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1. Introduction. Nowadays, a wide choice of reliable finite element schemes for
the approximation of Reissner-Mindlin plate problems is available in engineering and
mathematical literature (see, for instance, [7] - [11], [13], [15], [24] - [28], and the ref-
erences therein). However, the extension to the more complex (and more interesting)
shell problems appears to be a difficult task. Indeed, only very few and not completely

satisfactory results have been established in this direction (cf., e.g., [3], [17] - [20] and
[22]).

In this paper we propose and analyze a new low-order Reissner-Mindlin plate
element, some properties of which seem to be favorable for its generalization to shell
problems. This triangular mixed element can be considered as a simplified variant of
the one presented in [16], and it is based on the use of nonconforming piecewise linear
functions for both rotations and deflections, while the shear stresses are approximated
by piecewise constant functions. In actual computations the shear stress variables can
be easily eliminated at the element level, and the final system to be solved involves
only rotation and deflection unknowns, which share the same nodes (the midpoints
of the edges). Compared with the element detailed in [16], the one we are going to
study has the following features:

• no additional bubble functions are required;
• no additional sophisticated “reduction” operator on the shear term (other

than the simple L2-projection operator on piecewise constant functions) needs
to be introduced.

In view of a possible extension to shell problems, the promising features of our
element are the same as the ones met by the scheme presented in [16], i.e.

• it is a simple low-order method;
• once the shear stresses have been eliminated, all the variables into play share

the same nodes;
• the element has optimal order of approximation and it is locking-free.

An outline of the paper is as follows. In Section 2 we briefly present the Reissner-
Mindlin plate problem. In Section 3 we introduce the nonconforming element, together
with the necessary definitions and notations. In Section 4 we develop the stability
analysis, while in Section 5 we perform the error analysis. The final results (cf. The-
orem 5.1 and Corollary 5.1) show that our element is locking-free and it is optimally
convergent with respect to both the meshsize and the analytical solution regularity.
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2 C. LOVADINA

Furthermore, throughout the paper we will use standard notations for Sobolev
spaces and norms (cf. [14] and [23], for instance). Finally, we will denote with C a
generic constant, independent of h and t, which may differ in different occurrences.

2. The Reissner-Mindlin problem. The Reissner-Mindlin equations for a
clamped plate with regular and bounded midplane Ω require to find (θ, w,γ) such
that

−divC ε(θ)− γ = 0 in Ω, (2.1)

−div γ = g in Ω, (2.2)

γ = λt−2(∇w − θ) in Ω, (2.3)

θ = 0, w = 0 on ∂Ω. (2.4)

In (2.1)-(2.3), C is the tensor of bending moduli, θ represents the rotations, w the
transversal displacement, γ the scaled shear stresses and g a given transversal load.
Moreover, ε is the usual symmetric gradient operator, λ is the shear modulus, and t
is the thickness.

The classical variational formulation of problem (2.1)–(2.3) is





Find (θ, w,γ) ∈ Θ×W × (L2(Ω))2 :

a(θ,η) + (∇v − η,γ) = (g, v) (η, v) ∈ Θ×W,

(∇w − θ, τ )− λ−1t2(γ, τ ) = 0 τ ∈ (L2(Ω))2,

(2.5)

where Θ = (H1
0 (Ω))

2, W = H1
0 (Ω), (·, ·) is the inner-product in L2(Ω) and

a(θ,η) :=

∫

Ω

C ε(θ) : ε(η)dx.

It is well-known that for problem (2.5) the following inf-sup condition holds (cf. [14],
for instance)

∃β > 0 such that:

sup
(η,v)∈Θ×W

(∇v − η, τ )

(||η||21,Ω + ||v||21,Ω)
1/2

≥ β||τ ||Γ ∀τ ∈ Γ,
(2.6)

where

Γ = H−1(div,Ω) and ||τ ||Γ := (||τ ||2−1,Ω + ||div τ ||2−1,Ω)
1/2. (2.7)

Moreover, the following regularity result is valid (cf. e.g. [7] and [21]).
Proposition 2.1. Suppose that Ω is convex and g ∈ L2(Ω). Let (θ, w,γ) be the

solution of problem (2.5). Then the following estimate holds
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||θ||2,Ω + ||w||2,Ω + ||γ||H(div) + t||γ||1,Ω ≤ C||g||0,Ω, (2.8)

where

||γ||2H(div) = ||γ||
2
0 + ||div γ||

2
0,Ω.

