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Abstract

We consider the finite elasticity problem for incompressible materials, proposing
a simple bidimensional problem for which we provide an indication on the solu-
tion stability. Furthermore, we study the stability of discrete solutions, obtained by
means of some well-known mixed finite elements, and we present several numerical
experiments.
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1 Introduction

Nowadays there are several finite element interpolation schemes which perform
very well (in terms of accuracy and stability) for the case of small deformation
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problems, also in the presence of highly constrained situations (i.e. incom-
pressible materials). Examples ranges from standard mixed elements (see, for
instance, [4], [7], [9], and the references therein) to enhanced strain elements
(see [2], [5], [18], [20] and [24]).

However, it is also well established that the extension of such schemes to the
case of finite strain problems is by no way trivial; in particular, even elements
which seem to be ideal from a theoretical and a numerical perspective may
fail in the large strain range, for example due to the rising of unphysical
instabilities for high compression/tension states (see [3], [14], [19] and [26] for
more details). It is worth recalling that many interesting strategies have been
developed in order to stabilize the methods at hand (cf., for instance, [10],
[15] [17], [21], [22] and [23]). However, a satisfactory analysis of finite element
methodologies for finite strain problems is still missing.

According to the cited problematics, the present work focuses on a simple
finite-strain elastic bidimensional problem for which not only it is possible
to compute the solution in closed form but it is also possible to draw some
indications on the solution stability for both the continuum and the discrete
problems.

After recalling the general finite strain elasticity framework (Section 2), we
discuss the proposed 2D continuum problem (Section 3). We then present
some possible finite element discretizations of the problem under investigation.
In particular, we consider the MINI mixed finite element (see [1]) and the
QME mixed-enhanced finite element (see [18]), which have been proved to
be stable and well performing in linear elasticity. For both finite elements
we are able to present some theoretical considerations on the stability limits
of the discrete problems, showing that both formulations fail to reproduce
the continuum stability features (Section 4). Finally, we perform extensive
numerical simulations to investigate the whole stability range of both finite
element discretizations (Section 5).

2 The finite strain incompressible elasticity problem

In this paper we adopt the so-called material description to study the finite
strain elasticity problem. Accordingly, we suppose that we are given a reference
configuration Ω ⊂ Rd for a d-dimensional bounded material body B. Therefore,
the deformation of B can be described by means of the map ϕ̂ : Ω → Rd

defined by

ϕ̂(X) = X + û(X) , (1)

2



where X = (X1, .., Xd) denotes the coordinates of a material point in the ref-
erence configuration and û(X) represents the corresponding displacement vec-
tor. Following standard notations, (see [6] and [16], for instance) we introduce
the deformation gradient F̂ = F(û) and the right Cauchy-Green deformation
tensor Ĉ = C(û) by setting

F̂ = I +∇û , Ĉ = F̂T F̂ , (2)

where I is the second-order identity tensor and ∇ is the gradient operator
with respect to the coordinates X.

For a homogeneous neo-Hookean material we define (see for example [6] and
[8]) the potential energy function as

Ψ(û) =
1

2
µ

[

I : Ĉ− d
]

− µ ln Ĵ +
λ

2
Θ(Ĵ)2 , (3)

where λ and µ are positive constants, “ : ” represents the usual inner product
for second-order tensors and Ĵ = det F̂. Moreover, Θ is a real function usually
chosen as

Θ(J) = ln J or Θ(J) = J − 1 . (4)

Introducing the pressure-like variable (or simply pressure) p̂ = λΘ(Ĵ), the
potential energy (3) can be equivalently written as the following function of
û and p̂ (still denoted as Ψ with a little abuse of notations)

Ψ(û, p̂) =
1

2
µ

[

I : Ĉ− d
]

− µ ln Ĵ + p̂Θ(Ĵ)− 1

2λ
p̂2 . (5)

When the body B is subjected to a given load b = b(X) per unit volume in
the reference configuration, the total elastic energy functional reads as follows

Π(û, p̂) =
∫

Ω
Ψ(û, p̂)−

∫

Ω
b · û . (6)

Therefore, following the Hellinger-Reissner variational principle, equilibrium
is derived by searching for critical points of (6) in suitable admissible dis-
placement and pressure spaces Û and P̂ . The corresponding Euler-Lagrange
equations emanating from (6) lead to solve
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Find (û, p̂) ∈ Û × P̂ such that

µ
∫

Ω
[F̂− F̂−T ] : ∇v +

∫

Ω
p̂ Θ′(Ĵ)Ĵ F̂−T : ∇v =

∫

Ω
b · v ∀v ∈ U

∫

Ω

(

Θ(Ĵ)− p̂

λ

)

q = 0 ∀q ∈ P ,

(7)

where U and P are the admissible variation spaces for the displacements and
the pressures, respectively. We note that in (7) we used that the linearization
of the deformation gradient jacobian is

DJ(û)[v] = J(û)F(û)−T : ∇v = Ĵ F̂−T : ∇v ∀v ∈ U . (8)

