
Methods for Common Subgraph Approximation
Simone Marini

Rapporto Tecnico IMATI 23/04

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37832976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Methods for Common Subgraph

Approximation

Simone Marini

Rapporto Tecnico IMATI 23/04

Abstract

The contribution presented in this report is aimed at defining a
framework for expressing the optimal algorithm for the computation
of the maximal common subgraph in a formalization which makes it
straightforward usable for plugging heuristics in it, in order to achiev-
ing different approximations of the optimal solution according to the
specific case.

Introduction

A large class of structural shape descriptors can be easily encoded as
directed, a-cyclic and attributed graphs, thus the problem of compar-
ing structural descriptors is approached as a graph matching prob-
lem. The techniques used for graph comparison have an exponential
computational complexity and it is therefore necessary to define an
algorithmic approximation of the optimal solution.

The methods for structural descriptors comparison, commonly used
in the computer graphics community, consist of heuristic graph match-
ing algorithms for specific application tasks, while it is lacking a gen-
eral approach suitable for incorporating different heuristics applica-
ble in different application tasks. The contribution presented in this
report is aimed at defining a framework for expressing the optimal
algorithm for the computation of the maximal common subgraph in
a formalization which makes it straightforward usable for plugging
heuristics in it, in order to achieving different approximations of the
optimal solution according to the specific case.

Skeletons and Reeb graphs provide an efficient encoding of the
structure of the object, where this encoding can be easily represented

2

as a graph (see definition 1). This allow the use of graph matching
methodologies in order to compare structural descriptors.

To be used for shape matching purposes, a structural descriptor
should be independent of object position, rotation and scaling. Usu-
ally skeletons satisfy these requirements, while for the Reeb graph the
choice depends on the mapping function as discussed in [BMMP03].
As proposed in [SSGD03, BMM+03], both skeletons and a Reeb graphs
may be represented as a-cyclic, directed graphs. However, the skele-
tal structure requires a number of simplification steps and artifacts,
which might alter the topology of the signature, while for the Reeb
graph there is a strict relationship between the object topology and
the graph structure. Therefore, in the rest of the report, the Reeb
graph structural shape descriptor will be used for the experiments.

By the assumption that the Reeb graph representation is a directed
a-cyclic graph that encodes the salient shape features and the most
significant spatial relations between them, the approach proposed in
this report is to find a mapping function between the structural parts
of two Reeb graphs. This is achieved through the construction of a
common subgraph 6 between two input graphs. This common sub-
graph should highlight how much the two shapes overlap.

1 Problem Statement

Beside the topological information stored in the graph structure, also
attributes associated to edges and nodes, and the information deduced
by the directions of the edges concurs to the construction of the map-
ping function between the structural parts of the two Reeb graph.

The following theorem assures that the Reeb graph is directed and
a-cyclic.

Theorem 1 Let G = (V , E , µV , µE) be a Reeb graph, it is directed, a-
cyclic and attributed graph.

Proof 1 • Directed: Let e be an edge of G = (V , E , µV , µE), that
is e ∈ E . From the definition of Reeb Graph it follows that the
function f cannot be constant along any edge e; therefore, denot-
ing v1 and v2 the nodes of e, the relation f(v1) 6= f(v2) holds.
Then, the edge e may be oriented according to the monotonicity
of f along that: the edge e e = (v1, v2) (resp. e = (v2, v1)) is
directed from v1 to v2 if f(v1) < f(v2) (resp. f(v2) < f(v1)).

• Acyclic: The monotonicity of f along each edge e ∈ E implies
that Gis acyclic. In fact, let P be a path (see definition 3) with
starting and ending point v1. Therefore, there would exist a

3

sequence of nodes v1, v2, . . . , vn, v1 and edges e1, e2, . . . , en such
that e1 = (v1, v2), . . . , en = (vn, v1). This would imply the follow-
ing sequence of inequalities: f(v1) < f(v2) < . . . < f(v1), which
is clearly impossible from the definition of Reeb Graph.

• Attributed: Attributes may be easily associated to Gby consider-
ing either the geometric properties of the part of the object de-
scribed by nodes and edges, or shape attributes such as texture,
color, etc. While their choice may be questionable, the existence
of such attributes, both for nodes and edges, is always possible.

In particular have to be observed that, since the Reeb graph is
directed, each node identifies a subgraph S, where VS contains the
node v itself and all nodes for which the node is an ancestor.

The mapping function between the structural parts of two Reeb
graph can be obtained by computing a bijective function between
nodes and edges of the two graphs. As shown in appendix 5 there are
different way to build such function: for example the graph isomor-
phism, subgraph isomorphism, common subgraph and error tolerant
graph isomorphism. The existence of a graph isomorphism (see defini-
tion 4) implies that the graphs must be equivalent. This is a too strong
condition that can not be satisfied for the evaluation of shape similar-
ity, in fact, due to the capability of a descriptor to capture the salient
features of an object, two similar object (similar and not identical)
are described/represented with two similar and not identical shape
descriptors. In figure 1 the models of a wolf and a horse are shown
together with their Reeb graphs. The two models are similar but due
to small morphological differences the two structural descriptors are
slightly different: the two subgraphs related to the heads are different
because the mouth of the wolf is open. The two front legs of the horse
are connected to two different branching nodes, while the two front
legs of the wolf are joined to the same branching node. The strong
requirements of the graph isomorphism can be relaxed using a weaker
similarity measure based on the subgraph isomorphism (definition 5)
and the notion of common subgraph (CS) (6). From an intuitive point
of view, comparing two structural descriptors means constructing the
most suitable common sub-graph: the wider the common subgraph
is, the more the two structural descriptors are similar. The word
”suitable” has been intentionally used because more than one com-
mon subgraph can be defined. For example in figure 2 two common
subgraphs are shown for the graphs representing the horse and the
wolf of figure 1 respectively. In figure 2(a) is represented the maxi-
mum common subgraph (MCS) as defined in 7, while in figure 2(b)
the common subgraph represented is smaller than the MCS but more

4

(a)

(b)

Figure 1: Horse (a) and wolf (b) models together with their Reeb graphs
based on the distance from the barycentre function.

meaningful, because semantically equivalent sub-parts of the object
are correctly recognized and mapped together.

