

INVISIP, IST-2000-29640

INVISIP

IST-2000-29640

Information Visualisation for Site Planning

WP 4: Analyser

D 4.3: Evaluation Report of Demonstrator

Version 2

Deliverable Type Technical Report

Dissemination level CO

Date 19.12.2003

Due date 31.12.2003

Version V1.0

Authors Marangon, Piccazzo,
Albertoni, Bertone, Podolak

Institution DAPP

WP coordinator DAPP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37832997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Page 2 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

Table of content:

1 Lists of Tables and Figures 4

1.1 List of Figures 4

2 Introduction 6

2.1 Control Unit 7
2.2 Visual Data Mining 9
2.2.1 A VDM TOOL TO ANALYSE METADATA 9

2.2.2 LAND PRICE PREDICTION MODULE (DM FOR DATA MINING) 10
2.3 Configurator 11

3 The Control Unit 12

3.1 The layout of INVISIP site 12
3.2 The client side 15
3.2.1 WORKFLOW AND SESSION 17

3.2.2 CUSTOMIZING THE WORKFLOW 21

3.2.3 IMPLEMENTATION TECHNOLOGIES 26

3.2.4 ACCESSING JAVA FROM JAVASCRIPT 28

3.2.5 ACCESSING JAVASCRIPT FROM JAVA 29

3.2.6 CONNECTING CONTROL UNIT TO A COMPONENT DISPLAYES IN THE

SITE_PLANNING_FRAME 30

3.2.7 CONTROL UNIT COMMANDS 33
3.3 The server side 39

4 Visual Data Mining 42

4.1 VDM-module 42
4.1.1 THE ARCHITECTURE OF THE VDM TOOL 46

4.1.2 AN APPLICATION EXAMPLE 48

4.2 Land Price Prediction 50
4.2.1 THE DECISION TREE METHODOLOGY 51

5 Configurator 55

5.1 The Configurator module 55

 3

Page 3 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

6 Summary / Conclusion 58

7 Appendix 1 59

7.1 The new VDM Module Design 59
7.2 New VDM module classes 59

8 Appendix 2 61

8.1 Case study 61

9 References 64

9.1 Literature 64

 4

Page 4 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

1 Lists of Tables and Figures

1.1 List of Figures

1 Figure 1 - Framework of INVISIP ...6

2 Figure 2 – Data flows during the site planning analysis.....................................9

3 Figure 3 - Analyser interface...12

4 Figure 4 – The frames in the HomePage of the INVISIP website13

5 Figure 5 – INVISIP website when Control_Frame is hidden............................14

6 Figure 6 – The login page...15

7 Figure 7 – Planning process page..16

8 Figure 8 – The session menu...16

9 Figure 9 – List of planning process...18

10 Figure 10 – Generic workflow ...19

11 Figure 11 – The tree representing the workflow...20

12 Figure 12 – The open dialog...21

13 Figure 13 – The „Save as“ dialog ...21

14 Figure 14 - Customizing the workflow ..22

15 Figure 15 – Delete a task..23

16 Figure 16 – The user read „Search for documents“...23

17 Figure 17 – The user modifies the name of the node24

18 Figure 18 – The user changes the name of the node......................................24

19 Figure 19 – The description of a node..25

20 Figure 20 – The user selects „Change description“ ...25

21 Figure 21 – Window for the insertion of description ...26

22 Figure 22 – The library..26

23 Figure 23 – Connections among JavaScript, Applet and Plugin29

24 Figure 24 – actionSCHEMA.xsd...31

25 Figure 25 – Sample of action..31

26 Figure 26 – outputSCHEMA.xsd ..32

27 Figure 27 – Call an action from Site_Planning_Frame....................................33

 5

Page 5 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

28 Figure 28 – The client and the server sides of the Control Unit.......................40

29 Figure 29 - The histogram visualisation ...42

30 Figure 30 - A pie chart ..43

31 Figure 31 - The Table visualisation ..44

32 Figure 32 - A Parallel Coordinate Diagram ..45

33 Figure 33 - The VDM control panel ..47

34 Figure 34 - A screen shot of what the tool looks like49

35 Figure 35 - The screen shot of the tool after a selection task..........................50

36 Figure 36 - The screen shot of Land Price Prediction Tool51

37 Figure 37 – Land Price Prediction Decision Tree...52

38 Figure 38 – The Configurator..55

39 Figure 39 – The menu of the Configurator ...56

40 Figure 40 – The popup menu ...56

41 Figure 41 – The input dialog for the new description.57

 6

Page 6 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

2 Introduction

Within INVISIP project, people are involved to the site planning process.

Municipal authorities, departments, planning offices, data suppliers and

citizens use INVISIP website in order to improve search and analysis of

necessary data that can be, for example, documents , laws and maps.

The Analyser is a set of tools that enables users to navigate in information

spaces, to select data or links to data sources and to determine

relationships between them.

The following picture shows the components of the Analyser.

Figure 1 - Framework of INVISIP

In Work Package 4 the Analyser is created. It is organized in the Control

Unit, the Visual Data Mining and the Configurator

DAPP, CNR-IMA, KTH , UoC, tim GmbH/Thales GmbH and Inregia, are

involved to Work Package 4 (leader DAPP).

In the present deliverable the demonstrator of the Analyser is described so

far:

• Control Unit (Chapter 3);

 7

Page 7 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

• Visual Data Mining (Chapter 4);

• Configurator (Chapter 5).

2.1 Control Unit

The main goal of INVISIP is to follow the user during the site planning

process. Site planning process consists of the following tasks:

1. Search data;

2. Analyse data and select a set of them;

3. Use data as input of Instruments for the Site planning.

Task 1 and task 2 can be repeated in order to refine the search of data.

Data needed during the site planning are laws, reports, maps, spatial data

and non-spatial data.

In INVISIP project, the users can select data using tools as Metadata

Browser and Visual Data Mining. These tools show the metadata (or the

description of data) using different visualizations that enforce different

aspects of the same data. The analysis provided by Metadata Browser and

Visual Data Mining can be combined in order to select the best sets of data

concerning the site planning process.

This is the way the Control Unit coordinates INVISIP tools: every time the

user selects data using an INVISIP tool, the Control Unit stores them

internally. When the user opens a tool during the analysis, the Control Unit

pass the data selected to the new tool. For example, let us suppose the

user is looking for data concerning the “Municipality of Genoa”. The

application he needs is the Metadata Browser. At the end of his research,

he selects three data: now the metadata browser is storing data in the

Control Unit. The next step of the planning process of the user is the Visual

Data Mining tool: when the Control Unit start the Visual Data Mining tool, it

gives the data selected in the Metadata Browser.

 8

Page 8 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

During the analysis, the Control Unit shows to the user the list of the

selected data.

The Control Unit gives to the user the workflows that is the list of tasks they

have to complete during the site planning process. The workflow is a

“template” of a planning process defined in INVISIP project.

During the planning process, the user adds data to the workflow so we call

it “session”.

At any moment the user can save, stop and repeat the session and the

Control Unit updates the state of it. When the user find data on the web, he

download them and use them as input for local instruments that are

application for the site planning.