Without loss of generality, from now on we select Θ(J) = ln J (see (4)). More-
over, we focus on the case of an incompressible material, which corresponds
to take the limit λ → +∞ in (7). Therefore, our problem becomes



















































Find (û, p̂) ∈ Û × P̂ such that

µ
∫

Ω
F̂ : ∇v +

∫

Ω
(p̂− µ)F̂−T : ∇v −

∫

Ω
b · v = 0 ∀v ∈ U

∫

Ω
q ln Ĵ = 0 ∀q ∈ P ,

(9)

or, in residual form,


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Find (û, p̂) ∈ Û × P̂ such that

Ru((û, p̂),v) = 0 ∀v ∈ U

Rp((û, p̂), q) = 0 ∀q ∈ P ,

(10)

where
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




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Ru((û, p̂),v) := µ
∫

Ω
F̂ : ∇v +

∫

Ω
(p̂− µ)F̂−T : ∇v −

∫

Ω
b · v

Rp((û, p̂), q) :=
∫

Ω
q ln Ĵ .

(11)
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We now derive the linearization of problem (9) around a generic point (û, p̂).
Observing that

DF̂−T (û)[u] = −F̂−T (∇u)T F̂−T ∀u ∈ U , (12)

we easily get the problem for the infinitesimal increment (u, p)
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Find (u, p) ∈ U × P such that

µ
∫

Ω
∇u : ∇v +

∫

Ω
(µ− p̂)(F̂−1∇u)T : F̂−1∇v

+
∫

Ω
pF̂−T : ∇v = −Ru((û, p̂),v) ∀v ∈ U

∫

Ω
qF̂−T : ∇u = −Rp((û, p̂), q) ∀q ∈ P .

(13)

Remark 1 Since problem (13) is the linearization of problem (9) (or equiva-
lently (10)), it can be interpreted as the generic step of a Newton-like iteration
procedure for the solution of the non-linear problem (9).

Remark 2 Taking (û, p̂) = (0, 0) in (13), we immediately recover the classical
linear incompressible elasticity problem for small deformations, i.e.
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Find (u, p) ∈ U × P such that

2µ
∫

Ω
εεε(u) : εεε(v) +

∫

Ω
p div v =

∫

Ω
b · v ∀v ∈ U

∫

Ω
q div u = 0 ∀q ∈ P ,

(14)

where εεε(·) denotes the symmetric gradient operator.

3 A model problem for finite strain incompressible elasticity

In this section we present a simple bidimensional problem which nonetheless
shows some of the difficulties arising in general nonlinear elastic problems for
incompressible materials.

Using the usual Cartesian coordinates (X, Y ), we consider a square material
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Fig. 1. Problem domain Ω.

body whose reference configuration is Ω = (−1, 1) × (−1, 1); we denote with
Γ = [−1, 1] × {1} the upper part of its boundary, while the remaining part
of ∂Ω is denoted with ΓD (cf. Fig. 1). The body Ω is clamped along ΓD and
subjected to the volume force b = γf , where f = (0, 1)T and γ is a real
parameter.

Therefore, the equilibrium problem leads to solve the following variational
system (see (9))
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Find (û, p̂) ∈ Û × P̂ such that

µ
∫

Ω
F̂ : ∇v +

∫

Ω
(p̂− µ)F̂−T : ∇v = γ

∫

Ω
f · v ∀v ∈ U

∫

Ω
q ln Ĵ = 0 ∀q ∈ P .

(15)

It is not our intention to rigorously specify the regularity needed for the space
involved in the variational formulation (15), and we refer to [11] and [12] for
details on such a point. Instead, we wish to notice that system (15) constitutes
a set of nonlinear equations for which a trivial solution can be easily found
for every γ ∈ R, i.e. (û, p̂) = (0, γr), where r = r(X, Y ) = 1− Y .

Remark 3 We are not claiming that, for each γ ∈ R, (û, p̂) = (0, γr) is the
only solution of the system.
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Whenever an incremental loading procedure is considered, the passage from
γ to γ + ∆γ in (15) is typically solved by a Newton’s technique. Supposing
that at γ convergence has been reached, the first iteration step of Newton’s
method with initial guess (û, p̂) = (0, γr) consists (recalling the linearized
problem (13)) in solving
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





















Find (u, p) ∈ U × P such that

2µ
∫

Ω
εεε(u) : εεε(v)− γ

∫

Ω
r(∇u)T : ∇v +

∫

Ω
p div v = ∆γ

∫

Ω
f · v

∫

Ω
q div u = 0 ,

(16)

for every (v, q) ∈ U × P . Letting

U =
{

v ∈ H1(Ω)2 : v|ΓD
= 0

}

; P = L2(Ω) , (17)

we consider system (16) as a model problem for our subsequent considerations.
This means that from now on in this Section we study the linear problem (16)
with the hope that this may give some indications on the more general non-
linear problem (15).