Unfortunately, the construction of the MCS is a well known NP-
complete problem, thus, its exact computation is time consuming,
when the shape descriptors are composed by a large numbers of nodes
and edges. Therefore, several strategies and heuristic assumptions
have been adopted to simplify this problem [BMM+03]. In the follow-
ing sections of this report will be shown an algorithm for the computa-
tion of the maximum common subgraph (MCS) between two directed
and a-cyclic graphs and several heuristic techniques Will be discussed.

2 Algorithm Description

A naive algorithm for the computation of the MCSG1,G2
between the

two graphs G1 and G2 is shown in figure 3. This algorithm is optimal
in the sense that it returns the correct result, but it has an exponential
computational complexity. For this reason, heuristic techniques have
to be considered in many applications in order to approximate the

5

(a)

(b)

Figure 2: Two common subgraphs between the horse and wolf graphs. Nodes
having the same colors are mapped together. Thick edges represent edge
mapping

1. enumerate all the possible mappings m among V1 and V2;

2. search those mappings m that satisfy the definition of maximum com-
mon subgraph. Of course, m is not necessarily unique.

Figure 3: The naive algorithm

MCSs of two input graphs.
Even if the described algorithm is very simple, it is not easy to

define heuristic techniques based on the attributes of edges and nodes,
or on reasoning about the graph structure. Also, it is not easy to
devise an approximation which makes the structural shape matching
robust to structural noise in the graphs. With the aim to introduce
such techniques the point 2 of the algorithm can be modified as in the
figure 4.

The point 2 of the new algorithm expands the input mapping m as

6

1. enumerate all the possible mappings m among V1 and V2;

2. for each listed mapping m, compute the common subgraphs of G1 and
G2 obtainable by expanding m.

Figure 4: The new algorithm obtained modifying the naive algorithm shown
in figure 3

much as possible while respecting the definition of common subgraph.
Since the first point of both algorithms enumerates all the possible

mappings, proving that the second formulation is correct reduces to
proving that the expansion always produces a correct common sub-
graph and that it does not alter the structure of a maximum common
subgraph, should this be given as input to the expansion process.

2.1 Pseudo code

In this section, the alternative algorithm is described by explaining
the steps of its pseudo code.

The data structures involved in the algorithm are:

• G 1 = G1 = (V1, E1, µ
V1 , µE1) and G 2 = G2 = (V2, E2, µ

V2 , µE2),
are the two input graphs of the algorithm;

• M: is a set of node pairs (v1, v2), where v1 ∈ V1 and v2 ∈ V2;

• CS: is a common subgraph of G 1 and G 2. Each element of CS

is a four-tuple (v1, v2, e1, e2), where v1 ∈ V1, v2 ∈ V2 and e1 ∈
E1, e2 ∈ E2. The node pair (v1, v2) and the edge pair (e1, e2) of
each four-tuple, are the node-mapping and the edge mapping of
the common subgraph.

• MCS: is the set of all the common subgraphs computed by the
algorithm;

• CANDIDATES: is the set of four-tuples (v1, v2, e1, e2)candidate to
became an element of CS.

• CS SET: is a set of pairs (CS, CANDIDATES), where each pair rep-
resents a common subgraph CS and the set CANDIDATES is the
set of possible node and edge mappings candidate to expand CS.

The main procedure of the algorithm is MCS(), shown in the listing
1. It enumerates the set of initial mappings MG1,G2

among the nodes
of G1 and G2. For each m ∈ MG1,G2

it generates the set CS of the
common subgraphs obtained expanding m. CS is computed by the
function CS from Mapping(m) applied on the set of initial mappings

7

Listing 1: The main procedure�

1 MCS(G 1 , G 2)
2 {

M = empty set
4 CS = empty set

MCS = empty set
6

M = Mappings Set (G 1 , G 2)
8

for each m in M{
10 CS = CS from Mapping (m)

Add(CS , MCS)
12 }

return Max(MCS)
14 }

� �

m. Obviously, each m may generate more than one common subgraph
and the expansion procedure CS from Mapping(m) produces all of
them. Finally, the MCSs are obtained selecting the common subgraphs
with the largest number of nodes.

The procedure CS from Mapping() (listing 2) expands the set of
node pairs in m in order to generate a set of common subgraphs of the
two input graphs. First Init Candidates() (listing 3) transforms
the set of node pairs in m in a set of candidates, where each pair
become a candidate for growing the common subgraph. At the line 8
of the procedure Init Candidates(), the two edges e1 and e2 are set
to NULL, because it make no sense to account for the edge mapping
for the initial candidates generated from m. After the initialization of
CANDIDATES, the set CS SET (line 10 of the listing 2) contains only one
pair (CS, CANDIDATES) with CS = φ, since no node and edge mappings
has been yet produced.

The main loop of the procedure CS from Mapping() (starting at
line 12 of the listing 2) aims at adding new elements to CS by checking
if the nodes of the candidate element can be mapped correctly. This
loop iterates through all the elements (CS, CANDIDATES) of CS SET.

