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Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy

(Dated: January 19, 2005)

Abstract

Abstract: We study the local stability of a sessile droplet with non-vanishing line tension along the contact

line, where three phases are in equilibrium. We confirm Widom’s results [5] on the local stability of a droplet

with positive line tension in a larger class of perturbations. When the line tension is negative, although

equilibria would be unstable against modes that make the contact line wigglier and wigglier, the length over

which the oscillations of destabilizing modes are effective can become too short compared ti the natural

cut-off length given by the ratio between the line and the surface tensions of the droplet. Thus, provided

that the line tension strength is not too large, conditionally stable equilibria exist, even when the line tension

is negative.

PACS numbers: 68.08.Bc
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I. INTRODUCTION

Stability of sessile droplets is a major topic in wetting science. Although this is a topic with a

long history, in the past few years it has received renewed attention because new challenges have

been posed by the availability of experimental techniques to explore reliably small length-scales in

the micrometer range, and by the urge of technological applications in nanofluids. Section 2 of [1]

reviews applications that directly involve line tension effects. As a consequence, the classical prob-

lem of finding the equilibrium of a sessile droplet on a flat, homogeneous substrate has been revived,

and a plethora of new challenging phenomena, interesting both physicists and mathematicians, has

been revealed. Here we are mostly concerned with the effects of line tension on the equilibrium and

stability of droplets. Line tension was originally introduced by Gibbs in his seminal paper [2], by

analogy with surface tension. In fact, as the surface tension measures the excess free energy along

an interface separating two distinct phases, the line tension measures the excess free energy along

a contact line where three distinct phases coexist in equilibrium. In [2], Gibbs also heeded an im-

portant difference between surface and line tensions: while the former must be positive, the latter

can have either sign. Accounting for the line tension has effects on the equilibrium of droplets,

since Young equation, which governs the shape of the contact line, is altered. The generalized

Young equation establishes a relation between the line tension and the droplet’s contact angle,

which also involves the geometric properties of the contact line. Line tension measurements are

based upon this equation, but for several reasons—above all, the small length-scales at which the

effects of line tension are perceptible—they provided values differing from one another by several

orders of magnitude. Even worse, no consensus has been achieved upon the sign of the line tension.

The main theoretical objection against negative values of the line tension is that the free-energy

functional—whose minima should represent stable, and hence observable, equilibria—is unbounded

from below, so that every equilibrium configuration can be made unstable, by suitably selecting

a perturbing mode (see, e.g. [3] and [4]). The crucial point, however, is to determine the typical

length-scale associated with destabilizing modes. If this length is below the range of validity of the

model, the instability has a purely mathematical meaning with no physical counterpart, since it is

effective where the model needs corrections that, plausibly, will automatically remove the patho-

logical behaviour of the functional. On the other hand, even the hypothesis of constant surface

tension is tenable only if the size of the droplet is much larger than the range of intermolecular

forces [5] and indeed curvature corrections have been considered for surface tension (see e.g. [6]

for a recent contribution along these lines). Similar corrections were introduced long ago for line
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tension too [7], but this formal theory has too many parameters to be handled comfortably. Here

we follow a different avenue which relies upon a stability criterion worked out in [8] and applied

in [9] to explore the stability of liquid bridges in the presence of line tension. This criterion is

general enough to cover line tension effects as well as inhomogeneities and arbitrary geometries of

the substrate. These features make it more flexible than Lenz and Lipowsky’s criterion [10], which

did not include line tension effects and was not applicable to curved substrates. Also Sekimoto,

Oguma and Kawasaki [16] had performed a stability analysis, to which we will refer later in this

paper. While they covered several wetting morphologies, by considering even doughnut droplets,

their analysis was restricted to homogeneous, flat substrates and, more importantly, it was confined

to small contact angles, while no similar restriction is imposed in [8].

We consider a sessile droplet lying on a homogeneous, rigid, flat substrate, in the presence of line

tension. This problem was examined by Widom in [5], to which we will often refer in the sequel.

Widom compared the free energy of a sessile droplet having a nonzero line tension with that of a

free sphere having the same volume, and with that of a completely wetted substrate. He found a

first-order drying transition occurring when the line tension exceeds a positive critical value. For

negative line tensions the sessile droplet is locally stable with respect to perturbations that preserve

the spherical shape of its surface. For positive line tensions, Widom also computes the limits of

metastability for a sessile droplet, in the same restricted class. Our stability criterion, which is

based on a local analysis is only suitable to detect metastability limits, and so we cannot follow

first-order phase transitions. However, the criterion we adopt is flexible enough to examine local

stability of a sessile droplet against more general perturbations than that examined by Widom. As

a result, while we can confirm Widom’s conclusions on metastability limits when the line tension is

positive, we prove that Widom’s class of perturbations is too meagre to detect the unstable modes

when the line tension is negative. In this case, we complete the stability analysis by imposing a

constraint on the admissible perturbations: these are the ones effective on a length-scale larger

than the typical length hidden in the problem, that is, the ratio between the line and the surface

tensions. In this way we are able to prove that negative values of the line tension are compatible

with stable equilibria, provided that the strength of the line tension is not too high. Our conclusions

confirm those obtained in the simpler geometry of liquid bridges, but the criterion adopted here to

select the effective perturbations is subtler than that employed in [9].

This paper is organized as follows. Section 2 is devoted to study the generalized Young equation:

when the line tension is positive, either two or no equilibria can exist; when the line tension is

negative, only one equilibrium exists. Section 3 concerns the stability of these equilibria. After a
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technical premise, where the stability criterion we employ is recalled and applied to the problem

at hand, we organize our results in two distinct subsections. In the one, we consider the stability

of droplets with negative line tension. This subsection contains the main results of the paper: we

prove that, when the strength of the line tension is not too large, an equilibrium configuration

remains conditionally stable, as the destabilizing modes are effective only at length-scales that fall

outside the range of validity of the model adopted. The other subsection concerns the stability of

droplets with positive line tension: the results obtained by Widom [5] are essentially confirmed by

our analysis.

In Section 4, we interpret the outcomes of Section 3 in the relevant physical parameters. Finally,

a closing section summarizes the contents of the paper and indicates the prospects of future work.

