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1. Introduction

This paper deals with a singular integro-differential system describing a phase transi-
tion phenomenon with thermal memory. The system is written in terms of a rescaled
balance of energy and an equilibrium equation for the microforces that govern the phase
transition. The related thermomechanical model is somehow new, and presents inter-
esting features on which we would like to suitably comment. From the analytical point
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of view, we mainly aim to investigate existence and uniqueness of the solutions, con-
tinuous dependence on the data, regularity, and long-time behaviour. Therefore, since
the complete treatment of modelling and analytical aspects would lead to a long and
thorough manuscript, we prefer to split our investigation into two parts. In particular,
this paper will focus only on analytical aspects, while modelling derivation and long-
time behaviour of solutions will be the subject of the twin paper [4]. Nonetheless, in
order to make the presentation clear from the beginning, let us briefly introduce here
the main ingredients of the resulting PDE’s system and give some comments on their
physical meaning.

We consider a two-phase system located in a smooth bounded domain Ω ⊂ RN ,
with N ≤ 3 , and let T > 0 denote a final time. The unknowns of the problem are
the absolute temperature ϑ , and a phase parameter χ which may represent the local
proportion of one of the two phases. To ensure thermomechanical consistence, suitable
physical constraints on χ are introduced: if it is assumed, e.g., that the two phases
may coexist at each point with different proportions, it turns out to be reasonable to
require that

χ ∈ [0, 1] (1.1)

letting 1−χ denote the proportion of the second phase. In particular, in (1.1) the values
χ = 0, 1 correspond to the pure phases, while χ is between 0 and 1 in the cases when
both phases are present (i.e., in the so called “mushy region”). Clearly, the model should
provide an evolution for χ that complies with the physical constraint (1.1). A way to
force χ to attain values in the interval [0, 1] consists in including, in the energy
functional, the indicator function of the interval [0, 1] , which is defined for ξ ∈ R by
I[0,1](ξ) := 0 if ξ ∈ [0, 1] and I[0,1](ξ) = +∞ otherwise. The presence in the energy
functional of a non-smooth convex function, like the indicator function, leads to an
evolution equation for χ which involves a maximal monotone graph. Our analysis works
in a fairly general framework that allows constraints on the phase parameter, which arise
in physical applications and are possibly more general than the subdifferential of the
indicator function.

Now, let us state precisely the system of PDE’s as well as initial and boundary
conditions. The two equations governing the evolution of ϑ and χ are recovered as
balance laws. The first equation is an equation for the entropy and is obtained as a
reduction of the energy balance equation divided by the absolute temperature ϑ (see [4,
formulas (2.33–35)]). In previous contributions this kind of equation has been termed
”entropy balance” (cf. the titles of references [5, 6] and our title) to point out that it
describes the evolution of the entropy in place of the more usual internal energy. The
second equation accounts for the phase dynamics and is deduced from an equilibrium
law for the microscopic forces that are responsible for the phase transition process.
Concerning the heat flux law and the thermal properties of the system, we allow the
material to exhibit some thermal memory effect, i.e., the heat flux (and consequently
the entropy flux) is assumed to involve both the present value at time t of the gradient
of the temperature and the summed past history of it. Hence, the so-called entropy
balance can be written in Ω× (0, T ) as follows

∂t(cs log ϑ− λ(χ)) + div

(
−k0∇ϑ−

∫ ∞

0

k(s)∇ϑ(t− s) ds
)

= R (1.2)
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where cs > 0 represents the specific heat of the system, k0 > 0 is a thermal coefficient
for the entropy flux, k is a sufficiently regular thermal memory kernel, the factor λ′(χ)
in ∂t(λ(χ)) = λ′(χ)χt plays as latent heat, and R stands for an external entropy
source. We aim to point out that in (1.2) one finds the entropy flux Q , related to the
heat flux vector q by Q = q/ϑ , and here given by

Q = −k0∇ϑ−
∫ ∞

0

k(s)∇ϑ(t− s) ds.

Note that Q depends linearly on ∇ϑ . After an integration by parts in time, (1.2)
reduces to

∂t(cs log ϑ− λ(χ))−∆(k0ϑ+ k ∗ ϑ) = R (1.3)

the convolution product being defined by (a ∗ b)(t) :=
∫ t

0
a(t − s)b(s)ds . Further, by

abuse of notation, R now denotes an entropy source accounting also for the past history
contribution

div

∫ 0

−∞
k(t− s)∇ϑ(s)ds

which in our approach is assumed to be known. Next, the equilibrium equation for the
microscopic forces reads as follows

χt − ν∆χ+ β(χ) + σ′(χ) 3 −λ′(χ)ϑ (1.4)

where ν is a small positive parameter, σ is a smooth real function, and β := ∂j
denotes the subdifferential of a proper convex lower semicontinuous function j : R →
R∪{+∞} which accounts for physical constraint on χ (e.g., (1.1) if j(χ) = I[0,1](χ) ).
In particular, β turns out to be a maximal monotone graph in R×R . The setting of λ ,
β , and σ depends on the phenomenology we are considering. Even if it is fairly usual
that (1.1) is ensured if the effective domain of j is a subset of [0, 1] , different choices
of σ , β , and λ have been introduced in the literature (see, e.g., [2, 29, 14]). In the
case of a solid-liquid phase transition, λ and σ may be chosen in such a way that one
of the two minima χ = 0 and χ = 1 is always preferred for equilibrium, depending on
whether ϑ < ϑc or ϑ > ϑc , where ϑc denotes the critical phase change temperature.
A second interesting situation, included in our modelling approach by a suitable choice
of λ and σ , is concerned with the Ising model of ferromagnetism. In this case, the
energy functional may assume either two absolute minima with the same value if ϑ < ϑc
(in the presence of two symmetric phase variants) or just one absolute minimum in the
midpoint if ϑ > ϑc . Here, ϑc represents the so-called Curie temperature. For further
details, comments, and examples we refer to our following paper [4] (the reader may
also see [13]).

Before proceeding, let us briefly recall some related results in the literature. A key
reference is the paper [5], where a first model using the entropy balance to describe
phase transitions with thermal memory has been investigated. In [5] the authors
deal with an entropy flux law leading to an evolution equation different from (1.3) and
reading

∂t(cs log ϑ− λ(χ))−∆(k0 log ϑ+ k ∗ ϑ) = R. (1.5)
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Note that here the part involving the present value of the temperature in the entropy flux
yields a log ϑ (in place of a ϑ ) term as an argument of the Laplacian. However, both the
approach of [5] and ours offer an important advantage for the related models. Indeed,
by the presence of the logarithm of the temperature (at least, under the time derivative)
in the entropy equation (1.3) or (1.5), the positivity of the variable representing the
absolute temperature follows directly from solving the problem, i.e., from finding a
solution component ϑ to which the logarithm applies. This is important since we can
avoid the use of other methods, like e.g. the maximum principle, to determine whether
ϑ is positive in the space-time domain; and it is known that the maximum principle
is not always applicable, especially in the case of integro-differential equations. On
the other hand, let us note at once that in (1.3) the global operator mapping ϑ into
−∆(k0ϑ + k ∗ ϑ) is now linear, which is not the case for the corresponding operator
in (1.5). In the context of phase change models with thermal memory, linearity yields
a substantial help to recover good analytical results (see, e.g., [7, 10, 11, 18] and
references therein). In particular, for our PDE’s system we can prove here uniqueness
and regularity results (which was not possible in the framework of [5]) and discuss the
large time behaviour of the solution in the related paper [4]. To complete the review of
the related contributions, two other papers can be mentioned. In [6] a first simplified
version of the entropy system was introduced, but neglecting any thermal memory effect
as well as local interactions for the phases (i.e., ν = 0 in (1.4) ). Then, the results of
[5] have been extended in [3] to the case of some thermal anisotropy in the material.

Anyway, we emphasize that both in [5] and in this paper we are assuming thermal
memory for the system, i.e., the heat flux vector q = qp + qh is the sum of a present
value term qp , depending on ϑ at time t , and an history contribution qh involving
the summed past history of the temperature. Consequently, the entropy flux Q = q/ϑ
is Q = Qp + Qh = (qp + qh)/ϑ , and in our new approach (i.e., (1.3)) the heat flux
part qp is not provided by the usual Fourier law

qp(t) = −k0∇ϑ(t), k0 > 0

which would yield Qp = −k0∇ log ϑ as in (1.5), but qp(t) is supposed to be pro-
portional to the gradient of the temperature through a non costant thermal coefficient
depending on the temperature itself. In particular, we let this coefficient be equal to
−k0ϑ , that is,

qp(t) = −k0ϑ(t)∇ϑ(t)

so that at ϑ = 0 no heat flux is allowed and, in turn, Qp = −k0∇ϑ . This position is in
agreement with thermodynamics since it postulates that when the absolute temperature
approches zero the heat flux coefficient degenerates. Moreover, it is coherent with the
law for the past history contribution of the heat flux qh , which also in [5] is assumed to
depend on a thermal coefficient involving the temperature ϑ and vanishing as ϑ↘ 0 .
Thanks to this new diffusion term, which is linear with respect to ϑ , (1.3) presents
some mathematical advantages with respect to (1.5): indeed, for our modified model
we are able to prove uniqueness of the solution and investigate its long-time behavior,
while in [5] the existence of a solution was proved on a finite time interval (0, T ) and
the uniqueness result was given only for some regularized version of the system. As
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you can easily agree, uniqueness and long-time stability are also relevant as physical
properties.

About our thermodynamical approach, it turned out that we actually deal with
the theory of thermal memory materials in agreement with the position of [9], as we
include a present contribution qp(t) in the definition of q . However, for a general
introduction to the theory of thermal memory, we invite the reader to see the other
famous reference [20] and possibly the more recent contributions [15, 17, 21, 22, 30].
Besides, concerning the idea of recovering (1.4) or analogous equations as the equi-
librium equations for microforces, we mainly refer to two single approaches by Gurtin
[19] and Frémond [16] (cf. also [12, 25, 26, 27, 28] for related analytical results and
complementary remarks).

The full problem investigated in this paper consists of equations (1.3) and (1.4)
coupled with suitable initial and boundary conditions. In particular, we consider a
Dirichlet boundary condition for ϑ (absolute temperature known on the boundary Γ
of the body Ω ) and a Neumann homogeneous boundary condition for χ , which is fairly
usual in this kind of problems, as it corresponds to prescribe that no surface forces are
applied on the boundary. Then, we set on Γ× (0, T )

ϑ = ϑΓ, ∂nχ = 0 (1.6)

where ∂n denotes the outward normal derivative on Γ . In addition, we prescribe
Cauchy conditions for ϑ and χ , i.e.,

ϑ(0) = ϑ0, χ(0) = χ0. (1.7)

The resulting system is highly nonlinear, and the main difficulties lie in the coupling
of the nonlinear evolutive term in the entropy balance with the convolution product
involving the temperature and the nonlinearities in the variational inclusion governing
the dynamics of the phase parameter. Nonetheless, for the related initial boundary
value problem we can prove the existence and uniqueness of a global solution, as well
as some regularity properties, by deducing uniform estimates and using monotonicity
and compacteness methods. The possibility of applying our results to other settings,
such as different boundary conditions for the temperature (i.e., Neumann or third type
boundary conditions), remains, for the moment, not clear as the techniques we are
using carefully exploit the structure of the Dirichlet condition in (1.6). However, we
will discuss the technical aspects more in detail in the next sections.