At the end, the Control Unit follows the user during the integration of data

where the user is invited to describe the results of the local instruments.

The Figure 2 depicts the data flows during the site planning analysis. Every

flow has a specific meaning.

• The flow 1 is composed by the workflow and the session. Data are

send and received in XML.

• Flows 2 and 3 are the data flows between the Control Unit and the

tools. Data are send and received in XML.

• Flows 4 is the data the Visual Data Mining read in the databases

containing metadata about Geodata (GMD) and Document (DMD)

 9

Page 9 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

Figure 2 – Data flows during the site planning analysis

2.2 Visual Data Mining

The Visual data mining module is the part of analyser component that aims

to provide tools which facilitate the decision making process for all

involved parties.

Two kinds of tools are provided within the VDM module:

− a VDM tool to analyse metadata contained in the repository;

− a DM application to analyse geographical data for Land Price

prediction .

In the following, a brief description of the tool goal is provided.

2.2.1 A VDM tool to analyse metadata

VDM tool can be used to support users in the data selection task. A basic

problem in the data selection task is the search for actual and expressive

geo-data and their analysis. Deciding which data are the most suitable to

face with a site planning problem is a hard task since geographical data are

characterised by many features and often user does not know all the data

requirement.

 10

Page 10 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

The problem can be defined as finding the optimal subset of all the existing

geographical datasets for the particular site. The optimisation criteria for

this subset are initially set by the user, e.g. finding the most up-to-date

datasets, finding the datasets with the appropriate resolution, etc. The user

formulates these suitability criteria according to his specific discipline (traffic

analyses, environmental aspects, etc.). In automatic data mining these

criteria are usually expressed as logical statements, connected by either

conjunctions or disjunctions. In the case of visual data mining however, the

user opens visualisations based on these criteria. Using different types of

visualisations, the user can display one or more metadata attributes. He

recognises patterns in the open visualisations and bases his choice on a

subset of items that he is interested in. His input is the desired selection of

subsets.

VDM tool leads user to acquire new knowledge about data that are

available in the repository. This knowledge consists of relationships,

similarities among data, and it helps to come to an arrangement between

data, which he is looking for and what is available.

2.2.2 Land Price Prediction module (DM for Data Mining)

The land price prediction (LPP) is supposed to be a tool that enables an

investor to check land prices in a region he plans his development. Prior to

selecting a region, the investor might want to check where the immobilities

prices are the most competitive, and suited to his/her needs. Usually these

informations may only be found by looking through advertisements or

querying Internet databases, which would not give a general overview. At

the same time, these advertisements are usually local, and only give

information as for the active moment. On the other hand by utilising artificial

intelligence methods it is possible to build models that span a whole region.

With the LPP tool the prospective investor is able to select his preferences

as to what type of real property he/she is interested in, where it should be

 11

Page 11 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

situated, as well as the availability of media, e.g. gas, electricity, etc. As a

reply he would get a most probable price per a square meter of such a

property.

In the LPP tools several mathematical models built were based on two

sources of information: a set of accomplished sale prices in one of regions

and, in a separate model, from advertisements coming from an Internet

advertisement service. The models are augmented with a 'wizard' that

helps a user with selecting proper attribute values for a set of most

common real estate transactions.

2.3 Configurator

The Configurator is the component of the Analysis that follows the user

during the analysis on his local computer.

The Configurator is the application that connects the INVISIP project to

specific tools for planning as worksheets or CAD systems. In fact the

Configurator links the “online” analysis to the “off-line analysis”. The first is

the analysis the user does using the Visual Data Mining and the Metadata

Browser, the second is the analysis of data using the applications installed

on local machine.

The Configurator helps the user to “configure” the analysis. Let us suppose

the user selects data using the INVISIP tools. When he has the data , he

begins the analysis that consists in a list of steps that he has to complete.

It gives the possibility of configuring the list of steps and save it. Every

analysis can be saved and loaded locally or on the database of INVISIP

project.

At the end of the off-line analysis, the user can improve INVISIP database

giving the description of the results obtained.

 12

Page 12 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

3 The Control Unit

3.1 The layout of INVISIP site

The Control Unit is composed by two parts. One of this runs on the browser

of the user and one of it is on the server. The Control Unit was developed

by DAPP as a component of the Analyser.

The user interface of the analyser, where the Control Unit is displayed, is

composed by a Website and by local site planning tools. The home page of

INVISIP website is available at

http://bordeaux.igd.fhg.de:8080/cu/HomePage.html

The website interface is depicted in Figure 3.

Figure 3 - Analyser interface

INVISIP homepage is divided into 3 rectangular cells (frames) named

TitleBar, Control_Frame and Site_Planning_Frame. Figure 4 depicts the

three frames.

 13

Page 13 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

Figure 4 – The frames in the HomePage of the INVISIP website

TitleBar contains the INVISIP logo and a menu always displayed. Main

characteristic of the TitleBar is to give to other frames global functions. The

most important functions are Show and Hide: they set the visibility of the

Control_Frame. When the Control_Frame is hidden, the

Site_Planning_Frame is large as the window of the browser (Figure 5).

 14

Page 14 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

Figure 5 – INVISIP website when Control_Frame is hidden

Site_Planning_Frame shows the Metadata Browser tool, the Visual Data

Mining tool and all other components involved in INVISIP project except the

Control Unit.

Control_Frame contains the Control Unit applet that connects client to

server, co-ordinates client applications and provides session management.

Control Unit can receive commands from all the components displayed in

the Site_Planning_Frame. Let’s name these commands “action”: they are

instructions that add flexibility and functionality to the client. For example

we can move a frame to a specific location or we can store the client data

analysis to the server. All components displayed in the

 15

Page 15 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

Site_Planning_Frame can call the actions of the Contro_Unit even though it

is hidden.

Local planning tools have different interfaces. These tools execute specific

analysis for the site planning and they need input data (for example maps

and data about traffic). Every time the user find data using INIVISIP

website, he downloads them and use them as input for local planning tools.

3.2 The client side

The application of the Control Unit shows two page: the first is the “login”

page (Figure 6) and the second is dedicated to the “Planning process”

(Figure 7).

Figure 6 – The login page

In the login page the user has to write his login and he can change the

language of the interface of the Control Unit. During the INVISIP project the

Control Unit can be viewed in Italian, German, English, Polish and Swedish

languages. The login page is hidden when the user inserts his login.

 16

Page 16 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

Figure 7 – Planning process page

The “Planning process” page is shown always and shows the session of

the user. When the user is logged on the site, the Control Unit shows the

menu “session” (Figure 8).

Figure 8 – The session menu

 17

Page 17 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

The pull-down menu "session" offer the user different possibilities for

handling his session:

• New : opens the list of the workflows and the user can start a new

session with no data stored.

• Open : opens an already processed session.

• Save: stores session.

• Save as : stores the opened session and gives the user the

possibility to define a name for the opened session.

• Logout : closes the opened session and logs you out of the system.

The button "Store additional information" gives the possibility to store

any free-text documents to the session you are working in.

The button “View storage data” shows to the user the list of data selected

and stored in the open session.