3. The new nonconforming element. We now introduce a nonconforming fi-
nite element approximation of problem (2.1)–(2.3) using the approach detailed in [16].
Let then Th be a decomposition of Ω into triangular elements T and let us set

H1(Th) :=
∏

T∈Th

H1(T ). (3.1)

We now define suitable jump and average operators. We first denote by Eh the set of
all the edges in Th, and by E inh the set of internal edges. Let e be an internal edge of
Th, shared by two elements T+ and T−, and let ϕ denote a function in H1(Th), or a
vector in (H1(Th))

2, or a tensor in (H1(Th))
4
s. We define the average as usual:

{ϕ} =
ϕ+ + ϕ−

2
∀e ∈ E inh . (3.2)

For a scalar function ϕ ∈ H1(Th) we define its jump as

[ϕ] = ϕ+n+ + ϕ−n− ∀e ∈ E inh , (3.3)

while the jump of a vector ϕ ∈ (H1(Th))
2 is given by

[ϕ] = (ϕ+ ⊗ n+)S + (ϕ− ⊗ n−)S ∀e ∈ E inh , (3.4)

where (ϕ⊗n)S denotes the symmetric part of the tensor product, and n+ (resp. n−)
is the outward unit normal to ∂T+ (resp. to ∂T−). On the boundary edges we define
jumps of scalars as [ϕ] = ϕn, and jumps of vectors as [ϕ] = (ϕ ⊗ n)S , where n is
the outward unit normal to ∂Ω. We also define averages of vectors and tensors as
{ϕ} = ϕ. It can be easily checked that, if ϕ is a smooth tensor, and η a piecewise
smooth vector, the following equality holds (see, e.g., [4] for a similar computation)

∑

T∈Th

∫

∂T

ϕn · η ds =
∑

e∈Eh

∫

e

{ϕ} : [η] ds. (3.5)

In order to introduce our scheme, we first consider the finite element spaces

Θh =
{
η : η|T ∈ (P1(T ))

2,

∫

e

[η]ds = 0 ∀e ∈ Eh

}
, (3.6)
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Wh =
{
v : v|T ∈ P1(T ),

∫

e

[v]ds = 0 ∀e ∈ Eh

}
, (3.7)

Γh =
{
τ : τ |T ∈ (P0(T ))

2
}
, (3.8)

where Pk(T ) is the space of polynomials of degree at most k defined on T . We also
notice that

∇hWh ⊂ Γh, (3.9)

where ∇h denotes the gradient element by element. The local degrees of freedom for
the three variables are depicted in Fig. 3.1.

θ w γ

Fig. 3.1. Local dof for the three variables

Moreover, we introduce a penalty on the jumps of functions in Θh as

pΘ(θ,η) :=
∑

e∈Eh

κe

|e|

∫

e

[θ] : [η] ds, (3.10)

where |e| denotes the length of the side e, and κe is a positive constant having the
same physical dimension as C (for smooth C, one could take κe as |C| evaluated at
the midpoint of e).

We then define

aT (θ,η) :=

∫

T

C ε(θ) : ε(η) dx, (3.11)

and we finally set

ah(θ,η) :=
∑

T∈Th

aT (θ,η) + pΘ(θ,η). (3.12)

Following the ideas of [16], the discrete problem is then





Find (θh, wh,γh) ∈ Θh ×Wh × Γh

ah(θh,ηh) + (γh,∇hvh − ηh) = (g, vh) (ηh, vh) ∈ Θh ×Wh,

(∇hwh − θh, τh)− λ−1t2(γh, τh) = 0 τh ∈ Γh.

(3.13)
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We will use norms || · ||Θh
and || · ||Wh

for functions in Θh and Wh, defined as

||ηh||Θh
:=

(∑

T∈Th

∫

T

|∇ηh|
2

)1/2
= ||∇hηh||0,Ω, (3.14)

||vh||Wh
:=

(∑

T∈Th

∫

T

|∇vh|
2

)1/2
= ||∇hvh||0,Ω. (3.15)

Due to the discrete Poincaré’s inequality, both || · ||Θh
and || · ||Wh

are indeed norms

on Θh and Wh, not only seminorms. It has been proved in [6] (see also [12]) that
there exist positive constants α and M such that

ah(ηh,ηh) ≥ α||ηh||
2
Θh

∀ηh ∈ Θh, (3.16)

ah(θh,ηh) ≤M ||θh||Θh
||ηh||Θh

∀θh ,ηh ∈ Θh. (3.17)

We remark that the coercivity property (3.16) is far from being trivial, since the
bilinear form ah(·, ·) contains only the symmetric gradient operator and not the whole
gradient operator (cf. (3.11), (3.12) and (3.14)).

For functions in Γh we will work with the (natural) norms (cf. also (2.7))

||τh||Γ and t||τh||0,Ω. (3.18)

Remark 3.1. We point out that eliminating γh from system (3.13), our scheme
is equivalent to the following problem involving only the rotations and the vertical

displacements:





Find (θh, wh) ∈ Θh ×Wh :

ah(θh,ηh) + λt−2(∇hwh − P0θh,∇hvh − P0ηh)

= (g, vh) ∀(ηh, vh) ∈ Θh ×Wh,

(3.19)

where P0 denotes the L2-projection operator on the piecewise constant functions.

