

The Integrated Feature-based Modeller - The Completion Step
Francesco Robbiano

Genova, March 24th, 2004

Technical Report n.5/2004, CNR-IMATI, Genova

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37832971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Content

THE INTEGRATED FEATURE-BASED MODELLER - THE COMPLETION STEP...........1
0) INTRODUCTION ...3

0.1) The Integrated Feature-Based Modeller ..3
0.1.1) The recognition step ..3
0.1.2) The completion step...3

0.2) Where is the feature? ..4
0.3) Geometric characteristics of a feature ...4

1) VOLUME GENERATION PROCESS ..4
1.1) Other decomposition criteria..7

2) USAGE ..10
2.1) Input..10
2.2) Output ...10

Recognition ..10
Completion...11

A) APPENDIX A – COMPLETION EXAMPLES ..12
Example 1 ..12
Example 2 ..13
Example 3 ..14

B) APPENDIX B – FILE FORMATS ..15
SFOG++ format ...15
FEAT format ...15

C) APPENDIX C – LOCATION OF FILES ..16
D) APPENDIX D – COMPILING INSTRUCTIONS...17
E) APPENDIX E – USING ACIS R10 WITH VISUAL C++..17
F) APPENDIX F – USING INTEROP ACIS-STEP READER/WRITER ..19
BIBLIOGRAPHY ...21

 3

0) Introduction

This document describes the upgraded completion process within the Intermediate Modeller
module. Moreover, for what concerns the recognition and the completion steps, the usage, the
results, and the choices that can be done thanks to the textual interface provided with the application
are also explained.

0.1) The Integrated Feature-Based Modeller

The Integrated Feature-Based Modeller is the kernel of Integrated Feature-Based Prototype System,
developed within a European cooperation between Fraunhofer-IGD, Darmstadt and IMATI, C.N.R.,
Genova. It is written in C++ and its specific characteristics are explained in [GAMetal96].
It includes the recognition and the completion steps.

0.1.1) The recognition step

Based on the boundary model of ACIS (see [ACIS01]), the feature recogniser performs a reasoning
process in order to identify and classify characteristic regions. This process performs analysis of
convex and concave regions on the solid model. It derives a shape feature based model, which
contains a decomposition of the boundary model into facesets (one for each detected feature). Faces
belonging to concave regions are grouped into depression features, faces belonging to convex
regions are grouped into protrusion features, and all the other faces constitute the so-called
mainshape. All the features’ information (including the interaction among features) is kept in a
SFOG model, and the hierarchy can be saved in a text file (see Appendix B, SFOG++ format).

0.1.2) The completion step

The completion step aims at determining the volumetric representations of the space occupied by
the features of an object. The objective is to evaluate the volumes that can be associated to specific
operations executed in an application context, such as design, assembling or machining.

The goal of the completion step is to compute these volumes, without bindings to any specific
context: there is no unique output that fits every application context, therefore we look for generic
classes of volumes while avoiding to produce an overfragmented decomposition, because in such
way some expressiveness would be lost. It is important to notice that the goal is to produce positive
volumes, even in the case that the actual volumes are negative (depressions). In Chapter 1 it will be
shown how this situation is dealt with.

In the completion step the aim is to deduce volumetric descriptions of features by the information
given by facesets. For example, in the machining application context, this process is used to go back
up to the so-called “stock material”, i.e. the original block that is modified through machining
operations until the present 3D model is achieved.
That is the reason why it is called “completion step”: the original object is “completed” in order to
reconstruct the stock material.
On the other hand, using the inverse approach, it is possible to say that the original object can be
obtained by the stock material through the application of Boolean operations: union for protrusions,
subtraction for depressions.
Let:

• VS = Stock Volume

 4

• VO =Object Volume
• VP = Volume of Protrusions (union of all the protrusions)
• VD = Volume of Depressions (union of all the depressions)

So it should be possible to say that:

VS = VO \ VP ∪ VD and
VO = VS ∪ VP \ VD

Actually this is not yet precise, as the sequence of the operations is fundamental.
Thus, the process has to identify a precise sequence of operations to succeed.

0.2) Where is the feature?

