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1. Introduction

Shape description is the basis for recognition and is one of the key problems in similarity
(matching) issues: the better is the description chosen for objects, the best (easier, more
effective) the results will be. The ideal properties of a shape descriptor are that it nat-
urally captures what we mean by shape in a concise but effective manner, and that it is
automatically computable from the specification of an object by its boundary or its figure.
Besides, a useful general-purpose description should necessarily satisfy the fundamental cri-
teria of invariance, uniqueness and stability; a representation satisfying these conditions is
suitable for tasks that call for recognition of noisy objects of arbitrary shape at arbitrary
scale and orientation. Another likely property for a powerful shape descriptor is the capa-
bility of handling details, separating them from more essential shape characteristics; this
can be achieved representing an object as a hierarchy of segments at successively smaller
scales. This approach guarantees noise stability achieved by ignoring the lower levels of the
hierarchy, and allows top-down operations on objects. Indeed is not a trivial problem to
define a general shape descriptor which fulfils at the same time all these requirements, and
often ad hoc solutions have been proposed depending on the application. For example a
way of describing an object trough the configuration of its critical points with respect to a
continuous function is the Reeb graph [13, 15] (see Figure 1(b)); when the high function is
chosen, this is a very intuitive representation and it’s useful for object compression, but it
doesn’t distinguish between structural and detail features, and besides is not affine-invariant
too: it is dependent on the direction of the high function chosen, so that the same object
can have completely different graphs according to its position in space. Another example
of skeletal representation for planar shapes is the Medial Axis Transformation, defined by
Blum in [3]; it’s known that the Medial Axis is independent by the object position in space
(it is affine- invariant), but unfortunately it is not stable in case of small perturbations. As
underlined by Wyvill [17] a shape description independent of any coordinate system and
able to distinguish between meaningful features and features details doesn’t exist so far. He
also pointed out which are the only tools we have to construct such a representation: the
basic local characteristics of shape, i.e. surface normals, curvature and geodesic distance,
together with the surface topology. We will show in the next sections our attempt to define
an affine invariant skeletal representation following his advice.

(a) (b)

Figure 1. (a) Medial Axis Transform, (b) Reeb graph with respect to the
height function.

2. Review of related work

The aim of skeleton extraction is to take out and convert shape characteristics and prop-
erties of the surface into a compact representation. One of the best known shape descriptors
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of this kind is the Medial Axis Transformation, defined by Blum in [3] for 2D shapes and
extended to the 3D case by Sherbrooke [14]. In the planar case, the Medial axis of a shape
is a graph defined as the locus of the centers of all the maximal discs contained inside the
shape and having at least two points of contact with its boundary (see Figure 1(a) ). It’s
known that this kind of representation is independent by the object position in space (in-
variance), but has the negative side that tiny perturbations of the boundary will produce
extra edges in the graph, with no distinction between main and secondary features. Another
method which is commonly used for shape description, and strictly related to our method,
is the Reeb graph [1, 2, 13] whose definition is based on the Morse theory [11, 15]. First of
all Morse theory states that the topology of a given manifold M can be studied analyzing
the critical points of any smooth function h : M 7→ R defined on the manifold. Typically,
the map h represents the height function (∀p = (x, y, z) ∈ R3, h(x, y, z) = z) whose critical
points, i.e. peaks, pits and passes, are useful for shape description because they locate basic
elements of shape description.

Starting from Morse theory, it is possible to define the Reeb graph [13] by coding the
evolution of the ”contours” on M defined by the function h as described by the following
definition.

Definition. Let h : M 7→ R be a real valued function on a compact manifold M . The
Reeb graph of M with respect to h is the quotient space of M ×R defined by the equivalence
relation ∼, given by (p, h(p)) ∼ (q, h(q)), p, q ∈ M , if and only if

• h(p) = h(q),
• p, q are in the same connected component of h−1(h(p)).

Indeed, the Reeb graph is a 1-dimensional skeleton provided by a continuous scalar func-
tion on M which changes choosing different maps for the definition of ∼.

Even if different extensions of this theory [1, 2, 15] have been proposed, the Reeb graph
suffers of at least two problems. Secondly, there is not distinction between large and small
features due to the fact that the same connected components are collapsed into the same
class without distinction of their sizes.

