
ψ dσξ

where the unit normal n is outward to H or to Ω̄ = H̄ ∪ Ω̄0 according as we consider
the boundary condition on Σ or on Γ. Taking into account that if x /∈ Σ, for (11) then
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[[ n
T M̂∇ψ ]]

Σ
= − 1

|Σepi|
χ

Σepi
(ξ) otherwise, if x ∈ Σ, for (11) [[ n

T M̂∇ψ) ]]
Σ

=

− 1

|Σepi|
χ

Σepi
(ξ) δ(ξ − x), from (12) we have: u(x, t) +

∫
Ω0∪H

ψ div M̂∇u dξ −
∫
Γ\Σepi

ψ n
T M̂∇u dσξ −

∫
Σ

[[ (M̂∇u) · n ]]
Σ
ψ dσξ − uref = 0 where uref =

1

|Σepi|

∫

Σepi

u dσξ. Hence taking into account (8) and denoting byw(x, t) the potential

difference with respect to the reference potential chosen, i.e. w(x, t) = u(x, t)−uref ,
it follows:

w(x, t) = −
∫

H

ψ div Jv dξ +

∫

∂H

ψ n
T
Jv dσξ

and applying the first Green formula we obtain the integral representation:

w(x, t) =

∫

H

∇ξψ
T
Jv dξ = −

∫

H

∇ξψ
TMi∇v dξ (13)

The boundary condition imposed on the lead field actually reflects the property that
w(x, t), defined by (9), has zero average on the epicardium. In [5] a rigorous derivation
of the integral representation of w is given only when the reference potential is the
potential at fixed point x0 of Ω.

4 Results
By assuming axially isotropic tensors and unequal anisotropy ratio of the media (i)
and (e), both the bidomain reaction-diffusion system (7) and the eikonal model were
shown, see [12, 3], to reproduce the main qualitative features of the excitation se-
quences elicited by pacing the ventricular wall in exposed dog hearts [10].

We now compare the propagation and shape of excitation fronts obtained under the
assumption of either orthotropic or axially isotropic conductivity tensor. The numerical
simulations are performed on a monoventricular model previously used in [3, 6]; the
model represents a simplified left ventricular wall shaped as an ellipsoidal volume,
symmetric with respect to the vertical z–axis, truncated at the base and at the apex.
The ventricular model can be conceived as an assembly of packed ellipsoidal surfaces
with fiber direction rotating counterclockwise (CCW) from the epicardial (−45o) to
the endocardial (75o) surface. We also incorporate the epi- endocardial obliqueness of
the fibers by introducing the so called imbrication angle, see [16]; thus, the fibers do
not lie on the packed ellipsoidal surfaces but intersect them at a small angle. In our
model the ventricular cavity is not completely filled by blood and the fluid layer in
contact with the epicardium has a thickness varying from 2.5 to 5 mm. We include also
a simplified network of Purkinje fibers with ventricular junctions (PVJs); for details on
the geometry, on the fiber architecture and the PVJs of our model of the left ventricle
see [3]. Therefore most of the essential factors affecting the propagation and associated
potentials are present in both the experimental setting (exposed hearts in situ or isolated
hearts in electrolytic tanks) and in the modeling framework. This allowed us to perform
a qualitative comparison between measured and computed potential maps and EGs.

The laminar structure of the ventricular walls observed in [8] is a further anatomical
factor that affects cross-fiber conduction on layers parallel to the wall boundary. In this
laminar organization it is possible to identify three distinct material axes at any point:
one in the direction of the fiber axis which is tangent to a radial muscle sheet, a second
perpendicular to the fiber axis and to the sheet and the third one perpendicular to the
first two, i.e. tangent to the sheet. The intramural coupling, which occurs through mus-
cle branching across adjacent sheets running approximately in the radial direction, was
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estimated to be of relatively low spatial frequency, see [8]. On this basis, it is expected
that the intrinsic cross-fiber velocity should be 2 or 3 times greater in the plane of the
muscle sheet than perpendicular to it. In our numerical simulations the orthotropic
anisotropy is modeled assigning al along the fiber direction and as perpendicular to al

and tangent to the ellipsoidal surface through x. The unit vector at is then uniquely
determined by the orthogonality condition to al, as. In [8] the fiber direction al and
the surface through x, called radial sheet, connecting the epi- and endocardium, are
assigned. al and as are respectively tangent and perpendicular to the radial sheet; the
transverse unit vector at is again uniquely determined by the orthogonality condition
to al, as and is tangent to the radial sheet. The difference between the two implemen-
tations of orthotropic conductivity lies then in the choice of the surfaces to which as

is tangent or perpendicular. The conductivity coefficients, in Ω−1 cm−1, used in the
orthotropic simulations are :

