
 
 

INVISIP, IST-2000-29640
 

 

INVISIP 

IST-2000-29640 

Information Visualisation for Site Planning 

WP 4: Analyser 

D 4.3: Evaluation Report of Demonstrator 

Version 2 

Deliverable Type Technical Report 

Dissemination level CO 

Date 19.12.2003 

Due date 31.12.2003 

Version V1.0 

Authors Marangon, Piccazzo, 
Albertoni, Bertone, Podolak 

Institution DAPP 

WP coordinator DAPP 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37832997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 2 

Page 2 of 64 
DAPP 

Evaluation Reports of Demonstrator 

V2.0, 19/12/2002 

D4-3V2_7.doc 

23/12/2003 

Table of content:  

1 Lists of Tables and Figures 4 

1.1 List of Figures 4 

2 Introduction 6 

2.1 Control Unit 7 
2.2 Visual Data Mining 9 
2.2.1 A VDM TOOL TO ANALYSE METADATA 9 

2.2.2 LAND PRICE PREDICTION MODULE (DM FOR DATA MINING) 10 
2.3 Configurator 11 

3 The Control Unit 12 

3.1 The layout of INVISIP site 12 
3.2 The client side 15 
3.2.1 WORKFLOW AND SESSION  17 

3.2.2 CUSTOMIZING THE WORKFLOW 21 

3.2.3 IMPLEMENTATION TECHNOLOGIES 26 

3.2.4 ACCESSING JAVA FROM JAVASCRIPT 28 

3.2.5 ACCESSING JAVASCRIPT FROM JAVA 29 

3.2.6 CONNECTING CONTROL UNIT TO A COMPONENT DISPLAYES IN THE 

SITE_PLANNING_FRAME  30 

3.2.7 CONTROL UNIT COMMANDS 33 
3.3 The server side 39 

4 Visual Data Mining 42 

4.1 VDM-module 42 
4.1.1 THE ARCHITECTURE OF THE VDM TOOL  46 

4.1.2 AN APPLICATION EXAMPLE 48 

4.2 Land Price Prediction 50 
4.2.1 THE DECISION TREE METHODOLOGY 51 

5 Configurator 55 

5.1 The Configurator module 55 



 

 3 

Page 3 of 64 
DAPP 

Evaluation Reports of Demonstrator 

V2.0, 19/12/2002 

D4-3V2_7.doc 

23/12/2003 

6 Summary / Conclusion 58 

7 Appendix 1 59 

7.1 The new VDM Module Design 59 
7.2 New VDM module classes 59 

8 Appendix 2 61 

8.1 Case study 61 

9 References 64 

9.1 Literature 64 
 

 



 

 4 

Page 4 of 64 
DAPP 

Evaluation Reports of Demonstrator 

V2.0, 19/12/2002 

D4-3V2_7.doc 

23/12/2003 

1 Lists of Tables and Figures 

1.1 List of Figures 

1 Figure 1 - Framework of INVISIP .......................................................................6 

2 Figure 2 – Data flows during the site planning analysis.....................................9 

3 Figure 3 - Analyser interface.............................................................................12 

4 Figure 4 – The frames in the HomePage of the INVISIP website ...................13 

5 Figure 5 – INVISIP website when Control_Frame is hidden............................14 

6 Figure 6 – The login page.................................................................................15 

7 Figure 7 – Planning process page....................................................................16 

8 Figure 8 – The session menu...........................................................................16 

9 Figure 9 – List of planning process...................................................................18 

10 Figure 10 – Generic workflow ...........................................................................19 

11 Figure 11 – The tree representing the workflow...............................................20 

12 Figure 12 – The open dialog.............................................................................21 

13 Figure 13 – The „Save as“ dialog .....................................................................21 

14 Figure 14 - Customizing the workflow ..............................................................22 

15 Figure 15 – Delete a task..................................................................................23 

16 Figure 16 – The user read „Search for documents“.........................................23 

17 Figure 17 – The user modifies the name of the node ......................................24 

18 Figure 18 – The user changes the name of the node......................................24 

19 Figure 19 – The description of a node..............................................................25 

20 Figure 20 – The user selects „Change description“ .........................................25 

21 Figure 21 – Window for the insertion of description .........................................26 

22 Figure 22 – The library......................................................................................26 

23 Figure 23 – Connections among JavaScript, Applet and Plugin .....................29 

24 Figure 24 – actionSCHEMA.xsd.......................................................................31 

25 Figure 25 – Sample of action............................................................................31 

26 Figure 26 – outputSCHEMA.xsd ......................................................................32 

27 Figure 27 – Call an action from Site_Planning_Frame....................................33 



 

 5 

Page 5 of 64 
DAPP 

Evaluation Reports of Demonstrator 

V2.0, 19/12/2002 

D4-3V2_7.doc 

23/12/2003 

28 Figure 28 – The client and the server sides of the Control Unit.......................40 

29 Figure 29 - The histogram visualisation ...........................................................42 

30 Figure 30 - A pie chart ......................................................................................43 

31 Figure 31 - The Table visualisation ..................................................................44 

32 Figure 32 - A Parallel Coordinate Diagram ......................................................45 

33 Figure 33 - The VDM control panel ..................................................................47 

34 Figure 34 - A screen shot of what the tool looks like .......................................49 

35 Figure 35 - The screen shot of the tool after a selection task..........................50 

36 Figure 36 - The screen shot of Land Price Prediction Tool .............................51 

37 Figure 37 – Land Price Prediction Decision Tree.............................................52 

38 Figure 38 – The Configurator............................................................................55 

39 Figure 39 – The menu of the Configurator .......................................................56 

40 Figure 40 – The popup menu ...........................................................................56 

41 Figure 41 – The input dialog for the new description. ......................................57 

 



 

 6 

Page 6 of 64 
DAPP 

Evaluation Reports of Demonstrator 

V2.0, 19/12/2002 

D4-3V2_7.doc 

23/12/2003 

2 Introduction 

Within INVISIP project, people are involved to the site planning process. 

Municipal authorities, departments, planning offices, data suppliers and 

citizens use INVISIP website in order to improve search and analysis of 

necessary data that can be, for example, documents , laws and maps. 

 

The Analyser is a set of tools that enables users to navigate in information 

spaces, to select data or links to data sources and to determine 

relationships between them. 

 

The following picture shows the components of the Analyser. 

 

Figure 1 - Framework of INVISIP 

In Work Package 4 the Analyser is created. It is organized in the Control 

Unit, the Visual Data Mining and the Configurator 

 

DAPP, CNR-IMA, KTH , UoC, tim GmbH/Thales GmbH and Inregia, are 

involved to Work Package 4 (leader DAPP). 

 

In the present deliverable the demonstrator of the Analyser is described so 

far:  

• Control Unit (Chapter 3); 
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• Visual Data Mining (Chapter 4); 

• Configurator (Chapter 5). 

2.1 Control Unit 

The main goal of INVISIP is to follow the user during the site planning 

process. Site planning process consists of the following tasks: 

1. Search data; 

2. Analyse data and select a set of them; 

3. Use data as input of Instruments for the Site planning. 

Task 1 and task 2 can be repeated in order to refine the search of data.  

 

Data needed during the site planning are laws, reports, maps, spatial data 

and non-spatial data.  

 

In INVISIP project, the users can select data using tools as Metadata 

Browser and Visual Data Mining. These tools show the metadata (or the 

description of data) using different visualizations that enforce different 

aspects of the same data. The analysis provided by Metadata Browser and 

Visual Data Mining can be combined in order to select the best sets of data 

concerning the site planning process. 