Denoting with AS the symmetric part of a generic second-order tensor A and
introducing the bilinear forms

aγ(F,G) =: 2µ
∫

Ω
FS : GS − γ

∫

Ω
r FT : G (18)

b(v, q) =:
∫

Ω
q div v , (19)

problem (16) can be written as
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
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Find (u, p) ∈ U × P such that

aγ(∇u,∇v) + b(v, p) = ∆γ
∫

Ω
f · v ∀v ∈ U

b(u, q) = 0 ∀q ∈ P .

(20)

Therefore, we are clearly facing a typical (parameter-depending) saddle-point
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problem. As it is well-established (cf. [7]), the crucial properties for the well-
posedness are, together with continuity:

• the inf-sup condition, i.e. the existence a positive constant β such that

inf
q∈P

sup
v∈U

b(v, q)

||v||U ||q||P
≥ β ; (21)

• the invertibility on the kernel condition, i.e. the existence a positive constant
α(γ, µ) such that

inf
v∈Ker B

sup
u∈Ker B

aγ(∇u,∇v)

||u||U ||v||U
≥ α(γ, µ) , (22)

where

Ker B = {v ∈ U : b(v, q) = 0 ∀q ∈ P} . (23)

As far as the inf-sup condition is concerned, it is a classical result that it holds
for the divergence operator. We therefore focus our attention on condition
(22). In particular, we will show that the form aγ(·, ·) is coercive on Ker B
whenever γ stays in a suitable range of values. We thus expect that within
such a range of γ, the trivial solution (û, p̂) = (0, γr) is unique and stable for
the continuous problem.

3.1 The stability range

We now investigate on the coercivity on Ker B of aγ(·, ·). More precisely,
recalling the well-known Korn’s inequality, we search for conditions on γ im-
plying the existence of a constant c(γ, µ) > 0 such that

2µ
∫

Ω
|εεε(v)|2 − γ

∫

Ω
r (∇v)T : ∇v ≥ c(γ, µ)

∫

Ω
|εεε(v)|2 ∀v ∈ Ker B . (24)

Since div(∇v)T = 0 for every divergence-free function v (i.e. for every v ∈
Ker B), an integration by parts gives

2µ
∫

Ω
|εεε(v)|2 − γ

∫

Ω
r (∇v)T : ∇v = 2µ

∫

Ω
|εεε(v)|2 + γ

∫

Ω
∇ r · [∇v]v . (25)

Above, the boundary integral arising from integration by parts disappears
because of the boundary conditions on v, and because on Γ the function
r = 1− Y vanishes.
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Now, a further integration by parts leads to

γ
∫

Ω
∇ r · [∇v]v = γ

(

−
∫

Ω
H(r)v · v +

∫

Γ
(v · ∇ r)(v · n)

)

, (26)

where n is the outward normal vector and H(r) is the Hessian matrix of the
function r. But r = 1 − Y is linear, hence H(r) = 0. On the other hand, on
the boundary Γ we have ∇ r = −n, hence we deduce that

γ
∫

Ω
∇ r · [∇v]v = −γ

∫

Γ
(v · n)2 . (27)

From (24), (25) and (27) we conclude that our form aγ(·, ·) will be coercive on
Ker B if there exists a constant c(γ, µ) > 0 such that

2µ
∫

Ω
|εεε(v)|2 − γ

∫

Γ
(v · n)2 ≥ c(γ, µ)

∫

Ω
|εεε(v)|2 ∀v ∈ Ker B . (28)

By (28) we first infer that for γ ≤ 0 we can simply take c(γ, µ) = 2µ. Further-
more, setting

αM = sup
v∈Ker B

∫

Γ
(v · n)2

∫

Ω
|εεε(v)|2

> 0 , (29)

we see that condition (28) still holds whenever

γ <
2µ

αM

. (30)

Remark 4 We remark that condition (28) cannot hold for arbitrarily large
positive values of γ. Indeed, let w be a function in KerB which does not vanish
on Γ. Hence

∫

Γ
(w · n)2 > 0.

Choosing γ∗ as

γ∗ :=
2µ

∫

Ω
|εεε(w)|2

∫

Γ
(w · n)2

, (31)

it follows that
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2µ
∫

Ω
|εεε(w)|2 − γ

∫

Γ
(w · n)2 ≤ 0 (32)

for all γ ≥ γ∗. As a consequence, coercivity on the kernel surely fails for
sufficiently large positive values of γ.

We now give an estimate of αM by establishing the following Proposition.

Proposition 5 Suppose that Ω = (−1, 1)× (−1, 1). Then αM ≤ 2/3.

Proof. Take v = (v1, v2) ∈ (Ker B) ∩ C1(Ω̄) and observe that on Γ we have
v · n = v2. Therefore

∫

Γ
(v · n)2 =

∫

Γ
|v2|2. (33)

Since for every X ∈ [−1, 1] it holds v2(X,−1) = 0, we get

v2(X, 1) =
∫ 1

−1
v2,Y (X, Y )dY .

Hence, the Cauchy-Schwarz inequality gives

∫

Γ
|v2|2 ≤ 2

∫

Ω
|v2,Y |2 . (34)

Using div v = 0, we obtain

∫

Γ
|v2|2 ≤

∫

Ω
|v1,X |2 +

∫

Ω
|v2,Y |2 ≤

∫

Ω
| ε11(v) |2 +

∫

Ω
| ε22(v) |2 (35)

for all v ∈ (Ker B) ∩ C1(Ω̄).