Given the pair (CS, CANDIDATES), the secondary loop starting at
line 13, iterates through the candidate elements (v 1, v 2, ?, ?) until
CANDIDATESbecome empty. The symbols ? replace the edges of the
candidate element because it is not necessary at this moment. The
candidate element is extracted through Pop(), that remove it from

8

Listing 2: Expansion of the initial mapping�

1 CS from Mapping (m)
2 {

CS = empty set
4 CANDIDATES = empty set

CS SET = empty set
6 v 1 = empty node

v 2 = empty node
8

In i t Cand ida t e s (CANDIDATES, m)
10 Add((CS , CANDIDATES) , CS SET)

12 for each (CS , CANDIDATES) in CS SET{
while not Empty(CANDIDATES){

14 (v 1 , v 2 ,∗ ,∗) = Pop(CANDIDATES)
i f (Mapped(v 1) or Mapped(v 2))

16 Reso l v Con f l i c t ((v 1 , v 2 , ∗ , ∗) ,
(CS,CANDIDATES) , CS SET)

18 else {
Add((v 1 , v 2 , ∗ , ∗) , CS)

20 Update ((v 1 , v 2 , ∗ , ∗) , CANDIDATES)
}

22 }
}

24 return Max(CS SET)
}

� �

CANDIDATES. For each node pair (v 1, v 2) line 15 checks if the nodes
of the candidate extracted are already mapped or not: if not, that is
if they do not belong to any four-tuple in CS, they are added to CS,
and new candidates are generated by Update() (listing 4); otherwise,
the Resolve Conflict() (listing 5) is called to handle the situation.

The procedure Update() generates new candidate elements from
the four-tuple (v 1, v 2, *, *). A new four-tuple is obtained for
each out coming edge e 1 from v 1 and e 2 from v 2, where the new
candidate element (u, v, e 1, e 2) is generated exploiting the di-
rection of the edge e 1 = (v 1, u) and e 2 = (v 2, v).

The conflicts are solved by the procedure Resolve Conflict()

(listing 5) by forking the expansion of the current CS into two com-

9

Listing 3: Transforms the in ital set of node mappings into the initial candi-
dates�

1 In i t Cand ida t e s (CANDIDATES, m)
2 {

CANDIDATES = empty set
4 v 1 = empty node

v 2 = empty node
6

for each (v 1 , v 2) in m
8 Add((v 1 , v 2 , NULL, NULL) , CANDIDATES)

}

� �

Listing 4: Update adds new elements to CANDIDATESby processing the four-
tuple p.�

1 Update ((v 1 , v 2 , ∗ , ∗) , CANDIDATES)
2 {

u = empty node
4 v = empty node

e 1 = empty edge
6 e 2 = empty edge

8 for each edge e 1 out coming from v 1 {
for each edge e 2 out coming from v 2 {

10 u = Opposite (v 1 , e 1)
v = Opposite (v 2 , e 2)

12 Add((u , v , e 1 , e 2) , CANDIDATES)
}

14 }
}

� �

mon subgraphs where the new one is obtained by eliminating the pairs
of nodes responsible of the conflict and the subsequent part of the com-
mon subgraph through the procedure Reset() (listing 6). The lines
10, 12 and 14 controls which nodes raises the conflict, and as conse-
quence Reset() is called. After Reset() finished, the two sets NEW CS

and NEW CANDIDATES are produced, each one representing a new com-
mon subgraph and a new set of candidates, respectively. Therefore the
four-tuple (v 1,v 2, *, *) is added to NEW CS, the new set of candi-

10

dates NEW CANDIDATES is updated and finally the new pair (NEW CS,

NEW CANDIDATES) is added to CS SET.

Listing 5: The procedure Resolve Conflict() is called to solve a conflict�

1 Reso l v Con f l i c t ((v 1 , v 2 , ∗ , ∗) ,
2 (CS , CANDIDATES) , CS SET)

{
4 NEW CS = empty set

NEW CANDIDATES = empty set
6 CS SET = empty set

8 NEW CS = CS
NEW CANDIDATES = CANDIDATES

10

i f (Mapped(v 1) and Mapped(v 2))
12 Reset (v 1 , v 2 , NEW CS, NEW CANDIDATES)

else i f (Mapped(v 1) and not Mapped(v 2))
14 Reset (v 1 , NULL, NEW CS, NEW CANDIDATES)

else i f (not Mapped(v 1) and Mapped(v 2))
16 Reset (NULL, v 2 , NEW CS, NEW CANDIDATES)

18 Add((v 1 , v 2 , ∗ , ∗) , NEW CS)
Update ((v 1 , v 2 , ∗ , ∗) , NEW CANDIDATES)

20 Add((NEW CS, NEW CANDIDATES) , CS SET)
}

22 }

� �

The procedure Reset() (listing 6) updates both the sets CS and
CANDIDATES by deleting all the nodes involved in the conflict. The
statement Delete(v 1,CS) eliminates all the four-tuples containing
the node v 1 from the common subgraph CS, and the loop at line 7
iterates among all the nodes v of CS, connected through a directed
path in CSto v 1. All the four-tuples of CS containing such v are
deleted at line 8. The same considerations hold for the loops starting
at the lines 9, 14 and 16.

To better understand how the Resolve Conflict() works, the
example of figure 5 has been provided, where only bold edges are the
mapped ones. The node and edge mapping of the common subgraph
shown in figure 5(a) is represented by CS SET = {(CS, CANDIDATES)}

11

Listing 6: The procedure Reset() starts a new common subgraph as conse-
quence of the conflict.�

1 Reset (v 1 , v 2 , CS , CANDIDATES)
2 {

v = empty node
4

i f (v 1 not NULL){
6 Delete (v 1 ,CS)

for each v such that Path (v , v 1 ,CS)
8 Delete (v , CS)

for each v such that Path (v , v 1 ,CANDIDATES)
10 Delete (v ,CANDIDATES)

}
12 i f (v 2 not NULL){

Delete (v 2 ,CS)
14 for each v such that Path (v , v 2 ,CS)

De le te (v , CS)
16 for each v such that Path (v , v 2 ,CANDIDATES)

De le te (v ,CANDIDATES)
18 }
}

� �

where:

CS = {(a,a1, NULL, NULL), (c,f1, β, β1), (d,c1, χ, χ1), (b,b1, α, α1)}

and
CANDIDATES = {(c,c1, δ, δ1), (e,c1, ε, χ1)}.