σe
l = 2.e-3 σe

t = 1.3514e-3 σi
l = 3.e-3 σi

t = 3.1525E-4
σe

s = reσ
e
t , σi

t = riσ
i
t with re = 0.5 and ri = 0.1

In the axially isotropic condition ri,e = 1, i.e. σi,e
s = σi,e

t . In this case we remark
that from al a

T
l + at a

T
t + as a

T
s = I it follows that at a

T
t + as a

T
s = I − al a

T
l

and Mi,e = σi,e
t I + (σi,e

l − σi,e
t )al a

T
l . Moreover the blood layer has conductivity of

σb = 6.e − 3 Ω−1cm−1 and for the fluid layer, in contact with the epicardial surface,
σf = 2.e−3 Ω−1cm−1. We remark that for simulating a relatively small number of
EGs free from numerical artifacts the differential representation is not convenient since
it requires a sequence of meshes which dynamically track the propagating excitation
layers, which is not an easy task in a 3D environment. In the integral representation
the lead field function ψ is singular at the observation point x; therefore to obtain EGs
free from numerical artifacts a fixed adaptive mesh around the singular point must be
used coupled with an adaptive sub-element technique, for elements near or inside the
excitation layer, in the computation of the integral on H , see [5].
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FIGURE 1. Monoventricular model. Central epicardial stimulation: simulated ex-
citation time map depicting the spread of excitation on the epicardial surface for the
axially isotropic case (left panel ) and for the orthotropic case ( right panel). Time
interval between successive isochrones is 5 msec.

Disregarding curvature effects, from (5) it follows that the wave front velocity at point
x in the direction n is given by θ(x,n) = ρΦ(x,∇n). Denoting by θl, θt, θs the
velocities in the direction al, at, as we have θs = θt

√
rire(λt + 1)/(riλt + re),

with λt = σi
t/σ

e
t , and the assigned conductivities implies a velocity θs of about 1/3 of

the expected velocity θt in the radial transverse direction . More precisely it follows
that the estimated velocity θl, θt, θs are 0.065, 0.030, 0.0103 cm ms−1 respectively.
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FIGURE 2. Simulated excitation time map on a diagonal intramural surface. Same
layout as in Fig. 1.

The results displayed in Figs. 1, 2 allow to compare the sequences of the excitation
wave fronts, on the epicardial surface and on an intramural diagonal section passing
through the stimulus site, in the axially isotropic and orthotropic cases. We point out
only two anisotropic features of the spread of excitation; the epicardial excitation pat-
terns show a family of isochrones lines having oblong and quasi- elliptical shape with
the major axes aligned with the epicardial fiber direction. The major difference is that
the minor axis of the isochrone, in a cross fiber direction, displayed by the orthotropic
case, is less than the minor axis of the axially isotropic case; this is due to the fact
that the assigned conductivities implies a velocity θs in the direction perpendicular to
the fiber and tangent to the elliptic surface of about 1/3 of the expected velocity θt in
the radial transverse direction. The orthotropic simulation shows that in the cross fiber
direction on the epicardial surface the propagation velocities are not as different as one
would expect. This unexpected feature is a result of a strong acceleration of the motion
of the portions of the wave front mainly propagating across fiber. At about 1 cm from
the stimulus site in the orthotropic case the velocity is greater than 0.01 cm ms−1 .
This effect is due to return of excitation toward the pacing level. Experimental and
model data showed that the transmural fiber rotation causes excitation pathways, that
start from a pacing site, to first proceed away from it in all directions and then to bend
in such a way that they finally point toward the same myocardial level from which
they started, whether it be epicardial, midwall or endocardial [4, 15]. One effect of the
intramural fiber rotation is that after epicardial pacing, at about 1 cm from the pacing
site in the cross-fiber direction, the successive intersections of the wave front with the
epicardium (epicardial isochrones) indicate a progressively higher velocity of propa-
gation. This is due to the fact that the wavefront intersects the epicardium at an angle
smaller than 90 degrees. As a further consequence of fiber rotation, at several cm from
the pacing site the epicardial isochrones exhibit a dimple-like inflection in the basal
and apical part of the wall (Fig. 1).

As shown in Fig. 1, the major difference in the epicardial pattern of excitation lies
in the areas separating the regions where the fronts mainly propagates along fiber from
those where it propagates across fibers.

We remark that in both cases the posterior isochrones motion is from apex to basis
and exhibits a V-shaped pattern converging toward the extinction area; the curvature of
the concave V-shaped front causes a faster propagation, see Fig. 4 upper panel, for the
orthotropic case and Fig. 8 in [3]-II for the axially isotropic case .

