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Abstract

In this paper we introduce a variant of the three-field formulation where we use
only two sets of variables. Considering, to fix the ideas, the homogeneous Dirichlet
problem for −∆u = g in Ω, our variables are i) the approximations us

h of u in
each sub-domain Ωs (each on its own grid), and ii) an approximation ψh of u on
the skeleton (the union of the interfaces of the sub-domains) on an independent
grid (that could often be uniform). The novelty is in the way to derive, from ψh,
the values of each trace of us

h on the boundary of each Ωs. We do it by solving
an auxiliary problem on each ∂Ωs that resembles the mortar method but is more
flexible. Under suitable assumptions, quasi-optimal error estimates are proved,
uniformly with respect to the number and size of the subdomains. A preliminary
version of the method and of its theoretical analysis has been presented in [7].

1 Introduction

Assume, for simplicity, that we have to solve the model problem

find u ∈ H1
0 (Ω) such that − ∆u = g in Ω, (1)

on a polygonal or polyhedral domain Ω ⊂ R
n, n = 2, 3, where g is a given function

sufficiently regular in Ω. In order to apply a Domain Decomposition technique we split
Ω into polygonal or polyhedral sub-domains Ωs (s = 1, 2, . . . , S) and we consider the
skeleton

Σ := ∪S
s=1Γ

s, (2)

where Γs := ∂Ωs (while Γ = ∂Ω will denote the boundary of Ω).
For the sake of simplicity from now on we shall use a three-dimensional notation, and

speak therefore of faces, edges and vertexes. The change of terminology in the polygonal
case is obvious and left to the reader. Then, for each s = 1, 2, . . . , S, we denote by Γs

r, for
r = 1, 2, . . . , Rs, each of the Rs polygonal faces of the polyhedron Ωs.

On Σ we consider

Φ := {φ ∈ L2(Σ) : ∃v ∈ H1
0 (Ω) with φ = v|Σ} ≡ H1

0 (Ω)|Σ, (3)

while on each Ωs, for s = 1, 2, . . . , S, we consider the space

V s := H1(Ωs). (4)
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In its turn, H1
0 (Ω) can be identified with a subspace of

V := {v ∈ L2(Ω), v|Ωs ∈ V s, ∀s = 1, . . . , S}, (5)

and in particular, setting vs := v|Ωs and introducing the notation

v|Σ = φ ⇔ vs
|Γs = φ|Γs ,∀s = 1, . . . , S, (6)

we can write
H1

0 (Ω) = {v ∈ V such that ∃φ ∈ Φ with v|Σ = φ}. (7)

When discretizing the problem, we assume to be given a decomposition T Σ
δ of Σ

and a corresponding space Φδ of piecewise polynomials. A key difference between this
numerical discretization and the previous one proposed in [7] is that now we consider a
non-conforming approximation Φδ of Φ. In particular, we allow the elements of Φδ to be
discontinuous across two adjacent faces of Σ, which is quite convenient for the practical
implementation of the method.

We also assume that in each Ωs we are given a decomposition T s
h ≡ T Ωs

h , with a
corresponding space V s

h ⊂ V s of piecewise polynomials, and we set

Vh := {v ∈ V such that v|Ωs ∈ V s
h , ∀s = 1, . . . , S}. (8)

It is clear that each decomposition T s
h will induce a decomposition T Γs

h on Γs and a
corresponding space of traces V s

h |Γs ⊂ V s
|Γs . On the other hand the restriction of T Σ

δ to

each Γs also induces a decomposition T Γs

δ of Γs and another space of piecewise polynomials
Φs

δ := Φδ |Γs made by the restrictions of the functions in Φδ to Γs. Hence, on each Γs we
have two decompositions (one coming from T Σ

δ and one from T s
h ) and two spaces of

piecewise polynomial functions (one from Φδ and one from V s
h ). Note, incidentally, that

on each face belonging to two different sub-domains we shall have three decompositions
and three spaces: one from Σ and the other two from the two sub-domains.

The first basic idea of our method is to design for every sub-domain Ωs a linear operator
Gs (the generation operator) that maps every mother φδ ∈ Φδ into an element (daughter)
vs

h|Γs = Gs(φδ) ∈ V s
h |Γs . Together with the individual Gs we consider a global operator G

defined as
G(φδ) = (G1(φδ), . . . ,G

S(φδ)), (9)

and, similarly to (6), we use the notation

vh|Σ = G(φδ) ⇔ vs
h|Γs = Gs(φδ), ∀s = 1, . . . , S.

The way to construct the operators Gs constitutes the second basic idea of this paper,
and will be described in a while.

Once we have the operators Gs we can consider the subspace Sh of Vh made of sisters
(that is, daughters of the same mother):

Sh := {vh ∈ Vh such that ∃φδ ∈ Φδ with vh|Σ = G(φδ)} ⊂ Vh. (10)

We point out that in our previous definitions we consider as daughter, at the same time,
a trace vs

h|Γs , and any function vs
h ∈ V s

h having that same trace. It is clear, comparing (10)

with (7), that Sh can be seen as a nonconforming approximation of H1
0 (Ω). This allows

us to consider the following discrete formulation. We set

as (u, v) :=

∫

Ωs

∇u · ∇vdx and a (u, v) :=
S∑

s=1

as (us, vs) (11)
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and we look for uh ∈ Sh such that

a (uh, vh) =

∫

Ω

g vhdx ∀vh ∈ Sh. (12)

It is clear that, under reasonable assumptions on the subspaces Φδ and V s
h and on the

generation operators Gs, problem (12) will have good stability and accuracy properties.
The idea of introducing the space Φδ, and defining a nonconforming approximation of

H1
0 (Ω) by taking the subset of Vh whose elements take (in some weak sense) value φδ ∈ Φδ

on the skeleton Σ, is one of the main ideas of the three field formulation (see [11]).
Following that approach, for each sub-domain Ωs we could take a space M s

h of Lagrange
multipliers, and, for every φδ ∈ Φδ, we could define Gs(φδ) ∈ V s

h |Γs by

∫

Γs

(φδ − Gs(φδ))µ
s
h dx = 0 ∀µs

h ∈M s
h. (13)

In general, however, equation (13) can fail to have a solution, or the solution can fail to
be unique, unless the spaces M s

h and V s
h |Γs have the same dimension and satisfy a suitable

inf-sup condition. In fact, the three field approach fits in the present framework only if
we allow the generator G to be a set-valued operator and, accordingly, if we change the
condition vh|Σ = G(φδ) into vh|Σ ∈ G(φδ) in the definition of sister space Sh. This is not
a problem in the definition and in the analysis of the three fields formulation. However,
a method where the trace of the elements vs

h on Γs is uniquely determined by an element
of Φδ would have clear advantages. In particular it would allow to use standard Dirichlet
solvers (which can easily be found already implemented and whose optimization is well
understood) as a brick for treating the equation in the subdomain. As we said, in order
for Gs(φδ) to be uniquely determined by (13) the spaces M s

h and V s
h |Γs must have the

same dimension. A simple minded choice is M s
h ≡ V s

h |Γs , that guarantees existence and

uniqueness of the solution of (13) together with optimal stability and accuracy properties
of the projector Gs. This choice however is not the optimal one: in fact, in the estimate
of the error for problem (12), there seems to be no way to get rid of a term like

S∑

s=1

∫

Γs

∂u

∂ns
(φδ − Gs(φδ)) dx. (14)

An obvious way to treat the term in (14) is to use the fact that φδ −Gs(φδ) is orthogonal
to all elements in M s

h, so that we can subtract from ∂u/∂ns any element of M s
h. In

particular we are interested in subtracting a suitable approximation µs
I ≃ ∂u/∂ns. It is

then crucial to be able to find in M s
h a µs

I that approximates ∂u/∂ns with the needed
order. However, ∂u/∂ns is discontinuous passing from one face to another of the same
subdomain. And if the space M s

h is made of continuous functions (as it would be with
the choice M s

h ≡ V s
h |Γs), then the order of approximation (say, in H−1/2(∂Ωs)) cannot be

better than O(h). Hence, we do need an M s
h made of functions that can be discontinuous

when passing from one face to another of the same Ωs. The requirement to contain a
suitable amount of discontinuities and the one to have the same dimension of V s

h |Γs seem
very difficult to conciliate.

A quite similar difficulty is met in the mortar method, (see e.g. [5], [4], [17], [21]), in
particular in three dimensions. There, the requirement that M s

h have the same dimension
as V s

h |Γs is relaxed as little as possible. The values of a “weakly continuous” function vs
h

at nodes which are interior to the faces of Γs on the slave sides are uniquely determined
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by the weak continuity equation, while the degrees of freedom corresponding to nodes on
the edges of Γs (whose union forms the so called wire-basket) are free. Remark that this
difficulty can be overcome (see [1]) if one uses a mixed formulation for the Laplace problem,
since in such an approach the multiplier needs to approximate u, which is continuous,
rather than its normal derivative. We point out that the mortar method can be described
in the framework given here, again by allowing G to be a set-valued operator: Φδ would
correspond to the traces of vh on the “master sides” (or “mortars”) and Gs would be
defined as the identity on master sides and as one of the available mortar projections on
“slave sides”.

The idea, here, is to give up the equality of the dimensions (but still obtain a well
defined operator Gs) by changing (13) into a slightly more complicated formulation, in-
volving an additional Lagrange multiplier. Let us see the main features of this path.