 

This is the way the Control Unit coordinates INVISIP tools: every time the 

user selects data using an INVISIP tool, the Control Unit stores them 

internally. When the user opens a tool during the analysis, the Control Unit 

pass the data selected to the new tool. For example, let us suppose the 

user is looking for data concerning the “Municipality of Genoa”. The 

application he needs is the Metadata Browser. At the end of his research, 

he selects three data: now the metadata browser is storing data in the 

Control Unit. The next step of the planning process of the user is the Visual 

Data Mining tool: when the Control Unit start the Visual Data Mining tool, it 

gives the data selected in the Metadata Browser. 
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During the analysis, the Control Unit shows to the user the list of the 

selected data. 

 

The Control Unit gives to the user the workflows that is the list of tasks they 

have to complete during the site planning process. The workflow is a 

“template” of a planning process defined in INVISIP project.  

 

During the planning process, the user adds data to the workflow so we call 

it “session”. 

 

At any moment the user can save, stop and repeat the session and the 

Control Unit updates the state of it. When the user find data on the web, he 

download them and use them as input for local instruments that are 

application for the site planning.  

 

At the end, the Control Unit follows the user during the integration of data 

where the user is invited to describe the results of the local instruments. 

 

The Figure 2 depicts the data flows during the site planning analysis. Every 

flow has a specific meaning.  

• The flow 1 is composed by the workflow and the session. Data are 

send and received in XML. 

• Flows 2 and 3 are the data flows between the Control Unit and the 

tools. Data are send and received in XML. 

• Flows 4 is the data the Visual Data Mining read in the databases 

containing metadata about Geodata (GMD) and Document (DMD) 
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Figure 2 – Data flows during the site planning analysis 

2.2  Visual Data Mining 

The Visual data mining module is the part of analyser component that aims 

to provide tools  which  facilitate  the  decision making process for all 

involved parties.  

Two kinds of tools are provided within the VDM module: 

− a VDM tool to analyse metadata contained in the repository; 

− a DM application to  analyse geographical data for Land Price 

prediction  . 

In the following, a brief description of the tool goal is provided. 

2.2.1 A VDM tool to analyse metadata 

VDM tool can be used to support users in the data selection task. A basic 

problem in the data selection task is the search for actual and expressive 

geo-data and their analysis. Deciding which data are the most suitable to 

face with a site planning problem is a hard task since geographical data are 

characterised by many features and often user does not know all the data 

requirement. 
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The problem can be defined as finding the optimal subset of all the existing 

geographical datasets for the particular site. The optimisation criteria for 

this subset are initially set by the user, e.g. finding the most up-to-date 

datasets, finding the datasets with the appropriate resolution, etc. The user 

formulates these suitability criteria according to his specific discipline (traffic 

analyses, environmental aspects, etc.).  In automatic data mining these 

criteria are usually expressed as logical statements, connected by either 

conjunctions or disjunctions. In the case of visual data mining however, the 

user opens visualisations based on these criteria. Using different types of 

visualisations, the user can display one or more metadata attributes. He 

recognises patterns in the open visualisations and bases his choice on a 

subset of items that he is interested in. His input is the desired selection of 

subsets.  

 

VDM tool leads user to acquire new knowledge about data that are 

available in the repository. This knowledge consists of relationships, 

similarities among data, and it helps to come to an arrangement between 

data, which he is looking for and what is available. 

 

2.2.2 Land Price Prediction module (DM for Data Mining) 

The land price prediction (LPP) is supposed to be a tool that enables an 

investor to check land prices in a region he plans his development.  Prior to 

selecting a region, the investor might want to check where the immobilities 

prices are the most competitive, and suited to his/her needs.  Usually these 

informations may only be found by looking through advertisements or 

querying Internet databases, which would not give a general overview. At 

the same time, these advertisements are usually local, and only give 

information as for the active moment. On the other hand by utilising artificial 

intelligence methods it is possible to build models that span a whole region. 

With the LPP tool the prospective investor is able to select his preferences 

as to what type of real property he/she is interested in, where it should be 
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situated, as well as the availability of media, e.g. gas, electricity, etc. As a 

reply he would get a most probable price per a square meter of such a 

property. 

 

In the LPP tools several mathematical models built were based on two 

sources of information: a set of accomplished sale prices in one of regions 

and, in a separate model, from advertisements coming from an Internet 

advertisement service. The models are augmented with a 'wizard' that 

helps a user with selecting proper attribute values for a set of most 

common real estate transactions. 

 

2.3 Configurator 

The Configurator is the component of the Analysis that follows the user 

during the analysis on his local computer.  

 

The Configurator is the application that connects the INVISIP project to 

specific tools for planning as worksheets or CAD systems. In fact the 

Configurator links the “online” analysis to the “off-line analysis”. The first is 

the analysis the user does using the Visual Data Mining and the Metadata 

Browser, the second is the analysis of data using the applications installed 

on local machine.  

 

The Configurator helps the user to “configure” the analysis. Let us suppose 

the user selects data using the INVISIP tools. When he has the data , he 

begins the analysis that consists in a list of steps that he has to complete.   

It gives the possibility of configuring the list of steps and save it. Every 

analysis can be saved and loaded locally or on the database of INVISIP 

project.  

 

At the end of the off-line analysis, the user can improve INVISIP database 

giving the description of the results obtained.  
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3 The Control Unit 

3.1 The layout of INVISIP site 

The Control Unit is composed by two parts. One of this runs on the browser 

of the user and one of it is on the server. The Control Unit was developed 

by DAPP as a component of the Analyser.  

 

The user interface of the analyser, where the Control Unit is displayed, is 

composed by a Website and by local site planning tools. The home page of 

INVISIP website is available at 

http://bordeaux.igd.fhg.de:8080/cu/HomePage.html  

 

The website interface is depicted in Figure 3. 

 

Figure 3 - Analyser interface 

INVISIP homepage is divided into 3 rectangular cells (frames) named 

TitleBar, Control_Frame and Site_Planning_Frame. Figure 4 depicts the 

three frames. 
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Figure 4 – The frames in the HomePage of the INVISIP website  

TitleBar contains the INVISIP logo and a menu always displayed. Main 

characteristic of the TitleBar is to give to other frames global functions. The 

most important functions are Show and Hide: they set the visibility of the 

Control_Frame. When the Control_Frame is hidden, the 

Site_Planning_Frame is large as the window of the browser (Figure 5).  
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Figure 5 – INVISIP website when Control_Frame is hidden 

 

Site_Planning_Frame shows the Metadata Browser tool, the Visual Data 

Mining tool and all other components involved in INVISIP project except the 

Control Unit.  

 

Control_Frame contains the Control Unit applet that connects client to 

server, co-ordinates client applications and provides session management.  

Control Unit can receive commands from all the components displayed in 

the Site_Planning_Frame. Let’s name these commands “action”: they are 

instructions that add flexibility and functionality to the client. For example 

we can move a frame to a specific location or we can store the client data 

analysis to the server. All components displayed in the 
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Site_Planning_Frame can call the actions of the Contro_Unit even though it 

is hidden. 

 

Local planning tools have different interfaces. These tools execute specific 

analysis for the site planning and they need input data (for example maps 

and data about traffic). Every time the user find data using INIVISIP 

website, he downloads them and use them as input for local planning tools.  

3.2 The client side 

The application of the Control Unit shows two page: the first is the “login” 

page (Figure 6) and the second is dedicated to the “Planning process” 

(Figure 7).  