II. EQUILIBRIA

Here we find the equilibrium configurations of a droplet B lying on a rigid, fixed substrate. We

assume that the droplet consists of an incompressible fluid, so that it has a constant volume V .

The boundary ∂B of B can be split as ∂B = S ∪S∗, where the free surface S is in contact with the

environment fluid, while the adhering surface S∗ is in contact with the substrate. The surfaces S
and S∗ meet along the contact line C where, in fact, three different phases coexist. The equilibrium

configurations of the droplet B solve the Euler equation associated with the free-energy functional

F defined by

F [B] = γ

∫

S

da + (γ − w)

∫

S∗

da + τ

∫

C

ds, (1)

where the positive constant γ is the surface tension associated with the interface S between the

droplet and the surrounding fluid, w > 0 is the adhesion potential that characterizes the affinity

between the droplet and the substrate, and τ is the line tension introduced to account for the

excess free energy concentrated along the contact line C. We also note that, in (1), a denotes the

area measure on both S and S∗, and s is the arc-length along C. At variance with γ and w, which

are positive, the line tension τ can be either positive or negative: the very objective of this paper

is to study how the sign of τ affects the stability of the equilibria of B.

By taking (1) as the free energy of the droplet B, we are tacitly making several assumptions.

Indeed, we neglect body forces like gravity and, by taking w a constant, we also assume that the

substrate is chemically homogeneous. Finally, we suppose that the line tension does not depend

on the geometry of the contact line. While dropping any of these hypotheses has no effect on
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the validity of the methods we employ, assuming them contribute to keep computations at an

acceptable level of difficulty.

The Euler equation associated with (1) has been derived numberless times (see e.g. [8]): it

requires that the free surface S has constant mean curvature. Since the contact line is not fixed,

the following natural boundary condition, which generalizes the classical Young equation, holds

along C:

γ cos ϑc + γ − w − τκ∗
g = 0 , along C. (2)

Here ϑc is the contact angle, that is, the angle between the droplet’s and the substrate’s conormal

unit vectors at the contact line C (see Fig. 1), and κ∗
g is the geodesic curvature of C, thought of as

a curve on the substrate S∗. We heed that in [5] the contact angle was chosen as π − ϑc.

ϑc

ϑ

νS
R

FIG. 1: Cross-section of a spherical droplet with radius R lying on a flat, homogeneous substrate. The angle

ϑ denotes the colatitude on the droplet’s surface, and ϑc is the contact angle, that is, the angle between the

droplet’s and the substrate’s conormals.

Among surfaces with constant mean curvature, we focus our attention on free surfaces S that

are spherical caps of radius R. As a further simplification, we assume that the substrate is flat,

whence it follows that the contact line C is a circle with radius R sinϑc, and so its geodesic curvature

on S∗ is (see e.g. p. 249 of [11])

κ∗
g = − 1

R sin ϑc
.

Finally, the volume V of the droplet B depends only on R and ϑc according to the formula

V =
πR3

3
[2 + (cos ϑc)

3 − 3 cos ϑc] . (3)

The dependence of κ∗
g on R and ϑc, which are further related through equation (3), makes it non

trivial resolving (2). For future use, it is expedient to recast (2) in a dimensionless form. To this

aim we note that, if (w − γ)/γ ∈ [−1, 1], then it is possible to define the bare contact angle ϑ0
c as

cos ϑ0
c :=

w − γ

γ
. (4)
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Hence, ϑ0
c represents the contact angle at the equilibrium, in the absence of line tension. The line

tension τ introduces a typical length-scale |ξ| into the model, with

ξ :=
τ

γ
. (5)

As we shall see, the ratio between ξ and the typical size of the droplet plays a major rôle in

determining whether an equilibrium is stable or not. Thus, we also introduce the dimensionless

ratios

ε :=
ξ

R
(6)

and

δ :=
3V

πξ3
, (7)

which will be used repeatedly in the sequel. We finally stress that ξ, ε, and δ inherit their sign

from the line tension τ . By using equations (4)-(7) we rephrase (2) and (3) as







ε = sinϑc(cos ϑ0
c − cos ϑc) =: ε1(ϑc, ϑ

0
c)

ε =
3

√

2+(cos ϑc)3−3 cos ϑc

δ =: ε2(ϑc, δ) ,
(8)

provided that ϑc ∈ (0, π) and δ 6= 0. Excluding ϑc = 0 and ϑc = π simply means that we are in a

partial wetting regime, away from both the wetting transition (ϑc = 0) and the drying transition

(ϑc = π). On the other hand, the value δ = 0 can be recovered in the limit as the line tension

diverges.

The function ε1(ϑc, ϑ
0
c) depends continuously on the bare contact angle ϑ0

c , whereas ε2(ϑc, δ)

depends continuously on δ 6= 0. When ϑ0
c ranges in [0, π], the curves ε1(ϑc, ϑ

0
c) span the shaded

region A in Fig. 2, with the upper curve corresponding to ϑ0
c = 0, and the lower curve to ϑ0

c = π.

We also note that the slope of ε1(ϑc, ϑ
0
c) at ϑc = 0 is non-positive, being zero only if ϑ0

c = 0. Graphs

of the functions in the family ε2(ϑc, δ) always pass through the origin of the (ϑc, ε)-plane and, for

all admissible values of δ, satisfy limϑc→0 ε′2(ϑc, δ) = 0, where a prime stands for differentiation

with respect to ϑc. If δ > 0, the functions ε2(ϑc, δ) are monotonically increasing, while they are

monotonically decreasing, if δ < 0. Whenever the graph of a function ε2(ϑc, δ) lies inside A, there

is at least one value of ϑ0
c that solves (8). Conversely, for every point P in A, there is at least a

pair (ϑ
0
c , δ) such that ε1(ϑc, ϑ

0
c) and ε2(ϑc, δ) intersect each other at P , and so solve (8).

The pair ϑc = 0, ε = 0 always solves (8), but it is a spurious solution that appears when (2)

is multiplied by sinϑc to arrive at (8)1. When δ > 0, and the bare contact angle has a prescribed
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ϑc

ε

ϑc0 π
ϑc

A

FIG. 2: The admissible region A is the region of the (ϑc, ε)-plane where equations (8) can be solved.

value ϑ0
c , two more solutions exist provided that δ ranges in the interval (δc(ϑ

0
c), +∞), where δc(ϑ

0
c)

is determined by (8) and the condition that ε′1(ϑc, ϑ
0
c) = ε′2(ϑc, δc(ϑ

0
c)) at the point where (8) holds.