If Pop() selects the candidate (c,c1,δ, δ1), then both nodes c and c1

are already mapped and the statement Resolve Conflict() has to
be executed. The new pair generated by Reset() (listing 6) is (CS′,
CANDIDATES′), represented in figure 5(b), where:

CS′ = {(a,a1, NULL, NULL), (b,b1, α, α1), (c,c1, δ, δ1)}

and

CANDIDATES′ = {(d,d1, χ, φ1), (d,e1, χ, ε1), (e,d1, ε, φ1), (e,e1, ε, ε1)}

CS′ has been obtained from CS deleting the two elements involving c

and c1, and the elements whose nodes are connected to c or c1 with
a path contained in CS. Analogous considerations are used to obtain
CANDIDATES′ from CANDIDATES.

12

c

d

b

e

a
β

χ

α
α1

c1

d1
e1

b1

a1

δ1
δ

β1
f1

χ1

ε ε1φ1

(a)

χ φ1ε ε1

c

d

b

e

a
α

α1

c1

d1
e1

b1

a1

δ1
δ

f1

(b)

Figure 5: The conflict between the candidates (c,c1,δ, δ1) of the two graphs
shown in a) is solved and a new common subgraph is produced b).

2.2 Correctness

The aim of this section is to provide an outline of the proof that the
algorithm of figure 4 produces the MCSs of two input graphs. The
first step of the naive algorithm enumerates all mappings among the
nodes of the two graphs. If a node mapping m produced by the step 1
of the algorithm shown in figure 4 represents the MCS, the proposed
algorithm is correct if the statement CS from Mapping(m) (listing 2)
produces as output a common subgraph CSm where the corresponding
node mapping is identical to m.

In order to prove the previous assertions the following results have
to be shown:

• the nodes involved in CSm are an injective function among the
nodes of the two graphs;

• CSm is a common subgraph of the two input graphs, for each
m ∈ MG1,G2

;

• if m is a MCS, than the node mapping related to CSm corre-
sponds to the same MCS.

13

In the following, these notations are used: let G1 = (V1, E1, µ
V1 , µE1)

and G2 = (V2, E2, µ
V2 , µE2) be two graphs,

CSm ⊆ (V1 × V2 × E1 × E2)

is the set of four-tuples built from the input mapping m ∈ MG1,G2
by

CS from Mapping(m), and

K = {(v1, v2) | (v1, v2, ·, ·) ∈ CSm}

is the set of node mappings of CSm.

Lemma 1 The set of node pairs K is a injective function between V 1

and V2.

Proof 2 When the execution of CS from Mapping(m) ends, CS SET

is a set of pair (CSi, CANDIDATESi) where CANDIDATESi = φ
for each i, and the sets Ki are injective functions between nodes. This
assertion can be proved by induction on |Ki|:

base: initially CS SET = {(φ, CANDIDATES0)}, thus K0 = φ
and |K0| = 0. In this case K0 = φ satisfies the definition of injective
function.

induction step: K0 is a injective function where |K0| = n. Let
(v1, v2, ·, ·) be the candidate extracted by Pop() from CANDIDATES. If
the control at line 15 of CS from Mapping() (listing 2) is not satis-
fied, then there is no exists a pair (v ′1, v

′
2) ∈ K0 such that v1 = v′1

and v2 = v′2. Thus the four-tuple (v1, v2, ·, ·) is added to CS0 and
K0 = K0 ∪ {(v1, v2)} is an injective function where |K0| = n + 1. If
the if condition is satisfied, Resolve Conflict() has to be executed
and a new pair (CS1,CANDIDATES1) is added to CS SET. CS1 is
obtained from CS0 deleting the four-tuple (v′1, v

′
2, ·, ·) that makes the

if condition false and deleting also the four-tuples whose nodes are
linked to v1 and v2 through a path in CS0, then (v1, v2, ·, ·) is added to
CS1. Thus K1 is again an injective function.

This result asserts that, during the construction of the common
subgraph between G1 and G2, each node belonging to G1, is associated
to one and only one node of G2. The following theorem uses this
lemma to prove that each element (CS, CANDIDATES) ∈ CS SET

is a common subgraph of G1 and G2.

Theorem 2 CSm represents a common subgraph of the two graphs G1

and G2.

Proof 3 The results to prove are:

14

1. the two graphs G ′
1 = (V ′

1, E
′
1, µ

V ′

1 , µE
′

1) and G′
2 = (V ′

2, E
′
2, µ

V ′

2 , µE
′

2)
are subgraphs of G1 and G2 respectively, where

V ′
1 = {v | (v, ·, ·, ·) ∈ CSm}

V ′
2 = {v | (·, v, ·, ·) ∈ CSm}

E ′
1 = {e | (·, ·, e, ·) ∈ CSm}

E ′
2 = {e | (·, ·, ·, e) ∈ CSm}

2. G′
1 and G′

2 are isomorphic.

The proof of the previous two points are given below:

1. G′
1 is a subgraph of G1 because V ′

1 ⊆ V1 and E ′
1 ⊆ E1 where

each edge e ∈ E ′
1 has extreme nodes belonging to V ′

1. If an edge
e = (v1, v

′
1) ∈ E ′

1 exists such that v1 /∈ V ′
1 or v′1 /∈ V ′

1, the
statement Update((v1, v2), CANDIDATES) would find an edge not
having v1 as source node as out coming edge from v1, or an edge
having as opposite node of v1 a node v′1 not adjacent to itself.
Analogous considerations hold for G ′

2.