 

Figure 6 – The login page 

In the login page the user has to write his login and he can change the 

language of the interface of the Control Unit. During the INVISIP project the 

Control Unit can be viewed in Italian, German, English, Polish and Swedish 

languages. The login page is hidden when the user inserts his login.  
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Figure 7 – Planning process page 

The “Planning process” page is shown always and shows the session of 

the user. When the user is logged on the site, the Control Unit shows the 

menu “session” (Figure 8). 

 

Figure 8 – The session menu 
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The pull-down menu "session" offer the user different possibilities for 

handling his session: 

• New : opens the list of the workflows and the user can start a new 

session with no data stored.  

• Open : opens an already processed session.  

• Save: stores session.  

• Save as : stores the opened session and gives the user the 

possibility to define a name for the opened session.  

• Logout : closes the opened session and logs you out of the system.  

 

The button "Store additional information" gives the possibility to store 

any free-text documents to the session you are working in. 

 

The button “View storage data” shows to the user the list of data selected 

and stored in the open session. 

3.2.1 Workflow and Session 

The INVISIP workflow is a template that is an abstract model of the site 

planning analysis. The necessity of define a workflow comes from the fact 

that all analyses have to perform a list of steps that the user must complete 

in order to terminate the site planning analysis. 

 

When the user selects “New” from the “Session” menu, the dialog “Choose 

planning process” is shown (Figure 9): on the left side of the window, the 

user reads the title of the planning process and on the right, he reads its 

description. When the user selects a planning process and press the “OK” 

button, the workflow is downloaded in the Control Unit. 

Five planning processes (or workflows) has been developed during the 

INVISIP projects: 

1. Blank: it is a blank planning process; 

2. INVISIP TOOLS: is the planning process that shows all the tools 

developed in INVISIP project; 
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3. German Workflow: is the workflows customized for german 

municipalities 

4. Polish scenario: is the planning process customized for polish 

municipalities 

5. Planning process shopping centre Genoa: is the Italian site planning 

that shows the administrative and operative activities in order to 

develop a project for the building of a shopping centre. 

 

Figure 9 – List of planning process 

 

In the site planning analysis, the workflow is a list of operations that the 

user have to do in order to complete the analysis successfully. It may say 

that a workflow is composed by a set of atomic operations (steps) grouped 

in task. Each task can be recursively structured as set of tasks and each 

step can be necessary or optional. 

 

In the Control Unit applet, a workflow is depicted as a hierarchical structure 

named tree. This data structure consists of a logically arranged set of 

nodes. Each tree contains one or more root node, which serves as that 

tree’s top-most node. Any node can have any arbitrary number of child 
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(descendant) nodes. In this way each descendant node is the root of a sub-

tree. A node that has no descendants is called a leaf node. Using the tree 

to represent the workflow, a root node is a task and a leaf node is a step. 

 

 

Figure 23 – Connections among JavaScript, Applet and Plugin 

 represents a generic workflow organised in one task (“FEASIBILITY 

STUDY”) and a list of subtasks. The task “GEODATA” is the only task that 

is composed by steps and a sub-task: the metadata search. 

TASK STEP 

FEASIBILITY STUDY  

 Search for documents 

 Integrate geodata 

 Local planning 

 Search for geodata 

 View geodata 

 Analyse geodata found 

 TASK STEP 

Geodata  

 German WEBGIS 
 

 Geo Library 

Figure 10 – Generic workflow 

Figure 11 shows the workflow in the Control Unit. All tasks and steps are 

represented with an icon an their name. A task is depicted as a double 

arrows while a step is figured as a single arrow. The colour of the images 

gives information about the state of the step or task. A generic step can be 

only in one state of these states:  



 

 20 

Page 20 of 64 
DAPP 

Evaluation Reports of Demonstrator 

V2.0, 19/12/2002 

D4-3V2_7.doc 

23/12/2003 

• to be done : when the user do not execute this step. This step is 

depicted by a red arrow (as “Geo Library”); 

• on going: when the user is executing this step. During the execution of 

this step, we have an animation of yellow arrows (as “Analyse geodata 

found”); 

• executed: when the user completes this steps. This state is associated 

to a green arrow (as “Search for documents”). 

 

While the icons of the steps can have one of three colours, the double 

arrow of the tasks can be only red and green. This means that the user has 

to complete the task or just completed it. Of course, a task is completed 

(that is it has two green arrows) only when all its steps and subtasks are 

executed. As depicted in Figure 11, only the “DEVELOPMENT TASK” is 

completed. 

 

 

Figure 11 – The tree representing the workflow 

 

The double arrows of a task can be oriented horizontally  or vertically (as 

“Geodata”): in the first case, the user has “opened” the root node while in 

the other case he has “closed” the task.  
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When the user selects “Open” in the session menu, the window depicted in 

Figure 12 is shown. The open dialog lists all the sessions the user stored 

previously. When the user selects a session in the “open” dialog and click 

the “OK” button, the session selected is loaded in the Control Unit and he 

can modify it. 

 

Figure 12 – The open dialog 

The “Save as” command in the session menu shows the “Save as” dialog 

(Figure 13) where the user has to insert the title of his planning process. 

 

Figure 13 – The „Save as“ dialog 

3.2.2 Customizing the workflow 

The site planning analysis is a sequence of tasks. During INVISIP project, 

we define different workflows that the user can download and complete. But 

the main problem of site planning analysis is that users have different 
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interests. For example, during the same site planning analysis, one person 

can study the laws of a country and another the traffic. Due to this fact, 

during INVISIP project we develop modular workflows. 

Modular workflow means that users can customize the sequence of tasks 

of a site planning analysis in these ways: adding new nodes, deleting 

nodes and changing the order of the node.  

 

The user can start his site planning analysis using preconfigured workflows 

or a blank workflow and then he can modify it. During the development of 

INVISIP project, we decide to customize the workflow in order to increase 

user’s interests.  

 

Figure 14 shows the popup menu with the list of operation the user can do 

on a task of the workflow: delete the selected node, changing its interface 

(the name and/or description) or add a new step copying it from the library. 

 

Figure 14 - Customizing the workflow 
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For example Figure 15 shows the workflow before and after the user 

deletes the task “Get the documents”. 

 

Figure 15 – Delete a task 

The Control Unit gives the possibility to change the name of the steps. Let 

us suppose that the user wants to rename the step “Search for documents” 

in “Search for legal documents”. He has to select “Change name” from the 

popup menu (Figure 16), then he has to modify the name of the step 

(Figure 17). 

 

Figure 16 – The user read „Search for documents“  
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Figure 17 – The user modifies the name of the node 

Figure 18 shows the node with the new name. 

 

Figure 18 – The user changes the name of the node 

The description of the node is the text shown in the blue box when the user 

moves the mouse on a node. In the Figure 19 the description of the node 

“Search for legal documents” is “This tool is the Visual Data Mining”. 
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Figure 19 – The description of a node 

If the user selects “Change description” from the popup menu (Figure 20), 

the Control Unit opens the windows depicted in Figure 21: here the user 

has to write the new description. 

 

Figure 20 – The user selects „Change description“ 
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Figure 21 – Window for the insertion of description 

The last function in the popup menu is “add a step to the planning process” 

(Figure 14). Figure 22, shows the library that is a set of preconfigured 

tasks: on the left side we have the name of the tasks and on the right we 

have the description of the selected task.  

 

Figure 22 – The library 

The user does a simple selection in the library dialog and he adds new 

tasks to the Workflow displayed in the Control Unit. 