We choose first a space M s
h having in mind the fact that we must be able to use it

for approximating ∂u/∂ns with the right order. We also need its dimension to be smaller
than (or equal to) that of V s

h |Γs . Then we change (13) in the following way. For every

φ ∈ L2(Σ) we look for a pair (ṽs
h, µ̃

s
h) in V s

h |Γs ×M s
h such that

∫

Γs

(φ− ṽs
h)µ

s
h dx = 0 ∀µs

h ∈M s
h (15)

and ∑

T∈T Γs
h

h−1
T

∫

T

(φ− ṽs
h) v

s
h dx+

∫

Γs

µ̃s
h v

s
h dx = 0 ∀vs

h ∈ V s
h |Γs . (16)

Then we set
Gs(φ) := ṽs

h. (17)

It is clear that in (15)-(16) the number of equations will always be equal to the number
of unknowns. It is also clear that if (by shear luck) we have φ|Γs ∈ V s

h |Γs , then

φ|Γs ∈ V s
h |Γs ⇒ Gs(φ) = φ|Γs and µ̃s

h = 0. (18)

This will, in the end, provide for the new approach (15)-(17) an optimal order of accuracy
(as we had for the previous simple-minded (13)). It is, finally, also obvious that some
sort of inf-sup condition will be needed in order to ensure existence and uniqueness of the
solution of (15)-(16), unless some suitable additional stabilization is introduced. However,
the possibility of escaping the cage of the equal dimensionality of M s

h and V s
h |Γs opens

a whole lot of interesting possibilities. We shall see two examples in §4. In the first
example, we shall take as V s

h |Γs the space of quadratic and globally continuous finite
elements and as M s

h the space of linear finite elements, continuous within each face but
discontinuous across the faces. In the second example V s

h |Γs will be the space of continuous
finite elements of degree k enriched by suitable bubble functions, while M s

h will be formed
by fully discontinuous finite elements of degree k − 1.

In this paper we shall follow the path indicated above. In the next section we shall
make precise all the necessary assumptions and definitions, and in §3 we shall derive
abstract error bounds for problem (12) when the operators Gs are constructed as in
(15)-(17). In §4 we shall present some possible choices for the finite element spaces
and discuss their stability and accuracy properties. A step of our analysis is based on
properties of some Besov spaces and on abstract tools of interpolation of function spaces;
the Appendices will be devoted to those rather technical topics.
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2 Preliminaries

Throughout the analysis, we shall make use of the classical Lebesgue spaces Lp(ω), en-
dowed with the norm ‖ · ‖Lp(ω), where ω ⊆ Ω is a manifold of dimension n or n− 1, and
1 ≤ p ≤ ∞. we shall also need the notion of L2-seminorm, defined as

|v|L2(ω) := ‖v − v̄‖L2(ω), (19)

v̄ denoting the mean value of v on ω.
Moreover, we shall make use of the Sobolev spaces Hα(ω) ≡ W α,2(ω), for α ∈ R,

endowed with the usual norms ‖ · ‖Hα(ω) and seminorms | · |Hα(ω). In particular, Sobolev
spaces of fractional order for −1 < α < 1 will be needed (see Appendix A or [18] for more
details). Finally, part of our analysis (Lemmata 8 and 9 in Appendix B) will need some
Besov spaces and some tools of interpolation theory between function spaces, which are
briefly recalled in Appendix A.

The rest of this section is devoted to the presentation of the notation and assumptions
to be made on the decomposition and on the discretizations.

2.1 Assumptions on Ω and on the domain decomposition

We assume that Ω is an open polyhedron of diameter L, and that each Ωs, for s = 1, . . . , S,
is also an open polyhedron, of diameter HΩs ; we assume that the intersection of two
different Ωs is empty, and that the union of the closures of all Ωs is the closure of Ω. As
in (2) the skeleton Σ will be the union of the boundaries ∂Ωs. The diameter of each face
Γs

r will be denoted by HΓs
r
. We do not assume that this decomposition is compatible. This

means that we do not assume that the intersection of the closure of two different Ωs is
either a common face, or a common edge, or a common vertex.

Furthermore, we assume that each Ωs is the image of a reference polyhedron Ω̂bs (of

unitary diameter) in a set {Ω̂1, . . . , Ω̂
bS}, through a bounded map BΩs with bounded Ja-

cobian ∇BΩs . We also assume that BΩs maps each face, edge or vertex of Ω̂bs onto a
face, edge or vertex of Ωs. Clearly Ŝ is the (possibly small) number of different kind
of polyhedra that form the partition in subdomains. For example, if the subdomains
are either tetrahedra or hexahedra, then Ŝ = 2 and Ω̂1 and Ω̂2 are the reference tetra-
hedron and hexahedron, respectively. The shape regularity of each Ωs is measured by
‖∇BΩs‖L∞(bΩbs)‖∇(B−1

Ωs )‖L∞(Ωs), and our estimates will depend on

κ0 := sup
s=1,...,S

‖∇BΩs‖L∞(bΩbs)‖∇(B−1
Ωs )‖L∞(Ωs),

as well as on the set of reference polyhedra {Ω̂1, . . . , Ω̂
bS}, but will be uniform with respect

to the actual number S or sizes HΩs , s = 1, . . . , S, of the subdomains.

2.2 Assumptions on the decomposition T Σ
δ

We assume that we are given a family {T Σ
δ }δ of decompositions of Σ. Each decomposition

T Σ
δ is made of open triangles, in such a way that the intersection of two different triangles

is empty, and the union of the closures of all triangles is Σ. We denote by T Γs

δ and T
Γs

r
δ the

restrictions of T Σ
δ to Γs and Γs

r, respectively. Within each face Γs
r, we assume compatibility,

that is, we assume that the intersection of the closures of two different triangles lying on

5



each Γs
r is either empty, a common edge or a common vertex. We assume, as usual, shape

regularity, for instance by assuming that the ratio between the diameter of each triangle
and the radius of its biggest inscribed circle is smaller than κ1, with κ1 independent of
δ. Furthermore, we assume that each mesh T

Γs
r

δ is quasi-uniform: there exists a constant
κ2, independent of the family index δ, such that, if δmin

Γs
r

and δmax
Γs

r
are the minimum and

the maximum diameters (respectively) of the triangles in T
Γs

r
δ , then δmin

Γs
r

≥ κ2δ
max
Γs

r
, for all

r = 1, . . . , Rs and s = 1, . . . , S.

2.3 Assumptions on the decompositions T s
h (and T Γs

h )

We assume that we are given, for each s = 1, . . . , S, a family {T s
h }h of decompositions of

Ωs. Each decomposition is made of open tetrahedrons in such a way that the intersection
of two different tetrahedrons is empty, and the union of the closures of all tetrahedrons
is Ωs. We also assume compatibility: the intersection of the closures of two different
tetrahedrons is either empty, a common face, a common edge, or a common vertex.
Finally we assume shape regularity, for instance by assuming that the ratio between the
diameter of each tetrahedron and the radius of its biggest inscribed sphere is smaller than
κ3, with κ3 independent of the family index h. We point out that we do not assume quasi-
uniformity for the meshes T s

h . We denote by hK the diameter of an element K ∈ T s
h ; the

parameter hmax
Ωs denotes the maximum diameter of the elements in T s

h . We recall that the
triangulation T Γs

h is the restriction to Γs of T s
h ; hT denotes the diameter of an element

T ∈ T Γs

h ; we also introduce the notation hmin
Γs and hmax

Γs for denoting the minimum and
the maximum diameter, respectively, of the elements T ∈ T Γs

h .

2.4 Definitions of the spaces V , Φ, Φ⋆, and M s
r

The space V is defined in (5) and it is endowed with the seminorm and norm:

|v|2V :=
S∑

s=1

‖∇v‖2
L2(Ωs), ∀v ∈ V, (20)

‖v‖2
V := L−2‖v‖2

L2(Ω) + |v|2V , ∀v ∈ V. (21)

The natural norm induced by | · |V on the space of continuous mothers Φ by the definition
(3) is

‖φ‖2
Φ :=

S∑

s=1

|φ|2H1/2(Γs), ∀φ ∈ Φ.

In view of a non-conforming approximation Φδ of Φ, we introduce the space

Φ⋆ :=
{
φ ∈ L2(Σ) : φ|Γ = 0, φ|Γs

r
∈ H1/2(Γs),∀r = 1, . . . , Rs, s = 1, . . . , S

}
(22)

endowed with the norm

‖φ‖2
Φ⋆ :=

S∑

s=1

(
H−1

Ωs |φ|2L2(Γs) +
Rs∑

r=1

|φ|2H1/2(Γs
r)

)
. (23)

It is not difficult to realize that ‖ · ‖∗ is indeed a norm. In fact, ‖φ‖∗ = 0 implies that
φ|Γs is a constant cs and since φ is single-valued, all such constants are necessarily equals.
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Since since φ = 0 on Γ, we easily conclude that φ = 0 on Σ. In this respect, see also
Lemma 1.

On each face Γs
r we define M s

r := H−1/2(Γs
r), endowed with the norm

‖µ‖Ms
r

:= sup
v∈H1/2(Γs

r)

〈µ, v〉
(
H−1

Γs
r
‖v‖2

L2(Γs
r) + |v|2

H1/2(Γs
r)

)1/2
. (24)

2.5 Assumptions on the discretizations Φδ, V
s
h , and M s

h

We denote by Pκ(ω) the space of polynomials of degree at most κ on ω. Our assumptions
on the discrete spaces Φδ, V

s
h and M s

h are:

Φδ ⊆
{
φ ∈ Φ⋆ : φ|T ∈ Pκ(T ), T ∈ T Σ

δ

}
, (25)

V s
h ⊆ {vs ∈ V s such that vs

|K ∈ Pκ(K), K ∈ T s
h }, (26)

and
M s

h ⊆ {µ ∈ L2(Γs) such that µ|T ∈ Pκ(T ), T ∈ T Γs

h }. (27)

Using the notation of [8] for the usual Lagrange finite element spaces, we have

V s
h ⊆ L1

κ(T
s

h ), M s
h ⊆ L0

κ(T
Γs

h ), Φδ ⊆ L0
κ(T

Σ
δ ),

with the additional assumption that the functions φδ ∈ Φδ are null on Γ and continuous
on the faces Γs

r; note that in the case of a non-compatible subdivision into subdomains,
the continuity is required on the union of partially overlapped faces.