2. K corresponds to a bijective function f : V ′
1 → V ′

2 (V ′
1 ⊆ V1

and V ′
2 ⊆ V2) because, as shown by lemma 1, it is injective and

|V ′
1| = |V ′

2|. The result to prove is that for each edge e1 =
(v1, v

′
1) ∈ E ′

1 there exists an edge e2 = (f(v1), f(v′1)) ∈ E ′
2 and

vice versa. If an edge e = (v1, v
′
1) ∈ E ′

1 exists such that f(v1)
and/or f(v′1) are not extreme nodes of an edge belonging to E ′

2 ,
then Update((v1, f(v1)), CANDIDATES) would generates a candi-
date (v′1, f(v′1), e1, e2) where v′1 would be adjacent to v1 and f(v′1)
would not be adjacent to f(v1), which is impossible. Analogously
for the vice versa.

The next theorem assures that the algorithm produce the MCS of
G1 and G2.

Theorem 3 Let m be a node mapping representing an MCS between
two input graphs, than the node mapping K related to CSm corresponds
to the same maximum common subgraph as m.

Proof 4 Let CSm a common subgraph not representing the maximum
common subgraph m, then the following cases have to be discussed:

1. K 6= m, |K| < |m|: The output of CS from Mapping(m) is
CSm = max {CSi | (CSi, CANDIDATESi) ∈ CS SET}, let
(CS,CANDIDATES) be such output. Let us suppose, with-
out lack of generality, that the difference between K and m is the
node pair (v1, v2). While executing CS from Mapping() the four-
tuple (v1, v2, NULL,NULL) belongs to the set CANDIDATES

15

but it is never added to CS. This means that it is never se-
lected, but this is impossible because when CS from Mapping()

ends all the CANDIDATESi are empty. On the other hand,
if the four-tuple were selected, it would cause the execution of
Resolve Conflict(). Also this case is absurd because neither
v1 nor v2 can be already mapped because from lemma 1 K is a
bijective mapping.

2. K 6= m and |K| > |m|: from theorem 2, CSm corresponds to
a common subgraph between the two input graphs, and since m
corresponds to the MCS of th same two graphs, |K| > |m| is
absurd.

3. K 6= m and |K| = |m|: the proof of this case is analogous to the
proof of the point 1.

3 Heuristics

The computation of the maximum common subgraph of two graphs is
a common approach for comparing graphs, but its computational costs
make the problem not tractable in many application domains. Most
importantly, it is often necessary to insert heuristics in the matching
process to be able to adapt the process to the characteristics of the
shapes under examination. The algorithm described in section 2 is
structured in a way that heuristic techniques can be easily plugged
in it. Also, the expansion mechanism allows to gain in efficiency and
speed as it will be discussed in this section.

The maximum common subgraph is obtained by providing as input
to the CS from Mapping() all the mappings among the nodes of the
two input graphs and by selecting the common subgraph with the
largest number of nodes. A sensible improvement of the matching
process can achieved by relaxing the problem setting and allowing a
common subgraph to be accepted also an approximated solution.

3.1 Node Relevance and Initial Mapping

with respect to the example in Figure 6, the optimal solution, that is
the MCS, is obtained running the expansion process simply on the pair
m = {(a,a1)}. In this case the common subgraph obtained as output
from CS from Mapping(m) corresponds to the MCS of the two graphs,
and the process is run on a highly reduced input set of mapping. In
general, running the algorithm on a subset of the initial mapping yields
to approximations of the maximum common subgraph, and heuristics
or semantic knowledge can be used to select the best candidate initial

16

χ φ1ε ε1

c

d

b

e

a
α

α1

c1

d1
e1

b1

a1

δ1
δ

f1

Figure 6: Nodes and edges belonging to the maximum common subgraph
are: {(a, a1, NULL, NULL), (b, b1, α, α1), (c, c1, δ, δ1), (d, d1, χ, φ1),
(e, e1, ε, ε1)}

mappings. It is clear, indeed, that some nodes are more relevant than
others, depending on the attributes and on the topology of the graph.

A sensible improvement of the computational cost of the process
can be obtained by reducing the number of input mappings, at the cost
of accepting solutions that are not optimal, that is common subgraphs
which might be not maximum. This task can be achieved taking into
account the direction of the edges. Since the considered input graph
G = (V, E , µV , µE) is directed, each node v ∈ V identifies a subgraph
G ′ = (V ′, E ′, µV

′

, µE
′

) induced by V ′, where V ′ is the set of nodes with
v as ancestor included v itself. For example, in figure 6, the nodes of
the subgraph associated to the node c are: d, e and c itself.

The notion of node relevance can be captured by the subgraph
associated to the node: for example, the larger the subgraph associ-
ated to the node is, the more the node is relevant. With reference to
figure 6, the node c is more relevant than d and the node a is more
relevant than c. This concept of relevance can be used to drive the se-
lection of the best initial candidates for the expansion process. Given
a graph G = (V, E , µV , µE), for each node v ∈ V, has been computed
the related subgraph Gv = (Vv, Ev , µ

Vv , µEv), than the average node
relevance anrG has been computed as:

anrG =

∑
v∈V |Vv |

|V|
(1)

The nodes that are relevant has been computed selecting all the nodes
whose subgraph has a size bigger than the average node relevance
defined in equation 1:

RG = {v ∈ V | |Vv | ≥ anrG} (2)

17

Figure 8(a) shows the two graphs of the horse and the wolf of figure
2 where the nodes are endowed with labels. In this example, the rele-
vant node of the graph representing the horse and computed through
the equation 2 are: anrHorse = {n,m, l, i}; while for the wolf are:
anrWolf = {r1, q1,p1,n1, i1}.