Before proceeding, we need to introduce some notation. For every point P =
(X, 1) with X ∈ [−1, 1], we define the oriented rectilinear path from point P 1

X

to point P (see Fig. 2), parametrized by

γ
1
X(s) = (−1 + s/

√
2,−X + s/

√
2) s ∈ [0,

√
2(X + 1)] , (36)

and with unit tangent vector

τ 1 = (1/
√

2, 1/
√

2) . (37)

Similarly, for every X ∈ [−1, 1], we define the oriented rectilinear path from
point P 2

X to point P (see Fig. 2), parametrized by
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y

1

X

γ
X

2

γ
X

P=(X,1)

P

P

X

X

1

2

Fig. 2. Oriented paths γ
1
X and γ

2
X on Ω.

γ
2
X(s) = (1− s/

√
2, X + s/

√
2) s ∈ [0,

√
2(1−X)] , (38)

and with unit tangent vector

τ 2 = (−1/
√

2, 1/
√

2) . (39)

Moreover, we introduce the union path γX = γ
1
X ∪ {−γ

2
X} going from point

P 1
X to point P 2

X .

For all X ∈ [−1, 1], it clearly holds

v2(X, 1) =
1√
2
v(X, 1) · τ 1 +

1√
2
v(X, 1) · τ 2 . (40)

Observing that v vanishes on {−1} × [−1, 1] and integrating along γ
1
X , the

first term in the right-hand side of (40) can be written as

v(X, 1) · τ 1 =
∫

√
2(X+1)

0
∇(v · τ 1)(γ

1
X(s)) · τ 1 ds , (41)

which, after some simple algebra, gives
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v(X, 1) · τ 1 =
∫

√
2(X+1)

0
εεε

(

v(γ1
X(s))

)

τ 1 · τ 1 ds . (42)

Recalling that div v = 0, it is easy to see that in Ω we have

εεε(v)τ 1 · τ 1 = ε12(v) . (43)

Using (43) and (42), we obtain

v(X, 1) · τ 1 =
∫

√
2(X+1)

0
ε12(γ

1
X(s)) ds , (44)

or, in more compact form,

v(X, 1) · τ 1 =
∫

γ1

X

ε12(v) . (45)

Treating similarly the second term in the right-hand side of (40), but using
the path γ

2
X , it can be shown that

v(X, 1) · τ 2 = −
∫

γ2

X

ε12(v) . (46)

Recalling (40), from (45) (46) we get

v2(X, 1) =
1√
2

(

∫

γ1

X

ε12(v)−
∫

γ2

X

ε12(v)
)

=
1√
2

∫

γ
X

ε12(v) , (47)

so that we obtain

∫

Γ
| v2 |2=

∫ 1

−1
| v2(X, 1) |2 dX =

1

2

∫ 1

−1

∣

∣

∣

∣

∣

∫

γ
X

ε12(v)

∣

∣

∣

∣

∣

2

dX . (48)

From (48) and observing that | γ
1
X | + | γ

2
X |= 2

√
2 for all X ∈ [−1, 1], the

Cauchy-Schwarz inequality yields

∫

Γ
| v2 |2≤

√
2

∫ 1

−1

(

∫

γ
X

| ε12(v) |2
)

dX . (49)

Setting

Ω1 =
{

(X, Y ) ∈ Ω : Y ≥ X
}

Ω2 =
{

(X, Y ) ∈ Ω : Y ≥ −X
}

, (50)
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we easily get, using a simple change of variables,

∫ 1

−1

∫

γ1

X

| ε12(v) |2=
√

2
∫

Ω1

| ε12(v) |2≤
√

2
∫

Ω
| ε12(v) |2 , (51)

and
∫ 1

−1

∫

γ2

X

| ε12(v) |2=
√

2
∫

Ω2

| ε12(v) |2≤
√

2
∫

Ω
| ε12(v) |2 . (52)

From (49), splitting the integral on γX into the contributions on γ
1
X and γ

2
X ,

using bounds (51)-(52) we obtain

∫

Γ
| v2 |2≤ 4

∫

Ω
| ε12(v) |2 . (53)

Recalling (33), from (35) and (53) it follows

∫

Γ
|v · n|2 ≤ 2

3

∫

Ω
| εεε(v) |2 (54)

for all v ∈ (Ker B) ∩ C1(Ω̄).

By density the same estimate holds in Ker B, so that

αM = sup
v∈Ker B

∫

Γ
(v · n)2

∫

Ω
|εεε(v)|2

≤ 2

3
, (55)

which concludes the proof. 2

Remark 6 We remark that the above estimate of αM is not guaranteed to be
sharp. However, it is sufficient for our subsequent considerations.