Here is the outline of the paper. We state precisely assumptions and main results
in Section 2. The existence result (cf. Theorem 2.1) is proved in Section 4 by a priori es-
timates and passage to the limit, after implementing a double approximating procedure
in Section 3. In particular, the inner approximation makes use of a delicate Faedo-
Galerkin scheme. Hence, uniqueness and continuous dependence on the data, which
are stated in Theorem 2.2, are shown in Section 5. Finally, some further regularity
properties of the solution (cf. Theorem 2.3) are recovered in Section 6.

2. Statement of the problem

In this section, we take some care in describing the problem we are going to deal with.
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Moreover, we list our assumptions and state our results. We start with the assumption
on the structure of the system.

We are given four functions β̂ , λ , σ , k , and a constant k0 satisfying the
conditions listed below.

β̂ : R→ [0,+∞] is convex, proper, lower semicontinuous, and β̂(0) = 0 (2.1)

lim
|r|→+∞

|r|−2 β̂(r) = +∞ (2.2)

λ, σ ∈ C1(R) and λ′ and σ′ are Lipschitz continuous (2.3)

k ∈W 1,1(0,+∞) and k0 > 0. (2.4)

We define the graph β in R× R by

β := ∂β̂ (2.5)

and note that β is maximal monotone and that β(0) 3 0 . The same symbol β will
be used for the maximal monotone operators induced on L2 spaces.

Next, we list our assumptions on the data. To this aim, we introduce a notation.
In the sequel, Ω is a bounded open set in R3 whose boundary Γ is assumed to be
smooth. Given a final time T , we set

Q := Ω× (0, T ) and Σ := Γ× (0, T ). (2.6)

It is convenient to set also

H := L2(Ω), V := H1(Ω), V0 := H1
0 (Ω) (2.7)

W :=
{
v ∈ H2(Ω) : ∂nv = 0

}
(2.8)

where ∂nv is the normal derivative. We endowe H , V , and W with their usual
scalar products and norms, and use a self-explaining notation, like ‖ · ‖V . For the
sake of simplicity, the same symbol will be used both for a space and for any power of
it. We note that the norms ‖v‖V and ‖∇v‖H are equivalent for v ∈ V0 , thanks to
the Poincaré inequality, and recall that V ′0 coincides with the Sobolev space H−1(Ω) .
Finally, for p ∈ [1,∞] , the symbol ‖ · ‖p denotes the standard norm in Lp(Ω) .

As far as the data of our problem are concerned, let the four functions R , ϑΓ ,
ϑ0 , and χ0 satisfy

R ∈ L2(0, T ;H) (2.9)

ϑΓ ∈ C0([0, T];H1/2(Γ)) ∩W 1,1(0, T ;L∞(Γ)) ∩H1(0, T ;H−1/2(Γ)),

ϑΓ > 0 a.e. on Σ and 1/ϑΓ ∈ L∞(Σ) (2.10)

ϑ0 ∈ L∞(Ω), ϑ0 > 0 a.e. in Ω, and 1/ϑ0 ∈ L∞(Ω) (2.11)

χ0 ∈ V and β̂(χ0) ∈ L1(Ω). (2.12)

Due to (2.10–11), there exist two positive constants ϑ∗ and ϑ∗ such that

ϑ∗ ≤ ϑΓ ≤ ϑ∗ a.e. on Σ and ϑ∗ ≤ ϑ0 ≤ ϑ∗ a.e. in Ω . (2.13)
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The function ϑΓ is the boundary datum for the temperature and we would like to
consider a function u := ϑ − ϑH vanishing on the boundary as associated unknown
function. Hence, a natural choice of ϑH is the harmonic extension of ϑΓ , so that
∆u = ∆ϑ . Therefore, we define ϑH : Q→ R as follows

ϑH(t) ∈ V, ∆ϑH(t) = 0, and ϑH(t)|Γ = ϑΓ(t) for a.a. t ∈ (0, T ) (2.14)

and note that assumptions (2.10) yield

ϑH ∈ C0([0, T];V ) ∩W 1,1(0, T ;L∞(Ω)) ∩H1(0, T ;H).

More precisely, owing to the theory of harmonic functions, in particular to the maximum
principle, we have

‖ϑH‖L2(0,T ;V ) ≤MΩ‖ϑΓ‖L2(0,T ;H1/2(Γ)),

‖ϑH‖L1(0,T ;H) ≤MΩ‖ϑΓ‖L1(0,T ;H−1/2(Γ)),

‖∂tϑH‖L2(0,T ;H) ≤MΩ‖∂tϑΓ‖L2(0,T ;H−1/2(Γ)),

ϑ∗ ≤ ϑH ≤ ϑ∗ a.e. in Q,

‖∂tϑH‖L1(0,T ;L∞(Ω)) = ‖∂tϑΓ‖L1(0,T ;L∞(Γ)) (2.15)

where MΩ is a constant depending on Ω , only. So, our aim is finding a triplet (ϑ, χ, ξ)
satisfying the regularity conditions

ϑ ∈ L2(0, T ;V ) and u := ϑ− ϑH ∈ L2(0, T ;V0) (2.16)

ϑ > 0 a.e. in Q and lnϑ ∈ L∞(0, T ;H) ∩H1(0, T ;V ′0) (2.17)

χ ∈ L2(0, T ;W ) ∩H1(0, T ;H) (2.18)

ξ ∈ L2(Q) (2.19)

and fulfilling the following equations

∂t
(
lnϑ(t)− λ(χ(t))

)
−∆(k0u+ k ∗ u)(t) = R(t) in V ′0 , for a.a. t ∈ (0, T ) (2.20)

∂tχ−∆χ+ ξ + σ′(χ) = −λ′(χ)ϑ a.e. in Q (2.21)

ξ ∈ β(χ) a.e. in Q (2.22)

(lnϑ)(0) = lnϑ0 and χ(0) = χ0. (2.23)

We remark that (2.16) and (2.4) imply that k0ϑ+k∗ϑ ∈ L2(0, T ;V ) , so that each term
of (2.20) belongs to L2(0, T ;V ′0) . Moreover, we note that (2.16) and (2.18) contain the
Dirichlet condition for ϑ and the homogeneous Neumann condition for χ , respectively
(see (2.7–8)). Finally, we point out that lnϑ ∈ C0([0, T];V ′0) and χ ∈ C0([0, T];V )
due to (2.16–18), whence both conditions (2.23) are meaningful. Now, we present
our results.

Theorem 2.1. Assume (2.1–5) and (2.9–13) with the notation (2.6–8). Then there
exists a unique triplet (ϑ, χ, ξ) satisfying (2.16–19) and solving problem (2.20–23).
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Moreover, if M is a constant and all the norms related to (2.9–12) are bounded by the
constant M , then the solution (ϑ, χ, ξ) satisfies the estimate

‖ϑ‖L2(0,T ;V ) + ‖lnϑ‖L∞(0,T ;H)∩H1(0,T ;V ′0 )

+ ‖χ‖L2(0,T ;W )∩H1(0,T ;H) + ‖ξ‖L2(0,T ;H) ≤M ′ (2.24)

where M ′ depends on Ω , T , on the constants and functions listed in (2.1–5), (2.13),
and on the constant M , only.

Theorem 2.2. In the same framework of Theorem 2.1, the solution (ϑ, χ, ξ) con-
tinuously depends on the data in the following sense. If (Ri, ϑiΓ, ϑ0i, χ0i) , i = 1, 2 ,
are two sets of data whose norms related to assumptions (2.9–12) are bounded by a
constant M , then the corresponding solutions (ϑi, χi, ξi) fulfil the estimate

∫

Q

(lnϑ1 − lnϑ2) (ϑ1 − ϑ2) +

∫

Ω

|(1 ∗ ∇(u1 − u2))(t)|2

+

∫

Ω

|χ1(t)− χ2(t)|2 +

∫

Q

|∇(χ1 − χ2)|2 +

∫

Q

(ξ1 − ξ2)(χ1 − χ2)

≤M ′′
{
‖ϑ1Γ − ϑ2Γ‖L1(0,T ;H−1/2(Γ)) + ‖R1 −R2‖2L1(0,T ;H) + ‖η01 − η02‖2H

}
(2.25)

where η0i := lnϑ0i − λ(χ0i) for i = 1, 2 and M ′′ has the same dependences as M ′

does in Theorem 2.1.

Theorem 2.3. In the same framework of Theorem 2.1, assume that

χ0 ∈ L∞(Ω) and ϑΓ ∈ L2(0, T ;H3/2(Γ)) (2.26)

in addition. Then, the solution (ϑ, χ, ξ) enjoys the following further properties

|χ|r ∈ L2(0, T ;V ) and χ ∈ L∞(0, T ;Lr(Ω)) (2.27)

ϑp ∈ L2(0, T ;V ) and ϑ ∈ L∞(0, T ;L2p−1(Ω)) (2.28)

for all 1 ≤ r <∞ and 1 ≤ p < 2 .

The rest of the paper is organized as follows. Next section is devoted to approxi-
mating problem (2.20–23). The other sections deal with the proof of our results. More
precisely, we first prove the existence and stability parts of Theorem 2.1. Then we com-
plete the proof showing uniqueness and prove Theorem 2.2. Finally, in the last section,
we detail the proof of Theorem 2.3 and give some ideas on further regularity of the
solution. In the sequel, we widely use the notation

Qt := Ω× (0, t) for 0 < t ≤ T

and the elementary Young inequality

ab ≤ δap + cδ,pb
p′ ∀ a, b ≥ 0 ∀ δ > 0 (2.29)
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where p, p′ > 1 satisfy (1/p) + (1/p′) = 1 and cδ,p is a positive constant, which
depends on δ and p .

As far as constants are concerned, we use a general rule. In the whole paper, the
symbol c stands for different constants which depend only on Ω , on the final time T ,
and on the constants and the norms of the functions involved in the assumptions of
our statements. A notation like cδ allows the constant to depend on the positive
parameter δ , in addition. Hence, the meaning of c and cδ might change from line
to line and even in the same chain of inequalities. On the contrary, we use different
symbols to denote precise constants which we could refer to.