Because the height function h is not affine-invariant, in [9] a new map, based on the
geodesic distance from a source point p ∈ S, has been defined to overcome this problem.
The determination of p is not simple; the solution proposed by the authors is to define, for
every x ∈ S, h(x) as the sum of all geodesic distances g(x, p) from x to p when p varies on
the input manifold, that is,

h(x) :=

∫
p∈S

g(x, p)dp.

This function is not invariant to scaling of the object and it is replaced by its normal
representation defined as

∀x ∈ S, hn(x) :=
h(x) − minx∈S{h(x)}

maxx∈S{h(x)}
.

Another work on this topic [10] deals with the construction of centerlines from an un-
organized collection of scattered data points lying on a tubular-shaped surface. First a
neighbourhood graph of order n is computed for each point P in the set, connecting P to its
n nearest points according to the Euclidean distance. A source point is chosen in the data
set; the shortest paths on the neighbourhood graph between each point and the source point
are computed and a new graph is obtained, together with a distance map coding the Eu-
clidean length of all the shortest paths. Then k level set of the distance map are computed;
the level sets are composed of points at a constant distance from the source. Finally, the
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centerlines are constructed connecting the centroids of the corresponding connected compo-
nents of successive levels. The resulting skeletal curves depends on the appropriate choice of
the order of the neighbourhood graph, of the location of the source point and of the number
k of the level sets in which to ”slice” the surface. To choose the source point an heuristic is
used which seems to work well on elongated tubular shapes such as blood vessels and bones,
and examples are given to show that on these kind of input data the centerlines obtained
with different source points are nearly the same. Anyway, the choice of only one source
point determines a kind of privileged ”slicing direction”, fact that (together with a wrong
choice of k) can lead to the loss of some features if the object is not strictly cylindrical (see
Figure 2)

(a) (b)

Figure 2. (a) level sets and skeletal curves computed on the horse point
set, as shown in [10], (b) result obtained with our algorithm.

3. Overview of the technique and contributions

The proposed construction of the skeleton of a 3D object represented by a triangular
mesh is made in 4 steps.

(1) A curvature estimation is performed on the mesh and several zones of high curvature,
which identify the surface features, are extracted (see Figure 3(a)). Since curvature

is an intrinsic characteristic of the surface, a curvature based skeleton is coordinate
independent. The procedure of curvature estimation is briefly discussed in section
4.

(2) Starting simultaneously from the centroid of the high curvature regions, topologi-
cal rings consisting of vertices which has the same topological distance (minimum
number of edges) from the nearest centroid are computed, growing of one edge at a
time, until the all surface is covered (see Figure 3(b)).

(3) Then the graph is constructed. Each centroid of high curvature regions becomes the
terminal nodes of the graph, while points of split or collision between topological
rings during the expansion phase individuate the branching nodes. The centroid
of the topological rings between two nodes are connected to form an edge (see
Figure 3(c)). Steps 2 and 3 are described in detail in section 5. The mathematical
definition of the graph as a quotient space is given in section 6, while its properties
and a comparison with the Reeb graph is provided in section 7. Future work and
results are presented in the last section.
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(a) (b)

(c)

Figure 3. Main steps of the algorithm: (a) curvature evaluation, (b) topo-
logical expansion, (c) graph construction.

4. Curvature estimation on triangular meshes

The definition of the curvature at each point of a triangular mesh is not trivial because the
last one is parameterized by a piecewise continuous function whose second derivatives are
identically null. Among the different approaches which have been used to overcome the lack
of a standard definition two main algorithms can be identified. The first one [8] ([16]) derives
its discrete approximation at each vertex applying its continuous definition to a least-square
paraboloid fitting its neighboring vertices (estimating its tensor curvature). The second one
[4] is based on the Laplace-Beltrami operator and the Gauss map guaranteing the validity
of differential properties such as area minimization and mean curvature flow [7].

In spite of the introduction of a multiresolution structure, all the previous approaches are
usually sensitive to noise and small undulations requiring smoothness conditions on the input
mesh. Furthermore, the smoothing process used to get stable and uniform curvature esti-
mations introduces a deficiency in the magnitude evaluation and, consequently, difficulties
in the accurate distinction between planar patches and curved surfaces with low curvature.
Indeed, we need a classification of points which takes into account both curvature extrema
and the related shape size in order to identify global features of maximal curvature which
represent the input of our algorithm for shape abstraction.