If δ ∈ (0, δc(ϑ
0
c)), (8) has no acceptable solution, and so no equilibrium exists. This shows that

even in a simple geometry, adding a contribution from line tension makes the modified Young

equation nontrivial. When δ < 0, a unique solution different from ϑc = 0, ε = 0 exists for any

prescribed value of ϑ0
c , as can be easily proved by recalling that, while ε1(0, ϑ0

c) = ε1(π, ϑ0
c) = 0, and

ε′1(0, ϑ0
c) < 0, the function ε2(ϑc, δ) is such that limϑc→0 ε2(ϑc, δ) = 0, it is monotonically decreasing

in ϑc and, moreover, limϑc→0 ε′2(ϑc, δ) = 0. Figure 3 shows the possible scenarios outlined here,

ϑc

ε

ϑc0
ϑc

δ0

δ1

δc(ϑ
0

c
)

δ2

π
ϑc

ϑ0

c

FIG. 3: Graphical solution of the system (8), for a given value of ϑ0

c
. Together with the admissible region A

(in gray) we plotted the curve ε1(ϑc, ϑ
0

c
), and several curves in the family ε2(ϑc, δ). When δ ∈ (δc(ϑ

0

c
),+∞)

(e.g. the curve with δ = δ1), two acceptable equilibria exist, while no equilibrium exists for δ ∈ (0, δc(ϑ
0

c
))

(e.g. the curve with δ = δ2). At δ = δc(ϑ
0

c
) the two equilibria coalesce into a unique equilibrium solution.

On the other hand, when δ is negative (e.g. the curve with δ = δ0), a unique equilibrium exists.

for a prescribed value of ϑ0
c . As a final remark, we obtain from (8)1 that the equilibrium contact

angle ϑc is larger than the bare contact angle ϑ0
c , when the line tension is positive, whereas it is
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smaller than ϑ0
c , when the line tension is negative. We also heed that, by (8)2, in the limit where

the line tension is negative and divergent, and so δ → −∞, the equilibrium contact angle migrates

towards 0. In the next section we will study the effects of negative line tension on the stability of

the equilibrium solutions obtained here.

III. STABILITY

To obtain the Euler equation and the generalized Young equation (2) dictating the equilibrium

shape of the droplet B we only needed to compute the first variation δF of the functional F , by

perturbing the points p on B as follows

p 7→ pε := p + εu , (9)

then setting

δF [u] :=
dF [u]

dε

∣

∣

∣

∣

ε=0

= 0 .

To assess the local stability of an equilibrium configuration, however, the sign of the second variation

δ2F :=
d2F [u]

dε2

∣

∣

∣

∣

ε=0

needs be evaluated. In [8] we proved that, in general, the perturbation (9) is not suitable to keep

the constraints involved in the problem up to second order in ε. In particular, we pointed out that,

to account properly for the gliding of a droplet on an arbitrarily curved substrate, a point p on B
must be mapped into

pε := p + εu + ε2
v , (10)

with the fields u and v constrained to obey

u · ν∗ = 0 and v · ν∗ = −1

2
u · (∇sν∗)u on S∗ , (11)

where ν∗ is the unit normal vector to the substrate, properly oriented (see p. 3992 of [8]) and ∇sν∗

is its surface-gradient (see Appendix B of [8]). While the field v does not modify the equilibrium

equations, it plays a rôle in the second variation: in particular, the use of (11)2 together with the

equilibrium equations makes it possible to write the second variation as a quadratic functional

depending only upon the component u := u · ν of the field u along the outer unit normal vector ν

to the free surface S. As usual, once the second variation δ2F is known, we minimize it on the set
∫

S

u2da = 1 (12)
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and require its minimum to be positive, to guarantee local stability of an equilibrium configuration.

Besides the constraint (12), the perturbation u must preserve the volume of the droplet and so it

must also obey the requirement

∫

S

uda = 0 . (13)

The integral constraints (12) and (13) are accounted for by introducing suitable multipliers −µ/2

and λ, and then finding the minimum of (cf. pp. 4001-4002 of [8])

F [u] :=
1

2

∫

S

{|∇su|2 + αu2}da + λ

∫

S

uda − 1

2
µ

∫

S

u2da +
1

2

∫

C

{ξu′2
s∗ − βu2

s∗}ds , (14)

where a prime stands for differentiation with respect to the arc-length s on C. In (14),

α := 2K − H2 (15)

depends on the total and the Gaussian curvatures H and K of S, while us∗ is related to u through

us∗ =
u

sinϑc
.

Finally,

γβ := τ(K∗ + κ∗2
g ) + γ[H∗ sin ϑc + H cos ϑc sinϑc + κg(sin ϑc)

2] , (16)

where H∗ and K∗ are the total and the Gaussian curvatures of S∗, κg and κ∗
g are the geodesic

curvatures of the contact line C, conceived as a curve on S and S∗, respectively. Definitions (15)

and (16) are indeed special cases of the general definitions given in Sections 3 and 4 of [8], where the

effects of inhomogeneities in the chemical composition of the substrate, nonconstant line tension,

and geometric microstructures were also taken into account. Since for a spherical cap of radius R

lying on a flat substrate H = 2/R, K = 1/R2, H∗ = 0, and K∗ = 0, while for the circular contact

line C κg = − cot ϑc/R and κ∗
g = −1/R sinϑc, by using the same analysis as in Section 4 of [8], the

equilibrium equations for F [u] are easily arrived at:

∆su + (µ + 2)u = λ on S (17)

and

[

∂u

∂ϑ
− ε

(sin ϑc)4
∂2u

∂ϕ2
− 1

(sin ϑc)2

(

ε

(sinϑc)2
+ sinϑc cos ϑc

)

u

]
∣

∣

∣

∣

ϑ=ϑc

= 0 along C, (18)

where the differential operator

∆s :=
1

R2

∂2

∂ϑ2
+

1

R2
cot ϑ

∂

∂ϑ
+

1

(R sinϑ)2
∂2

∂ϕ2
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is the surface-Laplacian on the sphere, expressed in terms of the colatitude ϑ ∈ [0, ϑc] (see Fig. 1)

and the azimuth ϕ ∈ [0, 2π). The minimum eigenvalue µmin of equations (17) and (18) coincides

with the minimum value of δ2F on the set (12), whence we conclude that a configuration is unstable

if µmin is negative, and locally stable if µmin is positive.