From (3.19) we may notice that the method implementation turns out to be rather

simple.

4. Stability analysis. In this Section we will prove a stability result for the
discretized problem 3.13, using a macroelement technique essentially developed in [26].
In what follows it will be useful to set V := Θ ×W and Vh := Θh ×Wh, equipped
with the usual product norms. We first need the following preliminary result.

Proposition 4.1. The approximation spaces defined in (3.6)–(3.8) satisfy the

following properties:
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(P1) There exists a linear operator πh : W −→Wh such that

||πhv||Wh
≤ c||v||1,Ω , c independent of h

∫

Ω

∇h(v − πhv) · τh = 0 ∀τh ∈ Γh

(P2) If the mesh Th contains at least three triangles, then for τ h ∈ Γh condition

∫

Ω

(∇hvh − ηh) · τh = 0 ∀(ηh, vh) ∈ Vh (4.1)

implies τh = 0.
Proof. Consider the usual nonconforming interpolating operator πh : W −→Wh,

defined by

(πhv)(m) =
1

|e|

∫

e

v ds ∀e ∈ Eh (with m the midpoint of e).

It is easily seen that property (P1) is fulfilled.
To verify (P2), for a given internal edge e ∈ E inh we first choose one of the two

possible normal (resp. tangential) vectors to e, indicated in what follows as ne (resp.
te). Let us take τh ∈ Γh satisfying condition (4.1).

By choosing (0, vh) ∈ Vh, integrating by parts yields

0 =

∫

Ω

∇hvh · τh =
∑

T∈Th

∫

∂T

vh τh · nT . (4.2)

Since equation (4.2) is true for every (0, vh) ∈ Vh, it follows that τ h · ne is con-
tinuous across every internal edge e ∈ E inh . Therefore τh ∈ H(div; Ω) and, obviously,
div τh = 0. As a consequence, there exists ϕh (defined up to a constant) such that

ϕh ∈ L
1
1(Ω; Th), τh = curlϕh (4.3)

where L11(Ω; Th) is the usual space of piecewise linear and continuous functions on Ω.
Fix now a generic internal edge e ∈ E inh with midpoint m, and denote with T+e ,

T−e the triangles sharing e as common side. Recalling that curlϕh · ne is constant
and continuous across e, we consider (ηh, 0) ∈ Vh, where ηh is uniquely defined by

{
(ηh · te)(m) = 0, (ηh · ne)(m) = curlϕh · ne

ηh(m
′) = 0 ∀ e′ ∈ E inh , e′ 6= e (with m′ the midpoint of e′).

(4.4)

Since τh = curlϕh satisfies (4.1), using (4.4) we have

0 =

∫

Ω

ηh · curlϕh =

∫

T+
e ∪T−e

ηh · curlϕh =
|T+e |+ |T

−
e |

3
(ηh · curlϕh)(m)

=
|T+e |+ |T

−
e |

3
|curlϕh · ne|

2.

(4.5)
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Repeating the same argument for every e ∈ E inh , from (4.5) we infer that

curlϕh · ne = ∇ϕh · te = 0 for every e ∈ E inh . (4.6)

Equation (4.6) implies that τ h = curlϕh vanishes in all the triangles T ∈ Th having
at least two sides in E inh . Therefore, it remains to show that curlϕh = 0 also on the
triangles sharing two sides with the boundary ∂Ω, if there are any in the mesh Th.
Consider then any such a triangle T , denote with e its unique side belonging to E inh
and with T in the triangle sharing the side e with T . Since Ω is a regular domain and
Th contains at least three triangles, it follows that T in has at least two sides in E inh .
Hence we already know that

(curlϕh)|T in = 0. (4.7)

Recalling that curlϕh is constant in T , let us now take (ηh, 0) ∈ Vh, where ηh is
uniquely defined by

{
ηh(m) = (curlϕh)|T (with m the midpoint of e)

ηh(m
′) = 0 ∀ e′ ∈ E inh , e′ 6= e (with m′ the midpoint of e′).

(4.8)

Again, since τ h = curlϕh satisfies (4.1), by (4.7) and (4.8) we obtain

0 =

∫

Ω

ηh · curlϕh =

∫

T∪T in

ηh · curlϕh =

∫

T

ηh · curlϕh

=
|T |

3
|(curlϕh)|T |

2,

(4.9)

so that curlϕh = 0 also in T and the proof is complete.
Remark 4.1. We remark that property (P2) can be written in the following

equivalent form:

(P2’) For every ϕ ∈ (L2(Ω))2, the problem





Find (ηh, vh) ∈ Θh ×Wh :

∫

Ω

(∇hvh − ηh) · τh =

∫

Ω

ϕ · τh ∀τh ∈ Γh

is solvable.