A more general definition of the equations 1 and 2 takes in account
also attributes of nodes and edges of the graph. The relevance RelG(v)
of the node v can be defined as:

RelG(v) = |Vv| wG(v) (3)

where wG(v) is a weight varying on the [0, 1] range and depending on
the attributes of nodes and edges of the subgraph Gv associated to
the node v. The weight captures the meaning of the object sub-parts
represented as nodes and edges of the graph. For example a complex
subgraph, with many nodes and edges but representing small object
sub-parts, may be less relevant of a simple subgraph, with few nodes
and edges but representing a big object sub-part. Starting from the
equation 3, the equation 1 can be rewritten as:

anrG =

∑
v∈V RelG(v)

|V|
(4)

and thus also the set of relevant nodes can be rewritten as:

RG = {v ∈ V | RelG(v) ≥ anrG} (5)

For example, assuming that the attribute of the edge represents the
volume of the object sub-part described by the edge itself, the weight
determining the relevance of a node v, can be defined as:

wG(v) =

∑
e∈Ev

µEv(e)
∑

e∈E µ
E(e)

(6)

In this case nodes whose subgraphs describe sub-parts with a small
volume (with respect to the volume of the whole object) are less rel-
evant than nodes describing sub-parts with a large volume. In figure
7(a) the model of a human body is shown together with its structural
descriptor, figure 7(b). The nodes belonging to the subgraph that
correspond to the left hand, figure 7(c), are considered relevant with
respect to the equations 1 and 2. On the contrary, due to the small
volume of the fingers and the palm of the hand, the nodes of the Left
hand are not relevant with respect to the equations 3, 6 and 5.

After the relevant nodes has been computed, they can be used as
input for the expansion process defined by CS from Mapping(m). The
relevant nodes can be combined to produce the initial node mapping

18

(a) (b) (c)

Figure 7: The model of a human body (a), its Reeb graph with respect to the
integral geodesic distance (b) and the subgraph representing the left hand of
the model (c).

m. The simplest way to compute the initial mapping between two
input graphs G1 and G2, is to define it as Cartesian product between
the set of relevant nodes:

m = RG1
×RG2

(7)

An example of common subgraph obtained considering the set of rel-
evant nodes defined by the equation 2 and the initial mapping de-
fined by the equation 7 is shown in figure 2(a). In this case, although
heuristic technique has been used, the comparison algorithm produces
as output the maximum common subgraph.

Another method to combine the relevant node is shown in figure
8(b), where they are combined with respect to their attributes, in
this case, the distance value from the barycentre of the object. Rele-
vant nodes has been grouped in order to combine nodes close to the
barycentre with node of the other graph close to the barycentre, and
node far from the barycentre with nodes of the other graph far from
the barycentre. Nodes close to the barycentre are associated to large
subgraphs, thus, are associated to internal large sub-parts of the ob-
ject, while nodes that move away from the barycentre are associated
to progressively small subgraphs (possibly empty subgraphs), thus,
are associated to small external sub-parts of the object. The node
relevance detection together with the relevant node grouping, allow a
coarse to fine matching process that first produces a correspondence
between sub-parts of the two object and then it refines the coarse
correspondences producing finer sub-part correspondence.S

19

(a) (b)

Figure 8: The graphs of a horse and a wolf (a), and an example of node
clustering among relevant nodes (b).

3.2 Distance Function Between Nodes

Another useful heuristic technique can be constructed by combining
the notion of subgraph relevance to the idea of expansion process,
in particular associating to the pair of nodes (v1, v2) the information
about how much the common subgraph would expand with the addi-
tion of that pair to the subgraph itself. A distance function d between
two nodes v1 and v2 could be defined in order to capture this infor-
mation.

The distance d(v1, v2) is defined involving node and edge attributes
and an approximation of the structure of the subgraph related to v1

and v2. Two examples of distances that can be plugged in the algo-

20

rithm come from [SD01] and [HSKK01]. In [SD01] a topological signa-
ture vector χ(v) describing the structure of the subgraph related to the
node v is defined for each node of the graph. The distance d(v1, v2)
corresponds to the euclidean distance between χ(v1) and χ(v2). In
[HSKK01] the distance value depends mainly by the node attributes.

The distance d(v1, v2), proposed in this report, involves node and
edge attributes and the approximation of the structure of the sub-
graphs related to v1 and v2. It is defined as:

d(v1, v2) =
w1G S + w2St S + w3Sz S

w1 + w2 + w3

(8)

Where G S, St S and Sz S are real numbers belonging to the range
[0, 1]. They represent geometrical similarity between the node at-
tributes, structural similarity between the node subgraphs and Sz S
evaluate the similarity between the size of the sub-parts associated to
nodes, finally, the three weight w1, w2 and w3 belong to the range
[0, 1] and combine the three components of d.

G S compares the geometric shape descriptors associated to v1

and v2. The geometric descriptors capture the parts of the object
corresponding to the subgraph associated both to v1 and v2. St S
compares the structure between the subgraphs associated to the nodes
v1 and v2. The structures of two subgraphs can be compared by
analyzing the spectrum of the graph, while another coarse but efficient
technique can be defined as follow:

St S =
in+ out+ sub n+ sub in+ sub out

5
(9)

where

X =
|X(v1) −X(v2)|

max(X(v1), X(v2))

and where in and out represent the in degree and the out degree
of the two nodes, sub n the number of the subgraph nodes, sub in
and sub out the in degree and out degree sum of the subgraph nodes.
Finally, two nodes may have sub-parts similar both in structure and
in geometry but not in size, in this case they have to result dissimilar.
This kind of dissimilarity is captured by Sz S defined as:

Sz S = sub s
sub s = wG

(10)

where wG is the sum of the edge attributes of the subgraph and can
be defined as in the equation 6.

The distance d can be used to reduce the number of elements of
CS SET. It acts on the selection of the CANDIDATES elements and

21

the Resolve Conflict() statement. The simplest way to use d is to
extract the best element (v1, v2, ·, ·) (minimum distance between v1

and v2) from CANDIDATES and add it to CS if and only if neither
v1 nor v2 are already mapped. If v1 or v2 are mapped, the candi-
date is discarded and a new one is extracted until CANDIDATES
becomes empty. In this case the Resolve Conflict() statement is
never recalled. Another example of use of d is to add the best can-
didate (v1, v2) to CS even if v1 and/or v2 are already mapped if and
only if the new mapping has a minor distance than the previous ones.
In both the previous cases the CS SET set corresponds to a single pair
(CS,CANDIDATES).