3.2.1 Workflow and Session

The INVISIP workflow is a template that is an abstract model of the site

planning analysis. The necessity of define a workflow comes from the fact

that all analyses have to perform a list of steps that the user must complete

in order to terminate the site planning analysis.

When the user selects “New” from the “Session” menu, the dialog “Choose

planning process” is shown (Figure 9): on the left side of the window, the

user reads the title of the planning process and on the right, he reads its

description. When the user selects a planning process and press the “OK”

button, the workflow is downloaded in the Control Unit.

Five planning processes (or workflows) has been developed during the

INVISIP projects:

1. Blank: it is a blank planning process;

2. INVISIP TOOLS: is the planning process that shows all the tools

developed in INVISIP project;

 18

Page 18 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

3. German Workflow: is the workflows customized for german

municipalities

4. Polish scenario: is the planning process customized for polish

municipalities

5. Planning process shopping centre Genoa: is the Italian site planning

that shows the administrative and operative activities in order to

develop a project for the building of a shopping centre.

Figure 9 – List of planning process

In the site planning analysis, the workflow is a list of operations that the

user have to do in order to complete the analysis successfully. It may say

that a workflow is composed by a set of atomic operations (steps) grouped

in task. Each task can be recursively structured as set of tasks and each

step can be necessary or optional.

In the Control Unit applet, a workflow is depicted as a hierarchical structure

named tree. This data structure consists of a logically arranged set of

nodes. Each tree contains one or more root node, which serves as that

tree’s top-most node. Any node can have any arbitrary number of child

 19

Page 19 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

(descendant) nodes. In this way each descendant node is the root of a sub-

tree. A node that has no descendants is called a leaf node. Using the tree

to represent the workflow, a root node is a task and a leaf node is a step.

Figure 23 – Connections among JavaScript, Applet and Plugin

 represents a generic workflow organised in one task (“FEASIBILITY

STUDY”) and a list of subtasks. The task “GEODATA” is the only task that

is composed by steps and a sub-task: the metadata search.

TASK STEP

FEASIBILITY STUDY

 Search for documents

 Integrate geodata

 Local planning

 Search for geodata

 View geodata

 Analyse geodata found

 TASK STEP

Geodata

 German WEBGIS

 Geo Library

Figure 10 – Generic workflow

Figure 11 shows the workflow in the Control Unit. All tasks and steps are

represented with an icon an their name. A task is depicted as a double

arrows while a step is figured as a single arrow. The colour of the images

gives information about the state of the step or task. A generic step can be

only in one state of these states:

 20

Page 20 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

• to be done : when the user do not execute this step. This step is

depicted by a red arrow (as “Geo Library”);

• on going: when the user is executing this step. During the execution of

this step, we have an animation of yellow arrows (as “Analyse geodata

found”);

• executed: when the user completes this steps. This state is associated

to a green arrow (as “Search for documents”).

While the icons of the steps can have one of three colours, the double

arrow of the tasks can be only red and green. This means that the user has

to complete the task or just completed it. Of course, a task is completed

(that is it has two green arrows) only when all its steps and subtasks are

executed. As depicted in Figure 11, only the “DEVELOPMENT TASK” is

completed.

Figure 11 – The tree representing the workflow

The double arrows of a task can be oriented horizontally or vertically (as

“Geodata”): in the first case, the user has “opened” the root node while in

the other case he has “closed” the task.

 21

Page 21 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

When the user selects “Open” in the session menu, the window depicted in

Figure 12 is shown. The open dialog lists all the sessions the user stored

previously. When the user selects a session in the “open” dialog and click

the “OK” button, the session selected is loaded in the Control Unit and he

can modify it.

Figure 12 – The open dialog

The “Save as” command in the session menu shows the “Save as” dialog

(Figure 13) where the user has to insert the title of his planning process.

Figure 13 – The „Save as“ dialog

3.2.2 Customizing the workflow

The site planning analysis is a sequence of tasks. During INVISIP project,

we define different workflows that the user can download and complete. But

the main problem of site planning analysis is that users have different

 22

Page 22 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

interests. For example, during the same site planning analysis, one person

can study the laws of a country and another the traffic. Due to this fact,

during INVISIP project we develop modular workflows.

Modular workflow means that users can customize the sequence of tasks

of a site planning analysis in these ways: adding new nodes, deleting

nodes and changing the order of the node.

The user can start his site planning analysis using preconfigured workflows

or a blank workflow and then he can modify it. During the development of

INVISIP project, we decide to customize the workflow in order to increase

user’s interests.

Figure 14 shows the popup menu with the list of operation the user can do

on a task of the workflow: delete the selected node, changing its interface

(the name and/or description) or add a new step copying it from the library.

Figure 14 - Customizing the workflow

 23

Page 23 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

For example Figure 15 shows the workflow before and after the user

deletes the task “Get the documents”.

Figure 15 – Delete a task

The Control Unit gives the possibility to change the name of the steps. Let

us suppose that the user wants to rename the step “Search for documents”

in “Search for legal documents”. He has to select “Change name” from the

popup menu (Figure 16), then he has to modify the name of the step

(Figure 17).

Figure 16 – The user read „Search for documents“

 24

Page 24 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

Figure 17 – The user modifies the name of the node

Figure 18 shows the node with the new name.

Figure 18 – The user changes the name of the node

The description of the node is the text shown in the blue box when the user

moves the mouse on a node. In the Figure 19 the description of the node

“Search for legal documents” is “This tool is the Visual Data Mining”.

 25

Page 25 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

Figure 19 – The description of a node

If the user selects “Change description” from the popup menu (Figure 20),

the Control Unit opens the windows depicted in Figure 21: here the user

has to write the new description.

Figure 20 – The user selects „Change description“

 26

Page 26 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

Figure 21 – Window for the insertion of description

The last function in the popup menu is “add a step to the planning process”

(Figure 14). Figure 22, shows the library that is a set of preconfigured

tasks: on the left side we have the name of the tasks and on the right we

have the description of the selected task.

Figure 22 – The library

The user does a simple selection in the library dialog and he adds new

tasks to the Workflow displayed in the Control Unit.

3.2.3 Implementation technologies

The Control Unit is implemented as an applet that is a particular type of

Java program embedded in a Web page. When user opens a Web page

containing an applet, the applet runs locally (on the client machine that is

running the Web browser), not remotely (on the system running the HTTP

server). Consequently, security considerations are paramount, and applets

 27

Page 27 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

are restricted from performing various operations that are allowed in

general Java applications. For instance, you might need to write a program

that deletes files, but you certainly don’t want to let applets that come in

over the Web delete your files. An applet cannot read from the client disk

and cannot write on the client. Moreover it cannot open network

connections other than to the server from which the applet was loaded and

it cannot discover private information about the user.

The applet of the Control Unit is in a Web page that contains JavaScript

procedures, as all the pages of the INVISIP site.

JavaScript is a scripting language that is embedded in Web pages and

interpreted as the page is loaded. JavaScript can discover a lot of

information about HTML document it is in and can manipulate a variety of

HTML elements. In the pages about site planning, JavaScript can be used

as follows:

• to build HTML dynamically as the Web page is loaded;

• to monitor various user events and to take action when these event

occur;

• to call Java methods and to control applets.