In order to calculate volumes it is important to understand “where” the identified feature is located.
A protrusion feature is connected to the “full” part of the solid, while a depression feature is
connected to its “blank” part.
We will call “intrinsic nature” of the feature this portion of space: the “blank” in case of a
depression, the “full” in case of a protrusion.

0.3) Geometric characteristics of a feature

According to the recognition process, inside a feature the faces are mutually connected by
adjacencies that are all concave or all convex: in other words they are subsets of the object’s faces
that constitute local convexities (for protrusions) or local concavities (for depressions).

1) Volume Generation Process

The completion step is applied to a SFOG model obtained by the shape feature recognition.
The specific structure of SFOG model is explained in [GAMetal96] and some introductive
information can be found in [PET95].
It includes:

- The B-Rep of the object (through facesets)
- Information about all the detected features (including B-Rep of facesets)
- Information about all the mutual adjacencies (including B-Rep)

 5

- Hierarchical structure of adjacencies between features (SFOG++ format, see Appendix B)

The completion step is iterative: the addition of the computed volumes to the existing object
produces a new object. Recognition is performed on this new object and then completion can be
performed again. The completion step is iterated until the recognition step yields no other feature
than the mainshape or when the completion step doesn’t produce any new volume.

For every feature, the portion of space to locate is determined by the intersection of the internal
region, i.e. the region calculated through combination of the halfspaces induced by the faces of the
feature, and the external region, i.e. the region calculated through combination of the halfspaces
induced by the faces adjacent to the feature.

The internal region is determined by the intersection of all the halfspaces induced by the faces of
the feature. Since depressions are associated to negative volumes, in order to compute the internal
region of depressions the normals are inverted (as said before, the goal is to produce positive
volumes). Therefore, in any case they will locate the intrinsic nature of the feature.

Assumptions:

- Every feature FFk is defined by planar faces Fki
- Every face Fki can be associated to a plane, and to the two halfspaces induced by it

• Let’s call “concordal” the halfspace that shares the normal with the face (i.e. that is
below the face according to its normal) and “discordant” the other halfspace

Algorithmic approach for computing the internal region IFFk of feature FFk:

- For every face Fkj of FFk (j ∈ J):
• If FFk is a protrusion (or is the mainshape) let HSkj be the concordal halfspace
• If FFk is a depression let HSkj be the discordant halfspace (the normal must be

inverted)
- IFFk = ∩ j∈J HSkj

The external region is obtained by considering the faces adjacent to the feature to be completed.
The process is more complex, because the proper halfspace induced by each external face has to be
selected, and a key role is played by the kind of adjacency between the considered feature and the
external face.

Non-algorithmic approach for computing the external region of feature FFk:
Two main decisions have to be made:

- For each external face which of the two induced halfspaces to use
- How to combine these halfspaces.

If the adjacency between the feature and the external face is concave the discordant halfspace must
be chosen, otherwise the concordal halfspace must be chosen.

 6

For all the external faces belonging to the same feature the decision (concordal/discordant
halfspace) will be the same, since the adjacencies between one feature and another are all concave
or all convex. So it is possible to group all the halfspaces belonging to the same feature, and to
combine them using either the intersection or the union operator.

According to the mutual adjacency (concave or convex) and to the nature of the adjacent feature
(protrusion or depression), one out of four cases is matched.

Specifically, the cases in which the intersection operator has to be used are:

- Concave adjacency with depression
- Convex adjacency with protrusion

And the cases in which the union operator has to be used are:
- Convex adjacency with depression
- Concave adjacency with protrusion

The obtained portions of space will be later combined through intersection.

Algorithmic approach for computing the external region EFFk of feature FFk:

- The external region EFFk must be computed as a combination of the completion volumes
induced by the external features.