7



With regard to the simulated epicardial potential distributions, the Differential Rep-
resentation allows us to use a quasi-uniform grid, with a rather coarse mesh size, based
on the eikonal model, in order to obtain fairly accurate results at some distance from
the excitation layers (see [3]-II).

In order to take into account the presence of a superficial layer of epicardial, non-
muscular tissue of about 200-300 µm of thickness in dog hearts, and also because
the extracellular potentials and EGs are measured with electrodes of about of 0.3mm
in diameter, we compare the anisotropic features displayed by the potential patterns
related to the axially-isotropic and orthotropic case simulating the potentials at about
300 µm from the active epicaridal tissue. In both simulations the potential maxima
are invariably facing the portion of the wave fronts that move mainly along fibers and
create a far-field positivity on the epicardial surfaces.
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FIGURE 3. Monoventricular model. Central epicardial stimulation: simulated poten-
tial maps at about 300 µm from the active myocardial tissue for the axially isotropic
case (left column ) and for the orthotropic case ( right column). Upper panels: frontal
view of the potential map at 20msec. Lower panels: lateral view of the potential map
at 50 ms; in the lower panels the hearts has been rotated 90o clockwise for a viewer
looking at the heart from above.

At a later stage of the excitation, i.e. at 50 - 60msec after the stimulus, the epicar-
dial pattern exhibits again two maxima located ahead of the portion of the wavefront
propagating mainly along the epicardial fiber (−45o); the positive equipotential lines
surrounding the maxima undergo a counterclockwise stretching and bending producing
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an expanding C-shaped ridge of positivity. This evolution pattern is in part an epicar-
dial reflection of the rotating deep positivity generated by those portions of the wave
front which propagate along fibers, whose direction rotates counterclockwise from the
epi- to endocardium. The fragmentation of the maxima inside the positive C-shaped
strip is more emphasized in the orthotropic simulation.

The anisotropic features such as the location of the potential maxima, the shape of
equipotential lines and their evolution are present in both the axially isotropic and the
orthotropic model; therefore from a qualitative point of view, both models are com-
patible with the experimental findings [10] and only a quantitative comparison with
the experimental data could provide a mean for validating one of the two assump-
tions. Because no substantially different features were observed in the simulations,
choosing between the axially isotropic or orthotropic structure seems a difficul task
at present. Another comparison can be performed by analysing the prediction of both
models regarding the time course of potentials recorded from specific sites. To do this,
we compared the simulated unipolar QRS wave forms obtained with both models.
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FIGURE 4. Each Panel displays epicardial unipolar electrograms (EGs) simulated in
the axially isotropic case ( dashed line) and in the orthotropic case ( continuous line).
The EGs were derived from the locations indicated by letters A - F in the upper panel.
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Concerning the epicardial EGs elicited by an epicardial stimulus we have a biphasic
waveform for sites reached by the front mainly along fiber while for sites across fiber
the EGs display a mono to tetraphasic shape with humps followed by spikes. In fact
near the stimulus site in the along fiber EGs a positive R wave appears followed by
a negative going downstroke, yielding a biphasic wave shape, while the cross-fiber
EGs are monophasic, i.e. present a single minimum and the portion preceeding the
minimum is monotonically negative going. The negative going phase in the cross-fiber
EGs is slower in the orthotropic simulation.

When about half ventricle is excited, the EG from sites close to the 80 msec isochrone
displays a biphasic wave shape with a down-jump ranging from positive to negative val-
ues of equal magnitude ( site E in Fig. 4). EGs from sites near the extinction region are
entirely positive with a small negative spike after the down-jump (Panel F of Fig. 4).
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FIGURE 5. Left and rigth Panels display computed epicardial EGs related to the loca-
tion of the letter C displayed in the upper Panel of Fig. 4. Left (right ) Panel reports the
EGs simulated in the axially isotropic ( orthotropic) case computed for a ventricular
wall with the endocardium in contact with blood but the epicardium is insulated (con-
tinuous line) and the EGs for site on the active epicardial tissue when the epicardium
is in contact with a fluid layer (dashed line).

In conclusion the qualitative comparison of isochrones, potential maps and EGs
shows that the two hypotheses axial and orthotropic anisotropy are both compatible
with the available experimental measurements obtained during heart beats elicited by
epicardial ventricular pacing. Therefore, at present, electrophysiological simulated sig-
nals that support or disprove the introduction of the proposed laminar structure of the
ventricular wall [8] as a further anatomical factor that affects cross-fiber conduction,
are not yet available.
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