4 Computational complexity

The computational cost of the algorithm described in figure 4 and de-
tailed in section 2.1 is exponential, because it depends on the first step
of the algorithm, that enumerates all the mappings among the nodes of
the two input graphs. Actually, given two graphs G1 = (V1, E1, µ

V1 , µE1)
and G2 = (V2, E2, µ

V2 , µE2) where ‖V1‖ = n and ‖V2‖ = m, the set of
node mappings from G1 to G2 has mn elements.

The heuristic techniques discussed in section 3 reduce drastically
the computational costs of the matching algorithm. The processes
that extract the information describing the structure of the subgraph
related to a node, and the computation of the relevant nodes of the
graphs can be considered as pre-processing steps that are off-line with
respect to the graph matching algorithm. However the information
involved in the equations 3 and 9 correspond to the number of nodes
belonging to the subgraph associated to a specific node, the sum of the
in degree and out degree of the subgraph nodes and the information
encoded into the nodes and edges attributes describing the size of
the sub-part of the object related to the subgraph. The extraction
of all these information have O(n2) as computational cost, where n
is the number of nodes of the graph. This quadratic cost is obtained
by analyzing the descendant nodes of each node of the graph. The
choice of the set of relevant nodes, defined in the equation 5 has a
linear computational cost, and the generation of the initial mapping
is quadratic with respect to the sum of the relevant nodes of both
the graphs, while the evaluation of the similarity between two nodes
defined in the equation 8 depend only by the computational cost of
the comparison process used for the geometric attributes, because all
the involved information are computed in the pre-processing step.

Given the initial node mapping and the heuristics defined in sec-
tion 3.2 also the expansion process has quadratic cost with respect

22

to the maximum number of nodes of both the two graphs. When
a pair of nodes is selected from the set of candidates (Pop() proce-
dure mentioned in the listing 2) is added to the common subgraph
or it is discarded because, at least, one of the two nodes is already
mapped (heuristic rule discussed in section 3.2 that influences the
Resolve Conflict() procedure shown in the listings 2 and 5). For
each pair of nodes added to the common subgraph, at most, O(n2)
new candidates are added to CANDIDATES, and such pair is added
to the common subgraph exactly once. The extraction of the best
candidate from CANDIDATES is constant if the candidates are ar-
ranged with respect to the distance function between nodes (equation
8), while the insertion of a candidate into the candidates set is logm,
where m is the number of candidates.

Finally the algorithm described in section 2 endowed with the
heuristic techniques discussed in section 3, approximates the maxi-
mum common subgraph with a computational cost of O(n3), where n
is the maximum between the number of nodes of the two input graphs.

5 Reeb Graph Simplification

Due to the capability of the structural shape descriptors to capture
salient structural and topological features, the object may be repre-
sented by a graph with a some redundant nodes and edges, as shown in
figure 9(a). In this case, such redundant information can be considered
as structural noise of the shape descriptor, and it can be removed from
the graph through a simplification algorithm able to highlight the sig-
nificative shape of the object, maintaining the topological information
captured by the descriptor, as shown in figure 9(b).

(a) (b) (c)

Figure 9: A 3D model (a), its structural shape descriptor (b) and a simplified
version of the descriptor (c). In (c) the redundant nodes (green nodes) of the
graph has been detected and collapsed into only one node.

23

The simplification algorithm proposed in this section is not a sim-
ple pruning but a more complex process able to transform the input
graph into a new one, which describes the global structure of the ob-
ject and discards the graph elements responsible for the noise.

Aim of the simplification algorithm is to eliminate the non-relevant
object features represented in the graph by guaranteeing the topolog-
ical consistency of the underlying model. In order to conserve the
capability of the Reeb graph to represent the topology of the object,
when an edge is removed from the graph also a node has to be deleted.
Moreover, in order to preserve the topology and the acyclicity of the
graph, a node n and an edge e = (v, n) are deleted from G only if
there are not other edges e1 from the same node v to n.

Minima and maxima are regarded as feature nodes, while saddle
ones describe how the features and the ”body” parts of the object
are connected. Three threshold values, Thm, ThM and Ths, are set
to check the relevance of both minima, maxima and saddles nodes
respectively. Such thresholds, which vary from the smallest to the
biggest edge attribute, may be either automatically computed, for
instance as the average of the edge attributes, or user defined. The
main idea is to simplify nodes that have relevance less or equal to the
given thresholds. The simplification is the more incisive, the higher
threshold is.

Simple minimum and maximum simplification: In the Reeb
graph, simple minima and maxima are represented by nodes, which
may be linked to both saddle and maximum (minimum) nodes. How-
ever, when a simple maximum M is connected to a simple minimum
m, the graph is composed only by the two nodes m and M and the
edge (m,M) because a surface S having only two critical points is
homeomorphic to a sphere [Mil63].

Only minimum and maximum nodes that are adjacent to saddle
nodes and less relevant than Thm and ThM are simplified. When
all minima and maxima adjacent to a saddle node are removed, the
saddle might be transformed into a minimum or a maximum node
(eventually complex), according to the number and the direction of
the edges incident into it, see figure 10.