- Let FGj be all the features adjacent to FFk (j ∈ J)
- CompVolkj is the completion volume relative to feature FFk induced by feature FGj
- Computation of CompVolkj:

o For every feature FGj adjacent to FFk:
 Selection of proper halfspace HSkji: for every face Gji of FGj (i ∈ I)

• If the adjacency between FFk and FGj is convex let HSkji be the
concordal halfspace

• If the adjacency between FFk and FGj is concave let HSkji be the
discordant halfspace

 If the adjacency between FFk and FGj is convex and FGj is a protrusion
• set OP = ∩ (intersection)

 If the adjacency between FFk and FGj is concave and FGj is a depression
• Set OP = ∩ (intersection)

 If the adjacency between FFk and FGj is concave and FGj is a protrusion
• Set OP = ∪ (union)

 If the adjacency between FFk and FGj is convex and FGj is a depression
• Set OP = ∪ (union)

 7

o CompVolkj = OP i∈I HSkji
- EFFk = ∩ j∈J CompVolkj

1.1) Other decomposition criteria

To avoid an inappropriate decomposition of the volumes, other criteria for determining the internal
and external volumes can be used.
A high-level grouping can be induced: some features can be collapsed into one. It is necessary to
discriminate features that induce a volume by themselves by features that can be considered part of
other features (and therefore, in a certain sense, “inactive”). The features that need to be grouped
with other features are named “degenerate”.

Some kind of features can be considered degenerate:

• Features made up by just one face (do not induce a completion volume by
themselves)

• Protrusions with all the faces that are adjacent at most to one face of another feature
(they can be grouped with the related face)

• Protrusions that don’t descend just from the mainshape

There is another particular case. It may happen that a depression FDm is adjacent to another
depression FDn. If all the faces of FDn are adjacent just to one face of FDm it is possible to say that
FDn is “nested” inside FDm (see image B.2).
An option is not to use faces of a depression that is nested inside a feature for the definition of its
external region.

Moreover it is possible to choose to subdivide the completion volume of depressions along the
coplanar planes of the internal regions: if two or more faces belonging to the internal region of the
same feature are coplanar, it is possible to use the common plane as a subdivision plane.

These three choices are combined in one flag:

Criterion A) (on protrusions)

1) No added criterion
2) Protrusion is degenerate if its faces are adjacent to only one face of another feature
3) Protrusion is degenerate if it is adjacent to feature different from the mainshape

Criterion B) (on depressions)
1) No added criterion
2) Depressions nested inside FFk are not considered in the definition of the external region of

FFk
Criterion C) (on decomposition)

1) No added criterion
2) Subdivision of the completion volume of depression along the coplanar planes of the

internal region

 8

The criteria A2 and A3 (on protrusions) are used when the isolation of protrusions is not very
relevant in the decomposition process (for example, in a machining context).
The criterion A2 is used especially in an assembling context, in which isolated protuberances are
often conceptually linked with the face they lie upon.
The aim of the criterion A3 is to give an absolute precedence to completing depressions, going on to
protrusions just when they are connected only to the mainshape, i.e. they don’t interact with any
other depression.
The criterion B is used when the aim is to fragment depressions as less as possible.
The criterion C is used when there is a close relationship between generated volumes and cutting
operations (again, especially in machining contexts) or in general when elementary volumes are
looked for, in order to be rearranged to produce various volume alternatives.

 9

These criteria are conceptually linked to the detection of interacting features configurations, which
normally produce situations giving rise to multiple interpretations (see image below).
See Appendix A for examples on the application of these criteria.

Combining the 3 criteria the possible choices are 12:

Flag Protrusion criterion Nested depressions omitted Internal decomposition
0 NONE NO NO
1 DEG ONE FACE NO NO
2 DEG NO MAIN NO NO
3 NONE YES NO
4 DEG ONE FACE YES NO
5 DEG NO MAIN YES NO
6 NONE NO YES
7 DEG ONE FACE NO YES
8 DEG NO MAIN NO YES
9 NONE YES YES
10 DEG ONE FACE YES YES
11 DEG NO MAIN YES YES

Flag 0 (yellow) 0 criteria applied
Flag 1,2,3,6 (green) 1 criterion applied
Flag 4,5,7,8,9 (orange) 2 criteria applied simultaneously
Flag 10,11 (violet) 3 criteria applied simultaneously

 10

2) Usage

Run the executable file SfogProj.exe with one parameter, specifying the name of the file without
extension (disregarding of the file format).

Example: C:\> SfogProj cross_slot

Then set the required values of some specific flags according to the interactive runtime instructions.

2.1) Input

Flags (/choices) are used in order to:

- Specify the format of the input model: SAT or STEP (thanks to the INTEROP translator
STEP files are preliminarily converted into SAT files)

- Decide whether to perform the recognition process or the completion process.
- For recognition:

• Decide whether to produce files for every feature and for every macrolink or not.
• Decide whether to produce also STEP files or not.