3.2.3 Implementation technologies 

The Control Unit is implemented as an applet that is a particular type of 

Java program embedded in a Web page. When user opens a Web page 

containing an applet, the applet runs locally (on the client machine that is 

running the Web browser), not remotely (on the system running the HTTP 

server). Consequently, security considerations are paramount, and applets 
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are restricted from performing various operations that are allowed in 

general Java applications. For instance, you might need to write a program 

that deletes files, but you certainly don’t want to let applets that come in 

over the Web delete your files. An applet cannot read from the client disk 

and cannot write on the client. Moreover it cannot open network 

connections other than to the server from which the applet was loaded and 

it cannot discover private information about the user. 

 

The applet of the Control Unit is in a Web page that contains JavaScript 

procedures, as all the pages of the INVISIP site. 

 

JavaScript is a scripting language that is embedded in Web pages and 

interpreted as the page is loaded. JavaScript can discover a lot of 

information about HTML document it is in and can manipulate a variety of 

HTML elements. In the pages about site planning, JavaScript can be used 

as follows: 

• to build HTML dynamically as the Web page is loaded; 

• to monitor various user events and to take action when these event 

occur; 

• to call Java methods and to control applets. 

 

Using Java and JavaScript, the INVISIP client has these characteristics:  

• JavaScript can access all the public methods of the Control Unit; 

• Control Unit can call JavaScript procedures; 

• Control Unit can interact with all the other components (that are applets) 

displayed on the client page. 

Details about accessing Java from JavaScript and accessing JavaScript 

from Java are explained in 3.2.4 and in 3.2.5. 

 

The Control Unit applet is implemented as front end to server-side 

programs: this means that the applet can open a direct connection to the 

server of INVISIP and they send information each other. This technique is 
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known as HTTP tunnelling since the server sends data to the applet (or it 

receives data from the applet) using a custom communication protocol 

embedded within the HTTP packets. All the data exchanged between client 

and server applications and between two client applications are XML 

documents that can be easily manipulated by a Java program.  

 

XML stands for “Extensible Mark-up Language” and is a “meta” mark-up 

language used to describe the structure of data. This techniques has 

numerous advantages including being easy to read, easy to parse and 

extensible. In order to exchange data between the Control Unit and another 

application (both on server or client side) there are only two basic concepts 

that must be understand about XML documents. The first is that any XML 

document must be well-formed to be of any use and to be parsed correctly 

by all the applications involved in this process. The second basic concept is 

that XML documents must be valid that is they must be conformed to their 

schema.  A schema is a XML Schema documents that  defines the 

grammar and the tag set for a specific XML formatting: it establishes a set 

of constraints for XML document. 

 

XML is currently a completed W3C Recommendation, meaning it is final 

and will not change until another version is released. For the complete XML 

1.0 Specification, see http://www.w3c.org/TR/REC-xml. To learn more 

about XML Schema, visit http://www.w3.org/TR/xml-schema-1 and 

http://www.w3.org/TR/xmlschema-2. A helpful primer on XML Schema is 

located at http://www.w3.org/TR/xmlschema-0 . 

3.2.4 Accessing Java from Javascript 

JavaScript can access Java variables and methods simply by using the 

fully qualified name. For instance, using: 

 

Java.lang.System.out.println(„Hello!“); 

 



 

 29 

Page 29 of 64 
DAPP 

Evaluation Reports of Demonstrator 

V2.0, 19/12/2002 

D4-3V2_7.doc 

23/12/2003 

Will send the string „Hello“ to the Java console. Use of Java from 

JavaScript has two major limitations. First you cannot perfom any operation 

that would not be permitted in an applet, so you cannot use Java to open 

local files, call local programs, discover the user’s login name, or execute 

any other such restricted operaton. Second, and most significantly, 

JavaScript provides no mechanism for writing Java methods or creating 

subclasses. As a result, you will want to create an applet for all but the 

simplest uses of java.lang.System.out.println. 

 

JavaScript can access either through the document.applets methods array 

or, if the applet can is named, through document.appletName. Any pubblic 

method of the applet can be called by JavaScript. For example, if an applet 

named „Sound“ contains the public method „Play“, we can call this method 

using document.Sound.Play() . 

3.2.5 Accessing JavaScript from Java 

Applets interact with JavaScript through the mechanism of LiveConnect 

that was introduced in Navigator 3.0. Now this technique is extended to the 

Internet Explorer browser due to the fact that everytime we download an 

applet, the browser opens a Java plug-in and „LiveConnect“ use this plug-in 

to interact with JavaScript. Connections among Java, JavaScript and the 

plugin are depictured in Figure 23. 

 

 

Figure 23 – Connections among JavaScript, Applet and Plugin 

 

To use LiveConnect facilities, you must have 

netscape.javascript.JSObject class that lets you use Java syntax to 
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access all JavaScript objects. In this way you can read and set all variable 

properties and call any legal method. Furthermore, you can use the eval 

method to invoke arbitrary JavaScript code when doing so is easier than 

using Java syntax. 

 

The JSObject class is distributed in jaws.jar currently available in 

j2sdk1.4. If you want to implement code using this class you have to add 

jaws.jar to your CLASSPATH. The Java compiler knows how to look 

inside JAR file already. 

 

Control Unit uses and contains JSObject so that when the user opens 

INVISIP site, the Control Unit works correctly in Netscape and in Internet 

Explorer. 

 

If an applet wants to use JSObject, it has to import the JSObject calls. Then 

it has to obtain a JavaScript reference to the window containing the applet. 

At the end, it can read or set the JavaScript properties of interest and call 

JavaScript methods. Next paragraphs report sample codes about the 

JSObject. 

3.2.6 Connecting Control Unit to a component displayes in the 

Site_Planning_Frame 

All the components displayed in the Site_Planning_Frame can interact with 

the Control Unit following these three steps: 

• They format a text that defines the name of the action and its 

parameters; 

• They send the text to the Control Unit; 

• If the action returns a result, they wait for a result from the Control Unit 

and then parse it. 

 

The text that defines an action of the Control Unit uses the set of xml-tags 

defined in the actionSCHEMA.xsd (Figure 24). 
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<?xml version="1.0" encoding="UTF-8"?> 

<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"> 

 <xsd:complexType name="application"> 

  <xsd:sequence> 

   <xsd:element name="action" type="actionType" minOccurs="0" maxOccurs="unbounded"/> 

  </xsd:sequence> 

 </xsd:complexType> 

 <xsd:complexType name="actionType"> 

  <xsd:sequence> 

   <xsd:element name="action-name" type="xsd:string"/> 

   <xsd:element name="description" type="xsd:string" minOccurs="0"/> 

   <xsd:element name="param-list" type="param-listType" nullable="true"/> 

  </xsd:sequence> 

 </xsd:complexType> 

 <xsd:complexType name="param-listType"> 

  <xsd:sequence> 

   <xsd:element name="param-item" type="param-itemType" minOccurs="0" 

maxOccurs="unbounded"/> 

  </xsd:sequence> 

 </xsd:complexType> 

 <xsd:complexType name="param-itemType"> 

  <xsd:sequence> 

   <xsd:element name="param-name" type="xsd:string" minOccurs="1" maxOccurs="1"/> 

   <xsd:element name="param-value" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/> 

  </xsd:sequence> 

 </xsd:complexType> 

</xsd:schema> 

Figure 24 – actionSCHEMA.xsd 

A sample of text that a component can use is the following (Figure 25) 