We assume that there exist bounded lifting operators from V s
h |Γs to V s

h . More precisely,
for all s = 1, . . . , S and for all vs

h ∈ V s
h |Γs , there exists an extension vs

h ∈ V s
h such that

|vs
h|H1(Ωs) ≤ C|vs

h|H1/2(Γs), (28)

with a constant C which only depends on the shape regularity of the mesh. This property
is actually true for almost all reasonable finite element spaces, as we shall see later on.
Finally, we make the following minimal assumptions on V s

h and M s
h:

V s
h contains the constants on Ωs, ∀s = 1, . . . , S;

M s
h and Φδ contain the constants on Γs

r, ∀s = 1, . . . , S, ∀r = 1, . . . , Rs.
(29)

2.6 The operators Gs and the compatibility assumptions among
the discretizations

Having defined the spaces V s
h (and therefore V s

h |Γs) and M s
h, we can now consider the

operators Gs (that will always be given by (15)-(17)) together with the global operator G
(still given by (9)), and then we can define the space of sisters Sh, always as in (10).

We can now turn to the more important assumptions, that will require some compat-
ibility conditions among the spaces Φs

δ, V
s
h |Γs and M s

h.

Our first assumption will deal with the well-posedness of problem (15)-(17). As this
is a problem in classical mixed form, we have no real escape but assuming an inf-sup
condition on the spaces V s

h |Γs and M s
h. In particular we define, for any real α, the norm

‖ν‖2
h,α,Γs :=

∑

T∈T Γs
h

h−2α
T ‖ν‖2

0,T , ∀ν ∈ L2(Γs), (30)
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and we make the following assumption:
∃γ0 > 0 such that ∀s = 1, . . . , S and ∀h > 0

inf
µs

h∈Ms
h\{0}

sup
vs

h∈V s
h |Γs\{0}

∫
Γs v

s
h µ

s
h dx

‖vs
h‖h,1/2,Γs ‖µs

h‖h,−1/2,Γs

≥ γ0. (31)

Condition (31) will be, in a sense, the only nontrivial assumption that we have to take
into account in the definition of our spaces V s

h and M s
h. However, in §4, we are going to

see some families of elements where (31) can be checked rather easily.

Our last assumption will deal with the bound on the mother. We point out that, so
far, we did not assume that an element of the space of sisters Sh had a unique mother.
Indeed, we do not need it. we shall simply ask that

∃γ1 > 0 such that ∀vh ∈ Sh,∃φδ ∈ Φδ with G(φδ) = vh|Σ and γ1‖φδ‖Φ⋆ ≤ |vh|V . (32)

We point out that a sufficient condition for (32) to hold is that Φδ and the M s
h’s are

chosen in such a way that they satisfy an inf-sup condition. More precisely, we have the
following proposition.

Proposition 1. Let the assumptions of §2.1 hold. Assume that there exists a γ′1, in-
dependent of the meshes and of s and r, such that: for each s = 1, . . . , S, and each
r = 1, . . . , Rs, if Γs

r is an internal face we have

inf
φδ∈Φδ |Γs

r
\{0}

sup
µs

h∈Ms
h\{0}

∫
Γs

r
φδ µ

s
h dx

‖µs
h‖Ms

r

(
H−1

Γs
r
‖φδ‖2

L2(Γs
r) + |φδ|2H1/2(Γs

r)

)1/2
≥ γ′1 > 0. (33)

Then (32) holds.

Proof. Let vh be a daughter of a given mother φδ, i.e., vh|Σ = G(φδ). Consider a single
subdomain Ωs with boundary Γs. We recall that, for the assumptions (15) and (29),
vh − v̄h = Gs(φδ − φ̄δ), where v̄h and φ̄δ are the the mean values of vh and φδ, respectively,
on Γs. If we use the inf-sup condition (33) for φδ − φ̄δ, we get, on each single face Γs

r of
Ωs

γ′1

(
H−1

Γs
r
‖φδ − φ̄δ‖

2
L2(Γs

r) + |φδ − φ̄δ|
2
H1/2(Γs

r)

)1/2

≤ sup
µs

h∈Ms
h\{0}

∫
Γs(φδ − φ̄δ)µ

s
h dx

‖µs
h‖Ms

r

= sup
µs

h∈Ms
h\{0}

∫
Γs(vh − v̄h)µ

s
h dx

‖µs
h‖Ms

r

≤
(
H−1

Γs
r
‖vh − v̄h‖

2
L2(Γs

r) + |vh − v̄h|
2
H1/2(Γs

r)

)1/2

.

(34)

Thanks to the trace inequality, we have

Rs∑

r=1

(
H−1

Γs
r
‖vh − v̄h‖

2
L2(Γs

r) + |vh − v̄h|
2
H1/2(Γs

r)

)
≤ C

(
H−1

Ωs |vh|
2
L2(Γs) + |vh|

2
H1/2(Γs)

)

≤ C|vh|
2
H1(Ωs).

8



Then we get, after summing over r = 1, . . . , Rs,

γ1

(
H−1

Ωs |φδ|
2
L2(Γs) +

Rs∑

r=1

|φδ|
2
H1/2(Γs

r)

)1/2

≤ |vh|H1(Ωs), (35)

for a suitable choice of γ1 > 0. Squaring (35) and summing for s = 1, . . . , S eventually
yields (32).

Observe that Proposition 1 can be weakened: indeed, we ask an inf-sup condition (33)
on both sides of each internal face which is shared between two subdomains, while one
of the two conditions is enough. Anyway, as it is clear from the proof, the assumptions
of Proposition 1 are stronger than (32). In particular they imply the uniqueness of the
mother, which, as already remarked, is not strictly needed in the following.

Assumptions (33) (or the milder (32)) will have to be verified case by case. We recall
that, by a well known argument, a way for an inf-sup condition of such kind to be satisfied
is that on each face Γs

r the mesh T
Γs

r
δ is coarser than the mesh induced by T s

h (see §4).

3 Basic Error Estimates

The goal of this section is to show an optimal bound for the error ‖u − uh‖V , in terms
of the approximation properties of the discrete spaces. Under the assumptions of §2,
the error estimates will be independent of the number or the size of the subdomains.
From now on, C and Ci will denote strictly positive constants, possibly different at each
occurrence, which may depend only on the set of reference polyhedra {Ω̂1, . . . , Ω̂

bS}, the
polynomial degree κ, the constants κ0, κ1, κ2, κ3, appearing in the shape regularity and
quasi-uniformity assumptions on the meshes, and the stability constants γ0, γ1 of §2.

3.1 Preliminary results

We need some preliminary lemma. The first lemma introduces a sort of Poincaré inequality
for the space of mothers.

Lemma 1. Under the assumptions of §2.1, we have

S∑

s=1

HΩs‖φ‖2
L2(Γs) ≤ CL2

S∑

s=1

H−1
Ωs |φ|2L2(Γs), ∀φ ∈ Φ⋆. (36)

Proof. Let φ̄ be the piecewise constant function which, in each subdomain Ωs, is equal to
the mean value of φ on Γs ≡ ∂Ωs. By the triangle inequality, since H

1/2
Ωs ≤ LH

−1/2
Ωs , we

have
H

1/2
Ωs ‖φ‖L2(Γs) ≤ H

1/2
Ωs ‖φ− φ̄‖L2(Γs) +H

1/2
Ωs ‖φ̄‖L2(Γs)

≤ LH
−1/2
Ωs |φ|L2(Γs) +H

1/2
Ωs ‖φ̄‖L2(Γs).

(37)

Then, we only have to show that

S∑

s=1

HΩs‖φ̄‖2
L2(Γs) ≤ CL2

S∑

s=1

H−1
Ωs |φ|2L2(Γs), ∀φ ∈ Φ⋆. (38)

Let x1 denote the first coordinate of a point x ∈ R
n, ns be the outward normal direction

on Γs, and ns
1 be the first component of ns. Assume for simplicity that Ω contains the

9



origin of R
n, so that ‖x1‖L∞(Ω) ≤ L (otherwise we would take, instead of x1, a polynomial

p = x1 − c, vanishing at some point of Ω). Thanks to the assumptions of §2.1 we have,
integrating by parts,

S∑

s=1

HΩs‖φ̄‖2
L2(Γs) ≤ C

S∑

s=1

‖φ̄‖2
L2(Ωs)

= C
S∑

s=1

∫

Ωs

φ̄2∂x1

∂x1

= C
S∑

s=1

∫

Γs

φ̄2x1n
s
1.

(39)

On the other hand, since φ is single-valued on Σ and vanishes on Γ, we have

S∑

s=1

∫

Γs

φ2x1n
s
1 = 0.

Using this in (39), then the Cauchy-Schwarz and the Young inequality we get

S∑

s=1

HΩs‖φ̄‖2
L2(Γs) ≤ C

S∑

s=1

∫

Γs

(
φ̄2 − φ2

)
x1n

s
1

= C

S∑

s=1

∫

Γs

(
2
(
φ̄− φ

)
φ̄−

(
φ̄− φ

)2)
x1n

s
1

≤ C

(
S∑

s=1

L‖φ− φ̄‖L2(Γs)‖φ̄‖L2(Γs) +
S∑

s=1

L‖φ− φ̄‖2
L2(Γs)

)

≤
1

2

S∑

s=1

HΩs‖φ̄‖2
L2(Γs) + C

S∑

s=1

H−1
Ωs L2‖φ− φ̄‖2

L2(Γs).

which gives (38), and eventually (36).

The next result is a Poincaré inequality for functions in V .

Lemma 2. Under the assumptions of §2.1, let v ∈ V ; then

‖v‖L2(Ω) ≤ C

(
L2|v|2V +

S∑

s=1

HΩs‖v̄s‖2
L2(Γs)

)1/2

, (40)

where v̄s denotes the mean value of vs on Γs.

Proof. By the triangle inequality, we have

‖v‖L2(Ωs) ≤ ‖v − v̄‖L2(Ωs) + ‖v̄‖L2(Ωs) =: I + II.

Thanks to the Poincaré inequality, we have

I ≤ CHΩs|v|H1(Ωs).