The spectrum of the surface-Laplacian on a spherical cap has been studied intensively, because

it enters the solution of many applied problems in fluid dynamics and elasticity. In particular,

Baginski [12] obtained upper and lower bounds on the eigenvalues of the surface-Laplacian, sub-

ject to Dirichlet boundary conditions along the contour C. The problem we need study differs

from Baginski’s since we impose mixed—or Robin— boundary conditions along C. Moreover, the

presence of the multiplier λ makes the bulk equation (17) inhomogeneous.

To find µmin or, at least, to determine its sign, it is expedient to expand the solution u of the

homogenous problem

∆su + (µ + 2)u = 0 on S (19)

as

u =
∞

∑

m=0

amum(ϑ)trig(mϕ) , (20)

where

trig(mϕ) :=







sin(mϕ) or cos(mϕ) if m 6= 0

1 if m = 0,

and am ∈ R are the coefficients of the expansion. Using a standard procedure, we insert the

expansion (20) into (19) to conclude that, for every value of m, the function um(ϑ) solves the

equation

1

sinϑ

d

dϑ

[

sinϑ
dum

dϑ

]

+

[

µ + 2 −
( m

sinϑ

)2
]

um = 0 . (21)

By selecting the solution of (21) that is bounded everywhere on S, we are left with the associated

Legendre function of the first kind Pm
ν (cos ϑ), where the index ν is related to µ by

ν(ν + 1) = µ + 2 . (22)

Equation (21) can be solved also for complex values of ν. Since the product ν(ν + 1) is invariant

under the transformation ν 7→ −(1 + ν), we can restrict attention to the values of ν with real part

<e(ν) ≥ −1
2 . Moreover, since the product ν(ν + 1) is left unchanged when the imaginary part

=m(ν) of ν is mapped into −=m(ν), we can also assume =m(ν) ≥ 0.
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Besides these general remarks, we need to solve equation (21) only when µ is a real number,

which amounts to require either

=m(ν) = 0 or <e(ν) = −1

2
.

Collecting all this information we conclude that the parameter ν ranges in the set I of the complex

ν-plane shown in Figure 4, and formally defined as

I :=

{

ν ∈
[

−1

2
+ i0 , −1

2
+ i∞

)

∪
[

−1

2
, +∞

)}

.

As mentioned before, instability occurs when µ < 0, that is, when <e(ν) < 1 or when

=m(ν)

0−1/2 1
<e(ν)

FIG. 4: Complex values of ν relevant to our analysis. The real and the imaginary axes of the complex ν-

plane are dashed lines; the set I is a solid line, whose thicker part represents the subset U that corresponds

to negative values of the multiplier µ and, hence, to unstable equilibria.

ν ∈ U :=

{[

−1

2
+ i0 , −1

2
+ i∞

)

∪
[

−1

2
, 1

)}

. (23)

As an aside, we recall that the associated Legendre functions Pm
ν (cos ϑ) are also called spherical

functions when ν is real, and conical functions when ν = −1
2 + iλ, with λ > 0.

The solution u of (17) differs from u by a constant c related to the multipliers λ and µ through

(µ + 2)c = ν(ν + 1)c = λ , (24)

provided that µ 6= −2 or, equivalently, ν 6= 0. We note, however, that u must satisfy the incom-

pressibility constraint (13) that now reads as
∫ ϑc

0

∫ 2π

0
u(ϑ, ϕ) sinϑdϑdϕ = 0 . (25)

Since we are performing a modal analysis, and so we look for the conditions that make a specific

mode unstable, we adjust the constraint mode by mode, by adding to the function

um(ϑ, ϕ) := Pm
ν (cos ϑ)trig(mϕ) m ∈ N
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a constant c(ϑc, ν, m) that makes the constraint obeyed, so that λ follows from (24), apart from

the case ν = 0 that needs a separate treatment.

The factor trig(mϕ) guarantees that um(ϑ, ϕ) automatically obeys the constraint (25) when

m > 0, and so both c(ϑc, ν, m) and the corresponding value of λ vanish. When m = 0, we proceed

as follows. First, we recall the relation (see equation (7.8.3) of [13])

P ′
ν+1(x) − xP ′

ν(x) = (ν + 1)Pν(x) , (26)

where we have omitted the superscript 0 in the Legendre functions, and a prime stands for differ-

entiation with respect to the argument. Second, noting that
∫ ϑc

0

∫ 2π

0
P 0

ν (cos ϑ) sinϑdϑdϕ = 2π

∫ 1

xc

P 0
ν (x)dx ,

where xc := cos ϑc, by integrating (26) by parts and recalling that Pν(1) = 1 for all values of ν, we

obtain
∫ ϑc

0

∫ 2π

0
P 0

ν (cos ϑ) sin ϑdϑdϕ =
cos ϑcPν(cos ϑc) − Pν+1(cos ϑc)

ν
, if ν 6= 0.

Hence, we replace u in equations (17) and (25) with um(ϑ, ϕ) + c(ϑc, ν, m), where the constant

c(ϑc, ν, m) is given by

c(ϑc, ν, m) :=







0 if m 6= 0

− cos ϑcPν(cos ϑc)−Pν+1(cos ϑc)
(1−cos ϑc)ν

if m = 0,
(27)

and then we solve equation (18) in terms of ε, which in turn becomes a function εm
ν (ϑc) of the

contact angle ϑc, parameterized by ν and m. A straightforward substitution yields

ε = εm
ν (ϑc) :=































−(sinϑc)
4

�
cot ϑc P m

ν (cos ϑc)−
∂P

m
ν (cos ϑ)

∂ϑ ���ϑc�
(1−m2) P m

ν (cos ϑc)
, if m 6= 0, 1

−(sinϑc)
4

�
cot ϑc(Pν(cos ϑc)+c(ϑc, ν,0))−

∂Pν (cos ϑ)
∂ϑ ���ϑc�

c(ϑc, ν,0)+Pν(cos ϑc)
, if m = 0.