<action> 

 <action-name>GoTo</action-name> 

 <param-list> 

  <param-item> 

   <param-name>urlString</param-name> 

    <param-value>http://www.invisip.de</param-value> 

  </param-item> 

 </param-list> 

</action> 

Figure 25 – Sample of action 
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The result of an action is formatted using the outputSCHEMA.xsd shown in 

Figure 26: 

<?xml version="1.0" encoding="UTF-8"?> 

<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"> 

 <xsd:complexType name="output"> 

  <xsd:sequence> 

   <xsd:element name="action" type="actionType" minOccurs="0" maxOccurs="unbounded"/> 

  </xsd:sequence> 

 </xsd:complexType> 

 <xsd:complexType name="actionType"> 

  <xsd:sequence> 

   <xsd:element name="action-name" type="xsd:string"/> 

   <xsd:element name="description" type="xsd:string" minOccurs="0"/> 

   <xsd:element name="param-list" type="param-listType" nullable="true"/> 

  </xsd:sequence> 

 </xsd:complexType> 

 <xsd:complexType name="param-listType"> 

  <xsd:sequence> 

   <xsd:element name="param-item" type="param-itemType" minOccurs="0" 

maxOccurs="unbounded"/> 

  </xsd:sequence> 

 </xsd:complexType> 

 <xsd:complexType name="param-itemType"> 

  <xsd:sequence> 

   <xsd:element name="param-name" type="xsd:string" minOccurs="1" maxOccurs="1"/> 

   <xsd:element name="param-value" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/> 

  </xsd:sequence> 

 </xsd:complexType> 

</xsd:schema> 

Figure 26 – outputSCHEMA.xsd 

3.2.6.1 HOW-TO Execute a Control Unit actions from JavaScript 

To run an action of the Control Unit, the JavaScript code must be 

constructed as follows: 

1. format the XML-code of the action setting the action-name and all the 

its parameters 

2. call the Control Unit in the Control_Frame and pass the XML-code to 

the function EvaluateXMLAction(). 
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For example, if a function in the Javascript code of the 

Site_Planning_Frame needs to call the GoTo action of the Figure 25, the 

JavaScript code must be: 

 

var XMLString = “<action><action-name>GoTo</action-name><param-list><param-

item><param-name>urlString</param-name><param-value>http://www.invisip.de</param-

value></param-item></param-list></action>”; 

var result = top.Control_Frame.EvaluateXMLAction(XMLString); 

Figure 27 – Call an action from Site_Planning_Frame 

3.2.6.2 HOW-TO Access the Control Unit methods from applet 

To execute an action of the Control Unit using java statements, the follow 

steps must be done: 

• configure the xml string containing the details of the action and its 

parameters 

• get a reference to the Control Unit applet 

• evaluate the JavaScript statement 

 

import netscape.javascript.JSObject; 

. . . 

//format the xml string 

String XMLString = “<action><action-name>GoTo</action-name><param-list><param-

item><param-name>urlString</param-name><param-value>http://www.invisip.de</param-

value></param-item></param-list></action>”; 

//get a reference to the applet 

JSObject window = JSObject.getWindow(this);   

//evaluate JavaScript code 

String result = window.eval(“top.Control_Frame.EvaluateXMLAction(\”“ +XMLString + “\”)”); 

3.2.7 Control Unit Commands 

3.2.7.1 SetVisible 

The SetVisible command shows or hides the Control Unit. 

Input of the Control Unit: 

<action> 
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 <action-name>setVisible</action-name> 

 <param-item> 

  <param-name>hidden</param-name> 

  <param-value>true or false</param-value> 

 </param-item> 

</action> 

 

Details: the parameter hidden must be true or false 

3.2.7.2 GoTo 

The GoTo action moves the Site_Planning_Frame to a new URL. 

Input of the Control Unit: 

<action> 

 <action-name>GoTo</action-name> 

 <param-list> 

  <param-item> 

   <param-name>urlString</param-name> 

   <param-value>...</param-value> 

  </param-item> 

  <param-item> 

   <param-name>frameName</param-name> 

   <param-value>...</param-value> 

  </param-item> 

 </param-list> 

</action> 

 

Details: 

• urlString is the new address 

• frameName: it is optional. It can be “Site_Planning_Frame” or “TitleBar”. The 

default value is “Site_Planning_Frame”. 

3.2.7.3 setNodeState 

The setNodeState changes the state of a step. 

Input of the Control Unit: 

<action> 

 <action-name>setNodeState</action-name> 

 <param-list> 
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  <param-item> 

   <param-name>State</param-name> 

   <param-value>___</param-value> 

  </param-item> 

 </param-list> 

</action> 

 

Details:  

• The Control Unit changes the state of the node of the tools shown in the 

Site_Planning_Frame 

• State: is a number defined as follows: 

• 0 when the action of the node is executed; 

• 1 when the action of the node is not executed; 

• 2 when the action of the node is in progress; 

• 3 when there is an error 

3.2.7.4 setDataNode 

The command setDataNode saves data in a node of the tree representing 

the session of the user. 

Input of the Control Unit: 

<action> 

 <action-name>setDataNode</action-name> 

 <param-list> 

  <param-item> 

   <param-name>data_id</param-name> 

   <param-value>value_1</param-value> 

   <param-value>value_2</param-value> 

  </param-item> 

 </param-list> 

</action> 

 

Details:  

• The Control Unit sets the data in the node of the tools shown in the 

Site_Planning_Frame 
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• data_id is the key associated to the (list of ) data we want to store in the 

node 

Result: it returns true or false, meaning the action goes well or wrong. 

<output> 

 <action-name>setDataNode</action-name> 

 <param-item> 

  <param-name>Result</param-name> 

  <param-value>true or false</param-value> 

 </param-item> 

</output> 

 

3.2.7.5 getDataNode 

The commnd getDataNode returns the data stored in a node of the session 

in the Control Unit. 

Input of the Control Unit 

<action> 

 <action-name>getDataNode</action-name> 

 <param-list> 

  <param-item> 

   <param-name> ParamName </param-name> 

   <param-value>  data_id  </param-value> 

  </param-item> 

  <param-item> 

   <param-name> ParamName </param-name> 

   <param-value>   data_id_2  </param-value> 

  </param-item> 

 <param-list> 

</action> 

 

Details:  

• The Control Unit gets the data stored in the node of the tools shown in 

the Site_Planning_Frame 

• ParamName is the key used to store data in the node. If this parameter is 

not in the xml string, it will be returned all data stored in the node. 

Result: the result is formatted as follows: 

<output> 



 

 37 

Page 37 of 64 
DAPP 

Evaluation Reports of Demonstrator 

V2.0, 19/12/2002 

D4-3V2_7.doc 

23/12/2003 

 <action-name>getDataNode</action-name> 

 <param-item> 

  <param-name>…data_id …</param-name> 

  <param-value>    </param-value> 

 </param-item> 

</output> 

3.2.7.6 resetDataNode 

The command resetDataNode deletes all the data stored in the last node 

executed by the Control Unit. 

Input of the Control Unit 

<action> 

 <action-name>resetDataNode</action-name> 

 <param-list> 

  <param-item> 

   <param-name>resetChildren</param-name> 

   <param-value>true or false</param-value>   

  </param-item> 

 </param-list> 

</action> 

 

Details: 

• The Control Unit resets the data stored in the node of the tools shown in 

the Site_Planning_Frame 

• resetChildren say if we want delete data in the node children. It can be true 

or false. Default value is false 

 

Result: it returns true or false, meaning the action goes well or wrong. 