Considering now II we have

II ≤ CH
1/2
Ωs ‖v̄‖L2(Γs);

10



squaring and summing over all the subdomains, we get

‖v‖L2(Ω) ≤ C

[
S∑

s=1

(
H2

Ωs|vs|2H1(Ωs) +HΩs‖v̄s‖2
L2(Γs)

)]1/2

. (41)

Since HΩs ≤ L, (41) yields (40).

Assume now that vh ∈ Sh, so that vh|Σ = G(φδ) for some mother φδ ∈ Φδ; then from
(15) and (29), we have

∫
Γs vh − φδ = 0, and therefore, using (36) and (32), we get the

following Poincaré-like estimates for Sh.

Corollary 1. Under the assumptions of §2, we have

‖vh‖V ≤ CL|vh|V , ∀vh ∈ Sh. (42)

We shall now prove a sort of inverse inequality in the space V s
h |Γs .

Lemma 3. Under the assumptions of §2, the following inverse inequality holds:

|vs
h|H1/2(Γs) ≤ C‖vs

h‖h,1/2,Γs , ∀vs
h ∈ V s

h |Γs . (43)

Proof. We shall actually prove that (43) holds for all vs
h ∈ L1

κ(T
Γs

h ). It is well known
that a function in L1

κ(T
s

h ) is uniquely identified by its values at a set {xi}i of nodes
corresponding to the canonical Lagrange basis. With an abuse of notation, we extend vs

h

to a function of L1
κ(T

s
h ) setting vs

h(xi) = 0 at all the internal nodes (i.e., the nodes of T s
h

not lying on Γs). From the classical trace theorem, we have |vs
h|H1/2(Γs) ≤ C|vs

h|H1(Ωs).
Let us then bound the H1(Ωs) seminorm of vs

h. By definition vs
h is non zero only on

those tetrahedrons T ∈ T s
h which are adjacent to the boundary. Let K be one of such

tetrahedrons, with m ≥ 1 faces lying on Γs, and let Ti ∈ T Γs

h , i = 1, . . . ,m be those faces.
Thanks to standard arguments, we can write:

|vs
h|

2
H1(K) ≤ Ch−1

K ‖vs
h‖

2
L2(∂K) ≤ C

m∑

i=1

h−1
Ti
‖vs

h‖
2
L2(Ti)

. (44)

For each element K ′ that share only an edge or a vertex with Γs, there is an element K
which own a face with that edge or vertex. In this case, by standard arguments, we get

|vs
h|

2
H1(K′) ≤ C|vs

h|
2
H1(K′),

and then we can still use (44) to bound |vs
h|

2
H1(K′). Finally, adding the contributions of all

elements adjacent to Γs, we obtain that

|vs
h|H1(Ωs) ≤ C‖vs

h‖h,1/2,Γs ,

which implies (43).

3.2 Estimates on the operator Gs

We now look in more detail at the operator Gs. Thanks to the classical theory of mixed
finite elements (see [8]) it is immediate to see that the following lemma holds true.
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Lemma 4. Let s = 1, . . . , S; assume that the inf-sup condition (31) is satisfied; then

‖Gs(φ)‖h,1/2,Γs ≤ C‖φ‖h,1/2,Γs , ∀φ ∈ L2(Γs), (45)

where the norms are the ones defined in (30).

We point out that the norm ‖ · ‖h,1/2,Γs , which is induced by the bilinear form (u, v) 7→∑
T∈T Γs

h

∫
T
h−1

T u v dx, plays the role of a discrete H1/2(Γs) norm. See also the result of

Lemma 3 above.
We observe that Lemmata 4 and 3 trivially imply the continuity of Gs from L2(Γs)

(endowed with the norm ‖ ·‖h,1/2,Γs), to H1/2(Γs). However a stronger result holds, stated
in the following theorem.

Theorem 1. Under the assumptions of §2, Gs is continuous from H1/2(Γs) to H1/2(Γs):

|Gs(φ)|H1/2(Γs) ≤ C|φ|H1/2(Γs), ∀φ ∈ H1/2(Γs). (46)

Proof. First, we introduce the Clément interpolant φI ∈ V s
h |Γs of φ (see [14]), for which

the same arguments as in [14] give

‖φ− φI‖h,1/2,Γs ≤ C|φ|H1/2(Γs). (47)

Moreover, we have the stability property (see Lemma 8 in Appendix B)

|φI |H1/2(Γs) ≤ C|φ|H1/2(Γs). (48)

Since Gs is linear and using the triangle inequality, we have

|Gs(φ)|H1/2(Γs) ≤ |Gs(φ− φI)|H1/2(Γs) + |Gs(φI)|H1/2(Γs) = I + II.

Making use of Lemma 3, Lemma 4 and (47), we get

I = |Gs(φ− φI)|H1/2(Γs) ≤ C‖Gs(φ− φI)‖h,1/2,Γs

≤ C‖φ− φI‖h,1/2,Γs

≤ C|φ|H1/2(Γs).

Moreover, recalling (18) (that is, Gs(φI) = φI) and then using (48), we have

II = |Gs(φI)|H1/2(Γs) ≤ C|φ|H1/2(Γs),

which eventually gives (46).

We are also interested to the case of φ that are discontinuous across the faces. In this
case φ|Γs 6∈ H1/2(Γs), and Theorem 1 is useless. However, we have the following result,
whose proof is based on the Lemmata of Appendix B.

Theorem 2. Under the assumptions of §2, for 1 ≤ s ≤ S, it holds that

|Gs(φ)|2H1/2(Γs) ≤ C

(
1 + log

(
HΩs

hmin
Γs

))(
H−1

Ωs |φ|2L2(Γs) + |φ|L2(Γs)

Rs∑

r=1

|φ|H1(Γs
r)

)
, (49)

for any φ ∈ L2(Γs) such that φ|Γs
r
∈ H1(Γs

r) for each r = 1, . . . , Rs.
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Proof. We set

ǫ :=
1

log
(

HΩs

hmin
Γs

) . (50)

If ǫ ≥ 1/2 (that is if e2hmin
Γs ≥ HΩs) then (48) easily follows from (43) and (45). Then

we only need to consider the case ǫ < 1/2. Still denoting by φI ∈ V s
h |Γs the Clément

interpolant of φ, we have the error estimate

‖φ− φI‖h,1/2−ǫ,Γs ≤ C|φ|H1/2−ǫ(Γs). (51)

Furthermore, Lemma 8 in Appendix B gives

|φI |H1/2(Γs) ≤ C(hmin
Γs )−ǫ|φ|H1/2−ǫ(Γs). (52)

Therefore, reasoning as in the proof of Theorem 1

|Gs(φ)|H1/2(Γs) ≤ |Gs(φ− φI)|H1/2(Γs) + |Gs(φI)|H1/2(Γs) = I + II.

Making use of Lemma 3, Lemma 4, and (51), we get

I = |Gs(φ− φI)|H1/2(Γs) ≤ C‖Gs(φ− φI)‖h,1/2,Γs

≤ C‖φ− φI‖h,1/2,Γs

≤ C(hmin
Γs )−ǫ‖φ− φI‖h,1/2−ǫ,Γs

≤ C(hmin
Γs )−ǫ|φ|H1/2−ǫ(Γs).

Moreover, using (52), we have

II = |Gs(φI)|H1/2(Γs) = |φI |H1/2(Γs) ≤ C(hmin
Γs )−ǫ|φ|H1/2−ǫ(Γs).

Invoking Lemma 9 in Appendix B, we get then

|Gs(φ)|H1/2(Γs) ≤ I + II

≤ C(HΩs)ǫ(hmin
Γs )−ǫǫ−1/2

(
H−1

Ωs |φ|2L2(Γs) + |φ|L2(Γs)

Rs∑

r=1

|φ|H1(Γs
r)

)1/2

;
(53)

recalling (50) we have (HΩs)ǫ(hmin
Γs )−ǫǫ−1/2 = e

(
log
(

HΩs

hmin
Γs

))1/2

, which eventually gives (49).

3.3 Interpolation estimates

Let now ψI ∈ Φδ be an interpolant of the exact solution ψ := u|Σ. For every Ωs (s =
1, . . . , S), let ũs

I ∈ V s
h be defined as the unique solution of

{
ũs

I = Gs(ψI) on Γs

as (ũs
I , v

s
h) =

∫
Ωs g v

s
h dx ∀vs

h ∈ V s
h ∩H1

0 (Ωs).
(54)

Let ũI be equal to ũs
I in each Ωs, s = 1, . . . , S. It is clear that ũI ∈ Sh. We are now going

to estimate the distance between u and ũI .
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Using the definition (54) of ũs
I and thanks to the assumption (28), we can apply the

usual theory for estimating the error for each Dirichlet problem in Ωs:

|u− ũs
I |H1(Ωs) ≤ C

(
inf

vs
h∈V s

h

|u− vs
h|H1(Ωs) + |u− ũs

I |H1/2(Γs)

)
. (55)

It is clear now that the crucial step is to estimate |u− ũs
I |H1/2(Γs). To this aim we consider

a generic vh ∈ V s
h |Γs and we write

|u− ũs
I |H1/2(Γs) = |u− Gs(ψI)|H1/2(Γs)

≤ |u− vh|H1/2(Γs) + |vh − Gs(u)|H1/2(Γs) (56)

+|Gs(u) − Gs(ψI)|H1/2(Γs)

Recalling (18), , we have vh = Gs(vh) and, using Theorem 1, we easily get

|vh − Gs(u)|H1/2(Γs) = |Gs(vh − u)|H1/2(Γs) ≤ C|u− vh|H1/2(Γs).

On the other hand, using Theorem 2, we obtain

|Gs(u) − Gs(ψI)|H1/2(Γs) = |Gs(u− ψI)|H1/2(Γs)

≤ C

(
1 + log

(
HΩs

hmin
Γs

))1/2

·

(
H−1

Ωs |u− ψI |
2
L2(Γs) + |u− ψI |L2(Γs)

Rs∑

r=1

|u− ψI |H1(Γs
r)

)1/2

.