4.1. Macroelement decomposition. We start by recalling some standard def-
initions and notations we will use in the sequel. First of all, we say that a family
{Th}h>0 of triangular meshes of Ω is regular (see [23]) if there exists a constant σ > 0
such that

hT ≤ σρT ∀T ∈
⋃

h>0

Th, (4.10)
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where hT is the diameter of the element T and ρT is the maximum diameter of
the circles contained in T . Furthermore, a macroelement M is a set with connected
interior part, formed by the union of a fixed number of neighboring triangles along a
well-defined pattern (cf. [29]). A macroelement M = ∪m

i=1Ti is said to be equivalent

to a reference macroelement M̂ = ∪m
i=1T̂i if there is a mapping FM : M̂ −→ M for

which the following conditions are fulfilled (cf. [29]):
1. FM is a continuous bijection.
2. Ti = FM (T̂i) ∀ i 1 ≤ i ≤ m
3. FM |T̂i

= FTi
◦ F−1

T̂i

, where FTi
and FT̂i

are the usual functions mapping the

standard reference triangle (of vertices (0, 0), (1, 0) and (0, 1)) onto Ti and

T̂i, respectively.
From a given mesh Th of Ω it is always possible to derive (obviously not in a

unique manner) a “macroelement mesh” Mh in such a way that each T ∈ Th is
covered by some macroelement M in Mh and each macroelement M is equivalent to
a certain reference macroelement M̂ .

Associated with every macroelement M in Mh, the following spaces are relevant
for the stability analysis (cf. [26])

V0,M :=
{
(ηh, vh) ∈ Vh : (ηh, vh) = (0, 0) inΩ \M

}
, (4.11)

ΓM :=
{
τh ∈ Γh : τh = 0 inΩ \M

}
. (4.12)

4.2. Fortin’s trick by macroelements. The aim of this subsection is to prove
that Fortin’s trick (cf. [14]) applies to our finite element scheme, leading therefore to
a suitable inf-sup condition with respect to the natural norms (see (2.6)). Indeed, we
have the following result.

Proposition 4.2. Suppose that the family {Th}h>0 is regular and choose a

corresponding macroelement family {Mh}h>0 such that:

1. each macroelement M contains at least three triangles;

2. there is only a fixed finite number of reference macroelements {M̂1, ...., M̂r}
to which each macroelement M ∈ ∪h>0Mh is equivalent.

Then for the approximation spaces defined in (3.6)–(3.8) the following inf-sup
condition holds

∃β > 0 independent of h, such that:

sup
(ηh,vh)∈Vh

(∇hvh − ηh, τh)

||(ηh, vh)||Vh

≥ β||τh||Γ ∀τh ∈ Γh.
(4.13)

Proof. Let (η, v) ∈ V be given. Fix an arbitrary macroelement M ∈Mh and set

hM := max
1≤i≤m

hTi
if M =

m⋃

i

Ti (4.14)

Let us denote with iM the index 1 ≤ iM ≤ r such that M is equivalent to M̂iM
.

Consider the problem to find (ηM , vM ) ∈ V0,M solution of
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∫

M

(∇hvM − ηM ) · τM =

∫

M

(Π1η − η) · τM ∀τM ∈ ΓM , (4.15)

where Π1η is the usual nonconforming interpolated of η, defined by

(Π1η)(m) =
1

|e|

∫

e

η ds ∀e ∈ Eh (with m the midpoint of e).

By property (P2) of Proposition 4.1, applied to the macroelement M , it follows
that system (4.15) is solvable, since M contains at least three triangles (cf. also
Remark 4.1). Let us take the solution of minimal Vh-norm. A scaling argument and

the features of the interpolating operator Π1 show that there exists c(M̂iM
) > 0 such

that

||ηM ||2Θh
+ h−2M || vM ||2Wh

≤ c(M̂iM
)||η ||21,M (4.16)

Since hM is obviously bounded by |Ω|, inequality (4.16) implies that

∃ c1(M̂iM
) > 0 : ||ηM ||2Θh

+ || vM ||2Wh
≤ c1(M̂iM

) ||η ||21,M . (4.17)

Let us set

ηF = Π1η +
∑

M

ηM (4.18)

vF = πhv +
∑

M

vM , (4.19)

where πh is the operator as in property (P1) of Proposition 4.1 (i.e. the standard
nonconforming interpolation operator). We now notice that every τ h ∈ Γh can
be uniquely written as τ h =