<output> 

 <action-name>resetDataNode</action-name> 

 <param-item> 

  <param-name>Result</param-name> 

  <param-value>true or false</param-value> 

 </param-item> 

</output> 
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3.2.7.7 removeParamDataNode 

The command removeParamDataNode deletes only the data stored in the 

last node of the session using a specific name. 

Input of the Control Unit 

<action> 

 <action-name>removeParamDataNode</action-name> 

 <param-list> 

  <param-item> 

   <param-name>ParamName</param-name> 

   <param-value>… data_id …</param-value>   

  </param-item> 

 </param-list> 

</action> 

 

Details:  

• NodeName is the unique name of the node defined in the current workflow 

• ParamName is the key used to stored data in the node 

•  

Result: it returns true or false, meaning the action goes well or wrong. 

<output> 

 <action-name>removeParamDataNode</action-name> 

 <param-item> 

  <param-name>Result</param-name> 

  <param-value>true or false</param-value> 

 </param-item> 

</output> 

3.2.7.8 getLastExecutedNode 

The command getLastExecutedNode returns the name of the last executed 

node. 

Input of the Control Unit 

<action> 

 <action-name>getLastExecutedNode</action-name> 

</action> 

 

Details:  
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The Control Unit gives the unique identifier of the last node executed.  

Result:  

It returns the unique identifier of the last node executed. 

<output> 

 <action-name> getLastExecutedNode </action-name> 

 <param-item> 

  <param-name>NodeName</param-name> 

  <param-value>unique_id</param-value> 

 </param-item> 

</output> 

3.2.7.9 getCurrentNode 

The command getCurrentNode returns the unique identifier of the node that 

the user is executing. 

Input of the Control Unit 

<action> 

 <action-name>getCurrentNode</action-name> 

</action> 

 

Details:  

• The Control Unit gives the unique identifier of the node that is executing 

and is associated to the tools displayed in the Site_Planning_Frame.  

Result: the result of this command is formatted as follows: 

<output> 

 <action-name>getCurrentNode</action-name> 

 <param-item> 

  <param-name>NodeName</param-name> 

  <param-value>unique_id</param-value> 

 </param-item> 

</output> 

 

3.3 The server side 

The client side of the Control Unit is always connected to the server. The 

client side is visible to the user and the second is running on the server and 

it is remote. The two parts are complementary: the client side stores locally 
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the results of the site planning and the server side store these results in a 

database. 

 

The main goal of the server side of the Control Unit is to manage the data 

of the user and store the log of a session. It stores the selection he made 

during a site planning analysis and saves the session of the user on a 

database.  

 

According with all the partners of INVISIP project, DAPP has developed the 

server side of the Control Unit using the following technologies: 

• Apache Tomcat server: is the server that supports INVISIP site; 

• HTML Pages: static contents of INVISIP site are in hypertext pages; 

• Java Servlets : they are connected to the client side of the Control 

Unit and to the databases; 

• Java Server Pages: they format data results that are sent to the 

user; 

• Oracle platform and specific tools: the database is on Oracle 

platform. Data about sessions and workflows are stored using 

Oracle XML DB that provides a high-performance, native XML storage 

and retrieval technology. Oracle XML DB fully absorbs the W3C XML 

data model into the Oracle Database, and provides new standard 

access methods for navigating and querying XML.  

 

Figure 28 – The client and the server sides of the Control Unit 
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Figure 28 depicts the client and the server sides of the Control Unit. 

 

The dataflow between the servlets and the Control Unit are in XML:  

• The data from the client to the server contains the login of the user and 

the unique identifier of the session; 

• The data from the server to the Control Unit contains commands to be 

executed and data 

 

The Java Server Pages and the HTML Pages send data that are displayed in 

the Site_Planning_Frame. Both the Java Server Pages and the servlets read 

data in the Oracle Database. 

 

When the user looks for data in INVISIP website, the tools (for example the 

Metadata Browser of the Visual Data Mining) save the main data in the 

Control Unit. At the end, when he stores the session document, the Control 

Unit sends this data on the server in XML format.  
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4 Visual Data Mining 

In this chapter a more detailed description of tools architecture and the  

functionalities is provided. All developed  visualisations are presented and a 

simple application example is illustrated in order to make clear how user 

can take advantage of using  the tools.  

4.1 VDM-module 

The VDM tool is characterised by visualisation techniques and  interaction 

functionalities [Albertoni et al. 2003].. 

The visualisation techniques include two different types of visualisations: 

visualisations of one attribute (a pie chart and a histogram) and 

visualisations of multiple attributes (a table and a parallel diagram). Other 

visualisations can be included in the VDM tool in the future. 

 

 

Figure 29 - The histogram visualisation 
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A  histogram (Figure 29) shows the number of objects for each value of 

the chosen attribute. It is useful to recognise the distribution of data objects 

and can help to identify potentially suspicious objects which can be 

removed from further analysis by appropriate selection.   

 

 

Figure 30 - A pie chart  

A pie chart (Figure 30) shows the proportional size of values of one 

chosen attribute. It is useful when the user wants to recognise a significant 

element within the attribute. 

A table visualisation  (Figure 31) allows the user to choose one or several 

attributes and visualise them in a table of values. The columns represent 

the metadata attributes and the rows the data objects. It is not a graphical 

visualisation but is nevertheless useful to display a large number of 

attributes when the data reduction has already been performed by 

previously using some other visualisation. 
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Figure 31 - The Table visualisation 

 

A parallel diagram or a parallel coordinates plot (Figure 32) maps the 

attributes of the dataset onto vertical axes. Each data object in the dataset 

is represented as a continuous piecewise linear line connecting the axes. 

The line intersects the vertical axes at the points that correspond to its 

attribute values. Since the line representing an object connects different 

attributes, it is necessary to select at least two attributes for a non-trivial 

plot. 

The VDM tool has two different kinds of interaction functionality: the 

interaction between a single visualisation and the user and the interaction 

among different visualisations. 
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Figure 32 - A Parallel Coordinate Diagram 

 

The interaction between a visualisation and the user enables the user to 

explore the content of the visualisation and to graphically extract the 

selected subset  of metadata. The possibility of a graphical selection of 

metadata exists in all the visualisation techniques, but varies according to 

the type of each technique. It links each graphic entity to the value of the 

attribute which it represents. Graphical entities in question can be angular 

segments of a pie chart, bars of a histogram, rows of a table or lines in a 

parallel diagram. The values of the attributes are shown in the legend next 

to the visualisation. The user can select a desired subset of objects by 
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clicking on the graphical entities that represent their attribute values or by 

choosing one or several values in the legend. A special type of graphical 

selection is implemented in the parallel diagram. Unlike in the other 

visualisations the polygonal lines represent the correlation among different 

attributes rather than one attribute value only. Figure 32 shows an example: 

the selected polygonal lines in red show the correlation between the 

specified cost of the datasets (10€) with their format and their language. 

The datasets with this cost can be obtained in four different data formats, 

but they are all in English. 

 

The second kind of interaction helps to discover correlation among graphic 

entities represented in different visualisations. All the visualisations are 

interconnected according to the concept of brushing and linking.  Brushing 

is an interactive selection process, while linking connects the selected data 

from the current visualisation to other open visualisations. If the user has 

several different visualisations open and decides to perform a selection of 

objects in one of them, the graphical entities that represent this selection 

and correspond to the same subset of selected data objects in each 

visualisation are highlighted, providing a better visual impression. When the 

selection is performed, all other graphical entities disappear from each 

open visualisation. Brushing and linking design is mainly based on the 

pattern “observer” and more technical details about how it has been 

implemented are provided in appendices. 