Using Java and JavaScript, the INVISIP client has these characteristics:

• JavaScript can access all the public methods of the Control Unit;

• Control Unit can call JavaScript procedures;

• Control Unit can interact with all the other components (that are applets)

displayed on the client page.

Details about accessing Java from JavaScript and accessing JavaScript

from Java are explained in 3.2.4 and in 3.2.5.

The Control Unit applet is implemented as front end to server-side

programs: this means that the applet can open a direct connection to the

server of INVISIP and they send information each other. This technique is

 28

Page 28 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

known as HTTP tunnelling since the server sends data to the applet (or it

receives data from the applet) using a custom communication protocol

embedded within the HTTP packets. All the data exchanged between client

and server applications and between two client applications are XML

documents that can be easily manipulated by a Java program.

XML stands for “Extensible Mark-up Language” and is a “meta” mark-up

language used to describe the structure of data. This techniques has

numerous advantages including being easy to read, easy to parse and

extensible. In order to exchange data between the Control Unit and another

application (both on server or client side) there are only two basic concepts

that must be understand about XML documents. The first is that any XML

document must be well-formed to be of any use and to be parsed correctly

by all the applications involved in this process. The second basic concept is

that XML documents must be valid that is they must be conformed to their

schema. A schema is a XML Schema documents that defines the

grammar and the tag set for a specific XML formatting: it establishes a set

of constraints for XML document.

XML is currently a completed W3C Recommendation, meaning it is final

and will not change until another version is released. For the complete XML

1.0 Specification, see http://www.w3c.org/TR/REC-xml. To learn more

about XML Schema, visit http://www.w3.org/TR/xml-schema-1 and

http://www.w3.org/TR/xmlschema-2. A helpful primer on XML Schema is

located at http://www.w3.org/TR/xmlschema-0 .

3.2.4 Accessing Java from Javascript

JavaScript can access Java variables and methods simply by using the

fully qualified name. For instance, using:

Java.lang.System.out.println(„Hello!“);

 29

Page 29 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

Will send the string „Hello“ to the Java console. Use of Java from

JavaScript has two major limitations. First you cannot perfom any operation

that would not be permitted in an applet, so you cannot use Java to open

local files, call local programs, discover the user’s login name, or execute

any other such restricted operaton. Second, and most significantly,

JavaScript provides no mechanism for writing Java methods or creating

subclasses. As a result, you will want to create an applet for all but the

simplest uses of java.lang.System.out.println.

JavaScript can access either through the document.applets methods array

or, if the applet can is named, through document.appletName. Any pubblic

method of the applet can be called by JavaScript. For example, if an applet

named „Sound“ contains the public method „Play“, we can call this method

using document.Sound.Play() .

3.2.5 Accessing JavaScript from Java

Applets interact with JavaScript through the mechanism of LiveConnect

that was introduced in Navigator 3.0. Now this technique is extended to the

Internet Explorer browser due to the fact that everytime we download an

applet, the browser opens a Java plug-in and „LiveConnect“ use this plug-in

to interact with JavaScript. Connections among Java, JavaScript and the

plugin are depictured in Figure 23.

Figure 23 – Connections among JavaScript, Applet and Plugin

To use LiveConnect facilities, you must have

netscape.javascript.JSObject class that lets you use Java syntax to

 30

Page 30 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

access all JavaScript objects. In this way you can read and set all variable

properties and call any legal method. Furthermore, you can use the eval

method to invoke arbitrary JavaScript code when doing so is easier than

using Java syntax.

The JSObject class is distributed in jaws.jar currently available in

j2sdk1.4. If you want to implement code using this class you have to add

jaws.jar to your CLASSPATH. The Java compiler knows how to look

inside JAR file already.

Control Unit uses and contains JSObject so that when the user opens

INVISIP site, the Control Unit works correctly in Netscape and in Internet

Explorer.

If an applet wants to use JSObject, it has to import the JSObject calls. Then

it has to obtain a JavaScript reference to the window containing the applet.

At the end, it can read or set the JavaScript properties of interest and call

JavaScript methods. Next paragraphs report sample codes about the

JSObject.

3.2.6 Connecting Control Unit to a component displayes in the

Site_Planning_Frame

All the components displayed in the Site_Planning_Frame can interact with

the Control Unit following these three steps:

• They format a text that defines the name of the action and its

parameters;

• They send the text to the Control Unit;

• If the action returns a result, they wait for a result from the Control Unit

and then parse it.

The text that defines an action of the Control Unit uses the set of xml-tags

defined in the actionSCHEMA.xsd (Figure 24).

 31

Page 31 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema">

 <xsd:complexType name="application">

 <xsd:sequence>

 <xsd:element name="action" type="actionType" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="actionType">

 <xsd:sequence>

 <xsd:element name="action-name" type="xsd:string"/>

 <xsd:element name="description" type="xsd:string" minOccurs="0"/>

 <xsd:element name="param-list" type="param-listType" nullable="true"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="param-listType">

 <xsd:sequence>

 <xsd:element name="param-item" type="param-itemType" minOccurs="0"

maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="param-itemType">

 <xsd:sequence>

 <xsd:element name="param-name" type="xsd:string" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="param-value" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

Figure 24 – actionSCHEMA.xsd

A sample of text that a component can use is the following (Figure 25)

<action>

 <action-name>GoTo</action-name>

 <param-list>

 <param-item>

 <param-name>urlString</param-name>

 <param-value>http://www.invisip.de</param-value>

 </param-item>

 </param-list>

</action>

Figure 25 – Sample of action

 32

Page 32 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

The result of an action is formatted using the outputSCHEMA.xsd shown in

Figure 26:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema">

 <xsd:complexType name="output">

 <xsd:sequence>

 <xsd:element name="action" type="actionType" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="actionType">

 <xsd:sequence>

 <xsd:element name="action-name" type="xsd:string"/>

 <xsd:element name="description" type="xsd:string" minOccurs="0"/>

 <xsd:element name="param-list" type="param-listType" nullable="true"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="param-listType">

 <xsd:sequence>

 <xsd:element name="param-item" type="param-itemType" minOccurs="0"

maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="param-itemType">

 <xsd:sequence>

 <xsd:element name="param-name" type="xsd:string" minOccurs="1" maxOccurs="1"/>

 <xsd:element name="param-value" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

Figure 26 – outputSCHEMA.xsd

3.2.6.1 HOW-TO Execute a Control Unit actions from JavaScript

To run an action of the Control Unit, the JavaScript code must be

constructed as follows:

1. format the XML-code of the action setting the action-name and all the

its parameters

2. call the Control Unit in the Control_Frame and pass the XML-code to

the function EvaluateXMLAction().

 33

Page 33 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

For example, if a function in the Javascript code of the

Site_Planning_Frame needs to call the GoTo action of the Figure 25, the

JavaScript code must be:

var XMLString = “<action><action-name>GoTo</action-name><param-list><param-

item><param-name>urlString</param-name><param-value>http://www.invisip.de</param-

value></param-item></param-list></action>”;

var result = top.Control_Frame.EvaluateXMLAction(XMLString);

Figure 27 – Call an action from Site_Planning_Frame

3.2.6.2 HOW-TO Access the Control Unit methods from applet

To execute an action of the Control Unit using java statements, the follow

steps must be done:

• configure the xml string containing the details of the action and its

parameters

• get a reference to the Control Unit applet

• evaluate the JavaScript statement

import netscape.javascript.JSObject;

. . .