- For completion:
• Decide to produce a unique output file or a file for every completion step.
• Specify which decomposition criteria has to be used.
• Decide whether to produce also STEP files or not.

A string (a parameter for the execution) is requested to identify the file to process. The string
<name> corresponds to the file <name>.sat or <name>.stp (according with the above-mentioned
choice).

2.2) Output

Recognition

At the end of the recognition process the SFOG++ file and the FEAT file (see Appendix B for
details) are obtained. Moreover, if requested, also each feature’s faceset and each macrolink’s
faceset are produced. According with the choice of the user the format will be SAT or STEP.

If the name of the model (without extension) on which the recognition step is performed is <name>,
the feature CronoNumber (see Appendix B) is <fcnum>, and there is a macrolink between a feature
with CronoNumber <fcnum1> and a feature with CronoNumber <fcnum2>, then for every feature the
output files will have the following names:

- <name>_<fcnum>.sat (and possibly .stp)
• The faceset of the feature

- <name>_<fcnum1>_<fcnum2>.sat (and possibly .stp)
• The faceset of the macrolink

The overall results will be stored in:
- <name>.sfog

• The SFOG++ file

 11

- <name>.feat

• The FEAT file
- <name>.sfog.ff.sat (and possibly .stp)

• The B-Rep of the original model, structured in one ACIS Body (see [ACIS01]) for
each feature

- <name>.sfog.ml.sat (and possibly .stp)
• The B-Rep of all the macrolinks, structured in one ACIS Wire Body for each

macrolink

Completion

According to the user’s choice, either a file for every completion step or a unique file at the end of
the process can be obtained.
If the name of the model (without extension) on which the recognition step is performed is <name>,
the value of the flag is <flag> and the current completion step is <step> then the output files for every
completion step will have the following names:

- OUT<name>_flag_<flag>_step_<step>.sat (and possibly .stp)
At the end of the process the SFOG model is stored in the files:

- <name>COMPLETED.sfog

• The SFOG++ file
- <name>COMPLETED.sfog.ff.sat (and possibly .stp)

• The B-Rep of the completed object, structured in one ACIS Body for each feature’s
added volume

 12

A) Appendix A – Completion examples

Example 1

In the example 1 the completion process takes place with different values of the above mentioned
flag. The aim is to focus on the flag on protrusions, and so for figure 1.a it is used the flag 0 (no
added criterion on protrusion), for figure 1.b it is used the flag 1 (protrusion degenerate if adjacent
to one face), and for figure 1.c it is used the flag 2 (protrusion degenerate if adjacent to features
different from mainshape).
In figure 1.a four protrusions are located: P1, P2, P3, P4. None of them is considered degenerate, so
none is merged with the mainshape, and no depression is located.
In figure 1.b the former P3 and P4 are adjacent to one face, and so are considered degenerate.
Therefore only P1 and P2 are located, and also the depression D is detected.
In figure 1.c all of the former protrusions are considered degenerate, as they are adjacent to features
different from the mainshape. The depression D is detected.

 13

Example 2

In the example 2 the completion process takes place with different values of the above mentioned
flag. The aim is to focus on the flag on depressions, and so for figure 2.a it is used the flag 0 (no
added criterion on nested depressions), for figure 2.b it is used the flag 3 (nested depressions are not
considered for the definition of the external region).
In figure 2.a in the calculation of the external region of the main depression the nested depression is
considered, and so the calculated volume is fragmented.
In figure 2.b in the calculation of the external region of the main depression the nested depression is
not considered, avoiding the internal fragmentation of the space.