4.1.1 The Architecture of the VDM Tool 

The VDM tool is designed as a Java applet in order to easily handle web-

based explorations, however it is also possible to run it as a stand-alone 

application whenever user needs to analyse a local metadata repository. 

VDM tool consists of three main components: the control panel which 

integrates all components, the data manager connecting the VDM tool to 

different resources of metadata and the visualisation wrapper which 

provides a common template for the different visualisations. 
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Figure 33 - The VDM control panel 

 

The control panel is the main component of the VDM tool, providing a 

Graphical User Interface (GUI) as shown In Figure 33. The left side of the 

control panel shows the list of metadata attributes, while the right side 

shows available visualisations. The control panel activates the 

visualisations of selected attributes and manages the general layout of the 

different visualisations. 

 

The  data manager handles input and output of data. It is based on a table 

that contains all metadata that can be visualized. Data are dinamically  
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download each time that the control panel is activated. The  download can 

be perfomed both by local data connection and remote data connection. 

The first one allows to connect to a local database whenever  the VDM tool 

is running as a stand-alone application. Since it is based on ODBC, the 

VDM tool is open to integrate other database managers such as Oracle, 

SQL server and so on.  The remote data connection has to be used 

whenever the VDM tool is running as applet managed by the Control Unit. 

The VDM tool can be applied both to Geographical and Document 

Metadata therefore the remote connection relies on a servlet that needs 

two parameters: the  query and the database where the query has to be 

performed. If user has already reduced the initial set of available Metadata 

during a previous work session (by using the Metadata Browser or The 3D 

geoLibrary), only the subset of Metadata that has been chosen is 

downloaded.   

 

All visualisation techniques are based on the visualisation wrapper Java 

class. It is an abstract class that all visualisations extend and provides the 

interface between the visualisations and the control panel, as well as 

functionalities to draw and to update the graphs contained in the wrapper. It 

is also responsible for the look & feel (colours, character fonts, etc.) of all 

visualisations and for the common characteristics such as toolbar and 

menu. 

4.1.2 An application example  

VDM tool can be applied both to analyze Geographical Matadata 

expressed on ISO 19115 standards and Document Metadata expressed on 

a format based on Dublin Core. 

This section describes an application example of the VDM tool to analyze 

Geographical Metadata during the data acquisition phase, an example of 

use could be thought in the Document Metadata case as well. 
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Let us suppose that the goal of the user is to look for datasets that are 

cheap, complete and continually updated. Using the VDM tool, a similar  

scenario can be shown in Figure 34. Different visualisations are opened on 

several metadata variables: a parallel diagram on update frequency, the 

progress and the fees, and a histogram on reference date.  

From these visualisations the user extracts useful information about the 

available geographical datasets. The parallel diagram suggests that all 

datasets are complete, but the datasets available for free are not updated 

frequently.  

The histogram shows that some of the datasets are updated in February 

and others in August. Assuming that the user would like to purchase the 

most up-to-date datasets, he selects those produced in August. All open 

visualisations are updated according to this selection as shown in Figure 

34. From the resulting parallel diagram Figure 34 it becomes obvious that 

the most current datasets are updated continually and cost 100€.  

 

 

Figure 34 - A screen shot of what the tool looks like  
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Figure 35 - The screen shot of the tool after a selection task 

Based on this result, the user can now decide if these datasets are suitable 

for him, e.g. if their cost is still low enough for him to afford. If the resulting 

datasets do not fulfill his criteria, he can start the analysis from the 

beginning with different initial conditions.  

 

4.2 Land Price Prediction 

The Land Price Prediction module is design to support a user with 

predicting prices of land plots (Figure 36).  This task is achieved with the 

help of Artificial Intelligence (AI) methods.  It is well known that processes, 

one of which might be the buying and selling of land plots, follow a number 

of patterns.  For example, if a plot in question is near a city's center, its 

price rises, if according to the local plan it is a piece of land where flats 

might be built, the price rises too.  There are several such patterns. 

 

An expert might try to name a number of them, and then it would be a basis 

of a system which could tell how much a land piece might costs depending 
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on its characteristics, or the interested clients needs.  The problem is that it 

very hard to name these patterns. 

 

A different way would be to check a large number of selling transactions ant 

try to find these patterns.  This might be done automatically with decision 

tree inference. 

 

Therefore, the basic goals of including this tool in the Invisip project, was to 

show how Artificial Intelligence (AI) tools might be used in the standard site 

planning process. 

 

Figure 36 - The screen shot of Land Price Prediction Tool 

 

 

4.2.1 The decision tree methodology 

This is a methodology based on the divide-and-conquer paradigm.  Nodes 

in decision trees (Figure 37), built during learning from a set of independent 
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examples, involve testing particular attributes, usually with a constant.  

Depending on the outcome, other tests are selected, until the process 

reaches a leaf node.  A leaf node gives a classification that applies to all 

instances that reach that leaf, or a set of classifications, or a probability 

distribution over all possible classifications. 

 

To classify an unknown instance, it is routed down the tree to the values of 

the attributes tested in successive nodes, and when a leaf is reached, the 

instance is classified according to the class assigned to that leaf. 

 

Attributes are basically of two main types: nominal, which can take on one 

of a number of set values, or numerical.  If the attribute tested is nominal, 

the number of children of that node is frequently equal to the number of 

possible values, and one branch is then chosen.  Numeric attributes are 

usually tested against a given constant, and a node with such a test might 

have two children: one for instances with attribute values below the 

constant, and one for these above.  The actual number of children depends 

on the tree ionduction methodology and, naturally the data used during 

training. 

 

Figure 37 – Land Price Prediction Decision Tree 
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The most well known methods for tree induction is Quinlan's C4.5 

[Quinlan].   

 

Basically decision trees have constant values in their leaves, which arte 

used for classification.  In case of numerical prediction, and the land price 

prediction is such a case, two different methods might be used a number 

might be stored as classification, this approach does not give high accuracy 

instead of a single number, a formula that depends on all attributes present 

in the training set might be stored in the leaf; if the leaf is reached the 

formula is evaluated with the actual values in the instance; usually a linear 

regression is used 

 

In our solution we have used the M5' [Witten] which build a regression tree 

from a set of examples.  This methodology is a modification of the original 

decision trees which are suited only for classification in a set number of 

classes, for the case of numerical data prediction.  In this approach a 

decision tree is built with tests on different attributes of the input data being 

performed at each step, and thus subdividing the data set.  In the leaf 

nodes, unlike to the traditional approach, linear regression formulas are 

stored which are built using the data from the training set that reached that 

node.  It is a quite successful methodology resulting in good generalization 

ratio, which is the accuracy of predictions for previously unseen data, i.e. 

data not included in the training data set. 

 

The examples were taken from actual transactions in two different areas: 

• the city of Krakow 

• the gmina of Zabierzow, near Krakow 

 

The following fields are present in the data: 

• city quarter 

• transaction date  
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• area, width, length, and the shape of the plot in question 

• several local site plan codes 

• information whether electricty, gas, water, sewege system, heat supply, 

and telephone are available, and if so, in what form 

• what is the usage type of the plot, e.g. Habitable, industrial, commercial 

• the transaction type, e.g. free or restricted market or tender 

• whether there is a road access and the price of one square meter of the 

plot. 

 

The data included around 2000 examples for both the Krakow and 

Zabierzow cases.  The data were of good quality, with not too much 

missing values.   
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5 Configurator 

5.1 The Configurator module 

The Configurator is the component that follows the user during the site 

planning on his local machine. The graphic user interface of the 

Configurator is very similar to the Control Unit.  