//format the xml string

String XMLString = “<action><action-name>GoTo</action-name><param-list><param-

item><param-name>urlString</param-name><param-value>http://www.invisip.de</param-

value></param-item></param-list></action>”;

//get a reference to the applet

JSObject window = JSObject.getWindow(this);

//evaluate JavaScript code

String result = window.eval(“top.Control_Frame.EvaluateXMLAction(\”“ +XMLString + “\”)”);

3.2.7 Control Unit Commands

3.2.7.1 SetVisible

The SetVisible command shows or hides the Control Unit.

Input of the Control Unit:

<action>

 34

Page 34 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

 <action-name>setVisible</action-name>

 <param-item>

 <param-name>hidden</param-name>

 <param-value>true or false</param-value>

 </param-item>

</action>

Details: the parameter hidden must be true or false

3.2.7.2 GoTo

The GoTo action moves the Site_Planning_Frame to a new URL.

Input of the Control Unit:

<action>

 <action-name>GoTo</action-name>

 <param-list>

 <param-item>

 <param-name>urlString</param-name>

 <param-value>...</param-value>

 </param-item>

 <param-item>

 <param-name>frameName</param-name>

 <param-value>...</param-value>

 </param-item>

 </param-list>

</action>

Details:

• urlString is the new address

• frameName: it is optional. It can be “Site_Planning_Frame” or “TitleBar”. The

default value is “Site_Planning_Frame”.

3.2.7.3 setNodeState

The setNodeState changes the state of a step.

Input of the Control Unit:

<action>

 <action-name>setNodeState</action-name>

 <param-list>

 35

Page 35 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

 <param-item>

 <param-name>State</param-name>

 <param-value>___</param-value>

 </param-item>

 </param-list>

</action>

Details:

• The Control Unit changes the state of the node of the tools shown in the

Site_Planning_Frame

• State: is a number defined as follows:

• 0 when the action of the node is executed;

• 1 when the action of the node is not executed;

• 2 when the action of the node is in progress;

• 3 when there is an error

3.2.7.4 setDataNode

The command setDataNode saves data in a node of the tree representing

the session of the user.

Input of the Control Unit:

<action>

 <action-name>setDataNode</action-name>

 <param-list>

 <param-item>

 <param-name>data_id</param-name>

 <param-value>value_1</param-value>

 <param-value>value_2</param-value>

 </param-item>

 </param-list>

</action>

Details:

• The Control Unit sets the data in the node of the tools shown in the

Site_Planning_Frame

 36

Page 36 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

• data_id is the key associated to the (list of) data we want to store in the

node

Result: it returns true or false, meaning the action goes well or wrong.

<output>

 <action-name>setDataNode</action-name>

 <param-item>

 <param-name>Result</param-name>

 <param-value>true or false</param-value>

 </param-item>

</output>

3.2.7.5 getDataNode

The commnd getDataNode returns the data stored in a node of the session

in the Control Unit.

Input of the Control Unit

<action>

 <action-name>getDataNode</action-name>

 <param-list>

 <param-item>

 <param-name> ParamName </param-name>

 <param-value> data_id </param-value>

 </param-item>

 <param-item>

 <param-name> ParamName </param-name>

 <param-value> data_id_2 </param-value>

 </param-item>

 <param-list>

</action>

Details:

• The Control Unit gets the data stored in the node of the tools shown in

the Site_Planning_Frame

• ParamName is the key used to store data in the node. If this parameter is

not in the xml string, it will be returned all data stored in the node.

Result: the result is formatted as follows:

<output>

 37

Page 37 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

 <action-name>getDataNode</action-name>

 <param-item>

 <param-name>…data_id …</param-name>

 <param-value> </param-value>

 </param-item>

</output>

3.2.7.6 resetDataNode

The command resetDataNode deletes all the data stored in the last node

executed by the Control Unit.

Input of the Control Unit

<action>

 <action-name>resetDataNode</action-name>

 <param-list>

 <param-item>

 <param-name>resetChildren</param-name>

 <param-value>true or false</param-value>

 </param-item>

 </param-list>

</action>

Details:

• The Control Unit resets the data stored in the node of the tools shown in

the Site_Planning_Frame

• resetChildren say if we want delete data in the node children. It can be true

or false. Default value is false

Result: it returns true or false, meaning the action goes well or wrong.

<output>

 <action-name>resetDataNode</action-name>

 <param-item>

 <param-name>Result</param-name>

 <param-value>true or false</param-value>

 </param-item>

</output>

 38

Page 38 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

3.2.7.7 removeParamDataNode

The command removeParamDataNode deletes only the data stored in the

last node of the session using a specific name.

Input of the Control Unit

<action>

 <action-name>removeParamDataNode</action-name>

 <param-list>

 <param-item>

 <param-name>ParamName</param-name>

 <param-value>… data_id …</param-value>

 </param-item>

 </param-list>

</action>

Details:

• NodeName is the unique name of the node defined in the current workflow

• ParamName is the key used to stored data in the node

•

Result: it returns true or false, meaning the action goes well or wrong.

<output>

 <action-name>removeParamDataNode</action-name>

 <param-item>

 <param-name>Result</param-name>

 <param-value>true or false</param-value>

 </param-item>

</output>

3.2.7.8 getLastExecutedNode

The command getLastExecutedNode returns the name of the last executed

node.

Input of the Control Unit

<action>

 <action-name>getLastExecutedNode</action-name>

</action>

Details:

 39

Page 39 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

The Control Unit gives the unique identifier of the last node executed.

Result:

It returns the unique identifier of the last node executed.

<output>

 <action-name> getLastExecutedNode </action-name>

 <param-item>

 <param-name>NodeName</param-name>

 <param-value>unique_id</param-value>

 </param-item>

</output>

3.2.7.9 getCurrentNode

The command getCurrentNode returns the unique identifier of the node that

the user is executing.

Input of the Control Unit

<action>

 <action-name>getCurrentNode</action-name>

</action>

Details:

• The Control Unit gives the unique identifier of the node that is executing

and is associated to the tools displayed in the Site_Planning_Frame.

Result: the result of this command is formatted as follows:

<output>

 <action-name>getCurrentNode</action-name>

 <param-item>

 <param-name>NodeName</param-name>

 <param-value>unique_id</param-value>

 </param-item>

</output>

3.3 The server side

The client side of the Control Unit is always connected to the server. The

client side is visible to the user and the second is running on the server and

it is remote. The two parts are complementary: the client side stores locally

 40

Page 40 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

the results of the site planning and the server side store these results in a

database.

The main goal of the server side of the Control Unit is to manage the data

of the user and store the log of a session. It stores the selection he made

during a site planning analysis and saves the session of the user on a

database.