Complex node simplification: Complex maxima and minima
can be adjacent both to nodes and macro-nodes, has to be recalled that
macro-nodes correspond to complex maxima and minima. A complex
minimummm is not relevant if there exists an edge e = (mm, s) where
s is a saddle node and the attribute of e is smaller than Thm. If there
exists more than one edge with such characteristics, the simplification

24

s

m

s
mm

s

m
(a) (b)

e e

Figure 10: The simplification of a minimum node. The labels of the node
indicate its type.

algorithm chooses the one with the smallest relevance. The node mm
is simplified removing the edge e and connecting all other outgoing
nodes to the saddle node s. The node mm is also removed and the
saddle s re-classified according to its behavior in the new situation (see
figure 11). Complex maxima are handled in a symmetric manner.

mm
mm

s
e

s
s

e
mm

(a) (b)

Figure 11: The simplification of a minimum macro-node. The labels of the
node indicate its type.

Saddle simplification: Saddles are graph nodes with both ingo-
ing and outgoing edges. A saddle node v1 can be simplified if it is
connected to another saddle v2 and the edge e = (v1, v2) connecting
the two saddles has attribute smaller than the threshold Ths. In this
case all nodes adjacent to v1 are connected to v2 and both the edge e
and the node v1 are removed, see figure 12.

The simplification process may be arbitrarily repeated until a very
simple structure is reached and no more nodes can be simplified ac-
cording to the proposed criteria.

In particular, has to be highlighted that the constraints inserted
in the simplification process of macro-nodes produce a final graph
representation which is topologically equivalent to the original one but
may not be minimal, in the number of nodes and edges. In addition
the order in which the simplification operations are performed may
influence the final results.

25

e
v2

v1 v2

Figure 12: The simplification of a saddle v1.

A Basic Definitions on Graphs

Definition 1 (Attributed graph) An attributed graph G is given
by a quadruple G = (V,E, µV , µE), where V is a set of nodes, E is the
set of the graph edges, µV : V → AV and µE : E → AE are the node
and the edge attribute functions, with AV , AE sets of node and edge
attributes of G. The set of attributed graphs is denoted by MGset.

Definition 2 (Attributed sub-graph) A subgraph S of G is a quadru-
ple (VS , ES , µVS

, µES
), where VS ⊆ V , ES ⊆ E, µVS

and µES
are

induced by µV and µE, respectively.

Definition 3 (path) a path between two vertices n1, n2 ∈ V is a
non-empty sequence of k different vertices v0, v1, . . . , vk where v0 = n1

and vk = n2 and (vi, vi+1) ∈ E, i = 0, . . . , k − 1. Finally, a graph
G is said to be acyclic when there are no cycles between its edges,
independently of whether the graph G is directed or not.

Definition 4 (graph isomorphism) is a bijective function f : V 1 →
V2 such that

1. µV1(v) = µV2(f(v)), v ∈ V1.

2. for all the edges e1 = (v1, v
′
1) ∈ E1, there exists an edge e2 =

(f(v1), f(v′1)) ∈ E2 such that µE1(e1) = µE2(e2). Moreover,
for all the edges e2 = (v2, v

′
2) ∈ E2, there exists an edge e1 =

(f−1(v2), f
−1(v′2)) ∈ E1 such that µE1(e1) = µE2(e2).

If a graph is not attributed, the condition 1 and the equality between
the edge attributes in the condition 2, are not necessary.

Definition 5 (subgraph isomorphism) If f : V1 → V ′
1 is a graph

isomorphism between G1 and G′, and G′ is a subgraph of G2, then f is
called a subgraph isomorphism from G1 to G′.

26

Definition 6 (common subgraph) A common subgraph of G1 and
G2 is a graph G such that there exists a subgraph isomorphism from G
to G1 and from G to G2.

Definition 7 (maximum common subgraph) A maximum com-
mon subgraph of G1 and G2, denoted as MCSG1,G2

is a common sub-
graph G such that there exists no other common subgraph having more
nodes than G. The MCSG1,G2

in not necessarily unique.

Definition 8 (error tolerant graph isomorphism) Let G and G ′

be two attributed graphs as proposed in definition 1 and ∆ = (δ1, . . . , δn)
a sequence of graph editing operations, where a graph edit operation,
δi, is an addition, a deletion or an attribute modification of nodes and
edges, then:

• the edited graph ∆(G) is ∆(G) = δn(δn−1(. . . (δ1(G)) . . .));

• an error tolerant graph isomorphism is a couple (∆, ψ), where
∆ is a sequence of editing operations such that there exists an
graph isomorphism ψ between ∆(G) and G ′.

References

[BMM+03] S. Biasotti, S. Marini, M. Mortara, G. Patané, M. Spagn-
uolo, and B. Falcidieno. 3D shape matching through topo-
logical structures. In I. Nyströn, G. Sanniti di Baja, and
S. Svennson, editors, Proceedings of the 11th Discrete Ge-
ometry for Computer Imagery Conference, volume 2886
of Lecture Notes in Computer Science, pages 194–203,
Naples, 2003. Springer Verlag.

[BMMP03] S. Biasotti, S. Marini, M. Mortara, and G. Patané. An
overview on properties and efficacy of topological skele-
tons in shape modelling. In Proceedings of Shape Mod-
elling and Applications, pages 245–254, Seoul, South Ko-
rea, May 2003. IEEE Press.

[HSKK01] M. Hilaga, Y. Shinagawa, T. Komura, and T. L. Kunii.
Topology matching for fully automatic similarity estima-
tion of 3D shapes. In ACM Computer Graphics, (Proc.
of SIGGRAPH 2001), pages 203–212, Los Angeles, 2001.
ACM Press.

[Mil63] J. Milnor. Morse Theory. Princeton University Press,
New Jersey, 1963.

27

[SD01] A. Shokoufandeh and S. Dickinson. A unified framework
for indexing and matching hierarchical shape structures.
In Proceedings of 4th International Workshop on Visual
Form, Capri, Italy, May 28–30 2001.

[SSGD03] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. Skele-
ton based shape matching and retrieval. In Proceedings of
Shape Modelling and Applications, pages 130–139, Seoul,
South Korea, June 2003. IEEE Press.

28