As far as convolutions are concerned, we recall the identities (which hold whenever
they make sense)

a ∗ b = a(0) ∗ b+ (∂ta) ∗ 1 ∗ b and ∂t(a ∗ b) = a(0)b+ (∂ta) ∗ b (2.30)

and the Young theorem

‖a ∗ b‖Lr(0,T ;X) ≤ ‖a‖Lp(0,T )‖b‖Lq(0,T ;X) (2.31)

where X is a Banach space and p, q, r ∈ [1,∞] satisfy 1/r = (1/p) + (1/q) − 1 .
Moreover, we recall that V ⊂ Lp(Ω) for 1 ≤ p ≤ 6 , the embedding being compact if
p < 6 , and often use the corresponding Sobolev inequality

‖v‖p ≤MΩ‖v‖V for 1 ≤ p ≤ 6 (2.32)

which holds for every v ∈ H1(Ω) and for some constant MΩ (depending on Ω , only),
since Ω is a bounded smooth domain in R3 .

3. Approximating problems

In order to prove our existence, stability, and regularity results, we introduce a family
of approximating problems depending on the positive parameter ε . In such problems,
some terms are regularized. In the next sections, we let ε tend to 0 and deal with the
original problem.

We consider the Yosida regularizations βε and lnε of the maximal monotone
graphs β and ln , respectively (see, e.g., [8, p. 28]), and define β̂ε, Lnε : R→ R by

β̂ε(r) :=

∫ r

0

βε(s) ds and Lnε(r) := εr + lnε(r). (3.1)

We note that both βε and Lnε are monotone and Lipschitz continuous(see, e.g., [8,
p. 28]). Moreover, one can easily check that Lnε is even C∞ and satisfies Ln′ε(r) ≥ ε
for every r ∈ R . Next, we replace λ with a smoother λε ∈ C1(R) satisfying

λε and λ′ε are Lipschitz continuous and |λε(0)|+ |λ′ε(0)|+ ‖λ′′ε‖L∞(R) ≤Mλ (3.2)

λε(r)→ λ(r) and λ′ε(r)→ λ′(r) as ε ↘ 0 for every r ∈ R. (3.3)
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Finally, we introduce regularized data ϑ0ε fulfilling the following conditions

ϑ0ε ∈ V and ϑ∗ ≤ ϑ0ε ≤ ϑ∗ a.e. in Ω for any ε > 0 (3.4)

ϑ0ε → ϑ0 in H and a.e. in Ω as ε ↘ 0. (3.5)

Hence, the approximating problem consists in finding a pair (ϑε, χε) satisfying the
regularity conditions

ϑε ∈ L2(0, T ;V ) ∩H1(0, T ;H) and uε := ϑε − ϑH ∈ L2(0, T ;V0) (3.6)

χε ∈ L2(0, T ;W ) ∩H1(0, T ;H) (3.7)

and fulfilling the following equations

∂t
(
Lnε(ϑε)− λε(χε)

)
−∆(k0uε + k ∗ uε) = R a.e. in Q (3.8)

∂tχε −∆χε + βε(χε) + σ′(χε) = −λ′ε(χε)ϑε a.e. in Q (3.9)

ϑε(0) = ϑ0ε and χε(0) = χ0. (3.10)

Even though the above problem looks better than the original one, it is not obvious
that it has a solutions. Therefore, we discretize it by means of a Galerkin procedure.
More precisely, we prefer to approximate uε rather than ϑε .

To this aim, we introduce two increasing sequences {V n} and {V n0 } of finite
dimensional subspaces of V and V0 such that the corresponding unions are dense in
V and V0 , respectively. We can choose such subspaces in order that

V n ⊂W and V n0 ⊂ H2(Ω). (3.11)

Moreover, we approximate the data of the approximating problem by sequences {Rn} ,
{u0n} , and {χ0n} satisfying for every n

Rn ∈ C0([0, T];H), u0n ∈ V n0 , and χ0n ∈ V n (3.12)

and converging as n ↗∞ in the following sense

Rn → R in L2(0, T ;H)

u0n → ϑ0ε − ϑH(0) and χ0n → χ0 in V . (3.13)

Then, the discrete problem consists in finding a pair (un, χn) satisfying

un ∈ C1([0, T];V n0 ) and χn ∈ C1([0, T];V n) (3.14)

and solving the following variational equations
(
∂t(Lnε(ϑn(t))− λε(χn(t))), v

)
H

+
(
k0∇un(t) + (k ∗ ∇un)(t),∇v

)
H

=
(
Rn(t), v

)
H

for any t ∈ [0, T] and v ∈ V n0 (3.15)
(
∂tχn(t), v

)
H

+
(
∇χn(t),∇v

)
H

+
(
βε(χn(t)) + σ′(χn(t)), v

)
H

= −
(
λ′ε(χn(t))ϑn(t), v

)
H

for any t ∈ [0, T] and v ∈ V n (3.16)

un(0) = u0n and χn(0) = χ0n (3.17)

where we have set
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ϑn := un + ϑH . (3.18)

It turns out that the above problem has a global solution. Then, we let n tend to
infinity in order to solve the approximating problem (3.8–10). However, as nothing is
obvious, we state precise existence results. Although the solutions to problems (3.15–17)
and (3.8–10) should be unique, we do not care about uniqueness of such approximating
solutions.

Theorem 3.1. The discrete problem (3.15–17) has a global solution.

Proof. Many of the constants and the functions we introduce depend on both n
and ε . However, as such parameters are fixed at the moment, we often do not stress
such a dependence in the notation. Let n′ and n′0 be the dimensions of the subspaces
V n and V n0 and introduce two bases B = (wj) and B0 = (w0j) for V n0 and V n ,
respectively. Here and in the rest of the proof, the index j runs from 1 to either n′

or n′0 , according to the basis which it refers to. Clearly, the true unknowns are the
coefficients uj and yj of the representations of un and χn with respect to the bases
we have fixed. If u and y are the vectors of such coefficients, sistem (3.15–16) can be
written in the form of a system of integrodifferential ordinary equations, namely

E(t,u(t),y(t),u′(t),y′(t), (k ∗ u)(t)) = 0 (3.19)

where E = (F,G) and the components Fi and Gi of F and G are defined by

Fi(t,u,y,u
′,y′, z)

=

∫

Ω

(
Ln′ε

(∑
j ujw0j + ϑH(t)

)(∑
j u
′
jw0j + ∂tϑH(t)

)
− λ′ε

(∑
j yjwj

)∑
j y
′
jwj

)
w0i

+
∑
j (k0uj + zj)

∫

Ω

∇w0j · ∇w0i −
∫

Ω

Rn(t)w0i

Gi(t,u,y,u
′,y′, z)

=
∑
j y
′
j

∫

Ω

wjwi +
∑
j yj

∫

Ω

∇wj · ∇wi

+

∫

Ω

(βε + σ′)
(∑

j yjwj

)
wi +

∫

Ω

λ′ε
(∑

j yjwj

)(∑
j ujw0j + ϑH(t)

)
wi

for i = 1, . . . , n′0 and i = 1, . . . , n′ , respectively. In the above formulas, u′ , y′ , and
z are understood to be independent variables as well as u and y . Clearly, the first
thing to do is putting system (3.19) it its normal form, and this corresponds to solve
the equation

E(t,u,y,u′,y′, z) = 0

with respect to the variable (u′,y′) . To this aim, we want to use the implicite function
theorem and thus have to verify a number of assumption. First of all, E is a continuous
function and has continuous derivatives with respect to the variables u′j and y′j . Next,
we have to study its jacobian matrix with respect to the variables just mentioned.
Clearly, one thinks of four blocks, namely, the derivatives of F and G with respect to
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the variables u′ and y′ . As G does not depend on u′ explicitely, the determinant
we have to compute is given by

det
∂(F,G)

∂(u′,y′)
= det

∂F

∂u′
· det

∂G

∂y′
.

We note that all partial derivatives involved are scalar products, namely,

∂Fi
∂u′j

=
(
w0j , w0i

)
t,u

and
∂Gi
∂y′j

=
(
wj , wi

)
H

where we have set

(
v1, v2

)
t,u

:=

∫

Ω

Ln′ε
(∑

j ujw0j + ϑH(t)
)
v1v2 for v1, v2 ∈ H .

More precisely, ( · , · )t,u is an equivalent scalar product in H since ε ≤ Ln′ε(r) ≤
ε + 1/ε for every r ∈ R . Therefore, the above matrices are positive definite. Finally,
we have to choose the point (t∗,u∗,y∗,u′∗,y

′
∗, z∗) to be used to apply the implicite

function theorem, and this clearly has to be related to the initial conditions (3.17).
Hence, we take t∗ = 0 and z∗ = 0 . Next, we consider the representations of u0n

and χ0n with respect to the bases B0 and B , respectively, and choose u∗ and y∗
to be the vectors of the coefficients. It remains to select vectors u′∗ and y′∗ such that
E(t∗,u∗,y∗,u′∗,y

′
∗, z∗) = 0 . To this aim, we define χ•

0n by means of the equation

χ•
0n −∆χ0n + (βε + σ′)(χ0n) = −λ′ε(χ0n)(u0n + ϑH(0)).

Noting that χ•
0n belongs to H thanks to (3.11), we take its projection χ∗

0n on V n

with respect to the standard scalar product of H and consider the vector y′∗ of the
coefficients of the representation of χ∗

0n in terms of the the basis B . Hence, we have
G(t∗,u∗,y∗,u′,y′∗, z∗) = 0 for every u′ since G does not depend on u′ explicitely.
Next, we define u•0n by means of the equation

Ln′ε(u0n + ϑH(0))
(
u•0n + ∂tϑH(0)

)
− λ′ε(χ0)χ∗0n − k0∆u0n = Rn(0).

As u•0n ∈ H due to the inequality Ln′ε ≥ ε and to our regularity assumptions, we
can take its projection u∗0n on V n0 with respect to the scalar product ( · , · )t∗,u∗ and
consider the vector u′∗ of the coefficients of the representation of u∗0n in terms of the
basis B0 . Hence, we have F(t∗,u∗,y∗,u′∗,y

′
∗, z∗) = 0 . Therefore, we are in position

to apply the implicit function theorem and conclude that system (3.19) is (locally)
equivalent to an equation of the form

(u′(t),y′(t)) = E(t,u(t),y(t), (k ∗ u)(t)) (3.20)

where E is a continuous function that is Lipschitz with respect to the variables u , y
and z . Hence, the corresponding Cauchy problem (3.17) has a unique local solution,
i.e., a solution defined in a possibly smaller interval [0, τ) : indeed, one can reduce
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(3.20) to a fixed point problem (integral equation) by integration with respect to t and
then suitably apply the Contraction Principle.

Our next goal is showing that every maximal solution is actually global, and this
can be done in a quite standard way, i.e., noting that the initial regularity is preserved
and proving some a priori estimates. This would give a final value (un(τ), χn(τ)) and
thus the possibility of extending the solution, against maximality if τ < T . However,
the a priori estimate we scketch in a moment already would do the job, whence we avoid
any further detail on this point.

Theorem 3.2. Assume (2.1–5), (2.9–12), (3.2), and (3.4). Then there exists a pair
(ϑε, χε) satisfying (3.6–7) and solving problem (3.8–10).