Substituting this back in (56), and then in (55), we get

|u− ũs
I |H1(Ωs) ≤ C

[
inf

vs
h∈V s

h

|u− vs
h|H1(Ωs) +

(
1 + log

(
HΩs

hmin
Γs

))1/2

·

(
H−1

Ωs |u− ψI |
2
L2(Γs) + |u− ψI |L2(Γs)

Rs∑

r=1

|u− ψI |H1(Γs
r)

)1/2 ]
.

(57)

We now remark that u 6∈ Sh while ũI 6∈ H1
0 (Ω). Therefore, in order to estimate u− ũI in

L2(Ω), we can neither use the usual Poincaré inequality nor apply (42), but we have to
do it directly. Using (40) we have immediately

‖u− ũI‖
2
L2(Ω) ≤ CL2

S∑

s=1

|u− ũs
I |

2
H1(Ωs) +

S∑

s=1

HΩs

∥∥∥∥
1

|Γs|

∫

Γs

u− ũs
I

∥∥∥∥
2

L2(Γs)

. (58)

Now, recalling that ũs
I = Gs(ψI) on Γs and

∫
Γs G

s(ψI) =
∫

Γs ψI (thanks to (15) and (29)),
we get

∥∥∥∥
1

|Γs|

∫

Γs

u− ũs
I

∥∥∥∥
2

L2(Γs)

=

∥∥∥∥
1

|Γs|

∫

Γs

u− ψI

∥∥∥∥
2

L2(Γs)

≤ ‖u− ψI‖
2
L2(Γs) . (59)

Furthermore, thanks to (36), that is,

S∑

s=1

HΩs ‖u− ψI‖
2
L2(Γs) ≤ CL2

S∑

s=1

H−1
Ωs |u− ψI |

2
L2(Γs) ,

14



we have
S∑

s=1

HΩs

∥∥∥∥
1

|Γs|

∫

Γs

u− ũs
I

∥∥∥∥
2

L2(Γs)

≤ CL2

S∑

s=1

H−1
Ωs |u− ψI |

2
L2(Γs) . (60)

Collecting (57), (58), and (60) and recalling that ψI ∈ Φδ is an arbitrary approximation
of u|Σ, we finally get the following approximation estimate.

Lemma 5. Under the assumptions of §2, let u be the exact solution of (1) and let ũI be
constructed as in (54). Then we have

‖u− ũI‖
2
V ≤ C

S∑

s=1

(
inf

vs
h∈V s

h

|u− vs
h|

2
H1(Ωs)

)
+ C inf

φδ∈Φδ

{
S∑

s=1

(
1 + log

(
HΩs

hmin
Γs

))

·

(
H−1

Ωs |u− φδ|
2
L2(Γs) + |u− φδ|L2(Γs)

Rs∑

r=1

|u− φδ|H1(Γs
r)

)}
.

(61)

3.4 Error estimates

We are now ready to analyze problem (12) and derive the abstract error estimate.

Theorem 3. Under the assumptions of §2, let u be the exact solution of (1) and uh be
the solution of (12). Then we have

‖u− uh‖
2
V ≤ C inf

vh∈Vh

{
|u− vh|

2
V

}
+ C

S∑

s=1

inf
µs

h∈Ms
h

{
Rs∑

r=1

∥∥∥∥
∂u

∂ns
− µs

h

∥∥∥∥
2

Ms
r

}

+ C inf
φδ∈Φδ

{
S∑

s=1

(
1 + log

(
HΩs

hmin
Γs

))

·

(
H−1

Ωs |u− φδ|
2
L2(Γs) + |u− φδ|L2(Γs)

Rs∑

r=1

|u− φδ|H1(Γs
r)

)}
.

(62)

Proof. With our assumptions, it is easy to see that problem (12) has a unique solution.
We now set eh := ũI − uh ∈ Sh, where ũI is defined in (54). Using the definition (11) and
adding and subtracting u we have:

|eh|
2
V = a (eh, eh) = a (ũI − u, eh) + a (u− uh, eh) =: I + II. (63)

Using (12) and integrating a (u, eh) by parts in each Ωs we obtain

II = a (u− uh, eh) =
S∑

s=1

∫

Ωs

g es
h dx+

S∑

s=1

∫

Γs

∂u

∂ns
es

h dx−
S∑

s=1

∫

Ωs

g es
h dx

=
S∑

s=1

∫

Γs

∂u

∂ns
es

h dx. (64)

As eh ∈ Sh, using assumption (32) there will be a mother ηδ ∈ Φδ with γ1‖ηδ‖Φ⋆ ≤
|eh|V , such that G(ηδ) = eh|Σ. Hence the continuity of ∂u/∂ns on the interfaces between
subdomains, and the fact that ηδ is single-valued on the skeleton Σ yield

II =
S∑

s=1

∫

Γs

∂u

∂ns
(es

h − ηδ) dx =
S∑

s=1

∫

Γs

∂u

∂ns
(Gs(ηδ) − ηδ) dx. (65)
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We can now use the definition of Gs (see (16)) and subtract from ∂u/∂ns any function
µs

h ∈ M s
h. In particular, to fix the ideas, we take for instance the best approximation of

∂u/∂ns in M s
h, and denote it by νs

I . In this way we obtain

II =
S∑

s=1

∫

Γs

( ∂u
∂ns

− νs
I

)
(Gs(ηδ) − ηδ)) dx

=
S∑

s=1

Rs∑

r=1

∫

Γs
r

( ∂u
∂ns

− νs
I

)
(Gs(ηδ) − ηδ)) dx.

(66)

We recall that Gs(ηδ) = es
h on Γs. We also point out that (thanks to (29)) we can

assume that the mean value of ∂u/∂ns − νs
I on each face Γs

r is zero, so that we can use
the H1/2-seminorm of es

h and ηδ instead of the norm in the estimate. Then, recalling (32)
for ηδ, that is.

S∑

s=1

Rs∑

r=1

|ηδ|
2
H1/2(Γs

r) ≤ γ−2
1 |eh|

2
V ,

and using the Cauchy-Schwarz inequality, as well as the standard trace inequality in each
Ωs for es

h, we obtain

II ≤

S∑

s=1

Rs∑

r=1

∥∥∥∥
∂u

∂ns
− νs

I

∥∥∥∥
Ms

r

(
|es

h|H1/2(Γs
r) + |ηδ|H1/2(Γs

r)

)

≤ C
( S∑

s=1

Rs∑

r=1

∥∥∥∥
∂u

∂ns
− νs

I

∥∥∥∥
2

Ms
r

)1/2

|eh|V .

(67)

Since
I = a (ũI − u, eh) ≤ |ũI − u|V |eh|V , (68)

we obtain from (63), (67), and (68)

|eh|V ≤ C

(
S∑

s=1

Rs∑

r=1

∥∥∥∥
∂u

∂ns
− νs

I

∥∥∥∥
2

Ms
r

)1/2

+ C |u− ũI |V . (69)

Using the triangle inequality and Corollary 1 (since eh ∈ Sh) we get

‖u− uh‖V ≤ ‖u− ũI‖V + ‖eh‖V ≤ ‖u− ũI‖V + C |eh|V , (70)

that, together with (69) and (61), eventually gives (62).

4 Examples and Remarks

In this section we want to show two examples of finite element discretizations that satisfy
the abstract assumptions of §2, and derive the corresponding error bounds in terms of
suitable powers of the mesh-sizes. For each example, we shall show that the two inf-
sup conditions (31) and (33) hold. The former inf-sup will be proved by a constructive
argument, while, for the latter, we shall assume that the mesh T Σ

δ is coarser than the
mesh induced on Σ by T s

h , and then we shall make use of the classical argument of [2].
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4.1 First example

Under the assumptions on the subdomain subdivision and on the triangulations made
in §2, we consider here the following choice of the finite element spaces Φδ, V

s
h and M s

h,
s = 1, . . . , S:

Φδ :=
{
φ ∈ Φ⋆ : φ|T ∈ P2(T ), T ∈ T Σ

δ

}
, (71)

V s
h := {vs ∈ V s such that vs

|K ∈ P2(K), K ∈ T s
h }, (72)

and

M s
h :=

{
µ ∈ L2(Γs) such that µ|T ∈ P1(T ), T ∈ T Γs

h and

µ|Γs
r

is continuous, ∀r = 1, . . . , Rs, s = 1, . . . , S

}
. (73)

We point out that Φδ and M s
h are made of functions that are continuous on the faces

Γs
r, but discontinuous across two adjacent faces, while the V s

h are made of continuous
functions (within each subdomain Ωs).

We can now discuss the various abstract assumptions that have been made in §2.
To start with, condition (29) is obviously satisfied. Similarly, (28) holds as shown, for
instance, in [6].

In order for the inf-sup condition (31) to hold, we assume a very weak condition on

each mesh T Γs

h . We denote by T
Γs

r
h ⊂ T Γs

h the set of the elements of T Γs

h lying on the face

Γs
r, and by Ť

Γs
r

h the set of those elements T ∈ T
Γs

r
h that have their three vertices on ∂Γs

r

(for example, the set of the gray elements in Figure 1). We say that two triangles are
adjacent when they share an edge. We assume that

For each triangle T ∈ Ť
Γs

r
h there exists an adjacent triangle not belonging to Ť

Γs
r

h . (74)

The assumption above is always satisfied unless the decomposition is absurdly coarse.

x1

x2

x3 x4

x5

x6

Ť

Ť ′

Figure 1: Example of a mesh on a face Γs
r: on the left, the two elements in gray belong to

Ť
Γs

r
h ; one of them is shown on the right, and a local numbering of the degrees of freedom

is introduced.

Lemma 6. Let M s
h and V s

h be constructed as in (72) and (73), respectively. Under the
assumption (74), the inf-sup condition (31) holds.