The evaluation of the curvature of the surface at a point p [6], with respect to a level of
detail R, is achieved calculating the normalized length C := L

2πR
of the intersection between

the object surface S and the sphere of center p and radius R. Vertices having value C greater
than a given threshold (π/2 in our implementation) are considered points of high-curvature.
The connected components of adjacent points with high-curvature determine several regions
on the mesh, which intuitively correspond to the protrusion of the object, and therefore
identify the relevant features of the mesh. In this way, we are able to reduce the effect of
noise, i.e. small geometric undulations, on the curvature estimation using a multiresolutive
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approach with the use of a set of radii each one connected to the level of detail of the features
which have to be considered relevant.

(a) (b)

Figure 4. Curvature estimation on the rabbit: red regions indicates high-
curvature areas. In (b) a gaussian noise has been added to input points.

5. Graph construction

Any object can be seen as made essentially of a main body with several protrusions: for
instance, the overall shape of a man consists of the torso from which head, arms and legs
depart. From this point of view the main features of a 3D surface are its protrusions, and
these are detectable by mean of curvature: at a protrusion extremity there must be a high
curvature region. With reference to Figure 2, this is exactly what happens on the rabbit
data set: the red regions identifying high curvature vertices are located on top of the ears,
on the legs, on the muzzle and on the tail.

Following this considerations, we are going to construct the skeleton of a 3D surface as a
curvature-based graph which, starting from high curvature regions, grows inside the shape
towards the main body according to the mutual adjacency between features. First of all,
for each high curvature region Ri a representative vertex pi is selected (for a more pleasant
visualization pi is chosen as the centroid of Ri and computed as the farthest vertex from the
region boundary; anyway we underline that from the topological point of view the arbitrary
choice of pi is irrelevant). The set of {pi} represent the terminal nodes of the graph; we will
show in this section how the developed algorithm constructs the graph edges and determines
the branching nodes according to a topological expansion method. First some considerations
od mesh topology and definitions are given in the following section.

5.1. Mesh topology. We represent a triangular mesh S as the pair S := {V, F} where
V := {pi = (xi, yi, zi) : i = 1, . . . , N} is a list of N vertices and F is an abstract simplicial

complex [5] which contains the adjacency information whose subsets come in three types:
vertices {i}, edges {i, j} and faces {i, j, k}. The topology in S is defined by F in the sense
that we can construct the 1-neighborhood structure as

(1) {N(i) : i = 1, . . . , N}

with

N(i) := {j ∈ {1, . . . , N} : (i, j) ∈ F}.
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The previous relation assigns each vertex i the set of its 1-neighborhood, that is, the vertices
j such that (i, j) is an edge of the triangulation F . The size (radius) of the neighborhood
structure can be recursively enlarged by defining a n-neighborhood as

(2)

N(ii, . . . , ik) :=
⋃k

l=1 N(il),
N0(i) := {i},
N1(i) := N(i),
Nn(i) := N1(Nn−1(i)), n ≥ 2.

Indeed, given a vertex i ∈ {1, . . . , N} we can define its local neighborhood system as

Bi := {T (Nk(i)) : k = 0, . . .}

with

T (Nk(i)) :=
⋃

l,p,q∈Nk(i),{l,p,q}∈F

T (l, p, q)

and T (l, p, q) triangle with vertices l, p, q. Finally, we refer to the border of T (N k(i)), i.e.
∂T (Nk(i)), as topological ring of order k for i.

(a)

(b) (c)

Figure 5. Local neighborhood system on a triangular mesh:(a) input
mesh, (b),(c) topological rings of order 1,2 for i.

From the previous definitions the following conditions hold: ∀i ∈ {1, . . . , N}

• vi ∈ T (Nk(i)), k = 0, . . .
• T (Nk(i)) ⊆ T (Nk+1(i)), k = 0, . . .
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• if S is connected, then

S =
⋃

k=1,...

T (Nk(i)).