 14

Example 3

In the example 3 the completion process takes place with different values of the above mentioned
flag. The aim is to focus on the flag on internal decomposition, and so for figure 3.a it is used the
flag 0 (no added criterion on internal decomposition), for figure 3.b it is used the flag 8 (internal
decomposition along coplanar planes + protrusion degenerate if adjacent to features different from
the mainshape).
In figure 3.a the volume is not decomposed.
In figure 3.b two criteria are combined. The flag on protuberances (protrusion degenerate if adjacent
to features different from the mainshape) makes the two protuberances to be merged in the same
feature. Therefore, in the calculation of the internal region of that feature, two pairs of coplanar
faces are detected, and the relative coplanar planes are used in the voulme’s subdivision.
We can observe that in this particular case the result given in figure 3.b is obtained only when the
two criteria are combined simultaneously (flag 8 and flag 11). Otherwise the protuberances are
separated and no coplanar plane is detected (with all the other flag’s values the situation represented
in figure 3.a is obtained).

 15

B) Appendix B – File formats

SFOG++ format

The SFOG++ format is used to express the nature of every recognized feature and the mutual
relations between features. To be more precise, it stores information about the Features and about
the Macrolinks.

Extension: .sfog

<FN = Number of features>
For each feature

 <CronoNumber> <IsRoot> <Dimension> <Sign>
For each macrolink
 <CronoNumberA> <CronoNumberB> <Direction>
-1

CronoNumber is an integer going from 0 to FN-1
IsRoot is 1 when the referred feature is the root feature, 0 otherwise
Dimension specifies the dimension of the feature (2 for bidimensional, 3 for tridimensional)
Sign is –1 for depressions, 1 for protrusions, 0 for mainshape.
Direction specifies the direction of the macrolink, i.e. the arc of the SFOG++ graph. Its value can
be:

• 0 – a2b – arc directed from a to b
• 1 – b2a – arc directed from b to a
• 2 – both – bi-directional arc
• 3 – none – undefined direction

FEAT format

The FEAT format is used to complete the information provided in the SFOG++ file with the
characterization and the parametrization of every recognized feature.

Extension: .feat

First part:

Format as in the .sfog file

+

Second part:

For Each Feature
 <Feature CronoNumber>
 <Name of matched feature>
 <Position> <x> <y> <z> (if computed)
 <Axes Vectors> (if computed)
 X <x> <y> <z>
 Y <x> <y> <z>
 Z <x> <y> <z>
 <Number of Parameters>
 For Each Parameter
 <Parameter Name> <Parameter Value> <Possible Axes on which it is computed>

-1 (end-of-file)

 16

Example of SFOG++ and FEAT files produced by the recognition of a cube with a through slot.

SFOG++ file:

2
0 1 2 0
1 0 2 -1
0 1 0
-1

FEAT file:

2
0 1 2 0
1 0 2 -1
0 1 0
0
MainShape
1
Prism_Through_Slot
15.000000 15.000000 30.000000
X -1.000000 0.000000 0.000000
Y 0.000000 1.000000 0.000000
Z 0.000000 0.000000 1.000000
3
Width = 10.000000 X
Depth = 10.000000 Z
Length = 30.000000 Y
-1

C) Appendix C – Location of files

Let’s take the folder “IntermediateModeler” as the current directory.

The main file mainRec.cxx is located in:

• Riconoscitore/recognition
The source files (C++ files) are located in:

• Sfog/src
• Ferg/src
• Riconoscitore/Completion
• Riconoscitore/Recognition

The header files (H files) are located in:
• Sfog/incl
• Ferg/incl
• Riconoscitore/incl/recognition
• Riconoscitore/incl/completion

The executable file (EXE file) is located in:
• Sfog/src/Demo/TestSfogPrj

The input models are located in:
• Sfog/src/Demo/TestSfogPrj/Input

The output files are located in:
• Sfog/src/Demo/TestSfogPrj

 17

D) Appendix D – Compiling instructions

To compile and build the code a C++ project must be created.
In the folder Sfog/src/Demo/TestSfogPrj there is a Visual C++ workspace file, SfogPrj.dsw.
Anyhow in the project it is necessary to include all the header files (set the appropriate directories in
the project settings) and all the source files listed in Appendix C.
The appropriate directories will include:

• The module’s header files
• The header files for the ACIS software library
• The header files for the INTEROP software library

The main is included in the file MainRec.cxx.
For more information about using ACISr10-based applications see Appendix E, and for more
information about using Interop ACIS-STEP Reader/Writer see Appendix F.

E) Appendix E – Using ACIS r10 with Visual C++

After unzipping the installation file, there will be the directory …XYZ/AcisR10 (from now on this
directory will be called ACISDIR) where there is everything needed.