Proof. We are going to check the inf-sup condition face by face. Then, for r = 1, . . . , Rs,
and s = 1, . . . , S, given µh ∈M s

h|Γs
r
, we are going to construct a vh = vh(µh) ∈ V s

h|Γs
r

which

17



is null on ∂Γs
r and such that

∫

Γs
r

vhµh ≥ C1‖µh‖
2
−1/2,h,Γs

r
, (75)

‖vh‖1/2,h,Γs
r
≤ C2‖µh‖−1/2,h,Γs

r
. (76)

Let hI be the piecewise linear, continuous, null on ∂Γs
r, Clément interpolant of the

piecewise constant mesh-size function assuming on each triangle T the value hT . Given
T ∈ T

Γs
r

h we denote by ωT the patch of the neighboring elements on Γs
r (i.e., the union of

those elements belonging to T
Γs

r
h , sharing a vertex or an edge with T ). We recall (see [14])

that, since hI ≥ 0 we have

C1 min
T ′∈ωT

hT ′ ≤ ‖hI‖L∞(T ) ≤ C2 max
T ′∈ωT

hT ′ , ∀T ∈ T
Γs

r
h \Ť

Γs
r

h ,

while hI is null on T ∈ Ť
Γs

r
h ; moreover, for the shape regularity of the mesh T

Γs
r

h ,

C1 max
T ′∈ωT

hT ′ ≤ hT ≤ C2 min
T ′∈ωT

hT ′ , ∀T ∈ T
Γs

r
h

whence
C1hT ≤ ‖hI‖L∞(T ) ≤ C2hT , ∀T ∈ T

Γs
r

h \Ť
Γs

r
h . (77)

Define v̇h := hIµh; clearly, v̇h is piecewise quadratic, continuous and null on ∂Γs
r.

Moreover, thanks to (77),

‖v̇h‖1/2,h,Γs
r
≤



∑

T∈T
Γs

r
h

h−1
T ‖hI‖

2
L∞(T )‖µh‖

2
L2(T )




1/2

≤ C‖µh‖−1/2,h,Γs
r
; (78)

and, invoking a standard scaling argument,

∫

T

v̇hµh =

∫

T

hIµ
2
h ≥ ChT‖µh‖

2
L2(T ), ∀T ∈ T

Γs
r

h \Ť
Γs

r
h , (79)

while v̇h is null on the elements belonging to Ť
Γs

r
h .

We consider now an element Ť ∈ Ť
Γs

r
h and use the notation of Figure 1 (right part).

Recall the assumption (74), which implies the existence of an adjacent element (denoted

Ť ′) not belonging to Ť
Γs

r
h . Hence we can define v̌Ť ∈ V s

h|Γs
r

null outside the two elements

Ť and Ť ′ (and hence, by continuity, null on
(
∂Ť ∪ ∂Ť ′

)
\
(
∂Ť ∩ ∂Ť ′

)
), and such that

v̌Ť (x4) = hŤµh(x1). With the usual scaling arguments

h
−1/2

Ť
‖v̌Ť‖L2(Ť∪Ť ′) ≤ Ch

1/2

Ť
‖µh‖L2(Ť ), (80)

and ∫

Ť∪Ť ′

v̌Ťµh ≥ C1hŤh
n−1
Ť

µ2
h(x1) − C2hŤh

n/2

Ť
µh(x1)‖µh‖L2(Ť ′)

≥ C3hŤ‖µh‖
2
L2(Ť )

− C4hŤ‖µh‖
2
L2(Ť ′)

.
(81)

We can repeat the same construction for all Ť ∈ Ť
Γs

r
h . Observe that the element Ť ′

in the estimate above can be the same for different elements of Ť
Γs

r
h , but their number is
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uniformly bounded because of the shape regularity assumptions in § 2.3. Our assumption
is that

vh := v̇h + β
∑

Ť∈Ť
Γs

r
h

v̌Ť .

From (78) and (80) we get

‖vh‖1/2,h,Γs
r
≤ (C1 + C2β)‖µh‖−1/2,h,Γs

r
,

while from (79) and (81) we get

∫

Γs
r

vhµh ≥ min{C1 − C2β,C3β}‖µh‖
2
−1/2,h,Γs

r
.

For a suitable value of β we obtain therefore (75)–(76).

We consider now the bound on the mother (32). We shall apply Proposition 1. Con-
sider a single internal face Γs

r. We recall that, for the definition (24), we have

inf
φ∈H1/2(Γs

r)\{0}
sup

µ∈H−1/2(Γs
r)\{0}

〈µ, φ〉

‖µ‖Ms
r

(
H−1

Γs
r
‖φ‖2

L2(Γs
r) + |φ|2

H1/2(Γs
r)

)1/2
= 1.

Therefore, assuming the mesh T
Γs

r
δ “coarse enough” compared with T

Γs
r

h , and applying the
technique of [2], one gets

inf
φδ∈L

1
2
(T

Γs
r

δ )\{0}

sup
µs

h∈Ms
h\{0}

∫
Γs

r
φδ µ

s
h dx

‖µs
h‖Ms

r

(
H−1

Γs
r
‖φδ‖2

L2(Γs
r) + |φδ|2H1/2(Γs

r)

)1/2
≥ γ′1 > 0, (82)

with γ′1 independent of the meshes and the face Γs
r, under the assumptions of §2. In

particular, recalling that T
Γs

r
δ is supposed to be quasi-uniform with mesh-size δΓs

r
, there

exists a constant ρ > 1 such that if δΓs
r
≥ ρ max

T∈T
Γs

r
h

hT , then (82) holds; ρ is in fact

independent of the face Γs
r, still under the assumptions of §2.

We can collect the previous results, together with the abstract error estimates of the
previous section, in the following theorem.

Theorem 4. Under the assumptions of §2, if the discrete spaces Φδ, M
s
h and V s

h are
defined in (71), (73) and (72), and if (82) holds, then

‖u− uh‖
2
V ≤ C

S∑

s=1


∑

K∈T s
h

(
h4

K |u|2H3(K)

)
+

(
1 + log

(
HΩs

hmin
Γs

)) Rs∑

r=1

δ5
Γs

r
|u|2H3(Γs

r)


 (83)

Proof. For the assumptions and results of this section, we can use Theorem 3: then, we
have to estimate the right hand side of (62) in terms of suitable powers of the mesh-size.
If we introduce the nodal interpolant uI ∈ V s

h of u and νI ∈ M s
h of ∂u/∂ns, by the usual

approximation estimates we get

|u− uI |
2
H1(Ωs) +

Rs∑

r=1

∥∥∥∥
∂u

∂ns
− νI

∥∥∥∥
2

Ms
r

≤ C
∑

K∈T s
h

h4
K |u|H3(K);
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similarly denoting by ψI ∈ Φδ the nodal interpolant of u|Σ, we have

H−1
Ωs |u− ψI |

2
L2(Γs) + |u− ψI |L2(Γs)

Rs∑

r=1

|u− ψI |H1(Γs
r) ≤

Rs∑

r=1

δ5
Γs

r
|u|2H3(Γs

r).

Remark 1. We observe that a log
(

HΩs

hmin
Γs

)
appears as a factor in the term involving the

approximation properties of Φδ, though it is, roughly speaking, compensated by the higher
order accuracy we have for that term, when the exact solution u is smooth enough. More-
over, the higher order accuracy in the approximation of Φδ allows to actually take the mesh
T Σ

δ coarser, face by face, than the mesh T s
h , and therefore satisfy the inf-sup condition (82)

without losing in accuracy.

Remark 2. This framework can be extended by taking k-degree elements for V s
h (k ≥ 2)

and (k − 1)-degree, discontinuous across two different faces, elements for the multiplier
spaces M s

h; for Φδ, k
′-elements on a coarse-enough mesh (quasi-uniform on each face)

are allowed, for any k′ ≥ 1. The error analysis of this section can be adjusted in a
straightforward way. The case of Φδ made of global polynomial within each face (similarly
to what proposed in [16]), which may give advantages in the evaluation of (15) and (16),
can be considered as well.

4.2 Second example

We discuss a now a second possible choice of the finite element spaces. Given an integer
k ≥ 1, we consider (k− 1)-degree fully discontinuous multiplier spaces M s

h. Counting the
degrees of freedom, it is clear that now k-degree continuous elements as V s

h are too poor
in view of the inf-sup condition (31); therefore we have to enrich such a V s

h . We shall show
that a simple stabilization of the problem, made by adding suitable boundary bubbles to
V s

h , leads to optimal convergence properties and, at the same time, provides a very easy
implementation. This is reminiscent of what has been done for instance in [3], [9], [12],
and [10], but simpler and more effective.

More in details, our choice here is

Φδ :=
{
φ ∈ Φ⋆ : φ|T ∈ Pk(T ), T ∈ T Σ

δ

}
, (84)

and
M s

h :=
{
µ ∈ L2(Γs) such that µ|T ∈ Pk−1(T ), T ∈ T Γs

h

}
; (85)

We point out that Φδ is made of functions continuous inside the faces Γs
r, while M s

h is
made of functions that are, a priori, totally discontinuous from one element to another.

The choice of each V s
h will be slightly more elaborate. We set

V s
h := {vs ∈ V s such that vs

|K ∈ PK , ∀K ∈ T s
h }, (86)

with PK to be chosen. For each tetrahedron K ∈ T s
h with no faces belonging to Γs we

take PK := Pk. If instead K has a face f on Γs we consider the cubic function bf on K
that vanishes on the three remaining internal faces of K, and we augment the space Pk

with the bubble space Bf
k+2 obtained multiplying bf times the functions in Qf ≡ Pk−1(f)

(that is the space of polynomials of degree ≤ k − 1 on f : remember that the face f will
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be one of the triangles T ∈ T Γs

h ). If K has another face on Γs we repeat the operation,
further augmenting the space Pk. In summary

PK := Pk(K) + {
⊕

f⊂Γs

Bf
k+2} ≡ Pk + {

⊕

f⊂Γs

bfPk−1(f)}. (87)

We note that
⊕

bfPk−1(f) is a direct sum, but its sum with Pk(K) is not direct whenever
k ≥ 3. This however will not be a problem for the following developments.

We can now turn to the various abstract assumptions that have been made in §2. As
before, (29) is obviously satisfied, and (28) is proved, for instance, in [6]. We consider
then the inf-sup condition (31).