(28)

By plotting the graphs of the functions εm
ν (ϑc), we can decide whether the equilibrium configura-

tions found in Section 2 are locally stable or not, with respect to specific modes. In fact, the points

of the admissible region A that also belong to the graph of a function εm
ν (ϑc) with <e ν < 1—and

µ < 0—correspond to unstable equilibria of the droplet.

Before analysing the behaviour of εm
ν (ϑc) for both signs of the line tension, we frist explore in

detail the modes with m = 1, for which (28) looks singular. By use of the identity (see Equation

8.733.1 of [14])

(1 − x2)
dP 1

ν (x)

dx
= (ν + 1)P 1

ν−1(x) − νxP 1
ν , (29)

12



if we set x := cosϑ and observe that dP 1
ν (cos ϑ)
dϑ = − sinϑdP 1

ν (x)
dx , we can recast the boundary equation

(18) as

1

sinϑc
[(1 + ν)P 1

ν−1(cos ϑc) + (1 − ν) cos ϑcP
1
ν (cos ϑc)] = 0

which is never satisfied when ν 6= 1, and is identically satisfied when ν = 1, that is, by (22), when

µ = 0. Thus, the modes m = 1 are marginally stable. This does not come as a surprise, since

P 1
1 (cos ϑ)trigϕ = sin ϑtrigϕ are the projections along the droplet’s normal of uniform translations

along the flat substrate. Hence, the marginal modes m = 1 mirror the invariance under translations

of the free energy functional, already noted by Sekimoto, Oguma, and Kawasaky [16].

Our statements are so far independent of the sign of line tension. Since we expect different

outcomes for different signs, we split the stability analysis into two parts, by first discussing the

case where the line tension is negative. Indeed, new results compared to the analysis of Widom [5]

arise in this case.

III.1. Negative line tension

We start by analyzing the behaviour of εm
ν (ϑc), when m ≥ 2. In this way, since we already

know that modes with m = 1 correspond to rigid translations, we are disregarding only modes with

m = 0. We will learn in the next section that these modes only intervene when the line tension

and, hence, ε is positive. We first use (29) to recast equation (28)1 as

εm
ν (ϑc) =

[

(m + ν)Pm
−1+ν(cos ϑc) − (ν − 1) cos ϑcP

m
ν (cos ϑc)

]

sin3 ϑc

(m2 − 1)Pm
ν (cos ϑc)

. (30)

For a fixed value of m, we select two arbitrary values of ν, say ν1 and ν2 > ν1, with ν1 and ν2

different from 0 and 1, and we draw the graphs of the functions εm
ν1

(ϑc) and εm
ν2

(ϑc): the cases

ν = 0 and ν = 1 need a separate treatment, since the associated Legendre function Pm
ν (cos ϑc) is

identically zero when ν is an integer less than m, and so equation (30) makes no sense. Since the

function εm
ν (ϑc) depends continuously on ν, each point of the (ϑc, ε)-plane between the graphs of

εm
ν1

(ϑc) and εm
ν2

(ϑc) also belongs to the graph of a function εm
ν (ϑc), for some ν ∈ (ν1 , ν2).

By repeating this argument when m is varied, and letting ν vary in the set U defined in equation

(23), we are able to find the pairs (ϑc, ε) that correspond to unstable equilibria. Figure 5 shows,

for several values of m, the regions of the set

Q− := {(ϑc, ε)|ϑc ∈ [0, π], ε < 0}

13



ϑc

ε

FIG. 5: Stability analysis for negative line tension. Each shaded tongue contains the graphs of the functions

εm

ν
for a fixed value of m, when ν ranges in [−1/2, 1]. In the limit where m → ∞, the tongues tend to the

ϑc-axis. Equilibrium pairs (ϑc, ε) that lie within a certain tongue—say, that corresponding to m = m0– are

unstable against modes associated with the spherical functions labelled by m0. The white regions are stable

against spherical functions, but they soon become unstable against modes induced by conical functions, as

explained in the text.

that contain the graphs of εm
ν (ϑc) for ν ∈ {[−1/2 , 0) ∪ (0 , 1)} ⊂ U . Whenever a pair (ϑc, ε)

falls in one of these regions, the droplet is unstable. The graph of εm
ν (ϑc) approaches limiting

curves when ν tends either to 0 or 1, though the corresponding limiting functions εm
0 (ϑc) and

εm
1 (ϑc) fail to be in L2(S). By appropriately truncating the functions εm

ν , it is possible to construct

minimizing sequences in L2(S) on which δ2F converges to −2 and 0, which, by (24), are the values

of µ corresponding to ν = 0 and ν = 1, respectively. In the former case, we can conclude that

the curves εm
0 (ϑc) are unstable, since δ2F attains negative values arbitrarily close to −2 on the

minimizing sequence. In the latter case, we conclude that the curves εm
1 (ϑc) are marginal, since

δ2F remains positive on the minimizing sequence, though arbitrarily close to 0.

We now have to locate in the (ϑc, ε)-plane the curves εm
−

1
2
+iλ(ϑc) which, by (23), can induce

instability as well. More precisely we now prove that, for any fixed value of m ≥ 2, the points of

the (ϑc, ε)-plane that lie below the graph of the function εm
−

1
2

(ϑc) also belong to the graph of a

function εm
−

1
2
+iλ(ϑc) for some λ > 0. In fact, it is possible to check that, when λ > 0, the graphs

of εm
−

1
2
+iλ(ϑc) always lie below that of εm

−
1
2

(ϑc) and so, since εm
−

1
2
+iλ(ϑc) depends continuously on

λ, we only need to prove that

lim
λ→+∞

εm
−

1
2
+iλ(ϑc) = −∞ . (31)
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When m = 0, the conical function P
−

1
2
+iλ has the asymptotic behaviour (see p. 202 of [13])

P
−

1
2
+iλ(cos ϑc) ≈

eλϑc

√
2πλ sin ϑc

(32)

when λ → +∞ and 0 < η ≤ ϑc ≤ π − η, with η a positive number. If, for a moment, we go back

to equation (28)1 we see that the asymptotic behaviour of εm
−

1
2
+iλ(ϑc) when λ � 1 is determined

by the ratio

1

Pm
−

1
2
+iλ

∂Pm
−

1
2
+iλ(cos ϑ)

∂ϑ

∣

∣

∣

∣

∣

ϑc

.