Proof. We argue on the solutions to the discrete problems (3.15–17) and let n tend
to infinity. This should be done by performing a number of a priori estimates. In order
to obtain the basic one, one writes (3.15–16) at time t = s , tests such equations by
v = un(s) and v = ∂tχn(s) , respectively, integrates over (0, t) , and sums the obtained
equalities to each others. The λε− terms cancel out, the convolution can be treated as
a perturbation, and one arrives at

‖un‖L2(0,T ;V0) + ‖χn‖H1(0,T ;H) + ‖χn‖L∞(0,T ;V ) ≤ cε. (3.21)

As a similar estimate is given with full detail in the proof of Theorem 2.1, let us skip
the precise proof of (3.21).

Next, we derive an a priori bound for u′n in L2(0, T ;H) , where “prime” stands
for the time derivative till the end of the proof. In this case we give some detail by
proceeding fast. We write (3.15) in the form

(
∂t Lnε(ϑn(s)), v

)
H

+
(
k0∇un(s),∇v

)
H

= −
(
(k ∗ ∇un)(s),∇v

)
H

+
(
Rn(s) + ∂tλε(χn(s)), v

)
H

for any s ∈ [0, T] and v ∈ V n0 . (3.22)

Then, we test such an equation by v = u′n(s) and integrate over (0, t) . The leading
terms coming from the left hand side are

∫

Qt

Ln′ε(ϑn)|ϑ′n|2 +
k0

2

∫

Ω

|∇un(t)|2

and we recall that Ln′ε(ϑn) ≥ ε a.e. in Q . Moreover, we note that the difference
ϑ′n − u′n = ϑ′H is bounded in L2(0, T ;H) , whence it is essentially equivalent to use
either ϑ′n or u′n in treating each single term. The integral coming from the left hand
side and containing ϑH is moved to the right hand side and estimated this way

∫

Qt

∂t Lnε(ϑn)ϑ′H ≤
2

ε

∫

Qt

ϑ′nϑ
′
H ≤

ε

2

∫

Qt

|ϑ′n|2 + cε
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with the help of the inequality Ln′ε(r) ≤ ε + 1/ε ≤ 2/ε , which holds for every r ∈ R
and ε ∈ (0, 1) , and of (2.15). The convolution term can be treated as follows

−
∫

Qt

(k ∗ ∇un) · ∇u′n

= −
∫

Ω

(k ∗ ∇un)(t) · ∇un(t) +

∫

Qt

(k(0)∇un + k′ ∗ ∇un) · ∇un

≤ k0

4

∫

Ω

|∇un(t)|2 + c‖un‖2L2(0,T ;V ) ≤
k0

4

∫

Ω

|∇un(t)|2 + cε.

The last inequality uses the Young theorem (2.31) (see the next section for similar
situations) and (3.21). As far as the last term on the right hand side is concerned, it
suffices to observe that (3.21), (3.12), and (3.2) ensure that

‖Rn + ∂tλε(χn)‖L2(0,T ;H) ≤ cε.

As the initial values un(0) (coming from the second term of (3.22)) are bounded in V
by (3.13), we get, in particular

‖ϑ′n‖L2(0,T ;H) ≤ cε. (3.23)

At this point, it is straightforward to take the limit as n ↗∞ (for a subsequence)
and show that one obtains a solution to the ε− problem (3.6–10) in the limit, namely

uε := lim
n→∞

un, ϑε := lim
n→∞

ϑn = ϑH + uε, and χε := lim
n→∞

χn

weakly in the spaces mentioned in the above estimates. However, as similar arguments
are used later on, we confine ourselves in sketching the proof here. The weak conver-
gences we have obtained are already sufficient to ensure that the Cauchy conditions
(3.10) and the property (3.6) hold in the limit. Next, due to the smoothness of all
nonlinearities, all the nonlinear terms are weakly convergent as well, in the appropriate
spaces. On the other hand, we deduce strong convergence in Lp− type spaces for both
{ϑn} and {χn} , accounting for compact embeddings and the Aubin lemma (see, e.g.,
[24, p. 58]). This yields convergence a.e., whence we can identify the limits of the
nonlinear terms. Now, we shortly show how to prove that (ϑε, χε) actually solves the
approximating problem. We fix m for a while. We write (3.15–16) at time t = s , test
such equation with v(s) , where v is arbitrary in L2(0, T ;V m0 ) and in L2(0, T ;V m) ,
respectively, and integrate over (0, T ) . This can be done assuming n ≥ m since the
sequences of finite dimensional subspaces are increasing. At this point, we let n tend
to infinity (for the convergent subsequence) and obtain

∫

Q

∂t
(
Lnε(ϑε(t))− λε(χε(t))

)
v +

∫

Q

∇(k0uε + k ∗ uε) · ∇v =

∫

Q

Rv

∫

Q

∂tχε v −
∫

Q

∇χε · ∇v +

∫

Q

(βε + σ′)(χε) v = −
∫

Q

λ′ε(χε)ϑεv
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for any v ∈ L2(0, T ;V m0 ) and v ∈ L2(0, T ;V m) , respectively. As m is arbitrary, the
same variational equations hold for any V0 and V -valued functions, by density. So,
we obtain a variational version of system (3.8–9) with the implicit Neumann condition
for χ . At this point, looking at the regularity of the functions involved, we conclude
that χε satisfies (3.7) and that (ϑε, χε) is a solution in the sense specified in the
statements.

4. Existence and stability

In this section, we prove the existence and stability parts of Theorem 2.1. We start
from an arbitrary solution (ϑε, χε) to the approximating problem (3.8–10) and perform
a number of a priori estimates in order to let ε ↘ 0 using compactness methods. The
estimates we prove hold for ε small enough, in general. However, in order not to be too
boring, let us avoid to recall every time the smallness conditions on ε already required
in previous arguments, being understood that every upperbound for ε already needed
is supposed to be respected in the sequel of the section. We remind the reader that
the functions βε and lnε are the Yosida regularizations of β and ln , respectively,
and that the functions β̂ε and Lnε are defined in (3.1). We need one more function,
namely,

Iε(r) :=

∫ r

0

sLn′ε(s) ds, r ∈ R (4.1)

which is an approximation of the identity on (0,+∞) . Before starting to prove our
estimates, we collect a number of properties of the functions we have mentioned. Such
properties will be used in the sequel. The first one is

β̂ε(r) ≤ β̂(r) for every r ∈ R (4.2)

and holds for any ε > 0 (see, e.g., [8, Prop. 2.11, p. 39]). Moreover, owing, e.g., to
[8, p. 28], we easily deduce the chain of inequalities

0 ≤ Ln−ε (r) ≤ ln−ε (r) ≤ | lnε(r)| ≤ | ln r| for every r > 0 and ε > 0 . (4.3)

Lemma 4.1. For any δ > 0 we have

r2 ≤ δβ̂ε(r) + cδ for every r ∈ R (4.4)

provided that ε ∈ (0, δ/3) .

Proof. Fix δ > 0 . Owing to (2.2), we find rδ > 0 such that β̂(r)/r2 ≥ 1/δ for
|r| ≥ rδ . Hence, we have

r2 ≤ δβ̂(r) + r2
δ for every r ∈ R

whence also

1

2ε/δ
(s− r)2 + s2 ≤ δ

(
1

2ε
(s− r)2 + β̂(s)

)
+ r2

δ for every r, s ∈ R .
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For fixed r , taking the infimum with respect to s , we deduce that (see, e.g., [8,
Prop. 2.11, p. 39])

r2

1 + 2ε/δ
≤ δβ̂ε(r) + r2

δ .

Hence, assuming ε ∈ (0, δ) , we infer that

r2 ≤ 3δβ̂ε(r) + 3r2
δ .

To conclude, it is sufficient to replace δ by δ/3 .

Lemma 4.2. There holds the inequality

ln′ε(r) ≤
2

r
for every r > 0 (4.5)

provided that ε is small enough.

Proof. By virtue of the definition of lnε (see, e.g., [8, p. 28]), we have

lnε(r) =
r − ρε(r)

ε
for r ∈ R (4.6)

where ρε : R→ R , the resolvent of ln , is defined this way

ρε(r) is the unique ρ > 0 such that ρ+ ε ln ρ = r . (4.7)

Now we prove the lemma. Let ε∗ > 0 be such that ε∗ ln ρ ≤ ρ for every ρ > 0 and
assume ε ∈ (0, ε∗) . Then, we have ρ+ ε ln ρ ≤ 2ρ for every ρ > 0 , whence, taking the
the inverse functions, we deduce that

ρε(r) ≥
r

2
for every r ∈ R . (4.8)

On the other hand, (4.6) allows us to compute the derivative of lnε using ρε . From
the definition (4.7) of ρε , we have

ρ′ε(r) + ε
ρ′ε(r)
ρε(r)

= 1, whence ln′ε(r) =
1

ρε(r) + ε

and we immediately conclude.

Lemma 4.3. We have

Iε(r) ≤
ε

2
r2 + 2r for every r > 0 (4.9)

provided that ε is small enough.

Proof. We have indeed Iε(0) = 0 and Iε
′(r) = εr+ r ln′ε(r) ≤ εr+ 2 for every r > 0

and ε small enough, thanks to Lemma 4.2.
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Lemma 4.4. For any δ > 0 there holds the estimate

Ln+
ε (r) ≤ δ Iε(r) + cδ for every r ∈ R (4.10)

provided that ε is small enough.

Proof. Fix δ > 0 and let rε ∈ (0, 1) be the unique solution to the equation Lnε(r) =
0 . For r ≤ rε we have Lnε(r) ≤ 0 and Iε(r) ≥ 0 , whence (4.10) holds for any cδ ≥ 0 .
To deal with the case r > rε , we prove that rε > 1/2 for ε small enough. We use
the notation (4.6–7). We have Lnε(r) = εr+ (r− ρε(r))/ε , so that the definition of rε
reads (ε2 + 1)rε = ρε(rε) , and consequently, by (4.7),

rε = (ε2 + 1)rε + ε ln((ε2 + 1)rε), that is, ln((ε2 + 1)rε) + εrε = 0.

As the function r 7→ ln((ε2 + 1)r) + εr is positive for r = 1 and its value at r = 1/2
tends to − ln 2 as ε ↘ 0 , it is clear that rε > 1/2 for ε small enough. For such values
of ε and for r > rε , owing to rε ≥ 1/2 and to Lemma 4.2, we have

Ln+
ε (r) = Lnε(r) =

∫ r

rε

Ln′ε(s) ds ≤
∫ r

rε

(
δs+ cδs

−2
)

Ln′ε(s) ds

≤ δ
∫ r

0

sLn′ε(s) ds+ cδ

∫ +∞

1/2

s−2(ε+ 2/s) ds ≤ δ Iε(r) + cδ .