Lemma 7. Let M s
h and V s

h be constructed as in (84) and in (86), respectively. Then the
inf-sup condition (31) holds.

Proof. For every µs
h ∈M s

h we construct vs
h ∈ V s

h as

vs
h =

∑

T∈T Γs
h

hT bT µ
s
h (88)

where as before bT is the cubic function on K (the tetrahedron having T as one of its
faces) vanishing on the other three faces of K and having mean value 1 on T . It is not
too difficult to check that

‖µs
h‖h,−1/2,Γs ‖vs

h‖h,1/2,Γs ≤ C

∫

T Γs
h

vs
hµ

s
h (89)

that is precisely the inf-sup condition (31) that we need.

For what concern the inf-sup on the mother, it is clear that if T Σ
δ is “coarse enough” on

each face, compared with the meshes of the two sub-domains having that face in common,
then we can reason as in §4.2, getting (33) and then (32). Finally we have, still reasoning
as in §4.2, the error estimate stated below.

Theorem 5. Under the assumptions of §2, for the discrete spaces Φδ, M
s
h and V s

h defined
in (84), (85) and (86) with (87), and if (32) holds, then

‖u− uh‖
2
V ≤ C

S∑

s=1

(
∑

K∈T s
h

(
h2k

K |u|2Hk+1(K)

)

+

(
1 + log

(
HΩs

hmin
Γs

)) Rs∑

r=1

δ2k+1
Γs

r
|u|2Hk+1(Γs

r)

) (90)

We end this section with some observations on the actual implementation of the
method when the bubble stabilization (87) is used.

Indeed, let us see how the computation of the generation operators Gs can be performed
in practice. Assume that we are given a function φ in, say, L2(Γs). We recall that, to
compute Gs(φ) := ṽs

h, we have to find the pair (ṽs
h, µ̃

s
h) ∈ V s

h |Γs ×M s
h such that

∫

Γs

(φ− ṽs
h)µ

s
h dx = 0 ∀µs

h ∈M s
h, (91)
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∑

T∈T Γs
h

∫

T

h−1
T (φ− ṽs

h) v
s
h dx+

∫

Γs

µ̃s
h v

s
h dx = 0 ∀vs

h ∈ V s
h |Γs . (92)

We also recall that, with the choice (87), the space V s
h |Γs can be written as V s

h |Γs =

L1
k(T

Γs

h ) + Bk+2(T
Γs

h ) where L1
k(T

Γs

h ) is, as before, the space of continuous piecewise
polynomials of degree k on the mesh T Γs

h , and Bk+2(T
Γs

h ) is the space of bubbles of degree
k + 2, always on T Γs

h . In order to write it as a direct sum we introduce the space

W s = {vs
h ∈ V s

h |Γs such that

∫

Γs

vs
h µ

s
hdx = 0 ∀µs

h ∈M s
h}. (93)

We can decompose V s
h |Γs as W s ⊕ Bk+2(T

Γs

h ). Since V s
h |Γs is spanned by the usual finite

element basis functions and Bk+2(T
Γs

h ) is formed by bubbles, then W s admits a local

basis. We can then split in a unique way ṽs
h = w̃+ b̃ with w̃ ∈ W s and b̃ in Bk+2(T

Γs

h ). It

is now clear that b̃ can be computed immediately from (91) that becomes:
∫

Γs

(φ− b̃)µs
h dx = 0 ∀µs

h ∈M s
h. (94)

Once b̃ is known, one can compute w̃ from (92) that easily implies

∑

T∈T Γs
h

∫

T

h−1
T (φ− w̃)w, dx =

∑

T∈T Γs
h

∫

T

h−1
T b̃ w, dx ∀w ∈ W s. (95)

In this way the saddle point problem (91)-(92) splits into two smaller subproblems, each
with a symmetric and positive definite matrix. In particular (94) can be solved element
by element, so that (95) is the only system of a relevant size that has to be solved.

A Fractional order Sobolev and Besov spaces.

Spaces of fractional order are required for dealing with the mothers, with the traces of
functions on Σ and with the multipliers appearing in the definition of the operators Gs.
For example, the space of continuous mothers Φ, defined in (3), is naturally endowed
with an H1/2 topology. Roughly speaking, we can think of Φ as a sort of H1/2(Σ).
However, this topology is too strong for our discrete space Φδ, which is a non-conforming
approximation of Φ. In order to carry out a sharp error analysis, we make use of Besov
spaces; in particular, the space B

1/2
2,∞ will be the weaker replacement of H1/2. The space

B
1/2
2,∞ is of order 1/2 (as is H1/2 itself) but it contains discontinuous functions (as the ones

in Φδ). This space is in between H1/2−ǫ and H1/2, for all positive ǫ.
In this appendix we give the definitions and some properties of (fractional order)

Sobolev and Besov spaces, and some notions of interpolation theory between function
spaces that will be needed in Appendix B.

Let ω ⊂ R
n be a regular manifold of dimension d ≤ n (d = n − 1 or d = n are the

two cases of interest). Given α such that 0 < α < 1, the Sobolev space Hα(ω) is endowed
with the seminorm and norm

|v|2Hα(ω) :=

∫∫

ω×ω

|v(x) − v(y)|2

|x− y|d+2α
dxdy

‖v‖2
Hα(ω) := ‖v‖2

L2(ω) + |v|2Hα(ω);

(96)
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see, for more details, [15, (1.3.3.3)] or [20, (4.4.1/8)]. As we shall see later, an equivalent
definition can be given making use of the interpolation theory. On H0(ω) ≡ L2(ω), we
define the seminorm

|v|L2(ω) := ‖v − v̄‖L2(ω),

v̄ denoting the mean value of v on ω, while on H1(ω) the usual seminorm is

|v|H1(ω) := ‖∇v‖L2(ω).

Spaces of negative order are defined by duality (see [18]). In particular, in our analysis
we make use of H−1/2, which is the dual of H1/2.

Let ω be the image of a reference manifold ω̂ through a one-to-one map Bω (bounded
with bounded Jacobian), and let v̂ be the pullback on ω̂ of a function v : ω → R; passing
from one domain to the other, the seminorms | · |Hα defined above scale as

|v|Hα(ω) ≤ ‖∇(B−1
ω )‖α

L∞(ω)‖ det(∇Bω)‖
1/2
L∞(bω)|v̂|Hα(bω)

|v̂|Hα(bω) ≤ ‖∇(Bω)‖α
L∞(bω)‖ det(∇(B−1

ω ))‖
1/2
L∞(ω)|v|Hα(ω),

(97)

for 0 ≤ α ≤ 1. Inequalities (97) are an extension of the classical ones for integer order
Sobolev spaces (see, e.g., [13]), and easily follow from the change of variable rule for
integrals and from the Cauchy-Schwarz inequality.

We now recall the definition of interpolation spaces, according to the so called K-
method (see [20, §1.3]). Given two Banach spaces A0 and A1, assuming A1 ⊂ A0, and
given two parameters 0 < θ < 1 and 1 ≤ p ≤ ∞, we define a norm ‖ · ‖(A0,A1)θ,p

as

‖v‖(A0,A1)θ,p
:=

[∫ +∞

0

inf
v1∈A1

(
t−θ‖v − v1‖A0

+ t1−θ‖v1‖A1

)pdt

t

] 1

p

(98)

if 1 ≤ p <∞, while, when p = +∞,

‖v‖(A0,A1)θ,+∞
:= sup

t>0
inf

v1∈A1

(
t−θ‖v − v1‖A0

+ t1−θ‖v1‖A1

)
. (99)

We then define (A0, A1)θ,p ⊂ A0 as the space of functions v in A0 such that ‖v‖(A0,A1)θ,p

is finite.
An important property of the interpolated norm is that [20, Theorem 1.3.3.g]

‖v‖(A0,A1)θ,p
≤ Cθ,p‖v‖

1−θ
A0

‖v‖θ
A1
, ∀v ∈ A1. (100)

The most important result of interpolation theory states that a linear operator L which is
continuous from A0 into B0 and from A1 into B1 is also continuous from (A0, A1)θ,p into
(B0, B1)θ,p.Precisely

‖Lv‖B0
≤ C0‖v‖A0

,∀v ∈ A0

‖Lv‖B1
≤ C1‖v‖A1

,∀v ∈ A1

}
⇒ ‖Lv‖(B0,B1)θ,p

≤ Cθ‖v‖(A0,A1)θ,p
,∀v ∈ (A0, A1)θ,p,

(101)
where Cθ = C1−θ

0 Cθ
1 . Fractional order Sobolev spaces can be characterized by interpola-

tion of integer order spaces: for example,

Hα(ω) = (L2(ω), H1(ω))α,2, ∀α such that 0 < α < 1, (102)
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see [20] for more details.
Besov spaces, a more general class of spaces, can be defined by interpolation as well;

in particular, we shall need in Appendix B the following spaces

B
1/2
2,1 (ω) = (L2(ω), H1(ω))1/2,1,

B
1/2
2,∞(ω) = (L2(ω), H1(ω))1/2,∞,

B
1/2
2,∞,0(ω) = (L2(ω), H1

0 (ω))1/2,∞,

(103)

where H1
0 (ω) is the space of functions of H1(ω) vanishing on the boundary ∂ω. The

following continuous inclusion holds (see [19])

B
1/2
2,1 (ω) →֒ B

1/2
2,∞,0(ω). (104)

Another useful inclusion (due to [20, Theorem 1.3.3.e]) is B
1/2
2,∞(ω) →֒ Hα(ω), which holds

for all α < 1/2; however, the constant in the norm inequality depends on α. In particular,
we have the following theorem.

Theorem 6. Let 0 < ǫ ≤ 1/2; then

‖φ‖H1/2−ǫ(ω) ≤ Cωǫ
−1/2‖φ‖

B
1/2

2,∞(ω)
, ∀φ ∈ B

1/2
2,∞(ω), (105)

where the constant Cω depends on ω but is independent of ǫ.