To summarize, our analysis shows that the linearized continuous problem (16)
is well-posed and positive-definite on the relevant kernel Ker B if

γ ∈
(

−∞,
2µ

αM

)

⊇ (−∞, 3µ) . (56)

4 Discrete stability range: some theoretical results

The goal of the present Section is to investigate the possibility of solving the
non-linear problem presented in Section 3 through a finite element discretiza-
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tion. Since the first step of an iterative procedure for the solution of non-linear
problem (15) coincides with the infinitesimal strain problem, we concentrate
our attention on discretizations which are at least stable in such a regime.
This can be accomplished by considering finite element methods satisfying
the discrete inf-sup condition, as the ones studied in this Section.

We recall that the continuous linearized problems (16) are surely stable, in the
sense that both the inf-sup and the coercivity on the kernel conditions hold
true, whenever the parameter γ satisfies

−∞ < γ < 3µ . (57)

On the other hand, the continuous linearized problems (16) become unstable
for suitable large values of γ (cf. Remark 4). We point out that this lack of
stability is only addressed to a failure of the coercivity on the kernel condition.
Indeed, for the proposed problem the inf-sup condition is independent of γ,
and therefore it is the same one required for the small deformation framework.

Since a reliable numerical approximation should be able to correctly repro-
duce the stability properties of the continuous problem, the discussion above
highlights the importance of studying whether or not a given finite element
method satisfies a discrete coercivity on the kernel condition, at least for γ in
the range shown by (57). With this respect, we consider the MINI element
(cf. [1]) and the QME element (cf. [18]), rigorously proving that their stability
range are somehow quite different from the continuous problem one. However,
we point out that our theoretical analysis is far from being complete, although
in accordance with the numerical tests presented in Section 5.

4.1 The MINI element

We now consider the discretized counterpart of problem (16), using the MINI
element (cf. [1]).

Let Th be a triangular mesh of Ω, h being the meshsize. For the discretization
of the displacement field, we take

Uh =
{

vh ∈ U : vh|T ∈ P1(T )2 + B(T )2 ∀T ∈ Th

}

, (58)

where P1(T ) is the space of linear functions on T , and B(T ) is the linear space
generated by bT , the standard cubic bubble function on T . For the pressure
discretization, we take

14



Ph =
{

qh ∈ H1(Ω) : qh|T ∈ P1(T ) ∀T ∈ Th

}

. (59)

Therefore, the discretization of problem (16) reads as follows.

Find (uh; ph) ∈ Uh × Ph such that:



















































2µ
∫

Ω
εεε(uh) : εεε(vh)− γ

∫

Ω
r (∇uh)

T : ∇vh

+
∫

Ω
ph div vh = ∆γ

∫

Ω
f · vh ∀vh ∈ Uh

∫

Ω
qh div uh = 0 ∀qh ∈ Ph .

(60)

Introducing the discrete kernel as

Kh =
{

vh ∈ Uh :
∫

Ω
qh div uh = 0 ∀qh ∈ Ph

}

, (61)

we are interested in analyzing for which γ there exists a constant cM(γ, µ) > 0
such that

aγ(∇vh,∇vh) ≥ cM(γ, µ)
∫

Ω
| εεε(vh) |2 ∀vh ∈ Kh , (62)

where

aγ(∇vh,∇vh) := 2µ
∫

Ω
εεε(vh) : εεε(vh)− γ

∫

Ω
r (∇vh)

T : ∇vh . (63)

We develop our analysis considering the meshes used for the numerical tests
presented in Section 5. Therefore Th is built by squares of side 2h, each divided
into eight triangles according with the pattern shown in Fig. 3.

We have the following result.

Proposition 7 For problem (60), the discrete coercivity on the kernel condi-
tion (62) does not hold, whenever γ > 3µ/2.

Proof. Take any two adjacent triangles T1 and T2, both with a side contained
in [−1, 1] × {−1} (see Fig. 3). Consider the function wh = (w1, w2) ∈ Uh

defined as
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Fig. 3. Triangular mesh for the MINI element.

w1 = 0 ; w2 =















bT1
on T1

−bT2
on T2

0 otherwise .

(64)

It is easy to see that

∫

Ω
qh div wh =

∫

T1∪T2

qh div wh = −
∫

T1∪T2

∇qh ·wh = 0 ∀qh ∈ Ph , (65)

so that wh ∈ Kh. From (63) and (64), we get

aγ(wh,wh) = 2µ
∫

T1∪T2

[

(w2,Y )2 +
1

2
(w2,X)2

]

− γ
∫

T1∪T2

(1− Y ) (w2,Y )2 . (66)

Using that for our particular mesh it holds

∫

T
(bT,Y )2 =

∫

T
(bT,X)2 ∀T ∈ Th , (67)
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and noting that on T1 ∪ T2 we obviously have Y < h− 1, from (64) and (66)
it follows

aγ(w,w) ≤
(

3µ− (2− h)γ
)

∫

T1∪T2

(w2,Y )2 . (68)

Therefore the form aγ(·, ·) fails to be coercive on Kh whenever γ and h are
such that

3µ− (2− h)γ ≤ 0 . (69)

It follows that, for γ > 3µ/2, the coercivity on the kernel breaks down, pro-
vided h is sufficiently small. 2

We now prove the following Proposition.