Now, we start proving our a priori estimates on the solutions (ϑε, χε) to the
approximating problems (3.8–10). We recall that the norms ‖v‖V and ‖∇v‖H are
equivalent for v ∈ V0 , as already observed, and that the inequality

|λε(r)|+ |σ(r)| ≤ c(1 + r2) for every r ∈ R (4.11)

holds true, thanks to assumptions (2.3) and (3.2).

First a priori estimate. We multiply (3.8) and (3.9) by uε and ∂tχε , respectively.
Then, we sum the obtained equalities and integrate over Qt . Finally, we add the same
suitable integral to both sides. Noting that the λε − terms partially cancel and using
the initial and boundary conditions, we obtain

∫

Ω
Iε(ϑε(t)) + ϑ∗

∫

Ω

Ln−ε (ϑε(t)) + k0

∫

Qt

|∇uε|2

+

∫

Qt

|∂tχε|2 +
1

2

∫

Ω

|∇χε(t)|2 +

∫

Ω

(β̂ε + σ)(χε(t))

=

∫

Ω
Iε(ϑ0ε) +

1

2

∫

Ω

|∇χ0|2 +

∫

Ω

(β̂ε + σ)(χ0) +

∫

Qt

∂t
(
Lnε(ϑε)− λε(χε)

)
ϑH

−
∫

Qt

(k ∗ ∇uε) · ∇uε +

∫

Qt

Ruε + ϑ∗

∫

Ω

Ln−ε (ϑε(t)). (4.12)
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We separately treat each term that needs some manipulation. The only term on the left
hand side we have to handle is the last one. Due to (4.11) and to Lemma 4.1, we have

∫

Ω

(β̂ε + σ)(χε(t)) ≥
∫

Ω

|χε(t)|2 + (1− δ)
∫

Ω

β̂ε(χε(t))− cδ .

The corresponding term on the right hand side can be easily estimated using (4.2)
and (2.12), while the term involving ϑ0ε is seen to be uniformly bounded thanks to
Lemma 4.3 and the inequalities in (2.15). Now, we deal with the first volume integral
and integrate it by parts in time, accounting for the very last integral of (4.12) as well.
Taking advantage of Lemma 4.4 and assuming ε to be small enough, we obtain

∫

Qt

∂t
(
Lnε(ϑε)− λε(χε)

)
ϑH + ϑ∗

∫

Ω

Ln−ε (ϑε(t))

=

∫

Ω

Ln+
ε (ϑε(t))ϑH(t) +

∫

Ω

(ϑ∗ − ϑH(t)) Ln−ε (ϑε(t))−
∫

Ω

λε(χε(t))ϑH(t)

−
∫

Ω

Ln+
ε (ϑ0ε)ϑH(0) +

∫

Ω

ϑH(0) Ln−ε (ϑ0ε) +

∫

Ω

λε(χ0)ϑH(0)

−
∫

Qt

(
Lnε(ϑε)− λε(χε)

)
∂tϑH. (4.13)

We deal with each integral on the right hand side of (4.13) separately. Thanks to (2.13)
and to Lemma 4.4, we have

∫

Ω

Ln+
ε (ϑε(t))ϑH(t) ≤ ϑ∗

∫

Ω

Ln+
ε (ϑε(t)) ≤ δ

∫

Ω
Iε(ϑε(t)) + cδ.

The second term of (4.13) is nonpositive, while the third one is estimated using (2.15),
(4.11), and Lemma 4.1 this way

−
∫

Ω

λε(χε(t))ϑH(t) ≤ c
∫

Ω

|χε(t)|2 + c ≤ δ
∫

Ω

β̂ε(χ(t)) + cδ .

Ignoring a nonpositive integral, we deal with the next one. We have
∫

Ω

ϑH(0) Ln−ε (ϑ0ε) ≤ ϑ∗
∫

Ω

| lnϑ0ε| ≤ c

because of (2.15), (4.3), and (3.4). Finally, we estimate the last integral of (4.13). Using
Lemmas 4.4 and 4.1 and estimates (4.3), (4.11), and (2.15), we obtain

−
∫

Qt

(
Lnε(ϑε)− λε(χε)

)
∂tϑH

≤ c
∫

Qt

|∂tϑH|
(
Ln+

ε (ϑε) + Ln−ε (ϑε) + |χε|2 + 1
)

≤ c
∫ t

0

‖∂tϑH(s)‖L∞(Ω)

∫

Ω

(
Iε(ϑε(s)) + Ln−ε (ϑε(s)) + β̂ε(χ(s)) + 1

)
ds
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and point out that the function ‖∂tϑH( · )‖L∞(Ω) belongs to L1(0, T ) , due to (2.15).
As all integrals of (4.13) are estimated, we come back to (4.12) and deal with the
convolution term. We use the regularity assumption (2.4) and the Young inequality
(2.31) and get

−
∫

Qt

(k ∗ ∇uε) · ∇uε = −
∫

Qt

(k(0) ∗ ∇uε + k′ ∗ 1 ∗ ∇uε) · ∇uε

≤ δ
∫

Qt

|∇uε|2 + cδ

(
|k(0)|2 + ‖k′‖2L1(0,T )

)∫ t

0

‖∇uε‖2L2(0,s;H) ds.

Finally, we immediately have

∫

Qt

Ruε ≤ δ
∫

Qt

|∇uε|2 + cδ .

At this point, we choose δ small enough and then apply the Gronwall lemma. Thus,
we obtain, in particular, the basic a priori estimate

‖Iε(ϑε)‖L∞(0,T ;L1(Ω)) + ‖uε‖L2(0,T ;V ) + ‖χε‖L∞(0,T ;V )∩H1(0,T ;H) ≤ c. (4.14)

We note that we could have written more terms in (4.14). We have stressed just the
estimates we use later on.

Consequences. Accounting for (2.15), it is straightforward to deduce that

‖ϑε‖L2(0,T ;V ) ≤ c. (4.15)

Moreover, owing to the assumptions (3.3) on λε and to the Sobolev and Hölder in-
equalities, we infer that

‖∂tλε(χε)‖L2(0,T ;L3/2(Ω)) ≤ c‖χε‖L∞(0,T ;L6(Ω))‖∂tχε‖L2(0,T ;L2(Ω)) ≤ c. (4.16)

In particular, the above derivative is bounded in L2(0, T ;V ′0) , since the Sobolev inequal-
ity (2.32) implies that the continuous embedding Lq(Ω) ⊂ V ′0 holds for any q ≥ 6/5 .
As the boundedness property in L2(0, T ;V ′0) holds true for all the other terms of equa-
tion (3.8) but the first one, we deduce by comparison

‖∂t Lnε(ϑε)‖L2(0,T ;V ′0 ) ≤ c. (4.17)

Second a priori estimate. We multiply (3.9) by βε(χε) and integrate over Qt .
We obtain

∫

Ω

β̂ε(χε(t)) +

∫

Qt

β′ε(χε)|∇χε|2 +

∫

Qt

|βε(χε)|2

=

∫

Ω

β̂ε(χ0)−
∫

Qt

(
σ′(χε) + λ′ε(χε)ϑε

)
βε(χε).
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Now, the first integral on the right hand side is bounded thanks to (4.2) and (2.12), while
the second one can be controlled by the left hand side. Indeed, the above estimates, our
assumptions on λε and σ , and the Sobolev and Hölder inequalities imply that

‖σ′(χε)‖L∞(0,T ;V ) + ‖λ′ε(χε)ϑε‖L2(0,T ;L3(Ω)) ≤ c. (4.18)

Hence, we conclude that
‖βε(χε)‖L2(0,T ;H) ≤ c. (4.19)

At this point, we infer a bound for the laplacian of χε by comparison in (3.9), whence
it follows that

‖χε‖L2(0,T ;W ) ≤ c (4.20)

because of (3.7) and the elliptic regularity theory.

Third a priori estimate. We integrate equation (3.8) in time and find

Lnε(ϑε)− Lnε(ϑH)− k0 ∗∆uε

= 1 ∗ k ∗∆uε + λε(χε) + 1 ∗R + Lnε(ϑ0ε)− λε(χ0)− Lnε(ϑH) (4.21)

where we have added −Lnε(ϑH) to both sides for convenience. Then, we multiply
(4.21) by −∆uε = −∆ϑε and integrate over Qt . Finally, we integrate by parts using
the Dirichlet boundary conditions. We obtain

∫

Qt

∇
(
Lnε(ϑε)− Lnε(ϑH)

)
· ∇ϑε +

k0

2

∫

Ω

|(1 ∗∆uε)(t)|2

= −
∫

Qt

(1 ∗ k ∗∆uε)(∆uε) +

∫

Qt

λε(χε)(−∆uε)

+

∫

Qt

(1 ∗R)(−∆uε) +

∫

Qt

(
Lnε(ϑ0ε)− λε(χ0)

)
(−∆uε)−

∫

Qt

Lnε(ϑH)(−∆uε)

and deal with each term separately. The first integral on the left hand side gives two
contributions. The first one is nonnegative. We move the other one to the right hand
side and estimate it this way

∫

Qt

∇Lnε(ϑH) · ∇ϑε ≤ sup
ϑ∗≤r≤ϑ∗

Ln′ε(r) ‖∇ϑH‖L2(Q)‖∇ϑε‖L2(Q) ≤ c

where we have used Lemma 4.2 and estimates (2.15) and (4.15). The convolution term
is treated integrating by parts. Accounting for the regularity of k (see (2.4)) and using
the Young inequality (2.31), we have

−
∫

Qt

(1 ∗ k ∗∆uε)(∆uε)

= −
∫

Ω

(k ∗ 1 ∗∆uε)(t) (1 ∗∆uε)(t) +

∫

Qt

(
(k(0) + 1 ∗ k′) ∗∆uε

)
(1 ∗∆uε)

≤ δ
∫

Ω

|(1 ∗∆uε)(t)|2 + cδ‖k‖2L2(0,T )‖1 ∗∆uε‖2L2(0,t;H)

+
(
|k(0)|+ ‖k′‖L1(0,T )

) ∫

Qt

|1 ∗∆uε|2.
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Now, we deal with the next term and integrate it by parts in time. Using the quadratic
growth of λε , the Sobolev inequality (2.32), and estimate (4.14), we have

∫

Qt

λε(χε)(−∆uε) = −
∫

Ω

λε(χε(t))(1 ∗∆uε)(t) +

∫

Qt

∂tλε(χε)(1 ∗∆uε).

≤ δ
∫

Ω

|(1 ∗∆uε)(t)|2 + cδ

(
1 + ‖χε‖4L∞(0,T ;L4(Ω))

)

+

∫ t

0

‖∂tλε(χε(s))‖H‖(1 ∗∆uε)(s)‖H ds

≤ δ
∫

Ω

|(1 ∗∆uε)(t)|2 + cδ +

∫ t

0

‖∂tλε(χε(s))‖H‖(1 ∗∆uε)(s)‖H ds.