 

Technically the Configurator is a Java applet signed because it wants to 

access the local machine of the user.  

 

 

Figure 38 – The Configurator 

The left side of the Configurator shows the list of steps that the user has to 

do in order to complete the local analysis. For example, in the Figure 38, 

the local analysis consists of three steps:  

• MTCP30 is the application involved into the traffic analysis; 

• Notepad is the application dedicated to show the results; 

• Plotrac is the application that shows the traffic flows. 
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On the rights side of the window, the user has to select the application 

dedicated to the analysis and is input parameters and the working directory.  

In the menu of the Configurator (Figure 39), the user can: 

• create new analysis (selecting “New”); 

• load an analysis reading a file on local machine (selecting “Load”); 

• save the current analysis on local machine (selecting “Save” and 

“Save as”); 

• load an analysis from INVISIP website; 

• save the analysis on INVISIP website (selecting “Save to URL” or 

“Save to URL as …”). 

 

 

Figure 39 – The menu of the Configurator 

When the user selects the right click of the mouse on a step of the analysis, 

the Configurator shows the popup menu (Figure 40).  

 

Figure 40 – The popup menu 

Using the popup menu, the user can the interface of a step of the analysis. 

In fact when the user selects “Change name ”, the title of the step of the 
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analysis is changed. When the user selects “Change description”, the 

input dialog for the new description is shown (Figure 41). 

 

 

Figure 41 – The input dialog for the new description. 

The menu “Add node” or “Delete node ” add or delete a step in the 

planning process. 

 

The menu “Move Up” and “Move down” changes the order of the steps in 

the analysis. 



 

 58 

Page 58 of 64 
DAPP 

Evaluation Reports of Demonstrator 

V2.0, 19/12/2002 

D4-3V2_7.doc 

23/12/2003 

6 Summary / Conclusion 

 

The Demonstrator 2 of the Analyser is the implementation of the 

“Architectural Concept of the Analyser” described in Work Package 4.  

 

The Demonstrator 2 gives more capabilities to the Analyser: 

• the Control Unit is completely integrated with Visual Data Mining; 

• the Visual Data Mining has new functionalities such as Highlighting 

on Brushing and Linking; 

• all the tools of the Analyser are integrated. 

 

The main result of the Analyser is the integration of different tools that show 

to the user different aspects of the same documents. Demonstrator 2 

shows that it is possible to merge the results given by the Visual Data 

Mining and the other tools provided, using the INVISIP platform.  The user 

has an effective step-by-step support in his daily site planning analyses. 
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7 Appendix 1  

In this appendix we try to summarize the core concepts of Visual Data 

Mining module (VDM). It does not provide a complete description of 

technological design, but it aims to describe the concepts that should be 

known to integrate a visualisation, providing also an example (see 

Appendix 2). 

 

7.1 The new VDM Module Design  

New functionalities have been added to the new VDM design in order to 

support a complete implementation of Brushing and linking techniques 

(B&L). The most relevant one is the highlighting: whenever user selects a 

sub-set of available data by interacting on a visualisation, the 

corresponding subset of data is highlighted in all open visualisations. This 

allows at a glance to recognize characteristics of the subset providing 

useful insight in the user’s exploration. 

 

7.2 New VDM module classes 

In the previous VDM version (without B&L), three different components 

were involved in the selection operations: 

− A Visualisation abstract class that provides a template, each 

visualisation (Histogram, Parallel coordinate Diagram and so on) had to 

adhere to. 

− Control Panel that manages the graphical user interface and initialises 

visualisation(s) and the data container (CheckResultSet).  

− CheckedResultSet class that contains input and provides instruments to 

perform data reduction.  

 

In order to support Brushing and linking with highlighting, some new 

classes have been developed: 
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− CheckedResultSetBL extends CheckedResultSet to manage the subset 

of highlighted data.  

− VisualisationBL extends Visualisation abstract class and provides 

template for visualisation that support Brushing and Linking. 

− SelectionInformation provides the information about who started the 

event and the kind of selection that has been performed, that is, 

selection or B&L. 

 

Moreover some modifies have been needed, as follows: 

− ControlPanel has to initialise a new data manager instance of 

CheckedResultSetBL instead of CheckedResultSet, it also opens 

visualisations that are instances of VisualisationBL. 

 

To understand how the B&L works, let focus on a case study that shows 

how to add a new visualisation to the new design. 
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8 Appendix 2 

In this appendix we describe how to integrate a visualisation that adheres 

to the design of VDM providing B&L with highlighting  

 

8.1 Case study  

The addition of a new visualisation follows the steps below: 

1. Creation of a new visualisation. 

2. Brushing and linking selection: this is performed each time a user 

interacts with a visualisation using a “feature”. Such a selection can be 

performed by selecting a graphical feature or an attribute values on the 

legend.  

3. Selection: This is performed each time a user decides to reduce his 

result set according to the graphical selection he made. A button in the 

menu-bar of each visualisation lets the user perform it. 

4. Undo the last Selection.  

5. Selection after a change of (Visualisation) focus, whenever user starts to 

select i.e. features on a new visualisation. 

 

Now we focus on each step, providing a brief description of how the system 

should behave: 

1. A new visualisation is created and via its constructor check_result_set 

(instance of CheckedResultSetBL) it is read and visualized. 

2. Brushing and linking selection  

- Each visualisation catches the event raised by mouse clicking and 

calls method selectionBL() that it has to implement. Later on, it 

communicates the selection to the attribute checkedResultSetBL via 

selectHighlightedData(LinkedList[] pairs, VisualisationBL who) 

method. The second parameter should be the pointer to the 

visualisation that calls the B&L selection. (JAVA “this” pointer) 
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- SelectHighlightedData performs the instructions that are needed to 

update the highlighted subset of data.  

- SelectHighlightedData also raises the notification to the open 

visualisation by NotifyObservers. This methods requires as 

parameter an object that also is an instance of SelectionInformation. 

Such an object specifies who started the event (parameter who) and 

if it is a B&L event (highlightNotify flag). 

- Each open visualisation receives its notification and executes the 

update method. It is also possible to recognize which kind of event 

has been called and the highlightNotify flag provides this information: 

the flag is false whenever the updating has been caused by 

selection/undo event, whereas it is true when brushing and linking 

event occurs. 

- B&L Selection and B&L unselecting of data are similarly treated 

because an unselecting has been processed, as if it was a new 

selection. 

3. Selection 

- Once the visualisation method select() has been called, it checks 

which graphical features are currently selected (highlighted) and 

sends this information to Control Panel via select(…) methods. 

- Then VisualisationBL.checkedresultsetBL.select(LinkedList[] pairs, 

VisualisationBL who) sets highlighted attributes to an empty result 

set, the selection of checked_result_set is performed, and a 

notification is sent to all open visualisation. 

- The changes are notified to all open visualisations by 

NotifyObservers, specifying (as instance of SelectionInformation) 

when the highlighting flag is set to false. 

- Once the notification is received, each open visualisation executes 

the update method. 

- After a selection no graphical features is selected (highlighted). 

4. Undo 
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The undo() method is called by a menubar or a Control Panel Button and it 

calls a method provided by VisualisationBL.checkedresultsetBL.undo()  

− The undo() method sets highlighted attribute to empty and notifies that 

a change on data has been performed (the parameter who of 

SelectionInformation has null value, and the highlightNotify flag is 

false). 

5. Nothing happens, all selections and highlighting are kept until user 

performs a BL selec tion on the new focus owner. 
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