Proposition 8 For problem (60), the discrete coercivity on the kernel condi-
tion (62) is satisfied, independently of the meshsize, whenever γ < µ.

Proof. It is easy to check that, for −µ < γ < µ and −1 < Y < 1, there exists
a constant c > 0 such that

2µAS : AS − γrAT : A ≥ c | AS |2 (70)

for every second order tensor A. From the pointwise positivity property (70)
it easily follows that, for −µ < γ < µ, the bilinear form (see (63))

aγ(∇u,∇v) = 2µ
∫

Ω
εεε(u) : εεε(v)− γ

∫

Ω
r (∇u)T : ∇v (71)

is coercive on the whole space U (and therefore in particular for Kh ⊆ Uh ⊆ U).

We will now prove that for vh ∈ Kh it holds

∫

Ω
r (∇vh)

T : ∇vh ≥ 0 . (72)

Once estimate (72) has been established, also for γ < 0 the coercivity property
(62) immediately follows, and the proof is complete.

We first observe that

(∇vh)
T = (div vh) I− cof[∇vh] . (73)
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Using (73) and integrating by parts we have

∫

Ω
r (∇vh)

T : ∇vh =
∫

Ω
r(div vh)

2 −
∫

Ω
rcof[∇vh] : ∇vh

=
∫

Ω
r(div vh)

2 +
∫

Ω
div(rcof[∇vh]) · vh , (74)

where all the boundary integrals vanish because the function rvh vanishes on
the whole boundary ∂Ω.

Due to Piola’s identity and using (73) we have

∫

Ω
div(rcof[∇vh]) · vh =

∫

Ω
cof[∇vh]∇r · vh

= −
∫

Ω
(∇vh)

T∇r · vh +
∫

Ω
(div vh)∇r · vh . (75)

Recalling that on Γ we have ∇r = −n, simple algebra and an integration by
parts give

−
∫

Ω
(∇vh)

T∇r · vh = −
∫

Ω
∇r · [∇vh]vh

=
∫

Ω
(div vh)∇r · vh −

∫

Γ
(vh · n)(vh · ∇r)

=
∫

Ω
(div vh)∇r · vh +

∫

Γ
| vh · n |2 . (76)

Using (74), (75) and (76) it follows

∫

Ω
r (∇vh)

T : ∇vh =
∫

Ω
r(div vh)

2+2
∫

Ω
(div vh)(∇r ·vh)+

∫

Γ
| vh ·n |2 . (77)

We now split each component of vh in its linear and bubble parts, i.e.

vh = vL
h + vB

h = (vL
1 + vB

1 , vL
2 + vB

2 ) . (78)

Accordingly, noting also that

∇r · vh = −(vL
2 + vB

2 ) , (79)
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equation (77) can be written as

∫

Ω
r (∇vh)

T : ∇vh =
∫

Ω
r
(

div(vL
h + vB

h )
)2

−2
∫

Ω

(

div(vL
h + vB

h )
)

(vL
2 + vB

2 ) +
∫

Γ
| (vL

h + vB
h ) · n |2

= A1 + A2 + A3 . (80)

We now estimate the three terms above. We obviously have

A1 :=
∫

Ω
r
(

div(vL
h + vB

h )
)2 ≥ 2

∫

Ω
r(div vL

h )(div vB
h ) . (81)

Integrating by parts and using that ∇r · vB
h = −vB

2 , from (81) we obtain

A1 ≥ −2
∫

Ω
(div vL

h )∇r · vB
h = 2

∫

Ω
(div vL

h )vB
2 . (82)

Recalling that vh = vL
h + vB

h ∈ Kh and observing that vL
2 is a continuous

piecewise linear function, it follows that

A2 := −2
∫

Ω

(

div(vL
h + vB

h )
)

(vL
2 + vB

2 ) = −2
∫

Ω

(

div(vL
h + vB

h )
)

vB
2 . (83)

Since it holds

∫

Ω
(div vB

h )vB
2 = 0 , (84)

from (83) we get

A2 = −2
∫

Ω
(div vL

h )vB
2 . (85)

Furthermore, for A3 we obviously have

A3 :=
∫

Γ
| (vL

h + vB
h ) · n |2≥ 0 . (86)

Collecting (82),(85) and (86), we finally get (cf. (80))
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∫

Ω
r (∇vh)

T : ∇vh ≥ 2
∫

Ω
(div vL

h )vB
2 − 2

∫

Ω
(div vL

h )vB
2 = 0 . (87)

The Proposition is proved. 2

4.2 The QME element

We now consider the discretized counterpart of problem (16), using the QME
quadrilateral method proposed by Pantuso-Bathe (cf. [18]) and based on the
Enhanced Strain Technique (cf. [24], for instance). This scheme optimally per-
forms in small deformation regimes, as theoretically proved in [13].

For our analysis we consider uniform meshes Th formed by equal square ele-
ments K with side length h, as the ones used in the numerical tests of Section 5.