Now, by definition,

Pm
ν (cos ϑc) := (−1)m[1 − (cos ϑc)

2]
m

2
∂mPν(cos ϑc)

∂(cos ϑc)m
. (33)

Since asymptotic relations remain valid after differentiation, by (33) we see that the leading term

in the expansion of Pm
−

1
2
+iλ(cos ϑc) is

Pm
−

1
2
+iλ(cos ϑc) ≈

λ(m−1/2)eλϑc

√
2π sinϑc

,

while

∂Pm
−

1
2
+iλ(cos ϑ)

∂ϑ

∣

∣

∣

∣

∣

ϑc

≈ λ(m+1/2)eλϑc

√
2π sinϑc

,

whence (31) follows. The reader might wonder why we insist in detecting the unstable pairs (ϑc, ε)

throughout the set Q−, instead of focussing attention just on the admissible set A. The reason is

that near the origin, the set A is covered by graphs of the form εm
−

1
2
+iλ(ϑc), with λ � 1. Instead

of looking for an upper bound on the values of λ such that εm
−

1
2
+iλ(ϑc) crosses A, we found it

convenient at this level to ignore the restrictions imposed by A that will be recovered at the end

of the analysis.

Thus, for any prescribed value of m we can divide the set Q− into two subsets Sm and Um

defined as

Sm := {(ϑc, ε)|ϑc ∈ (0, π) , εm
1 (ϑc) < ε < 0}

and

Um := {(ϑc, ε)|ϑc ∈ (0, π) , ε < εm
1 (ϑc)}.

The continuous dependence of εm
1 (ϑc) and the limit (31) suffice to prove that the equilibrium values

of (ϑc, ε) that lie in Um are unstable against modes indexed by m. To conclude that pairs (ϑc, ε)
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in Sm are stable we need to prove that any point in Sm is on the graph of a function εm
ν (ϑc), for

ν ∈ I \ U . To this aim, it is expedient to study the roots of

f(ν, ϑc) := ν(1 − cos ϑc)Pν(cos ϑc) + Pν+1(cos ϑc) − cos ϑcPν(cos ϑc) , (34)

which, by (28)2, make εν(ϑc) diverge. Let ϑ̄c be the smallest root of (34), different from 0. When ν

tends to a natural number n, the functions Pν(cos ϑc) tend to the Legendre polynomial Pn(cos ϑc)

in the set (−1+η, 1], but they have a logarithmic divergence at cosϑc = −1: in fact, as a function of

a complex variable, the functions Pν(·) are analytic only in the complex plane cut along [−∞,−1].

As a consequence, although f(1, π) 6= 0, the first nontrivial root of f(ν, ϑc) becomes closer and

closer to π, when ν tends to 1, that is,

lim
ν→1+

ϑ̄c = π .

On increasing ν, ϑ̄c migrates towards the left and new roots of (34) appear at ϑc = π whenever

ν approaches a natural number. When ν � 1, resort to the asymptotic expression (cf. formula

8.721.3 of [14])

Pν(cos ϑc) =
2√
π

Γ(ν + 1)

Γ(ν + 3
2)

cos
[(

ν + 1
2

)

ϑc − π
4

]

√
2 sin ϑc

[

1 + O

(

1

ν

)]

,

to Stirling’s formula (see e.g. equation (1.4.25) of [13])

Γ(x) ≈
√

2πxx− 1
2 e−x ,

and repeated use of the fundamental limit

lim
n→+∞

(

1 +
1

n

)n

= e ,

allow us to conclude that

f(ν, ϑc) ≈
√

2ν

π
(1 − cos ϑc) cos

[(

ν +
1

2

)

ϑc −
π

4

]

, when ν � 1

whence it follows that

lim
ν→+∞

ϑ̄c = 0 .

Since

lim
ϑc→ϑ̄±

c

εν(ϑc) = ±∞ ,

we conclude that any point of the (ϑc, ε)-plane – and in particular any point of the admissible

set A– apart from (π, 0) belongs to the graph of some function εν(ϑc), at least for sufficiently
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large values of ν. This in turn proves that the minimum eigenvalue µmin of equations (17)-(18)

has a positive value at all points in the set Sm which thus correspond to locally stable equilibria.

Moreover, since µmin = 0 along the curves εm
1 (ϑc) is 0, it is now legitimate to call them the marginal

curves, as they separate regions that are stable against the modes indexed by m from regions that

are unstable against the same modes.

As remarked in the Introduction, when the line tension is negative, functional (1) is unbounded

from below. We thus expect that no equilibrium configuration can be stable when m is large

enough, and so the perturbing modes make the contact line wigglier and wigglier. To substantiate

this claim, we study the behaviour of the marginal curves εm
1 (ϑc) as m increases. We first note

that, by use of de l’Hôpital’s rule in equation (30),

εm
1 (ϑc) := lim

ν→1
εm
ν (ϑc) = (sinϑc)

3

∂P m
ν

∂ν

∣

∣

∣

ν=0

(m − 1) ∂P m
ν

∂ν

∣

∣

∣

ν=1

, (35)

where we observed that
∂P m

ν−1

∂ν

∣

∣

∣

ν=1
= ∂P m

ν

∂ν

∣

∣

∣

ν=0
. Strictly speaking, equation (35) holds only away

from ϑc = π, where Pm
ν diverges. This point, however, does not concern us here, since we only

consider partial wetting. Since (see eqs. 8.762.1 and 8.762.3 of [14])

∂Pν(cos ϑc)

∂ν

∣

∣

∣

∣

ν=0

= 2 log cos
ϑc

2

and

∂P−1
ν (cos ϑc)

∂ν

∣

∣

∣

∣

ν=1

= −1

2
tan

ϑc

2

(

sin
ϑc

2

)2

+ sin ϑc log cos
ϑc

2
,

by use of the identity (cf. eq. 8.752.2 of [14])

P−1
ν (cos ϑc) = − Γ(ν)

Γ(ν + 2)
P 1

ν =
P 1

ν

ν(ν + 1)

we readily obtain that

∂P 1
ν (cos ϑc)

∂ν

∣

∣

∣

∣

ν=1

= tan
ϑc

2

(

sin
ϑc

2

)2

− 2 sinϑc log cos
ϑc

2
.