∑
M τM , where τM ∈ ΓM . Hence, recalling (4.15),

from (4.18)-(4.18) we have

∫

Ω

(∇hvF − ηF ) · τh =
∑

M

∫

M

[
∇h(πhv + vM )−Π1η − ηM

]
· τM

=
∑

M

[ ∫

M

∇hπhv · τM +

∫

M

(∇hvM −Π1η − ηM ) · τM

]

=
∑

M

( ∫

M

∇ v · τM −

∫

M

η · τM

)

=

∫

Ω

(∇ v − η) · τh

(4.20)

Therefore, for every (η, v) ∈ V we have found Πh(η, v) = (ηF , vF ) ∈ Vh such that
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∫

Ω

(∇hvF − ηF ) · τh =

∫

Ω

(∇ v − η) · τh ∀τh ∈ Γh (4.21)

Let us estimate ||ηF ||
2
Θh

+ ||vF ||
2
Wh

. By using the continuity of Π1 and πh, and
estimate (4.17), we get

||ηF ||
2
Θh

+ ||vF ||
2
Wh

=
∣∣∣
∣∣∣Π1η +

∑

M

ηM

∣∣∣
∣∣∣
2

Θh

+
∣∣∣
∣∣∣πhv +

∑

M

vM

∣∣∣
∣∣∣
2

Wh

≤ 2
(
||Π1η||

2
Θh

+ ||πhv||
2
Wh

+
∑

M

(
||ηM ||2Θh

+ || vM ||2Wh

) )

≤ 2
(
c
(
||v||21,Ω + ||η||21,Ω

)
+
∑

M

c1(M̂iM
)||η||21,M

)
.

(4.22)

Since there is only a finite number of reference macroelements {M̂1, .., M̂r}, we obtain

||ηF ||
2
Θh

+ ||vF ||
2
Wh
≤ C1

(
||v||21,Ω + ||η||21,Ω

)
(4.23)

with C1 = 2max {c, c1(M̂1), ..., c1(M̂r)}. Therefore, we finally have

||Πh(η, v)||Vh
≤ C

(
||η||21,Ω + ||v||21,Ω

)1/2
(4.24)

with C independent of h. It is well-known (cf. [14], for instance) that (4.21) together
with (4.24) implies condition (4.13) and the proof is complete.

Remark 4.2. Note that it is always possible to derive, from a given regular

family {Th}h>0 , a macroelement family {Mh}h>0 which fulfills the assumption of

Proposition 4.2, provided in each Th there are at least three triangles.

4.3. The stability result. Once the inf-sup condition (4.13) has been estab-
lished, suitable stability estimates can be derived using standard techniques (see, for
instance, [9] and [21] for their application to Reissner-Mindlin plate problems). For
the sake of completeness, we develop such a stability analysis in full details.

First, it is useful to set

Ah(θh, wh,γh;ηh, vh, τh) :=ah(θh,ηh) + (∇hvh − ηh,γh)

− (∇hwh − θh, τh) + λ−1t2(γh, τh).
(4.25)

Therefore, the discrete problem (3.13) reads

{
Find (θh, wh,γh) ∈ Θh ×Wh × Γh s.t.

Ah(θh, wh,γh;ηh, vh, τh) = (g, vh) ∀(ηh, vh, τh) ∈ Θh ×Wh × Γh.
(4.26)

We have the following result.
Proposition 4.3. Given (βh, zh,ρh) ∈ Θh×Wh×Γh, there exists (ηh, vh, τh) ∈

Θh ×Wh × Γh such that
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||ηh||Θh
+ ||vh||Wh

+ ||τh||Γ + t||τh||0,Ω

≤ C
(
||βh||Θh

+ ||zh||Wh
+ ||ρh||Γ + t||ρh||0,Ω

) (4.27)

and

Ah(βh, zh,ρh;ηh, vh, τh) ≥ C
(
||βh||

2
Θh

+ ||zh||
2
Wh

+ ||ρh||
2
Γ + t2||ρh||

2
0,Ω

)
. (4.28)

Proof: Let (βh, zh,ρh) be given in Θh×Wh×Γh. The proof is performed in three
steps.
First Step. Let us first choose (η1, v1, τ 1) ∈ Θh ×Wh × Γh as

η1 = βh, v1 = zh, τ 1 = ρh.