The Pantuso-Bathe element is described by the following choice of spaces. For
the discretization of the displacement field, we take

Uh =
{

vh ∈ U : vh|K ∈ Q1(K)2 ∀K ∈ Th

}

, (88)

where Q1(K) is the standard space of bilinear functions. For the pressure
discretization, we take

Ph =
{

qh ∈ H1(Ω) : qh|K ∈ Q1(K) ∀K ∈ Th

}

. (89)

Furthermore, the Enhanced Strain space is described by

Sh =
{

Eh ∈ (L2(Ω))4 : Eh|K ∈ E6(K) ∀K ∈ Th

}

. (90)

Above, E6(K) is the space of tensor-valued functions defined on K, spanned
by the following shape functions







α1ξ + α2ξη ; α3ξ

α4η ; α5η + α6ξη






with αi ∈ R , (91)

where (ξ, η) denotes the standard local coordinates on K.

Therefore, the discretization of problem (16) reads as follows.

Find (uh,Hh; ph) ∈ (Uh × Sh)× Ph such that:
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









































































2µ
∫

Ω
(∇uh + Hh)

S : (∇vh + Eh)
S − γ

∫

Ω
r (∇uh + Hh)

T : (∇vh + Eh)

+
∫

Ω
ph (div vh + trEh) = ∆γ

∫

Ω
f · vh ∀(vh,Eh) ∈ Uh × Sh

∫

Ω
qh(div uh + trHh) = 0 ∀qh ∈ Ph .

(92)

Above and in the sequel, we denote with “tr ” the trace operator acting on
tensors.

Introducing the discrete kernel as

Kh =
{

(vh,Eh) ∈ Uh × Sh :
∫

Ω
qh(div vh + trEh) = 0 ∀qh ∈ Ph

}

, (93)

we are interested in analyzing for which γ there exists a constant cE(γ, µ) such
that (cf. (18))

aγ(∇vh + Eh,∇vh + Eh) ≥ cE(γ, µ)
∫

Ω

(

|εεε(vh)|2 + |Eh|2
)

(94)

for every (vh,Eh) ∈ Kh.

We have the following result.

Proposition 9 For the choice (88)–(91), the discrete coercivity on the kernel
condition (94) does not hold, whenever γ > µ.

Proof. Let us define the set F (γ) ⊂ Ω by

F (γ) =
{

(X, Y ) ∈ Ω : 2µ− γ r(X, Y ) ≤ 0
}

. (95)

Recalling that r(X, Y ) = 1 − Y , the set F (γ) has positive area for γ > µ. It
follows that, for sufficiently small h, there exists K̃ ∈ Th completely contained
in F (γ). Now take (vh,Eh) ∈ Uh × Sh by choosing vh = 0 and Eh vanishing
outside K̃. Moreover, in K̃ choose (cf. (91))

Eh|K̃ =







αξη ; 0

0 ; −αξη






with α 6= 0 . (96)
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Notice that trEh = 0; hence (0, 0) 6= (0,Eh) ∈ Kh (cf. (93)). On the other
hand, a direct computation shows that

aγ(Eh,Eh) =
∫

K̃
(2µ− γ r)|Eh|2 . (97)

Since K̃ ⊆ F (γ), we have (2µ− γ r) ≤ 0, so that (97) implies

aγ(Eh,Eh) ≤ 0 . (98)

As a consequence the form aγ(·, ·) cannot be coercive on Kh for γ > µ, uni-
formly in h. 2

5 Numerical tests

We now study the computational performances of specific finite element in-
terpolations on the model problem presented in Section 3. In particular, we
wish to numerically detect the stability range of the elements under investi-
gation and compare such numerical results with the theoretical ones obtained
for the discrete problems in Sections 4.1-4.2 and for the continuous problem
in Section 3.

Besides the interpolations discussed in Sections 4.1 and 4.2, for the numerical
investigation we also consider the so-called Q2P1 (see, for instance, [9]), since
this is commonly considered as a very stable element. Accordingly, we deal
with the following interpolation schemes:

• MINI – Triangular element with piecewise linear continuous approxima-
tion for both the displacements and the pressure, with the displacements
enriched by a cubic bubble as proposed in [1].

• QME – Quadrilateral element with piecewise bilinear continuous approxima-
tion for both the displacements and the pressure, enriched by the Enhanced
Strains as proposed in [18].

• Q2P1 – Quadrilateral element with piecewise biquadratic continuous ap-
proximation for the displacements and piecewise linear approximation for
the pressure.

All the schemes have been implemented in FEAP (see [25]). The model prob-
lem is sketched in Fig. 1, and, assuming to express respectively forces and
lengths in KN and m, we set µ = 40 and f = (0, γ)T , where γ plays the role
of load multiplier. In particular, we find convenient to express the numeri-
cal results in terms of the nondimensional quantity γ̃ defined as γ̃ = γL/µ
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with L some problem characteristic length, in the following set equal to 1 for
simplicity and consistently with the model problem.