5.2. Topological expansion. Above this point, we have segmented the mesh into signif-
icant/non significant regions, according to the curvature value at each vertex. Because
high-curvature regions identify the extremities of the object protrusions, the skeleton of
an object characterized in this way will have their representative points as terminal nodes.
Indeed, for each region a representative vertex is chosen as the farthest, with respect to
the topological distance, to the boundary. Starting from the representative vertices we can
construct a skeleton of the object following a topological expansion approach, based on the
idea of topological rings growing (expanding) from representative vertices and traversing the
mesh, until rings split, collide with others, or can be expanded no more.

Starting at the same time from all the representative vertices, the topological rings expand
one step at a time until:

• rings belonging to different representative vertices collide: a union occurs,
• a ring intersects itself: a split occurs,
• a ring can be expanded no more: the ring terminates.

Union. When expanding a topological ring we meet a vertex already belonging to the
topological ring (of the same order) of another representative vertex the two rings intersects.
From the point of view of the surface, this means that we have found a branching zone of the
object where two distinct protrusions depart. In the same way, the corresponding skeleton
will have a branch with two edges joining.

Figure 6. Example of union between rabbit ears.

The rings of each representative vertices, which determined the collision, can be expanded
no more and the construction of their ring sets is completed. A new topological ring is cre-
ated for the intersection vertex; in this case, unlike what happens for representative vertices,
the first topological ring coded is the union of the two rings colliding.

Split. It can also happen that a ring intersects itself in one or more of its vertices; this
is the situation of rings expanding near handles, through holes of the object or where a new
protrusion starts. In this case, the intersecting ring splits in two parts and its expansion
stops in favor of two new rings derived from the split. Like the union case, the adjacency
between the father vertex and the two children is set.

Termination. After a finite number of steps, the splitting and joining rings will cover the
whole surface. A ring terminates when the next step would produce a non valid boundary,
that is, with less than 3 vertices. When a ring terminates, it means that there were no more
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Figure 7. Example of split on the handle of the pot.

significant features in the object. Indeed, branches of the skeleton will be not produced in
the case of a ring which terminates without having a union or a split.

5.3. Graph visualization. When all the ring sets of the representative vertices and the
ones created during their expansion are terminated, the algorithm can draw the skeleton as
the adjacency graph encoded during the expansion phase:

• each representative vertex gives a terminal node,
• each intersection vertex (occurring in a union or a split configuration) gives a branch-

ing node,
• the topological rings, belonging to the ring set of a node, gives an arc which goes

out from that node 2. In particular, an arc is drawn joining the center of mass of all
its topological rings.

Figure 8. Example of skeleton on the rabbit.

6. Graph as quotient space

In this section we are concerned with the formulation of the graph construction for trian-
gular meshes and manifolds demonstrating that it is the quotient space of the input object
surface S with respect to an equivalence relation ∼. The proposed construction of G as
S/ ∼ enables to:

• verify that G depends only on the topology of S and on a finite set of representative
points {p1, . . . , pn} in S of high-curvature values,

• verify that G is affine-invariant; this characteristic represents one of the main prop-
erties of G and of this theory not shared by other approaches,

2Note that when a split or a union occurs, there can be two arcs going off the same node: in this case
two distinct ring sets are created for the same node. So each ring set always defines one node and one arc.



10

• extract the information on G (e.g. compactness, connectivity, etc.) starting from S
and exploiting the properties of the quotient space.

6.1. Graph definition for triangular meshes. Selected a point pi in S we introduce the
function

fpi
: S 7→ N
x 7→ fpi

(x) := min{k : x ∈ T (Nk(i))}

,i.e., fpi
(x) is the minimal topological distance between pi and x.

We can extend in a simple way the previous function to a finite set of vertices {p1, . . . , pn}
as

f : S 7→ N
x 7→ f(x) := mink=1,...,n{fpk

(x)}

, i.e., f assigns to x its minimal topological distance with respect to the case of more than
one vertex (n = 1, f = fn1

).
Starting from f and S we are able to construct the relation ∼ as follows:

(3) p, q ∈ S, p ∼ q iff f−1(f(p)) ∩ f−1(f(q)) 6= ∅.