Thus, by recalling definition (33) and interchanging the order of differentiation, we see from (35)

that εm
1 (ϑc) behaves as 1/m, when m � 1, and so

lim
m→∞

εm
1 (ϑc) = 0 ,

which proves our assertion.

To put this result in the right perspective we recall that upon increasing m, the typical length

Lm(ϑc), over which oscillations associated with the modes labelled by m manifest themselves,
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decreases. When Lm(ϑc) becomes smaller than the characteristic length |ξ|, the mode lacks any

physical relevance because it induces deformations at length scales that lie beyond the range of

validity of the model. For a fixed value of m we adopt the following, global definition of the length

Lm(ϑc)

Lm(ϑc) :=

(

∫

S
|um|2dA

∫

S
|∇sum|2dA

)1/2

, (36)

where um(ϑ, ϕ) is the limit of Pm
ν (cos ϑ) sin(mϕ) when ν → 1, that is, the marginal curve associated

with the mode m. Wild oscillations of the surface-gradient ∇sum of the perturbation um lower

Lm(ϑc), which thus appears as a reasonable candidate to measure the corrugation of the contact

line induced by the mode um. The analysis built in this section enables us to determine, for any

fixed equilibrium point (ϑ̄c, ε̄), the smallest value m̄ of m for which the equilibrium is unstable

against um̄. Thus, if Lm̄(ϑ̄c) < |ξ| the mode is physically irrelevant, and we refer to (ϑ̄c, ε̄) as a

conditionally stable equilibrium, since the instability becomes apparent on a length inaccessible to

the model.

By using standard formulae in vector analysis, we can give (36) the following form

Lm(ϑc) = R

[

∫ 2π
0

∫ ϑc

0 |um|2 sinϑdϑdϕ
∫ 2π
0

∫ ϑc

0 |∂um

∂ϑ + 1
sin ϑ

∂um

∂ϕ |2 sinϑdϑdϕ

]1/2

, (37)

whence, by setting

Im(ϑc) := −Lm(ϑc)

R
, (38)

and recalling that ξ is negative when the line tension is negative, we can rephrase the condition

Lm̄(ϑ̄c) < |ξ| as

ε < Im̄(ϑ̄c) . (39)

Let us consider the set M̄ ⊂ Q− bounded by the graphs of εm̄−1
1 (ϑc) and εm̄

1 (ϑc). The graph

of ε = Im̄(ϑc) splits the set M̄ in two or three subsets (see Fig. 6): while the regions above

ε = Im̄(ϑc) are unaffected by the criterion (39), the region below ε = Im̄(ϑc), though potentially

unstable, becomes conditionally stable by virtue of (39). It is crucial to note (6) that instability

remains effective when the contact angle is small. As we learnt in Section 2, equilibria with small

values of the contact angle exist when the line tension has high strength. We thus conclude that

conditionally stable equilibria exist provided that the line tension strength is not too high, in

agreement with the results found in [9] for a different morphology.
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ε

(2)

(3)

(4)

ϑc

I4 I3

I2

FIG. 6: Conditionally stable equilibria. The solid lines are three marginal curves: (2) is ε2

1
(ϑc), (3) is ε3

1
(ϑc),

and (4) is ε4

1
(ϑc). The dashed curves are the graphs of ε = I2(ϑc), ε = I3(ϑc), and ε = I4(ϑc). For a given

value of m, the region below the marginal curve εm

1
(ϑc) would be unstable with respect to modes labelled by

m. However, modes below the curve ε = Im(ϑc) are effective at a length scale outside the realm of validity

of the model, and so their instability is fictitious: the equilibrium is conditionally stable against modes

labelled by m. As remarked in the text, as the line tension strength increases, the equilibrium contact angle

becomes smaller and smaller. Hence, the representative point falls in a region in which (39) is violated, and

so instability persists.

III.2. Positive line tension

We just proved that modes with m ≥ 2 are effective when the line tension, and so ε, is negative.

Moreover, modes with m = 1 and ν = 1 are associated with rigid translations of the droplet.

Hence, when the line tension is positive, we can restrict attention to modes with m = 0, for which

the function ε0
ν(ϑc) is defined through equation (28)2, with c(ϑc, ν, 0) given by (27)2. By proceeding

as in Subsection 3.1, we conclude that the set of the (ϑc, ε)-plane bounded by the graphs of ε1(ϑc)
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and ε
−

1
2
(ϑc) corresponds to unstable equilibria, with ε1(ϑc) playing the rôle of marginal curve.

With only technical changes, we can still prove that the set of the (ϑc, ε)-plane above the graph of

ε
−

1
2
(ϑc) contains the graph of ε

−
1
2
+iλ(ϑc), for some positive value of λ. To this aim, we show that

lim
λ→+∞

ε
−

1
2
+iλ(ϑc) = +∞

and use the continuous dependence of εν(ϑc) on ν. A glance at equation (28)2 suffices to conclude

that the leading term of ε
−

1
2
+iλ(ϑc) is

ε
−1/2+iλ(ϑc) ≈ (sinϑc)

3

∂P
−

1
2+iλ

∂ϑ

∣

∣

∣

∣

ϑ=ϑc

c(ϑc, ν, 0) + P
−

1
2
+iλ

.

If we use the following identity (see eq. 8.733.1 of [14])

(ν + 1)Pν+1(x) = (ν + 1)xPν(x) − (1 − x2)
dPν(x)

dx
, (40)

to eliminate Pν+1 from c(ϑc, ν, 0) in equation (27)2, and then resort to the asymptotic expansion

(32), we can prove that ε
−

1
2
+iλ(ϑc) diverges with λ, when λ → +∞.

Finally, the arguments used in Subsection 3.1 make us confident that the points below the graph

of ε1(ϑc) correspond to locally stable equilibria, since there the minimum value of µ is positive.

Hence, the curve ε1(ϑc) is indeed a marginal curve, when the line tension is positive. As already

shown in Section 2, for a given value ϑ0
c of the bare contact angle, there is a critical value δc(ϑ

0
c)

of δ such that, if δ > δc(ϑ
0
c) there are two equilibria and there is none, if δ < δc(ϑ

0
c). Figure 7

shows the graph of the marginal curve superimposed to the admissible set A: only the subset of

A below the curve ε1(ϑc) contains stable equilibria: thus, whenever, for given values of ϑ0
c and δ,

two equilibria exist, only the one with the lower value of ϑc is stable. We also note that the two

equilibria coalesce along the marginal curve ε1(ϑc).