According with all the partners of INVISIP project, DAPP has developed the

server side of the Control Unit using the following technologies:

• Apache Tomcat server: is the server that supports INVISIP site;

• HTML Pages: static contents of INVISIP site are in hypertext pages;

• Java Servlets : they are connected to the client side of the Control

Unit and to the databases;

• Java Server Pages: they format data results that are sent to the

user;

• Oracle platform and specific tools: the database is on Oracle

platform. Data about sessions and workflows are stored using

Oracle XML DB that provides a high-performance, native XML storage

and retrieval technology. Oracle XML DB fully absorbs the W3C XML

data model into the Oracle Database, and provides new standard

access methods for navigating and querying XML.

Figure 28 – The client and the server sides of the Control Unit

 41

Page 41 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

Figure 28 depicts the client and the server sides of the Control Unit.

The dataflow between the servlets and the Control Unit are in XML:

• The data from the client to the server contains the login of the user and

the unique identifier of the session;

• The data from the server to the Control Unit contains commands to be

executed and data

The Java Server Pages and the HTML Pages send data that are displayed in

the Site_Planning_Frame. Both the Java Server Pages and the servlets read

data in the Oracle Database.

When the user looks for data in INVISIP website, the tools (for example the

Metadata Browser of the Visual Data Mining) save the main data in the

Control Unit. At the end, when he stores the session document, the Control

Unit sends this data on the server in XML format.

 42

Page 42 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

4 Visual Data Mining

In this chapter a more detailed description of tools architecture and the

functionalities is provided. All developed visualisations are presented and a

simple application example is illustrated in order to make clear how user

can take advantage of using the tools.

4.1 VDM-module

The VDM tool is characterised by visualisation techniques and interaction

functionalities [Albertoni et al. 2003]..

The visualisation techniques include two different types of visualisations:

visualisations of one attribute (a pie chart and a histogram) and

visualisations of multiple attributes (a table and a parallel diagram). Other

visualisations can be included in the VDM tool in the future.

Figure 29 - The histogram visualisation

 43

Page 43 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

A histogram (Figure 29) shows the number of objects for each value of

the chosen attribute. It is useful to recognise the distribution of data objects

and can help to identify potentially suspicious objects which can be

removed from further analysis by appropriate selection.

Figure 30 - A pie chart

A pie chart (Figure 30) shows the proportional size of values of one

chosen attribute. It is useful when the user wants to recognise a significant

element within the attribute.

A table visualisation (Figure 31) allows the user to choose one or several

attributes and visualise them in a table of values. The columns represent

the metadata attributes and the rows the data objects. It is not a graphical

visualisation but is nevertheless useful to display a large number of

attributes when the data reduction has already been performed by

previously using some other visualisation.

 44

Page 44 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

Figure 31 - The Table visualisation

A parallel diagram or a parallel coordinates plot (Figure 32) maps the

attributes of the dataset onto vertical axes. Each data object in the dataset

is represented as a continuous piecewise linear line connecting the axes.

The line intersects the vertical axes at the points that correspond to its

attribute values. Since the line representing an object connects different

attributes, it is necessary to select at least two attributes for a non-trivial

plot.

The VDM tool has two different kinds of interaction functionality: the

interaction between a single visualisation and the user and the interaction

among different visualisations.

 45

Page 45 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

Figure 32 - A Parallel Coordinate Diagram

The interaction between a visualisation and the user enables the user to

explore the content of the visualisation and to graphically extract the

selected subset of metadata. The possibility of a graphical selection of

metadata exists in all the visualisation techniques, but varies according to

the type of each technique. It links each graphic entity to the value of the

attribute which it represents. Graphical entities in question can be angular

segments of a pie chart, bars of a histogram, rows of a table or lines in a

parallel diagram. The values of the attributes are shown in the legend next

to the visualisation. The user can select a desired subset of objects by

 46

Page 46 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

clicking on the graphical entities that represent their attribute values or by

choosing one or several values in the legend. A special type of graphical

selection is implemented in the parallel diagram. Unlike in the other

visualisations the polygonal lines represent the correlation among different

attributes rather than one attribute value only. Figure 32 shows an example:

the selected polygonal lines in red show the correlation between the

specified cost of the datasets (10€) with their format and their language.

The datasets with this cost can be obtained in four different data formats,

but they are all in English.

The second kind of interaction helps to discover correlation among graphic

entities represented in different visualisations. All the visualisations are

interconnected according to the concept of brushing and linking. Brushing

is an interactive selection process, while linking connects the selected data

from the current visualisation to other open visualisations. If the user has

several different visualisations open and decides to perform a selection of

objects in one of them, the graphical entities that represent this selection

and correspond to the same subset of selected data objects in each

visualisation are highlighted, providing a better visual impression. When the

selection is performed, all other graphical entities disappear from each

open visualisation. Brushing and linking design is mainly based on the

pattern “observer” and more technical details about how it has been

implemented are provided in appendices.

4.1.1 The Architecture of the VDM Tool

The VDM tool is designed as a Java applet in order to easily handle web-

based explorations, however it is also possible to run it as a stand-alone

application whenever user needs to analyse a local metadata repository.

VDM tool consists of three main components: the control panel which

integrates all components, the data manager connecting the VDM tool to

different resources of metadata and the visualisation wrapper which

provides a common template for the different visualisations.

 47

Page 47 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

Figure 33 - The VDM control panel

The control panel is the main component of the VDM tool, providing a

Graphical User Interface (GUI) as shown In Figure 33. The left side of the

control panel shows the list of metadata attributes, while the right side

shows available visualisations. The control panel activates the

visualisations of selected attributes and manages the general layout of the

different visualisations.

The data manager handles input and output of data. It is based on a table

that contains all metadata that can be visualized. Data are dinamically

 48

Page 48 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

download each time that the control panel is activated. The download can

be perfomed both by local data connection and remote data connection.

The first one allows to connect to a local database whenever the VDM tool

is running as a stand-alone application. Since it is based on ODBC, the

VDM tool is open to integrate other database managers such as Oracle,

SQL server and so on. The remote data connection has to be used

whenever the VDM tool is running as applet managed by the Control Unit.

The VDM tool can be applied both to Geographical and Document

Metadata therefore the remote connection relies on a servlet that needs

two parameters: the query and the database where the query has to be

performed. If user has already reduced the initial set of available Metadata

during a previous work session (by using the Metadata Browser or The 3D

geoLibrary), only the subset of Metadata that has been chosen is

downloaded.

All visualisation techniques are based on the visualisation wrapper Java

class. It is an abstract class that all visualisations extend and provides the

interface between the visualisations and the control panel, as well as

functionalities to draw and to update the graphs contained in the wrapper. It

is also responsible for the look & feel (colours, character fonts, etc.) of all

visualisations and for the common characteristics such as toolbar and

menu.

4.1.2 An application example

VDM tool can be applied both to analyze Geographical Matadata

expressed on ISO 19115 standards and Document Metadata expressed on

a format based on Dublin Core.

This section describes an application example of the VDM tool to analyze

Geographical Metadata during the data acquisition phase, an example of

use could be thought in the Document Metadata case as well.

 49

Page 49 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

Let us suppose that the goal of the user is to look for datasets that are

cheap, complete and continually updated. Using the VDM tool, a similar

scenario can be shown in Figure 34. Different visualisations are opened on

several metadata variables: a parallel diagram on update frequency, the

progress and the fees, and a histogram on reference date.