First of all, (3) implies that if f(p) 6= f(q) then p 6∼ q; in fact, we have

f−1(f(p)) ∩ f−1(f(q)) = f−1(f(p) ∩ f(q)) = f−1(∅) = ∅.

Figure 9. Example of topological rings on a manifold.

In other words, necessary condition for p ∼ q is that f(p) = f(q), that is, p and q have the
same topological distance from the selected set of vertices {p1, . . . , pn}. Secondly, two points
p and q are in relation with respect to ∼ if and only if they have non-disjoint topological
rings (i.e. f−1(f(p)) ∩ f−1(f(q)) 6= ∅) of the same order (i.e. f(p) = f(q)).

Now we want to investigate the properties of ∼:

• reflexive: ∀p ∈ S, p ∼ p,
• symmetric: ∀p, q ∈ S, p ∼ q ⇒ q ∼ p,
• transitive: ∀p, q, r ∈ S, p ∼ q, q ∼ r 6⇒ p ∼ r. In fact, the intersection of sets is not

transitive on P (X) := {X : X ⊆ S}.

From the previous relations it follows that

G = S/ ∼= {[x] : x ∈ S}
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where the class of x is represented by the set

[x] := {y ∈ S : y ∼ x}.

Furthermore, the following conditions hold:

• [x] 6= ∅, ∀x ∈ S (i.e. every class is not empty),
• x ∼ y ⇒ [x]∩ [y] = ∅ (i.e. two vertices which satisfy the relation ∼ have non-empty

intersection. Generally, the inverse condition is not true because ∼ is not transitive),
•

⋃
x∈S[x] = S (i.e. {[x]}x∈S represents a cover of S).

6.2. Graph definition for manifolds. We want to extend the previous model to a com-
pact manifold without boundary embedded in R3 with the Euclidean topology underlining
the general application of our model for the extraction of an affine-invariant shape descrip-
tion. In the following we review definitions and concepts on topology introducing the basic
notions and referring to [5] for further readings. The structure of the section reflects that
of the previous one facilitating the parallelism between the continuous case study and the
discrete one which has been used for the implementation of the algorithm.

Introduced a topological space (X, τ), we define as

• induced topology of X in S ⊆ X : the topology τS defined as

τS := {A ∩ S : A ∈ τ},

• local base of p in X : the family Bp consisting of neighborhoods of the point p such
that for every neighborhood U of p there is a set V ∈ Bp such that V ⊆ U ,

• boundary of A ⊆ X : ∂A := A∩X − A, that is, the intersection between the closure
of the set A and its complement (X − A) in X .

Given a point p ∈ S we define, for every R > 0, the open ball of center p and radius R as

B(p, R) := {x ∈ R3 : ‖x − p‖2 < R}

and with U(p, R) the connected component of p in S ∩B(p, R). Indeed, we can associate to
each point p ∈ S the family of neighborhoods {U(p, R)}R>0, with U(p, 0) := {p}, centered
in p. From the previous relations we can derive the following properties which will be used
for constructing the graph of S:

• {U(p, R)}R>0 is a local base of the space S at the point p with respect to the
topology τS induced by the Euclidean topology τ in S. This property follows using
the definition of τS and the fact that the set {B(p, R)}R>0 is a local base of p in
(R3, τ).

• R1 < R2 ⇒ U(p, R1) ⊆ U(p, R2): in fact, R1 < R2 ⇒ B(p, R1) ⊆ B(p, R2) ⇒
S ∩ B(p, R1) ⊆ S ∩ B(p, R2) ⇒ the connected component of p in S ∩ B(p, R1) is a
subset of that in S ∩ B(p, R2).

Introduced the counterparts of the concepts defined for the triangular mesh, we can
extend the previous functions as described in the following. Chosen a point p ∈ S, we define
the map

fp : R3 7→ R
x 7→ fp(x) := ‖p− x‖2

and then, fixed a set of points P := {p1, . . . , pn} ⊆ S, we construct its extension to the set
P as

f : S 7→ R
x 7→ f(x) := mink=1,...,n{fpk

(x)}.
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The function f is continuous because it is the composition of the continuous maps

(fp1
, . . . , fpn

) : S 7→ Rn

x 7→ (fp1
(x), . . . , fpn

(x))

and
min : Rn 7→ R
(x1, . . . , xn) 7→ mini=1,...,n{xi}.