The modes that mark the transition from stable to unstable equilibria have normal component

u proportional to P1(cos ϑ) + c = cosϑ + c. Hence, we conclude that equation (10) maps spheres

into spheres, as it should be in this case, since the stability threshold we found here agrees with

Widom’s [5] though we have not selected spherical perturbations from the very beginning of our

analysis.

III.3. Reverse mapping

In the previous sections we learnt how to find locally stable equilibria in the (ϑc, ε)-plane, where

it was easier to solve equations (17)-(18). However, both ϑc and ε are not constitutive parameters.
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ϑc

ε

ε1(ϑc)

0 π
ϑc

A

FIG. 7: The marginal curve ε1(ϑc) divides the admissible set A into two parts. Only the part below the

graph of ε1(ϑc) is stable. The thin lines are graphs of the functions ε1(ϑc, ϑ
0

c
) and ε2(ϑc, δc(ϑ

0

c
)) defined in

(8), for several values of ϑ0

c
. When δ = δc(ϑ

0

c
)), the two equilibria coalesce into one another and so ε1(ϑc, ϑ

0

c
)

and ε2(ϑc, δc(ϑ
0

c
)) have a common tangent. Here we see that the marginal curve ε1(ϑc) passes through these

tangent points.

Thus, it is appropriate to translate our results into the (cos ϑ0
c , δ)-plane since, by (4) and (7), these

parameters are easily related to the constitutive parameters τ , γ, and w, as well as to the volume

V of the droplet. To achieve this aim, we need to find a function

f : (ϑc, ε) 7→ (cos ϑ0
c , δ)

that maps solutions of equations (8) into the (cosϑ0
c , δ)-plane. We will refer to f as to the reverse

mapping. To find the reverse mapping we solve equation (8) with respect to cos ϑ0
c and δ, obtaining

cos θ0
c =

ε

sin θc
+ cos θc (41)

δ =
2 + (cos θc)

3 − 3 cos θc

ε3
. (42)

Then, the image of the function εm
ν (ϑc) is the parametric curve

f(εm
ν (ϑc)) =

(

cos ϑ0
c (ϑc, ε

m
ν (ϑc)) , δ (ϑc, ε

m
ν (ϑc))

)

.

The reverse mapping works in completely different ways, according to the sign of the line tension.

In fact, (41) can work as an inverse map only when the line tension is negative since only in that

case, for a given value of the pair (cosϑ0
c , δ), a unique pair (ϑc, ε) solves (8). Figure 8 shows

several marginal curves in the (cos ϑ0
c , δ)-plane, obtained by mapping the curves εm

1 (ϑc) found in

Subsection 3.1, together with the corresponding unstable sets.
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cos ϑ0

c

− log |δ|

f2

f3

f4

I2

I3

I4

FIG. 8: The reverse mapping of three marginal curves fm := f(εm

ν
(ϑc)), corresponding to m = 2, 3 and 4,

are plotted together with the reverse mappings Ii of the curves Im that determine the admissible modes.

While, if no restriction is imposed on the modes, the whole region above the marginal curve corresponding

to a particular value of m would be unstable, the criterion (39) restricts the set of unstable modes to those

lying below the curve Im. We stress that on the vertical axis we plotted λ := − log
10

|δ|, so that the limit

of extremely high and negative line tension corresponds to λ → +∞. All the curves Im diverge at λ = +∞
when cos ϑ0

c
→ 1. For completeness, we drawn the curves fm and Im also beyond the value cos ϑ0

c
= −1.

On the other hand, when the line tension is positive, there is no way to use (41) as the inverse of

(8) since, for a given value of (cosϑ0
c , δ), the solutions are either two or none. To extract information

from the reverse mapping, we recall that along the marginal curve ε1(ϑc) the two equilibria coalesce

in one. We map ε1(ϑc) back into the (cos ϑ0
c , ε)-plane, obtaining the curve shown in Figure 9. This

curve, whose dashed part is unphysical as it lies outside the admissible set, separates the region

N , where no equilibria exist, from the region T , where two equilibria exist, for any admissible pair

(cos ϑ0
c , δ). However, at variance with the previous case, we cannot extract further information on

the stability of the equilibria since any point in T corresponds to two solutions. Furthermore, since

an equilibrium configuration in T is unstable, when ν ranges in U the reverse mappings of εν(ϑc)

cover the set T and curves corresponding to different values of ν never intersect each other. The
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T

log
10

δ

cos ϑ0

c

−1 1

FIG. 9: The reverse mapping of the marginal curve ε1(ϑc). To have a better graphic layout, we plotted

log
10

δ on the vertical axis. The solid portion is the part of the marginal curve lying in the admissible set

A: it has an asymptote at cos ϑ0

c
= −1 and leaves the admissible set at cos ϑ0

c
= 1 and log

10
δ = 0.1723

. The dashed line is the part of the marginal curve that lies outside A; consequently, unphysical values of

cos ϑ0

c
> 1 are obtained. In the set T two equilibria coexist, while no equilibria exist in N .

same remark holds for the reverse mappings of the curves εν(ϑc), when ν > 1.

IV. CONCLUSIONS

In this paper we performed the stability analysis of the equilibria of a sessile droplet lying upon

a rigid, flat, and homogeneous substrate, in the presence of line tension. As expected, we obtain

different outcomes according to the sign of the line tension. While our analysis strengthens the

results obtained by Widom in [5] when the line tension is positive, qualitatively new results occur

when the line tension is negative. While we confirm that no equilibrium can definitely be stable, we

introduce a natural cutoff on the admissible modes, by selecting only the modes that are effective

at a length-scale compatible with the realm of validity of our model. In this way we are able to

show that, when the strength of the line tension is not too high, negative values of the line tension

are compatible with the existence of (conditionally) stable equilibria. This paper opens the way to

a natural generalization in which the effects of line tension are coupled with the curvature of the

substrate. This study is indeed currently pursued and will be published elsewhere [15].
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