From these visualisations the user extracts useful information about the

available geographical datasets. The parallel diagram suggests that all

datasets are complete, but the datasets available for free are not updated

frequently.

The histogram shows that some of the datasets are updated in February

and others in August. Assuming that the user would like to purchase the

most up-to-date datasets, he selects those produced in August. All open

visualisations are updated according to this selection as shown in Figure

34. From the resulting parallel diagram Figure 34 it becomes obvious that

the most current datasets are updated continually and cost 100€.

Figure 34 - A screen shot of what the tool looks like

 50

Page 50 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

Figure 35 - The screen shot of the tool after a selection task

Based on this result, the user can now decide if these datasets are suitable

for him, e.g. if their cost is still low enough for him to afford. If the resulting

datasets do not fulfill his criteria, he can start the analysis from the

beginning with different initial conditions.

4.2 Land Price Prediction

The Land Price Prediction module is design to support a user with

predicting prices of land plots (Figure 36). This task is achieved with the

help of Artificial Intelligence (AI) methods. It is well known that processes,

one of which might be the buying and selling of land plots, follow a number

of patterns. For example, if a plot in question is near a city's center, its

price rises, if according to the local plan it is a piece of land where flats

might be built, the price rises too. There are several such patterns.

An expert might try to name a number of them, and then it would be a basis

of a system which could tell how much a land piece might costs depending

 51

Page 51 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

on its characteristics, or the interested clients needs. The problem is that it

very hard to name these patterns.

A different way would be to check a large number of selling transactions ant

try to find these patterns. This might be done automatically with decision

tree inference.

Therefore, the basic goals of including this tool in the Invisip project, was to

show how Artificial Intelligence (AI) tools might be used in the standard site

planning process.

Figure 36 - The screen shot of Land Price Prediction Tool

4.2.1 The decision tree methodology

This is a methodology based on the divide-and-conquer paradigm. Nodes

in decision trees (Figure 37), built during learning from a set of independent

 52

Page 52 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

examples, involve testing particular attributes, usually with a constant.

Depending on the outcome, other tests are selected, until the process

reaches a leaf node. A leaf node gives a classification that applies to all

instances that reach that leaf, or a set of classifications, or a probability

distribution over all possible classifications.

To classify an unknown instance, it is routed down the tree to the values of

the attributes tested in successive nodes, and when a leaf is reached, the

instance is classified according to the class assigned to that leaf.

Attributes are basically of two main types: nominal, which can take on one

of a number of set values, or numerical. If the attribute tested is nominal,

the number of children of that node is frequently equal to the number of

possible values, and one branch is then chosen. Numeric attributes are

usually tested against a given constant, and a node with such a test might

have two children: one for instances with attribute values below the

constant, and one for these above. The actual number of children depends

on the tree ionduction methodology and, naturally the data used during

training.

Figure 37 – Land Price Prediction Decision Tree

Quarter =
Sródmiescie

Quarter =
Sródmiescie

Area
> 1500 m2

Area
> 1500 m2

Master Plan
= UC or UP

Master Plan
= UC or UP

Price = 56 +
9.57*(Sewage=near) -

6.5*(Shape=triangle) + ...

Price = 156 +
19*(Area>1000) +

35.1*(Electricity=yes) + ...

Price = 134 +
13*(width>100) -
12.1*(gas=yes) +

true
false

Media
= near or far

neighbourhood

Media
= near or far

neighbourhood

Shape
= regular

Shape
= regular

Road access
= yes

Road access
= yes

…

…Quarter =
Sródmiescie

Quarter =
Sródmiescie

Area
> 1500 m2

Area
> 1500 m2

Master Plan
= UC or UP

Master Plan
= UC or UP

Price = 56 +
9.57*(Sewage=near) -

6.5*(Shape=triangle) + ...

Price = 156 +
19*(Area>1000) +

35.1*(Electricity=yes) + ...

Price = 134 +
13*(width>100) -
12.1*(gas=yes) +

true
false
true
false

Media
= near or far

neighbourhood

Media
= near or far

neighbourhood

Shape
= regular

Shape
= regular

Road access
= yes

Road access
= yes

…

…

 53

Page 53 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

The most well known methods for tree induction is Quinlan's C4.5

[Quinlan].

Basically decision trees have constant values in their leaves, which arte

used for classification. In case of numerical prediction, and the land price

prediction is such a case, two different methods might be used a number

might be stored as classification, this approach does not give high accuracy

instead of a single number, a formula that depends on all attributes present

in the training set might be stored in the leaf; if the leaf is reached the

formula is evaluated with the actual values in the instance; usually a linear

regression is used

In our solution we have used the M5' [Witten] which build a regression tree

from a set of examples. This methodology is a modification of the original

decision trees which are suited only for classification in a set number of

classes, for the case of numerical data prediction. In this approach a

decision tree is built with tests on different attributes of the input data being

performed at each step, and thus subdividing the data set. In the leaf

nodes, unlike to the traditional approach, linear regression formulas are

stored which are built using the data from the training set that reached that

node. It is a quite successful methodology resulting in good generalization

ratio, which is the accuracy of predictions for previously unseen data, i.e.

data not included in the training data set.

The examples were taken from actual transactions in two different areas:

• the city of Krakow

• the gmina of Zabierzow, near Krakow

The following fields are present in the data:

• city quarter

• transaction date

 54

Page 54 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

• area, width, length, and the shape of the plot in question

• several local site plan codes

• information whether electricty, gas, water, sewege system, heat supply,

and telephone are available, and if so, in what form

• what is the usage type of the plot, e.g. Habitable, industrial, commercial

• the transaction type, e.g. free or restricted market or tender

• whether there is a road access and the price of one square meter of the

plot.

The data included around 2000 examples for both the Krakow and

Zabierzow cases. The data were of good quality, with not too much

missing values.

 55

Page 55 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

5 Configurator

5.1 The Configurator module

The Configurator is the component that follows the user during the site

planning on his local machine. The graphic user interface of the

Configurator is very similar to the Control Unit.

Technically the Configurator is a Java applet signed because it wants to

access the local machine of the user.

Figure 38 – The Configurator

The left side of the Configurator shows the list of steps that the user has to

do in order to complete the local analysis. For example, in the Figure 38,

the local analysis consists of three steps:

• MTCP30 is the application involved into the traffic analysis;

• Notepad is the application dedicated to show the results;

• Plotrac is the application that shows the traffic flows.

 56

Page 56 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

On the rights side of the window, the user has to select the application

dedicated to the analysis and is input parameters and the working directory.

In the menu of the Configurator (Figure 39), the user can:

• create new analysis (selecting “New”);

• load an analysis reading a file on local machine (selecting “Load”);

• save the current analysis on local machine (selecting “Save” and

“Save as”);

• load an analysis from INVISIP website;

• save the analysis on INVISIP website (selecting “Save to URL” or

“Save to URL as …”).

Figure 39 – The menu of the Configurator

When the user selects the right click of the mouse on a step of the analysis,

the Configurator shows the popup menu (Figure 40).

Figure 40 – The popup menu

Using the popup menu, the user can the interface of a step of the analysis.