For a given interpolation scheme and for a given mesh, to detect numerically
the element stability range we progressively increase the load multiplier γ,
adopting an iterative Newton-Raphson scheme to obtain the solution corre-
sponding to the single load value from the solution corresponding to the pre-
vious load value. In particular, we increase the load multiplier by a quantity
∆γ until some form of numerical instabilities appears; we indicate the load
multiplier corresponding to the appearance of numerical instabilities with γcr

with the corresponding nondimensional multiplier as γ̃cr. To investigate very
large load multiplier intervals, we adopt different increments ∆γ depending
on the load level (Table 1).

Clearly, the analyses are performed starting from γ̃ = 0 for both positive
and negative loading conditions, i.e. for γ̃ < 0 and γ̃ > 0. Finally, if we do
not detect numerical instabilities even for extremely large values of the load
multiplier (γ̃ > 106) we set γ̃cr = ∞.

Tables 2, 3 and 4 report the stability limits for the different interpolation
schemes considered. From the tables we may make the following observations.

• The theoretical predictions for the MINI interpolation scheme are that the
discrete problem is stable for −∞ < γ̃ < 1 and unstable for γ̃ > 3/2
(cf. Propositions 7 and 8). The results presented in Table 2 show that the
corresponding numerical problem is stable for −∞ < γ̃ < 1, unstable for
γ̃ > 3/2. In particular, the stability upper limit approaches monotonically
1 from above during the mesh refinement (i.e. for h → 0). Accordingly, for
the MINI interpolation scheme the numerical results presented in Table 2
confirm the theoretical predictions.

• The theoretical predictions for the QME interpolation scheme are that for
sufficiently small h the discrete problem is unstable for γ̃ > 1 (cf. Proposition
8). The results presented in Table 3 seem to indicate that for sufficiently
small h the corresponding numerical problem is stable for −∞ < γ̃ < 1
and unstable for γ̃ > 1. In particular, the stability lower limit is decreasing
almost linearly with h, approaching −∞ for h → 0, while the stability
upper limit is about 1 but it does not seem to have a smooth convergence.
Accordingly, also for the QME interpolation scheme the numerical results
presented in Table 3 confirm the theoretical predictions.

• We do not have theoretical prediction for the Q2P1 discrete problem, except
the trivial one telling that the problem is stable in the range −1 < γ̃ < 1 (cf.
the proof of Proposition 8, at the beginning). However, the results presented
in Table 4 and relative to the Q2P1 interpolation scheme seem to indicate
that independently of h the numerical problem is stable for −∞ < γ̃ < ∞.
However, we note that during the analyses the finite element code FEAP
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∆γ = 10−1 up to γ = 102

∆γ = 1 up to γ = 103

∆γ = 10 up to γ = 104

∆γ = 102 up to γ = 105

∆γ = 103 up to γ = 106

Table 1
Load increments ∆γ (depending on the load level γ) for the Newton-Raphson
scheme.

mesh γ̃
−
cr γ̃

+
cr

4× 4 −∞ 1.28

8× 8 −∞ 1.22

16× 16 −∞ 1.19

32× 32 −∞ 1.18

64× 64 −∞ 1.17

128× 128 −∞ 1.12

Table 2
MINI element: numerical stability limits for the model problem.

gives a warning about a change in the stiffness matrix properties for γ̃
approximatively in the range [1, 3/2]. We believe that this point could be of
interest, however it requires further investigations.

Finally, we recall that the continuous problem is stable at least for −∞ <
γ̃ < 3 (see (56)), and that for a sufficiently large value of γ̃ the problem gets
unstable (see Remark 4). Therefore, we may conclude that all the interpola-
tion schemes fail in properly detecting the stability range of the continuous
problem. In particular, the MINI interpolation scheme seems to be the most
effective in the sense that it is the element able to reproduce more closely
(but still in a deficient form) the continuum problem; the QME interpolation
scheme seems to be too “flexible” while the Q2P1 seems to be too “stiff”.

6 Conclusions

We have proposed a simple 2D finite-strain problem depending on a loading
parameter, for which a trivial solution can be easily computed. We have proved
the stability of such a solution whenever the loading parameter stays in a
suitable range of values. Furthermore, we have considered and analyzed the
problem discretization by means of some mixed finite elements, which are
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mesh γ̃
−
cr γ̃

+
cr

4× 4 -52.8 1.21

8× 8 -150 1.07

16× 16 -335 0.998

32× 32 -723 0.978

64× 64 -1480 0.980

128× 128 -2980 0.983

Table 3
QME element: numerical stability limits for the model problem.

mesh γ̃
−
cr γ̃

+
cr

4× 4 −∞ +∞

8× 8 −∞ +∞

16× 16 −∞ +∞

32× 32 −∞ +∞

64× 64 −∞ +∞

128× 128 −∞ +∞
Table 4
Q2P1 element: numerical stability limits for the model problem.

known to optimally behave in the framework of small deformation problems.
In particular, we have proved that the elements fail to properly detect the
problem stability range. We have also presented several numerical experiments,
in accordance with the theoretical predictions. We conclude by noting that
our analysis is not able to fully explain the numerical behavior of the schemes
under investigation, and some points need to be better studied and clarified.
This will be the topic of future communications.
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