We note at once that ‖∂tλε(χε( · ))‖H is bounded in L1(0, T ) . Indeed

∫ T

0

‖∂tλε(χε(s))‖H ds ≤ c‖λ′ε(χε)‖L2(0,T ;L∞(Ω))‖∂tχε‖L2(0,T ;H) ≤ c

thanks to (3.2), (4.14), (4.20), and to the continuous embedding W ⊂ L∞(Ω) . Finally,
we treat the last three integrals together as follows

∫

Qt

(
1 ∗R + Lnε(ϑ0ε)− λε(χ0)− Lnε(ϑH)

)
(−∆uε)

= −
∫

Ω

(
(1 ∗R)(t) + Lnε(ϑ0ε)− λε(χ0)− Lnε(ϑH(t))

)
(1 ∗∆uε)(t)

+

∫

Qt

(
R− ∂t Lnε(ϑH)

)
(1 ∗∆uε)

≤ δ
∫

Ω

|(1 ∗∆uε)(t)|2 +

∫

Qt

|(1 ∗∆uε)|2

+ cδ

(
1 + ‖R‖2L2(0,T ;H) + ‖Lnε(ϑH)‖2L∞(0,T ;H) + ‖∂t Lnε(ϑH)‖2L2(0,T ;H)

)

≤ δ
∫

Ω

|(1 ∗∆uε)(t)|2 +

∫

Qt

|(1 ∗∆uε)|2 + cδ .

The last estimate is easily obtained by combining inequality (4.3), Lemmas 4.4, 4.3,
and 4.2 with estimates (2.15) for ϑH . At this point, we choose δ small enough and
apply and extended version of the Gronwall lemma (e.g., [8, Lemmas A.4 and A.5,
pp. 156–157]). We obtain, in particular, the following estimate

‖1 ∗∆uε‖L∞(0,T ;H) ≤ c (4.22)

whence we easily infer
‖Lnε(ϑε)‖L∞(0,T ;H) ≤ c (4.23)

by comparison in (4.21).
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Conclusion. We collect all the obtained estimates and use well-known compactness
results. It is understood that the convergences we are going to write hold for a suitable
subsequence εn ↘ 0 . By weak compactness, there exist five functions u , ϑ , χ , ξ , `
such that

uε → u weakly in L2(0, T ;V0) and ϑε → ϑ weakly in L2(0, T ;V ) (4.24)

χε → χ weakly in L2(0, T ;W ) and in H1(0, T ;H) (4.25)

βε(χε)→ ξ weakly in L2(0, T ;H) (4.26)

Lnε(ϑε)→ ` weakly star in L∞(0, T ;H) and in H1(0, T ;V ′0) (4.27)

Note that the limit functions u and χ satisfy the regularity properties stated in (2.16)
and (2.18), as well as the homogeneous Dirichlet and Neumann boundary conditions,
respectively. Moreover, it is clear that u = ϑ − ϑH and that the Cauchy conditions
`(0) = lnϑ0 and χ(0) = χ0 are fulfilled (see (3.4–5)). Indeed, the weak convergence
in H1(0, T ;X) of a sequence implies the weak convergence in X of the corresponding
initial values and one easily checks that Lnε(ϑ0ε) tends to lnϑ0 a.e. in Ω , hence,
e.g., in L2(Ω) . Next, λε(χε) , λ′ε(χε)ϑε , and σ′(χε) are weakly convergent in the
appropriate spaces as well (see (4.16) and (4.18)), so that we can pass to the limit in
both equations (3.8) and (3.9). This yields (2.20) and (2.21) whenever we can identify
the limits of all nonlinear terms. We start with the nonlinearities involving χ . The
above estimates, well known strong compactness results, and the Aubin lemma (see,
e.g., [24, p. 58]) yield

χε → χ strongly in L2(0, T ;V ) . (4.28)

Such convergence and (4.24) enable us to identify the limits of σ′(χε) , λε(χε) , and
λ′ε(χε)ϑε , with the help of (2.3) and (3.2–3). Indeed, we have that

‖σ′(χε)− σ′(χ‖L2(0,T ;H) ≤ c‖χε − χ‖L2(0,T ;H) .

Moreover, owing to the Taylor expansion

|ϕ(r + h)− ϕ(r)− hϕ′(r)| ≤ ch2 for every r, h ∈ R (4.29)

which holds for any function ϕ with Lipschitz derivative ϕ′ , we deduce that

|λε(χε)− λ(χ)| ≤ |λε(χε)− λε(χ)|+ |λε(χ)− λ(χ)|
≤ |λ′ε(χ)(χε − χ)|+ c|χε − χ|2 + |λε(χ)− λ(χ)|
≤ c(1 + |χ|)|χε − χ|+ c|χε − χ|2 + |λε(χ)− λ(χ)|

whence λε(χε)→ λ(χ) strongly, e.g., in L1(Q) . Finally, noting that

|λ′ε(χε)− λ′(χ)| ≤ c|χε − χ|+ |λ′ε(χ)− λ′(χ)|

it turns out that λ′ε(χε) → λ′(χε) strongly in L2(0, T ;H) , and consequently that
λ′ε(χε)ϑε → λ′(χε)ϑ weakly in L1(Q) .
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As far as the nonlinearity associated to the maximal monotone graph β is con-
cerned, we can apply, e.g., [1, p. 42] and conclude that χ ∈ D(β) and ξ ∈ β(χ)
a.e. in Q . Finally, we deal with the logarithmic term. Owing to the compact embed-
ding H ⊂ V ′0 and to the Aubin lemma once more, we see that (4.27) implies

Lnε(ϑε)→ ` weakly star in L∞(0, T ;H) and strongly in L2(0, T ;V ′0)

whence also

lnε(ϑε)→ ` weakly in L2(0, T ;H) and strongly in L2(0, T ;V ′0) (4.30)

since εϑε → 0 strongly in L2(0, T ;V ) . Hence, we infer that

lim
ε↘0

∫

Q

ϑε lnε(ϑε) = lim
ε↘0

∫

Q

(uε + ϑH) lnε(ϑε) = 〈`, u〉+

∫

Q

ϑH` =

∫

Q

ϑ` (4.31)

where 〈 · , · 〉 stands for the duality pairing between L2(0, T ;V ′0) and L2(0, T ;V0) ,
and we can apply [1, p. 42] also in this case. We conclude that ϑ > 0 and ` = lnϑ
a.e. in Q . This completes the proof.

Remark 4.5. The above proof clearly shows that we could have taken two different
parameters ε′ and ε′′ in approximating ln and β . Moreover, we could have kept
fixed either of them, say ε′ , and let ε′′ tend to 0 . This leads to an existence result
for a half-regularized problem. Moreover, all the a priori estimates are conserved in the
limit by the semicontinuity of the norms involved, so that it is possible to let ε′ tend
to 0 . The same can be done by exchanging the parameters ε′ and ε′′ .

Remark 4.6. It is clear that the solution we have obtain enjoys further regularity
properties, due to the uniform estimates we have proved. In particular, we stress that

1 ∗∆u ∈ L∞(0, T ;H) (4.32)

thanks to (4.22).

5. Uniqueness and continuous dependence

In this section, we conclude the proof of Theorem 2.1, by showing that the solution is
unique, and then prove Theorem 2.2. To this aim, we consider the integrated version
of (2.20), namely the equality

lnϑ− k0 ∗∆u = 1 ∗ k ∗∆u+ λ(χ) + 1 ∗R + η0 where η0 := lnϑ0 − λ(χ0) (5.1)

which is a necessary condition for (ϑ, χ, ξ) to be a solution to problem (2.20–23), and
couple it with (2.21) and the initial condition for χ . We pick two solutions (ϑi, χi, ξi)
to such a system corresponding to two sets of data (Ri, ϑiΓ, ϑ0i, χ0i) , i = 1, 2 . Then,
we write both (5.1) and (2.21) for such solutions and multiply the difference of the first
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equations by u := u1 − u2 and the difference of the second ones by χ := χ1 − χ2 .
Finally, we sum the equalities we have obtained to each other and integrate over Qt .
We introduce a similar notation for all the differences involved (i.e., related either to
solutions or to data), setting ϑ := ϑ1 − ϑ2 , . . . , η0 := η01 − η02 , and have
∫

Qt

(lnϑ1 − lnϑ2)u+
k0

2

∫

Ω

|(1 ∗ ∇u)(t)|2 +
1

2

∫

Ω

|χ(t)|2 +

∫

Qt

|∇χ|2 +

∫

Qt

ξχ

= −
∫

Qt

(k ∗ 1 ∗ ∇u) · ∇u+

∫

Qt

(1 ∗R+ η0)u+
1

2

∫

Ω

|χ0|2 −
∫

Qt

(
σ′(χ1)− σ′(χ2)

)
χ

+

∫

Qt

{(
λ(χ1)− λ(χ2)

)
ϑ−

(
λ′(χ1)ϑ1 − λ′(χ2)ϑ2

)
χ
}
.

We deal with each integral separately, as usual. On the left hand side, just the first
term needs some treatment, since the other ones are nonnegative (in particular, the last
term is nonnegative since β is monotone). We have

∫

Qt

(lnϑ1 − lnϑ2)u =

∫

Qt

(lnϑ1 − lnϑ2)ϑ−
∫

Qt

(lnϑ1 − lnϑ2)ϑH .

The first contribution is nonnegative. We move the second integral to the right hand
side and estimate it as follows

∫

Qt

(lnϑ1 − lnϑ2)ϑH ≤
(
‖lnϑ1‖L∞(0,T ;H) + ‖lnϑ2‖L∞(0,T ;H)

)
‖ϑH‖L1(0,T ;H)

≤ c
(
‖lnϑ1‖L∞(0,T ;H) + ‖lnϑ2‖L∞(0,T ;H)

)
‖ϑΓ‖L1(0,T ;H−1/2(Γ))

thanks to (2.15) and (2.24). Let us consider the convolution term on the right hand
side. We have

−
∫

Qt

(k ∗ 1 ∗ ∇u) · ∇u

= −
∫

Ω

(k ∗ 1 ∗ ∇u)(t) · (1 ∗ ∇u)(t) +

∫

Qt

∂t(k ∗ 1 ∗ ∇u) · (1 ∗ ∇u)

≤ δ
∫

Ω

|(1 ∗ ∇u)(t)|2 + cδ

∫

Qt

|1 ∗ ∇u|2

thanks to the regularity (2.4) of k and the Young inequality, as in the previous section.
We treat the next term integrating it by parts in time and using the Poincaré inequality
and (2.31). Then, we infer
∫

Qt

(1 ∗R+ η0)u =

∫

Ω

(
(1 ∗R)(t) + η0

)
(1 ∗ u)(t)−

∫

Qt

R(1 ∗ u)