It is obvious that

||η1||Θh
+ ||v1||Wh

+ ||τ 1||Γ + t||τ 1||0,Ω

= ||βh||Θh
+ ||zh||Wh

+ ||ρh||Γ + t||ρh||0,Ω.
(4.29)

Furthermore, it holds

Ah(βh, zh,ρh;η1, v1, τ 1) = ah(βh,βh) + λ−1t2||γh||
2
0,Ω. (4.30)

By the coercivity of ah(·, ·) (cf. (3.16)) it follows that

Ah(βh, zh,ρh;η1, v1, τ 1) ≥ C1

(
||βh||

2
Θh

+ t2||ρh||
2
0

)
. (4.31)

Second Step. Notice that from (4.13) it follows that there exists (η2, v2) ∈ Θh ×Wh

such that

||η2||Θh
+ ||v2||Wh

≤ C||ρh||Γ (4.32)

and

(∇hv2 − η2,ρh) = ||ρh||
2
Γ. (4.33)

Choose (η2, v2, τ 2) ∈ Θh ×Wh × Γh with τ 2 = 0. We have

Ah(βh, zh,ρh;η2, v2, τ 2) = ah(βh,η2) + (∇hv2 − η2,ρh), (4.34)

so that by (4.33) it follows

Ah(βh, zh,ρh;η2, v2, τ 2) = ah(βh,η2) + ||ρh||
2
Γ. (4.35)
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To control the first term in the right-hand side of equation (4.35), we note that
(cf. also (3.17))

ah(βh,η2) ≥ −
M

2δ
||βh||

2
Θh
−
δM

2
||η2||

2
Θh
≥ −

M

2δ
||βh||

2
Θh
−
δCM

2
||ρh||

2
Γ. (4.36)

Taking δ sufficiently small, we get

Ah(βh, zh,ρh;η2, v2, τ 2) ≥ C2||ρh||
2
Γ − C3||βh||

2
Θh
. (4.37)

Third Step. Choose (η3, v3, τ 3) ∈ Θh ×Wh × Γh as

η3 = 0, v3 = 0, τ 3 = −∇hzh.

Notice that by (3.9) the choice above is admissible.
On one hand it is easily seen that

||τ 3||Γ ≤ C||zh||Θh
. (4.38)

On the other hand it holds

Ah(βh, zh,ρh;η3, v3, τ 3) = (∇hzh − βh,∇hzh)− λ−1t2(ρh,∇hzh)

=||zh||
2
Wh
− (βh,∇hzh)− λ−1t2(ρh,∇hzh)

≥

(
1−

δ

2

)
||zh||

2
Wh
−

C

2δ
||βh||

2
Θh
− λ−1t2(ρh,∇hzh).

(4.39)

Moreover, one has

−λ−1t2(ρh,∇hzh) ≥ −t
2

(
λ−1

2ε
||ρh||

2
0,Ω +

λ−1ε

2
||zh||

2
Wh

)
. (4.40)

By (4.39)–(4.40), and taking δ and ε sufficiently small, one finally gets

Ah(βh, zh,ρh;η3, v3, τ 3) ≥ C4||zh||
2
Wh
− C5||βh||

2
Θh
− C6t

2||ρh||
2
0,Ω. (4.41)

Now it only suffices to take a suitable linear combination of {(ηi, vi, τ i)}
3
i=1 so

that by (4.29), (4.31), (4.35), (4.37), (4.38) and (4.41) it follows that (4.27) and (4.28)
hold. The proof is then complete.

5. Error analysis. In this Section we develop a convergence analysis for our
scheme, taking advantage of Proposition 4.3.

We shall need the following result (see [1]-[2]): let T be a triangle, and let e be
an edge of T . Then ∃C > 0 only depending on the minimum angle of T such that

||ϕ||20,e ≤ C
(
|e|−1||ϕ||20,T + |e||ϕ|21,T

)
ϕ ∈ H1(Th). (5.1)
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Clearly, (5.1) also holds for vector valued functions ϕ ∈ (H1(Th))
2. Moreover, we

shall use the estimate (see [6])

(∑

e∈Eh

|e|−1 ||[ηh]||
2
0,e

)1/2
≤ C||ηh||Θh

∀ηh ∈ Θh. (5.2)

We can now prove the following Theorem.
Theorem 5.1. Let (θ, w,γ) be the solution of problem (2.1)–(2.3). Furthermore,

let (θh, wh,γh) be the solution of the discretized problem (4.26). The following error
estimate holds

||θ − θh||Θh
+ ||w − wh||Wh

+ ||γ − γh||Γ + t||γ − γh||0,Ω

≤Ch
(
||θ||2,Ω + ||w||2,Ω + ||γ||H(div) + t||γ||1,Ω

)
.