Indeed, in analogy with the previous section, we can introduce the relation ∼ as: p, q ∈
S p ∼ q if and only if we can choose R > 0 such that f(p) = f(q) and p, q belong to the
same connected component of f−1(f(p)). In other words, necessary and sufficient condition
for p ∼ q is that p and q have the same topological distance from the selected set of
points {p1, . . . , pn} and they belong to the connected component of the pre-image of their
(common) value f(p) . The relation ∼ is symmetric, reflexive and transitive because it is
the intersection of two equivalence relations (i.e. function equality and membership to the
same connected component). Using the properties of the quotient space, we deduce that ∼
induces in S a decomposition into a family of non-empty, disjoint topological classes.

(a) (b)

(c)

Figure 10. (a) Skeleton on the original data set, (b) Skeleton on the reg-
ularized mesh, (c) Skeleton on the refined mesh.

If the input surface S is compact/connected then G is compact/connected; anyway, the
canonical projection

π : S 7→ G = S/ ∼
x 7→ [x]

is continuous with respect to the quotient space topology (i.e. A ⊆ G is open if π−1(A) is
open in (S, τ)).

Remark. The previous construction can be reduced to define the function f such that
Im(f) := {f(x) : x ∈ S} ⊆ N choosing, for a given point p ∈ S, its local base as
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Bp = {S ∩ B(p, kn)}n∈N, with k ∈ R+ step, and defining for every x ∈ S f(x) :=
mink=1,...,n{fpk

(x)} where fpi
(x) := min{n : x ∈ B(pi, kn)}.

7. Properties and comparison

In this section we want to present the main properties and distinctions of the graph G with
respect to other approaches as the Reeb graph. This comparison is evaluated considering the
topological properties of both graphs, as quotient spaces, and a set of experimental results
which underline the main drawbacks of the previous theory for shape abstraction.

The complexity of the proposed graph, in terms of number of nodes and branches, depends
on the shape of the input object and of the number of points {pi}n

i=1 which we have selected
using the curvature estimation criterion. The construction of G is guided, in the first step,
by the topology of the mesh through the connectivity relations in F and, secondly, by the
geometry V which influences the chosen representative point p for its equivalence class [p].
The only requirement for an optimal construction of the graph deals with a uniform mesh
finalized at having a topological distance between points to which corresponds a medium
step on the mesh (see Figure 7 ).

(a) (b)

(c)

Figure 11. (a) Input mesh, (b) refined mesh, (c) topological rings on (a),
(d) topological ring on (b).

The graph structure is not incremental in the sense that if we add a point pn+1 to

the set {p1, . . . , pn}, which is used for the construction of G, the new graph G̃ defined by
{p1, . . . , pn, pn+1} is not achieved adding to G the new branch starting from pn+1.

Our graph is affine-invariant (translation, rotation, scaling and shear) because the func-
tion f which has been used for defining the relation ∼ and the quotient space G does not
rely on a local system of coordinates in which the object surface is embedded as it happens
in the case of the Reeb graph constructed, for example, using the height function. However,
we want to stress that both graphs are build in the same way choosing only two different
functions. More precisely, our graph (the Reeb graph) codes the surface shape by analyzing
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the evolution of topological arcs (contours) obtained by the mesh topology (intersecting the
surface with a family of planes along a chosen direction). An interesting question is: does a
relation between them exist? In other words, which hypothesis on S ensure that the related
quotient spaces are homeomorphic? Finally, the continuous definition of the graph can be
used in a simple way to extend its construction to a polyhedral surface introducing the
topological structure as done for the triangular mesh analysis.

8. Conclusions and future works

The starting point of this work is represented by previous approaches on shape abstraction
attempting to propose possible extensions of the Reeb graph which represents the core of
our model.

The graph presented in this paper represents the first step toward the construction of
a complete framework for shape abstraction, analysis and comparison. One of the most
involving application that we foresee and we want to approach is shape matching. The affine-
invariant structure of this graph and its description as quotient space enable to convert the
matching problem between two graphs G and H into a multiple framework whose solution
is achieved defining a matching function which is an homeomorphism between G and H plus
a penalty function which takes into account the geometry of the objects associated to them.
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