≤ δ
∫

Ω

|(1 ∗ ∇u)(t)|2 + cδ

∫

Ω

|(1 ∗R)(t) + η0|2 + c

∫ t

0

‖R(s)‖H ‖(1 ∗ ∇u)(s)‖H ds

≤ δ
∫

Ω

|(1 ∗ ∇u)(t)|2 + cδ

∫ t

0

‖R(s)‖H ‖(1 ∗ ∇u)(s)‖H ds+ cδ‖R‖2L1(0,T ;H) + cδ‖η0‖2H .
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The subsequent term is dealt with using assumption (2.3) on σ′ . We have

−
∫

Qt

(
σ′(χ1)− σ′(χ2)

)
χ ≤ c

∫

Qt

|χ|2

while the last integral needs some treatment. To this aim, we recall (4.29) and, after re-
arranging, we use the above estimate and the Hölder and Sobolev inequalities and obtain

∫

Qt

{(
λ(χ1)− λ(χ2)

)
ϑ−

(
λ′(χ1)ϑ1 − λ′(χ2)ϑ2

)
χ
}

=

∫

Qt

ϑ1 {λ(χ1)− λ(χ2)− λ′(χ1)χ}+

∫

Qt

ϑ2 {λ(χ2)− λ(χ1) + λ′(χ2)χ}

≤ c
∫

Qt

(ϑ1 + ϑ2)|χ|2 ≤ c
∫ t

0

‖ϑ1(s) + ϑ2(s)‖4‖χ(s)‖4‖χ(s)‖2 ds

≤ c
∫ t

0

‖ϑ1(s) + ϑ2(s)‖V
(
‖∇χ(s)‖H + ‖χ(s)‖H

)
‖χ(s)‖H ds

≤ δ
∫

Qt

|∇χ|2 + cδ

∫ t

0

‖ϑ1(s) + ϑ2(s)‖2V ‖χ(s)‖2H ds

+ c

∫ t

0

‖ϑ1(s) + ϑ2(s)‖V ‖χ(s)‖2H ds

≤ δ
∫

Qt

|∇χ|2 + cδ

∫ t

0

(
1 + ‖ϑ1(s)‖2V + ‖ϑ2(s)‖2V

)
‖χ(s)‖2H ds.

At this point, we choose δ small enough and apply the extended version of the Gronwall
lemma [8, pp. 156-157]. We obtain
∫

Q

(lnϑ1 − lnϑ2)ϑ+

∫

Ω

|(1 ∗ ∇u)(t)|2 +

∫

Ω

|χ(t)|2 +

∫

Q

|∇χ|2 +

∫

Q

ξχ

≤ c exp
(
cϕ(ϑ1, ϑ2)

) {
ψ(ϑ1, ϑ2)‖ϑΓ‖L1(0,T ;H−1/2(Γ)) + ‖R‖2L1(0,T ;H) + ‖η0‖2H

}
(5.2)

where we have set

ϕ(ϑ1, ϑ2) := 1 + ‖ϑ1‖2L2(0,T ;V ) + ‖ϑ2‖2L2(0,T ;V )

ψ(ϑ1, ϑ2) := ‖lnϑ1‖L∞(0,T ;H) + ‖lnϑ2‖L∞(0,T ;H). (5.3)

In the particular case of the same sets of data, the right hand side of (5.2) vanishes,
and this implies that the two solutions have the same u and χ , whence the same ϑ .
By comparison in (2.21), we see that the last component ξ is uniquely determined as
well. This shows uniqueness.

To prove Theorem 2.2, we come back to the above situation of two sets of data
and assume that all of their norms related to assumptions (2.9–12) are bounded by a
constant M . Because of uniqueness, the solutions we are considering coincide with
the ones we have constructed in our existence and stability result already proved in
the previous section. Hence, the quantities (5.3) are bounded by a constant M ′ , as
specified in the last part of Theorem 2.1. Therefore, inequality (5.2) yields (2.25), for
some constant M ′′ fulfilling all the desired requirements.
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6. Further properties of the solution

This section is devoted to further regularity. We first prove Theorem 2.3, by assuming
(2.26) in addition to (2.9–12). We use the notation

‖v‖q,p,Qt := ‖v‖Lp(0,t;Lq(Ω)) and ‖v‖q,p := ‖v‖q,p,Q
for p, q ∈ [1,∞] . We perform further a priori estimates on the solutions (ϑε, χε) to
the approximating problems (3.8–10). However, to simplify the notation, we do not
stress the dependence on ε of some of the function we define.

First regularity estimate. Our first aim is proving (2.27). We start from the in-
equality

‖v‖q̄,p̄,Qt ≤ c‖v‖L2(0,t;V )∩L∞(0,t;H)

for 2 ≤ q̄ ≤ 6, 2 ≤ p̄ ≤ ∞, 1

p̄
+

3

2q̄
=

3

4
(6.1)

which holds for every v ∈ L2(0, T ;V )∩L∞(0, T ;H) and t ∈ (0, T ) . In (6.1), c depends
on the values of p̄ and q̄ as well. For the sake of simplicity, we allow the values of
all constants termed c to depend even on the exponent of the Lp − type spaces we
consider whenever such exponents are fixed. A general estimate that yields (6.1) in the
three-dimensional case is proved in [23, pp. 74–75] for functions vanishing on Σ and
for a general Ω . There, the value of c is computed exactly. However, it is easy to see
that the same proof holds for V − valued functions provided that Ω is smooth. In such
a case, c depends on the constant of the “full” Gagliardo-Nirenberg inequality, hence
on the smoothness of Ω .

In order to prove (2.27), we essentially follow [23, pp. 194-201], where the varia-
tional solution to a general linear parabolic equation is considered and the time average
of the solution enters the test function used. In our case, we do not need any average
since χε is smooth (see (3.7)), but our equation is nonlinear and, despite of that, we
want to obtain an estimate that is uniform with respect to ε . For any positive integer
n and for r ≥ 1 we set

vn := ±
(
min

{
χ±, n

})2r−1
and wn :=

(
min

{
χ±, n

})r
.

For the sake of convenience, we define also

ψn(s) :=

∫ s

0

(
min

{
s±1 , n

})2r−1
ds1 for s ∈ R and fε := −σ′(χε)− λ′ε(χε)ϑε.

Then, we multiply (3.9) by vn and integrate over Qt . We obtain
∫

Qt

∂tχε vn +

∫

Qt

∇χε · ∇vn +

∫

Qt

βε(χε)vn =

∫

Qt

fεvn. (6.2)

The first integral is given by
∫

Qt

∂tχε vn =

∫

Qt

∂tψn(χε) =

∫

Ω

ψn(χε(t))−
∫

Ω

ψn(χ0).
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Noting that the following inequalities hold

1

2r

(
min

{
s±, n

})2r ≤ ψn(s) ≤ 1

2r
|s|2r for every s ∈ R

we deduce the estimates
∫

Ω

ψn(χε(t)) ≥
1

2r

∫

Ω

|wn(t)|2 and

∫

Ω

ψn(χ0) ≤ 1

2r

∫

Ω

|χ0|2r.

The second integral of (6.2) is easy to handle. We have indeed

∫

Qt

∇χε · ∇vn =
2r − 1

r2

∫

Qt

|∇wn|2.

The third term is nonnegative since βε(χε)vn ≥ 0 a.e. in Q . In fact, in view of (2.1),
βε is monotone and βε(0) = 0 , whence βε(χε) and χε have the same sign. Then, we
deal with the right hand side. Using the Hölder inequality, we have

∫

Qt

fεvn ≤
∫

Qt

|fε||vn| =
∫

Qt

|fε|w2−1/r
n

≤ ‖fε‖q,2 ‖w2−1/r
n ‖q′,2,Qt = ‖fε‖q,2 ‖wn‖2−1/r

q̄,p̄,Qt

where we have defined q , q′ , p̄ , and q̄ by

1

q
=

1

2r
+

1

3
,

1

q′
= 1− 1

q
, p̄ = 4− 2

r
, and q̄ = 2q′ − q′

r
.

We note that q < 3 and recall that fε is estimated in L2(0, T ;L3(Ω)) by (4.18).
Moreover, our choice of p̄ and q̄ fulfils the compatibility conditions listed in (6.1).
Hence, we can apply (6.1) itself. Observing that wn ∈ C0([0, T];H) by (3.7) and
using the elementary Young inequality (2.29), we deduce that

∫

Qt

fε vn ≤ c‖wn‖2−1/r
L2(0,t;V )∩L∞(0,t;H) ≤ δ‖wn‖2L2(0,t;V )∩L∞(0,t;H) + cδ

≤ δ
∫

Qt

|∇wn|2 + δ

∫

Qt

|wn|2 + δ sup
0≤s≤t

‖wn(s)‖2H + cδ

≤ δ
∫

Qt

|∇wn|2 + δ(T + 1) sup
0≤s≤t

‖wn(s)‖2H + cδ .

Collecting (6.2) and all the inequalities we have obtained, choosing δ small enough,
and applying the generalized Gronwall lemma, we conclude that {wn} is bounded in
L2(0, T ;V )∩L∞(0, T ;H) . Then, letting n tend to ∞ , we infer that |χε|r belongs to
such a space and precisely that

{|χε|r} is bounded in L2(0, T ;V ) ∩ L∞(0, T ;H) . (6.3)
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As we can assume χε converging to χ a.e. in Q at least for a subsequence, due to the
strong convergences proved at the end of Section 4, we infer that the weak limit induced
by estimate (6.3) coincides with |χ|r . Hence, we obtain both conditions (2.27), since
r ≥ 1 is arbitrary.

Second regularity estimate. Now, we prove (2.28). Hence, we fix p ∈ [1, 2) .
Clearly, we can assume p > 1 , hence p ∈ (1, 2) . We set for convenience

Fε := R + k ∗∆uε + ∂tλε(χε)

and claim that the following estimate holds

‖Fε‖L2(0,T ;Lr(Ω)) ≤ cr for every r < 2 . (6.4)

Indeed, we have

Fε = R+ k(0)(1 ∗∆uε) + k′ ∗ 1 ∗∆uε + λ′ε(χε)∂tχε

and we can use (2.9) for the first term, (2.4) and (4.22) for the convolutions, and (3.7),
(6.3), and (4.14) for the last product. On the other hand, (3.8) reads

∂t Lnε(ϑε)− k0∆uε = Fε. (6.5)

We define for any positive integer n > ϑ∗

ϑn := min
{
ϑ+
ε , n

}

and multiply (6.5) by ϑ2p−1
n − ϑ2p−1

H . Noting that such a test function vanishes on Σ
due to (3.6) and (2.15), we integrate over Qt and obtain

∫

Qt

∂tϑε Ln′ε(ϑε)ϑ
2p−1
n + k0

∫

Qt

∇ϑε · ∇ϑ2p−1
n

=

∫

Qt

∂t Lnε(ϑε)ϑ
2p−1
H + k0

∫

Qt

∇uε · ∇ϑ2p−1
H

+ k0

∫

Qt

∇ϑH · ∇ϑ2p−1
n +

∫

Qt

Fεϑ
2p−1
n −

∫

Qt

Fεϑ
2p−1
H . (6.6)

We want to estimate the first term from below. We have

∫

Qt

∂tϑε Ln′ε(ϑε)ϑ
2p−1
n =

∫

Qt

∂tψn(ϑε) =

∫

Ω

ψn(ϑε(t))−
∫

Ω

ψn(ϑ0ε)

where ψn : R→ R is defined by means of the formula

ψn(r) :=

∫ r

0

Ln′ε(s)
(
min

{
s+, n

})2p−1
ds for r ∈ R .
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Therefore, we need an estimate from below for ψn . With the notation (4.6–7), we see
that ρε(0)→ 0 and easily have for every r ≥ 0 and for ε > 0 small enough

Ln′ε(r) ≥ ln′ε(r) =
1

ρε(r) + ε
≥ 1

r + ρε(0) + ε
≥ 1

r + 1
(6.7)

whence also

ψn(r) ≥ ϕ (min {r, n}) where ϕ(r) :=

∫ r

0

s2p−1

s+ 1
ds for r > 0 .