Proof. When ǫ is far from 0 (e.g., ǫ > 1/4) the result is well known, and is a consequence
of [20, Theorem 1.3.3.g]). Consider therefore the case ǫ ≤ 1/4. Thanks to (102), we have

‖φ‖H1/2−ǫ(ω) ≤ Cω‖φ‖(L2(ω),H1(ω))1/2−ǫ,2
;

then, using the definition (98), for any φ0 = φ0(t) and φ1 = φ1(t) such that φ = φ0(t) +
φ1(t), with φ0(t) ∈ L2(ω) and φ1(t) ∈ H1(ω), for all t > 0

‖φ‖2
(L2(ω),H1(ω))1/2−ǫ,2

≤

∫ +∞

0

(
t−1/2+ǫ‖φ0‖L2(ω) + t1/2+ǫ‖φ1‖H1(ω)

)2dt

t

=

∫ 1

0

(
t−1/2+ǫ‖φ0‖L2(ω) + t1/2+ǫ‖φ1‖H1(ω)

)2dt

t

+

∫ +∞

1

(
t−1/2+ǫ‖φ0‖L2(ω) + t1/2+ǫ‖φ1‖H1(ω)

)2dt

t

= I + II.

Taking φ0 = φ and φ1 = 0 when t ≥ 1, we have

II ≤ ‖φ‖2
L2(ω)

∫ +∞

1

t−2+2ǫ dt = (1 − 2ǫ)−1‖φ‖2
L2(ω);

since ‖φ‖L2(ω) ≤ ‖φ‖
B

1/2

2,∞(ω)
, we get

II ≤ 2‖φ‖2

B
1/2

2,∞(ω)
.
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On the other hand

I ≤

(
sup

0<t<1

{
t−1/2‖φ0‖L2(ω) + t1/2‖φ1‖H1(ω)

})2 ∫ 1

0

t2ǫ−1 dt

≤ (2ǫ)−1

(
sup

0<t<1

{
t−1/2‖φ0‖L2(ω) + t1/2‖φ1‖H1(ω)

})2

;

taking the infimum over all the admissible φ0 and φ1 we get

I ≤ (2ǫ)−1‖φ‖2

B
1/2

2,∞(ω)
,

from which we obtain (105).

B Two results involving fractional order spaces

In this Appendix, we report the proof of the estimates (48), (52), and (53), making use
of the notions and tools of Appendix A.

We still denote by C a constant, possibly different at each occurrence, which may
depend only on the set of reference polyhedra {Ω̂1, . . . , Ω̂

bS}, the polynomial degree κ,
and the constants κ0, κ1, κ2, κ3, appearing in the shape regularity and quasi-uniformity
assumptions on the meshes (see §2).

The first result states two fractional order stability estimates for the Clément inter-
polant.

Lemma 8. Under the assumptions of §2.1, let 1 ≤ s ≤ S, and, for all v ∈ L2(Γs), let
vI ∈ V s

h |Γs denote the Clément interpolant of v (see [14]). If v ∈ H1/2(Γs), we have

|vI |H1/2(Γs) ≤ C|v|H1/2(Γs). (106)

Moreover, given 0 < ǫ ≤ 1/2, if v ∈ H1/2−ǫ(Γs), we have

|vI |H1/2(Γs) ≤ C(hmin
Γs )−ǫ|v|H1/2−ǫ(Γs). (107)

Proof. The bound (43) implies, in particular, the inverse estimate

|vI |H1/2(Γs) ≤ Chmin
Γs

−1/2
|vI |L2(Γs). (108)

Then the estimates (106) and (107) can be obtained from the usual stability estimates

‖vI‖L2(Γs) ≤ C‖v‖L2(Γs), (109)

|vI |H1(Γs) ≤ C|v|H1(Γs). (110)

making use of the interpolation theorem (101). In order to guarantee that the constants

C of (106) and (107) do not depend on HΩs , we reason on the reference polyhedron Ω̂bs,
which is mapped onto Ωs by the map BΩs , as assumed in §2.1. Therefore, using (97)we

shift inequalities (109), (110) and (108) on Γ̂bs := ∂Ω̂bs, obtaining

‖v̂I‖L2(bΓbs) ≤ Ĉ‖v̂‖L2(bΓbs), (111)

|v̂I |H1(bΓbs) ≤ Ĉ|v̂|H1(bΓbs), (112)

|v̂I |H1/2(bΓbs) ≤ Ĉ(HΩs/hmin
Γs )1/2‖v̂I‖L2(bΓbs), (113)
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where v̂I = vI ◦BΓs and v̂ = v ◦BΓs with BΓs := BΩs|bΓbs . Observe that the constant Ĉ in

(111) is related to the constant C in (109) by the inequality

Ĉ ≤ ‖det∇BΓs‖
1/2

L∞(bΓbs)
‖det∇(B−1

Γs )‖
1/2
L∞(Γs)C ≤ ‖∇BΩs‖

n/2

L∞(bΩbs)
‖∇(B−1

Ωs )‖
n/2
L∞(Ωs)C ≤ κ

n/2
0 C,

where κ0 is defined in §2.1. A similar argument holds when comparing the constant Ĉ
in (112), and in (113), with the corresponding C in (110) and (108), respectively. For

(113), we also made use of ‖∇B−1
Ωs ‖−1

L∞(Ωs) ≤ HΩs , due to the fact that the diameter of Ω̂bs

is unitary.
We can now apply the interpolation theorem (101) (to the operator Lv̂ = v̂I , that is,

L is the pull-back, after the Clément interpolation, after the push-forward) and (102):
from (111) and (112) we get

‖v̂I‖H1/2(bΓbs) ≤ Ĉ‖v̂‖H1/2(bΓbs), (114)

for any v̂ in H1/2(Γ̂bs), and therefore

|v̂I |H1/2(bΓbs) ≤ Ĉ|v̂|H1/2(bΓbs), (115)

taking the quotient with respect to the constants. Still by interpolation, now starting
from (111) with (113) and from (114) we obtain

‖v̂I‖H1/2(bΓbs) ≤ Ĉ(HΩs/hmin
Γs )−ǫ‖v̂‖H1/2−ǫ(bΓbs), (116)

giving
|v̂I |H1/2(bΓbs) ≤ Ĉ(HΩs/hmin

Γs )−ǫ|v̂|H1/2−ǫ(bΓbs). (117)

Note that the norm ‖ · ‖H1/2−ǫ in the right hand side of (116) has been obtained by
interpolation from ‖ · ‖L2 and ‖ · ‖H1/2 . In this particular case, the interpolation process
is uniform with respect to ǫ.

We can now shift (115) and (117) to Γs. As before, this will introduce factors in the
estimates which depend on ‖∇BΩs‖L∞(Ωbs)‖∇B

−1
Ωs ‖L∞(Ωs) (and which are therefore bounded

in terms of κ0). This gives (106) and (107).

Below is our second lemma.

Lemma 9. Under the assumptions of §2.1, let 0 < ǫ ≤ 1/2 and 1 ≤ s ≤ S; then

|φ|2H1/2−ǫ(Γs) ≤ C
H2ǫ

Ωs

ǫ

(
H−1

Ωs |φ|2L2(Γs) + |φ|L2(Γs)

Rs∑

r=1

|φ|H1(Γs
r)

)
, (118)

for any φ ∈ L2(Γs) with φ|Γs
r
∈ H1(Γs

r), for each r = 1, . . . , Rs.

Proof. We use a scaling argument as in the proof of Lemma 8, and make use of the same
notation. Since HΩs ≤ ‖∇BΩs‖L∞(bΩbs) and ‖∇B−1

Ωs ‖−1
L∞(Ωs) ≤ HΩs (recall that the diameter

of Ω̂bs is unitary) and for the scaling properties (97), the estimate (118) is in fact equivalent
to

|φ̂|2
H1/2−ǫ(bΓs)

≤
Ĉ

ǫ

(
|φ̂|2

L2(bΓbs)
+ |φ̂|L2(bΓbs)

Rs∑

r=1

|φ̂|H1(bΓs
r)

)
, (119)
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where φ̂ = φ ◦BΓs , BΩs(Γ̂bs) = Γs and BΩs(Γ̂bs
r) = Γs

r, for each r = 1, . . . , Rs. In particular,

the constant C of (118) can be easily related to the constant Ĉ of (119) by the inequality

C ≤ ‖det∇BΓs‖L∞(bΓbs)‖det∇(B−1
Γs )‖L∞(Γs)‖∇BΓs‖L∞(bΓbs)‖∇(B−1

Γs )‖L∞(Γs)Ĉ

≤ ‖∇BΩs‖n+1

L∞(bΩbs)
‖∇(B−1

Ωs )‖n+1
L∞(Ωs)Ĉ

≤ κn+1
0 Ĉ,

where κ0 is defined in §2.1. Moreover, defining

φ̃ := φ̂−
1

|Γ̂bs|

∫

bΓbs

φ̂,

it is clear that (119) will follow if we prove that

‖φ̃‖2
H1/2−ǫ(bΓbs)

≤
Ĉ

ǫ

Rs∑

r=1

‖φ̃‖L2(bΓbs
r)‖φ̃‖H1(bΓbs

r). (120)

To prove (120) we first remark that

Rs∏

r=1

L2(Γ̂bs
r) ⊂ L2(Γ̂bs)

and
Rs∏

r=1

H1
0 (Γ̂bs

r) ⊂ H1(Γ̂bs).

Hence, by interpolation,
Rs∏

r=1

B
1/2
2,∞,0(Γ̂

bs
r) ⊂ B

1/2
2,∞(Γ̂bs).

Recalling (104) (i.e., B
1/2
2,1 (Γ̂bs

r) ⊂ B
1/2
2,∞,0(Γ̂

bs
r)), we are led to

‖φ̃‖2

B
1/2

2,∞(bΓbs)
≤ C

Rs∑

r=1

‖φ̃‖2

B
1/2

2,1 (bΓbs
r)
. (121)

Using Theorem 6, then (121) and (100), (120) easily follows.
Moreover it is easy to see that the constant C in (118) depends on κ0 and on the

reference domains Ω̂bs.
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