(5.3)

Proof: By Proposition 4.3, given (θh − θI , wh − wI ,γh − γI) ∈ Θh ×Wh × Γh,
there exists (ηh, vh, τh) ∈ Θh ×Wh × Γh such that

||ηh||Θh
+ ||vh||Wh

+ ||τh||Γ + t||τh||0,Ω

≤ C
(
||θh − θI ||Θh

+ ||wh − wI ||Wh
+ ||γh − γI ||Γ + t||γh − γI ||0,Ω

) (5.4)

and

C
(
||θh − θI ||

2
Θh

+ ||wh − wI ||
2
Wh

+ ||γh − γI ||
2
Γ + t2||γh − γI ||

2
0,Ω

)

≤ Ah(θh − θI , wh − wI ,γh − γI ;ηh, vh, τh)

= ah(θh − θI ,ηh) + (∇hvh − ηh,γh − γI)

−
(
∇h(wh − wI)− (θh − θI), τh

)
+ λ−1t2(γh − γI , τh)

(5.5)

Multiplying equation (2.1) by ηh, integrating by parts, and using [θ] = 0 we
obtain

ah(θ,ηh)− (γ,ηh) = cΘ(θ,ηh), (5.6)

where, using (3.5),

cΘ(θ,ηh) :=
∑

T∈Th

∫

∂T

C ε(θ)n · ηh ds =
∑

e∈Eh

∫

e

{C ε(θ)} : [ηh] ds. (5.7)

Multiplying equation (2.2) by vh and integrating by parts we have

(γ,∇hvh) = (g, vh) + cW (γ, vh), (5.8)

where

cW (γ, vh) :=
∑

T∈Th

∫

∂T

γ · nvh ds =
∑

e∈Eh

∫

e

{γ} · [vh] ds. (5.9)
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Multiplying equation (2.3) by τ h and integrating we obtain

(∇w − θ, τh)− λ−1t2(γ, τh) = 0. (5.10)

Therefore, from (5.6)–(5.10) we get that

Ah(θ, w,γ;ηh, vh, τh) = (g, vh) + cΘ(θ,ηh) + cW (γ, vh). (5.11)

By recalling that (θh, wh,γh) solves (4.26), from (5.5) and (5.11) we obtain

C
(
||θh − θI ||

2
Θh

+ ||wh − wI ||
2
Wh

+ ||γh − γI ||
2
Γ + t2||γh − γI ||

2
0,Ω

)

≤ ah(θ − θI ,ηh)− cΘ(θ,ηh) + (∇hvh − ηh,γ − γI)− cW (γ, vh)

−
(
∇h(w − wI)− (θ − θI), τh

)
+ λ−1t2(γ − γI , τh)

= T1 + T2 + T3 + T4,

(5.12)

where





T1 = ah(θ − θI ,ηh)− cΘ(θ,ηh)

T2 = (∇hvh − ηh,γ − γI)− cW (γ, vh)

T3 =
(
∇h(w − wI)− (θ − θI), τh

)

T4 = λ−1t2(γ − γI , τh)

(5.13)

In order to estimate the four terms above, we need to choose θI , wI and γI . For θI

and wI we take the usual nonconforming piecewise linear interpolated of θ and w,
respectively. A suitable choice of γI is more involved and it requires the introduction
of the Helmholtz decomposition for γ (see [14], for instance). More precisely we write

γ = ∇r + curl p r ∈ H2(Ω) ∩H1
0 (Ω), p ∈ H1(Ω)/R. (5.14)

It is easily seen that

(
||r||22,Ω + ||p||21,Ω

)1/2
≤ C||γ||H(div). (5.15)

We now take rI as the piecewise linear and continuous Lagrange interpolated of r,
and pI as the Clemént interpolated of p. Following [21], we finally set γI ∈ Γh as

γI = ∇rI + curl pI . (5.16)

We have (see [21])

||γ − γI ||Γ ≤ Ch ||γ||H(div) (5.17)
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and

||γ − γI ||0,Ω ≤ Ch ||γ||1,Ω. (5.18)

We are ready to estimate the terms in (5.13).
Estimate for T1. Using (3.17), we have

ah(θ − θI ,ηh) ≤ Ch ||θ||2,Ω||ηh||Θh
(5.19)

and (cf. [16])

cΘ(θ,ηh) ≤ Ch ||θ||2,Ω||ηh||Θh
. (5.20)

Therefore

T1 ≤ Ch ||θ||2,Ω||ηh||Θh
. (5.21)

Estimate for T2. Using (5.14) and (5.16) we get

T2 =
(
∇hvh − ηh,∇(r − rI) + curl (p− pI)

)
− cW (γ, vh)

=
(
∇hvh,∇(r − rI)

)
+
{(

∇hvh, curl (p− pI)
)
− cW (γ, vh)

}

−
(
ηh,∇(r − rI)

)
−
(
ηh, curl (p− pI)

)

=T 12 + T 22 + T 32 + T 42 .