In fact when the user selects “Change name ”, the title of the step of the

 57

Page 57 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

analysis is changed. When the user selects “Change description”, the

input dialog for the new description is shown (Figure 41).

Figure 41 – The input dialog for the new description.

The menu “Add node” or “Delete node ” add or delete a step in the

planning process.

The menu “Move Up” and “Move down” changes the order of the steps in

the analysis.

 58

Page 58 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

6 Summary / Conclusion

The Demonstrator 2 of the Analyser is the implementation of the

“Architectural Concept of the Analyser” described in Work Package 4.

The Demonstrator 2 gives more capabilities to the Analyser:

• the Control Unit is completely integrated with Visual Data Mining;

• the Visual Data Mining has new functionalities such as Highlighting

on Brushing and Linking;

• all the tools of the Analyser are integrated.

The main result of the Analyser is the integration of different tools that show

to the user different aspects of the same documents. Demonstrator 2

shows that it is possible to merge the results given by the Visual Data

Mining and the other tools provided, using the INVISIP platform. The user

has an effective step-by-step support in his daily site planning analyses.

 59

Page 59 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

7 Appendix 1

In this appendix we try to summarize the core concepts of Visual Data

Mining module (VDM). It does not provide a complete description of

technological design, but it aims to describe the concepts that should be

known to integrate a visualisation, providing also an example (see

Appendix 2).

7.1 The new VDM Module Design

New functionalities have been added to the new VDM design in order to

support a complete implementation of Brushing and linking techniques

(B&L). The most relevant one is the highlighting: whenever user selects a

sub-set of available data by interacting on a visualisation, the

corresponding subset of data is highlighted in all open visualisations. This

allows at a glance to recognize characteristics of the subset providing

useful insight in the user’s exploration.

7.2 New VDM module classes

In the previous VDM version (without B&L), three different components

were involved in the selection operations:

− A Visualisation abstract class that provides a template, each

visualisation (Histogram, Parallel coordinate Diagram and so on) had to

adhere to.

− Control Panel that manages the graphical user interface and initialises

visualisation(s) and the data container (CheckResultSet).

− CheckedResultSet class that contains input and provides instruments to

perform data reduction.

In order to support Brushing and linking with highlighting, some new

classes have been developed:

 60

Page 60 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

− CheckedResultSetBL extends CheckedResultSet to manage the subset

of highlighted data.

− VisualisationBL extends Visualisation abstract class and provides

template for visualisation that support Brushing and Linking.

− SelectionInformation provides the information about who started the

event and the kind of selection that has been performed, that is,

selection or B&L.

Moreover some modifies have been needed, as follows:

− ControlPanel has to initialise a new data manager instance of

CheckedResultSetBL instead of CheckedResultSet, it also opens

visualisations that are instances of VisualisationBL.

To understand how the B&L works, let focus on a case study that shows

how to add a new visualisation to the new design.

 61

Page 61 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

8 Appendix 2

In this appendix we describe how to integrate a visualisation that adheres

to the design of VDM providing B&L with highlighting

8.1 Case study

The addition of a new visualisation follows the steps below:

1. Creation of a new visualisation.

2. Brushing and linking selection: this is performed each time a user

interacts with a visualisation using a “feature”. Such a selection can be

performed by selecting a graphical feature or an attribute values on the

legend.

3. Selection: This is performed each time a user decides to reduce his

result set according to the graphical selection he made. A button in the

menu-bar of each visualisation lets the user perform it.

4. Undo the last Selection.

5. Selection after a change of (Visualisation) focus, whenever user starts to

select i.e. features on a new visualisation.

Now we focus on each step, providing a brief description of how the system

should behave:

1. A new visualisation is created and via its constructor check_result_set

(instance of CheckedResultSetBL) it is read and visualized.

2. Brushing and linking selection

- Each visualisation catches the event raised by mouse clicking and

calls method selectionBL() that it has to implement. Later on, it

communicates the selection to the attribute checkedResultSetBL via

selectHighlightedData(LinkedList[] pairs, VisualisationBL who)

method. The second parameter should be the pointer to the

visualisation that calls the B&L selection. (JAVA “this” pointer)

 62

Page 62 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

- SelectHighlightedData performs the instructions that are needed to

update the highlighted subset of data.

- SelectHighlightedData also raises the notification to the open

visualisation by NotifyObservers. This methods requires as

parameter an object that also is an instance of SelectionInformation.

Such an object specifies who started the event (parameter who) and

if it is a B&L event (highlightNotify flag).

- Each open visualisation receives its notification and executes the

update method. It is also possible to recognize which kind of event

has been called and the highlightNotify flag provides this information:

the flag is false whenever the updating has been caused by

selection/undo event, whereas it is true when brushing and linking

event occurs.

- B&L Selection and B&L unselecting of data are similarly treated

because an unselecting has been processed, as if it was a new

selection.

3. Selection

- Once the visualisation method select() has been called, it checks

which graphical features are currently selected (highlighted) and

sends this information to Control Panel via select(…) methods.

- Then VisualisationBL.checkedresultsetBL.select(LinkedList[] pairs,

VisualisationBL who) sets highlighted attributes to an empty result

set, the selection of checked_result_set is performed, and a

notification is sent to all open visualisation.

- The changes are notified to all open visualisations by

NotifyObservers, specifying (as instance of SelectionInformation)

when the highlighting flag is set to false.

- Once the notification is received, each open visualisation executes

the update method.

- After a selection no graphical features is selected (highlighted).

4. Undo

 63

Page 63 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

The undo() method is called by a menubar or a Control Panel Button and it

calls a method provided by VisualisationBL.checkedresultsetBL.undo()

− The undo() method sets highlighted attribute to empty and notifies that

a change on data has been performed (the parameter who of

SelectionInformation has null value, and the highlightNotify flag is

false).

5. Nothing happens, all selections and highlighting are kept until user

performs a BL selec tion on the new focus owner.

 64

Page 64 of 64
DAPP

Evaluation Reports of Demonstrator

V2.0, 19/12/2002

D4-3V2_7.doc

23/12/2003

9 References

9.1 Literature

[Albertoni et al. 2003] R Albertoni, A. Bertone, U. Demšar, M. De

Martino, H. Hauska, “Knowledge Extraction By Visual Data Mining Of

Metadata In Site Planning”, Proceedings of the 9th Scandinavian Research

Conference On Geographical Information Sciences, 4th-6th June 2003.

[Witten 1997] Y. Wang and I. Witten, “Inducing model trees for continuous

classes.”, Proc of Poster Papers, 9th European Conference on Machine

Learning, Prague, April

[Weiss 2003] Dawid Weiss, Jerzy Stefanowski, “Web search results

clustering in Polish: experimental evaluation of Carrot “ . Advances in

Soft Computing, Intelligent Information Processing and Web Mining,

Proceedings of the International IIS: IIPWM´03 Conference, Zakopane,

Poland, vol. 579 (XIV), 2003, pp. 209-220

[Quinlan, 1988] J. R. Quinlan, "Simplifying Decision Trees", Knowledge

Acquisition for Knowledge-Based Systems, Academic Press,London, B.

Gaines and J. Boose, pp 239--252, 1988