Now, we estimate the function ϕ from below. We have for r > 1

ϕ(r) ≥
∫ r

1

s2p−1

s+ 1
ds ≥

∫ r

1

s2p−1

2s
ds =

1

2(2p− 1)
r2p−1 − c.

As a similar estimate trivially holds for 0 ≤ r ≤ 1 as well, we obtain

∫

Ω

ψn(ϑε(t)) ≥
∫

Ω

ϕ(ϑn(t)) ≥ 1

2(2p− 1)

∫

Ω

|ϑn(t)|2p−1 − c

for ε small enough. On the other hand, one easily sees that

∫

Ω

ψn(ϑ0ε) ≤ c

owing to Lemma 4.2 and to (3.4). Therefore, we conclude that

∫

Qt

∂tϑε Ln′ε(ϑε)ϑ
2p−1
n ≥ 1

2(2p− 1)

∫

Ω

|ϑn(t)|2p−1 − c.

The second term of (6.6) is easier to handle. We have indeed

k0

∫

Qt

∇ϑε · ∇ϑ2p−1
n = k0

∫

Qt

∇ϑn · ∇ϑ2p−1
n =

k0(2p− 1)

p2

∫

Ω

|∇ϑpn|2.

The first term on the right hand side is treated by integration by parts. We obtain

∫

Qt

∂t Lnε(ϑε)ϑ
2p−1
H

=

∫

Ω

Lnε(ϑε(t))ϑ
2p−1
H (t)−

∫

Ω

Lnε(ϑ0ε)ϑ
2p−1
H (0)−

∫

Qt

Lnε(ϑε)∂tϑ
2p−1
H

≤ c‖Lnε(ϑε)‖L∞(0,T ;H) + c ≤ c

thanks to (4.23) and (2.15). Next, with the help of (4.14) we have

k0

∫

Qt

∇uε · ∇ϑ2p−1
H ≤ k0‖uε‖L2(0,T ;V )‖ϑ2p−1

H ‖L2(0,T ;V ) ≤ c.
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In order to deal with the next term of (6.6), we let q := (2p − 1)/(p − 1) and r :=
2(2p− 1) . Observing that (1/2) + (1/q) + (1/r) = 1 , we can use the Hölder inequality
this way

k0

∫

Qt

∇ϑH · ∇ϑ2p−1
n =

k0(2p− 1)

p

∫

Qt

ϑp−1
n ∇ϑpn · ∇ϑH

≤
∫ t

0

‖ϑp−1
n (s)‖q‖∇ϑpn(s)‖2‖∇ϑH(s)‖r ds

≤ δ
∫

Qt

|∇ϑpn|2 + cδ

∫ t

0

‖ϑp−1
n (s)‖2q‖∇ϑH(s)‖2r ds

≤ δ
∫

Qt

|∇ϑpn|2 + cδ

∫ t

0

‖ϑ2p−1
n (s)‖2/q1 ‖∇ϑH(s)‖2r ds.

Noting that 2/q ≤ 1 and r ≤ 6 and owing to the Sobolev inequality, we get

k0

∫

Qt

∇ϑH · ∇ϑ2p−1
n ≤ δ

∫

Qt

|∇ϑpn|2 + cδ

∫ t

0

(
1 + ‖ϑ2p−1

n (s)‖1
)
‖ϑH(s)‖2H2(Ω) ds.

We observe that the function ‖ϑH( · )‖2H2(Ω) belongs to L1(0, T ) because of (2.26)

and (2.14). In order to deal with the second last term, we set q := (2p− 1)/(p− 1) as
above and define ν > 1 by means of (1/ν) + (1/q) + (1/6) = 1 . Then, it turns out
that ν < 2 , whence Fε is bounded in L2(0, T ;Lν(Ω)) by (6.4). Hence, we have

∫

Qt

Fεϑ
2p−1
n ≤

∫

Qt

|Fε|ϑp−1
n ϑpn

≤
∫ t

0

‖Fε(s)‖ν‖ϑp−1
n (s)‖q‖ϑpn(s)‖6 ds

≤ δ
∫ t

0

‖ϑpn(s)‖26 ds+ cδ

∫ t

0

‖Fε(s)‖2ν‖ϑp−1
n (s)‖2q ds

≤ δ
∫ t

0

‖ϑpn(s)‖26 ds+ cδ

∫ t

0

(
1 + ‖ϑ2p−1

n (s)‖1
)
‖Fε(s)‖2ν ds

where we have used the same argument as before as far as q is concerned. Hence, we
have to estimate the first integral of the last line. Accounting for the Sobolev inequality
(2.32) once more, we have

∫ t

0

‖ϑpn(s)‖26 ds ≤MΩ

∫ t

0

‖ϑpn(s)‖2V ds

≤ c
∫

Qt

|∇ϑpn|2 + c

∫ t

0

(∫

Ω

ϑp−1/2
n (s)ϑ1/2

n (s)
)2
ds

≤ c
∫

Qt

|∇ϑpn|2 + c‖ϑn‖L∞(0,T ;L1(Ω))

∫ t

0

‖ϑ2p−1
n (s)‖1 ds. (6.8)
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Let us check that ‖ϑn‖L∞(0,T ;L1(Ω)) can be estimated. Using the definition (4.1) of Iε
and the inequality (6.7), for r ≥ 0 we have indeed

Iε(r) =

∫ r

0

sLn′ε(s) ds ≥
∫ r

0

s

s+ 1
ds = r − ln(r + 1) ≥ r

2
− c.

We infer that ∫

Ω

|ϑn(t)| ≤
∫

Ω

ϑ+
ε (t) ≤ 2

∫

Ω
Iε(ϑ

+
ε (t)) + c ≤ c

for a.a. t ∈ (0, T ) due to (4.14). Therefore, we conclude that

∫

Qt

Fεϑ
2p−1
n

≤ δMΩ

∫

Qt

|∇ϑpn|2 + c

∫ t

0

‖ϑ2p−1
n (s)‖1 ds+ cδ

∫ t

0

(
1 + ‖ϑ2p−1

n (s)‖1
)
‖Fε(s)‖2ν ds.

Finally, the last term of (6.6) is easily estimated as follows

−
∫

Qt

Fεϑ
2p−1
H ≤ (ϑ∗)2p−1‖Fε‖L1(Q) ≤ c

thanks to (2.15) and (6.4). At this point, we collect (6.6) and all the inequalities we
have derived and choose δ small enough. Then, we apply the Gronwall lemma and
obtain the following estimate (cf. also (6.8))

‖ϑn‖L∞(0,T ;L2p−1(Ω)) + ‖ϑpn‖L2(0,T ;V ) ≤ c.

From that it is easy to deduce a similar estimate for ϑ+
ε , namely

‖ϑ+
ε ‖L∞(0,T ;L2p−1(Ω)) + ‖(ϑ+

ε )p‖L2(0,T ;V ) ≤ c (6.9)

simply using the basic properties of the Lebesgue theory. However, we cannot yet
derive (2.28), since (6.9) involves new nonlinearities. We need some technical lemmas.

Lemma 6.1. The inverse function of lnε is given by the formula ln−1
ε (s) = es + εs

for every s ∈ R .

Proof. Let s ∈ R and r := es + εs . Then, ρε(r) = es by (4.7), whence (4.6) yields

lnε(r) =
r − ρε(r)

ε
= s

and we conclude.

Lemma 6.2. Let q ≥ 1 and z ∈ L2(Q) be such that eqz ∈ L2(Q) and set

zε := ((ln−1
ε (z))+)q.
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Then zε → eqz strongly in L2(Q) .

Proof. The previous lemma yields zε = ((ez + εz)+)q , and we immediately see that
zε → eqz a.e. in Q . On the other hand, assuming ε ∈ (0, 1) , we have

(ez + εz)+ ≤ ez + εz+ ≤ ez + z+ ≤ 2ez whence zε ≤ 2qeqz a.e. in Q .

Therefore, we can apply the Lebesgue dominated convergence theorem.

Conclusion. By (6.9), we have that

(ϑ+
ε )p → ϑp weakly in L2(0, T ;V ) (6.10)

for some ϑp ∈ L2(0, T ;V ) , at least for a subsequence, and we show that ϑp = ϑp . To
this aim, we introduce α, αε : R→ R by means of the formulas

α(r) := epr and αε(r) := ((ln−1
ε (r))+)p

and observe that they are monotone and continuous. Thus, we can see them as maximal
monotone graphs in R×R . As the equality ϑp = ϑp is equivalent to ϑp = α(lnϑ) , we
only need to prove that
∫

Qt

(ϑp − α(z))(lnϑ− z) ≥ 0 for every z ∈ L2(Q) such that epz ∈ L2(Q) . (6.11)

So, we fix such a z and define zε := αε(z) and `ε := lnε(ϑε) . Then, we have
∫

Qt

(
(ϑ+
ε )p − zε

)
(`ε − z) =

∫

Qt

(αε(`ε)− αε(z)) (`ε − z) ≥ 0

due to the monotonicity of αε , and we obtain (6.11) whenever we can pass to the limit
in the above inequality. In fact, the following convergences

(ϑ+
ε )p − ϑpH → ϑp − ϑpH weakly in L2(0, T ;V0)

zε → epz strongly in L2(Q)

`ε → lnϑ weakly in L2(Q) and strongly in L2(0, T ;V ′0)

actually hold, as we immediately see. Indeed, the first one is ensured by (6.10), the
second one is given by Lemma 6.2 with q = p , and the last ones follow from (4.30)
and (4.27), respectively. So, arguing as in (4.31), we have ϑp = ϑp , and this concludes
the proof of the first of conditions (2.28).

Finally, let us come to the second of (2.28). To this aim, we observe that (4.14)
implies that

‖ϑ+
ε ‖L2(0,T ;V ) ≤ c

so that we can argue exactly as before and apply Lemma 6.2 with q = 1 . This yields

ϑ+
ε → ϑ weakly in L2(0, T ;V ) .

Therefore, the regularity to be shown follows from the first of estimates (6.9).
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