(5.22)

• From standard approximation theory and (5.15) we have

T 12 ≤ Ch ||r||2,Ω||vh||Wh
≤ Ch ||γ||H(div)||vh||Wh

. (5.23)

•We now treat the term T 22 : since vh ∈Wh and pI is a piecewise linear and continuous
function, the discrete Helmholtz decomposition proved in [7] gives

(∇hvh, curl pI) = 0,

so that, using also (5.9), we obtain

T 22 =
∑

T∈Th

∫

T

∇hvh · curl p−
∑

e∈Eh

∫

e

{curl p} · [vh]−
∑

e∈Eh

∫

e

{∇r} · [vh]. (5.24)

Since

∑

T∈Th

∫

T

∇hvh · curl p−
∑

e∈Eh

∫

e

{curl p} · [vh] = 0,

it follows
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T 22 = −
∑

e∈Eh

∫

e

{∇r} · [vh]. (5.25)

By a standard nonconforming approximation result and (5.15) we have

T 22 ≤ Ch ||∇r||1,Ω||vh||Wh
≤ Ch ||γ||H(div)||vh||Wh

. (5.26)

• To bound T 32 we simply observe that

T 32 = −
(
ηh,∇(r − rI)

)
≤ Ch ||∇r||1,Ω||ηh||0,Ω ≤ Ch ||γ||H(div)||ηh||Θh

. (5.27)

• Integrating by parts the term T 42 we get

T 42 =−
∑

T∈Th

{∫

T

rot ηh(p− pI) +

∫

∂T

ηh · tT (p− pI)

}

=−
∑

T∈Th

∫

T

rot ηh(p− pI)−
∑

e∈Eh

∫

e

te ⊗ ne : [ηh]{p− pI}.

(5.28)

On one hand, we have

−
∑

T∈Th

∫

T

rot ηh(p− pI) ≤ Ch ||p||1,Ω||ηh||Θh
≤ Ch ||γ||H(div)||ηh||Θh

. (5.29)

On the other hand, using (5.1) and (5.2) we get

−
∑

e∈Eh

∫

e

te ⊗ ne : [ηh]{p− pI}

≤

(∑

e∈Eh

|e| ||{p− pI}||
2
0,e

)1/2(∑

e∈Eh

|e|−1 ||[ηh]||
2
0,e

)1/2

≤ C

(∑

T∈Th

(
||p− pI ||

2
0,T + h2T |p− pI |

2
1,T

)
)1/2

||ηh||Θh

≤ Ch ||p||1,Ω||ηh||Θh
.

(5.30)

Therefore, from (5.28)–(5.30) and (5.15) we obtain

T 42 ≤ Ch ||γ||H(div)||ηh||Θh
. (5.31)

Collecting (5.23), (5.26), (5.27) and (5.31) we conclude that

T2 ≤ Ch ||γ||H(div)

(
||ηh||Θh

+ ||vh||Wh

)
. (5.32)



A NONCONFORMING PLATE ELEMENT 17

Estimate for T3. Since τh is piecewise constant it follows

(
∇h(w − wI), τh

)
= 0.

Hence

T3 = −(θ − θI , τh) ≤

(∑

T∈Th

h−2T ||θ − θI ||
2
0,T

)1/2(∑

T∈Th

h2T ||τh||
2
0,T

)1/2

≤ Ch ||θ||2,Ω||τh||−1,Ω ≤ Ch ||θ||2,Ω||τh||Γ,

(5.33)

where we have used both the inverse inequality

∑

T∈Th

h2T ||τh||
2
0,T ≤ C||τh||

2
−1,Ω

and the definition of the Γ-norm (see (2.7)).
Estimate for T4. We have, using (5.18)

T4 = λ−1t2(γ − γI , τh) ≤ Ch t||γ||1,Ω t||τh||0,Ω. (5.34)

Collecting (5.21), (5.32) (5.33) and (5.34), from (5.12) we obtain

(
||θh − θI ||

2
Θh

+ ||wh − wI ||
2
Wh

+ ||γh − γI ||
2
Γ + t2||γh − γI ||

2
0,Ω

)

≤ Ch
(
||θ||2,Ω + ||γ||H(div) + t||γ||1,Ω

)

×
(
||ηh||Θh

+ ||vh||Wh
+ ||τh||Γ + t||τh||0,Ω

)
.

(5.35)

Using (5.4) we get

||θh − θI ||Θh
+ ||wh − wI ||Wh

+ ||γh − γI ||Γ + t||γh − γI ||0,Ω

≤ Ch
(
||θ||2,Ω + ||γ||H(div) + t||γ||1,Ω

)
,

(5.36)

and estimate (5.3) follows from the triangle inequality.
Using Proposition 2.1, from Theorem 5.1 we get an optimal error estimate with

respect to h and independent of t:
Corollary 5.1. Suppose that Ω is convex and g ∈ L2(Ω). Then it holds

||θ − θh||Θh
+ ||w − wh||Wh

+ ||γ − γh||Γ + t||γ − γh||0,Ω ≤ Ch ||g||0,Ω. (5.37)
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