First of all make sure that version 6.0 (or later) of Visual C++ is installed.
With earlier version of C++ the files will probably not even compile.

At the beginning of a C++ file based on ACIS there are some “include” commands. Obviously their
paths are not absolute, because they depend on where the ACIS main directory is. Therefore it must
be specified to the compiler where this directory is.

Tools – Options – Directories – Show Directories For: “Include Files”

Set the absolute path of all the needed subdirectories (one level deeper of ACISDIR) of Acis.

For example it is possible to add ACISDIR/cstr for constructors utilities, ACISDIR/bool for
Boolean operations, and so on.

This should be enough to compile correctly.

Now the target is to build a console application (basically a DOS program which executes in a
Window shell).

1) Accessibility of libraries.

There are two methods to make the ACIS debug .dll and .lib files accessible to the application:

• Copy the ACIS debug dll library files from the lib directory
(ACISDIR/lib/NT_DLLD) to the system directory (windows/system).

• Extend system Path environment variable to include the lib subdirectory.
• On WindowsNT:

a. Right click on the “My Computer” icon
b. Go to Properties – Environment
c. Enter in Variable: Path

 18

d. Enter in Values : %Path %;ACISDIR/lib/NT_DLLD
e. Press « Set »

2) C++ Settings

• File - New - Project

o Select “Win32 Console Application” and enter project name and location (as
prompted)

• Project – Add to Project – Files

o “my_ACIS_example.cxx”
• Build – Set Active Configuration

o Select “Win32 Debug”
• Project – Settings – C++ - Category – Preprocessor

o Add “NT” and “ACIS_DLL” to the “Preprocessor Definitions”
• Project – Settings – C++ - Category – Code Generation

o Set “use runtime library:” to “Debug_Multithreaded_DLL”
• Project – Settings – Link

o Set “Category” to “Input”
o Set “Additional Library Path” to ACISDIR/lib/NT_DLLD

• Project – Settings – Resources

o Add to “Preprocessor definitions” NT

 19

F) Appendix F – Using Interop ACIS-STEP Reader/Writer

For detailed information about Interop ACIS-STEP Reader/Writer see [INTDOC]

Development Environment

The ACIS STEP Reader/Writer requires the following system settings:

Product Dependency
ACIS 8.0, ACIS R10SP2 or ACIS R11.

Integrated Development Environment
Microsoft Visual C++ 6.0 SP5 for Windows 98 2nd Edition, Windows NT 4.0 SP5 and Windows
2000 SP2.

Environment Variables
The list of environment variables required and the values to be set (for sample code and
recommended for your application development) are as follows:
Environmental
Variable

Value

X3DT <Path to the InterOp installation>
A3DT <Path to the ACIS Installation>
SPA_LOG <Path to the Log File> (for sample application)
SPA_DATA_IN <Path to the Input File> (for sample application)
SPA_DATA_OUT <Path to the output file> (for sample application)
ARCH

Valid ARCH settings for this release are:
NT_DLL - Windows release
NT_DLLD - Windows debug
NT_NET_DLL - Windows .NET release
NT_NET_DLLD - Windows .NET debug
Linux - linux_so
HP - hp700_11_so
SUN - solaris_so
SGI - sgi_so
AIX - aix4_so
mac_carb - MAC release
mac_carb_debug - MAC debug

PATH %X3DT%\lib\%ARCH%;%A3DT%\lib\NT_DLL
(This needs to be appended to the existing path)

How To Develop Your Application

This section describes the process that should be followed to plug the ACIS STEP Reader/Writer
into your application.

 20

Setup the environment
Set up the environmental variables as indicated in the above paragraph “Development
Environment”. The IDE uses the variables set. You may want to set the variables at user level to
avoid system variables getting distended.

Setup the IDE
For the IDE Microsoft Visual C++:

• Create a console application in the IDE

Include directories

Set the additional include directories to:

• For ACIS R11
o $(X3DT)\include,$(A3DT)\include

• For all previous ACIS releases
o $(X3DT)\include, $(A3DT)\eulr, $(A3DT)\oper, $(A3DT)\ga, $(A3DT)\fct,

$(A3DT)\bool, $(A3DT)\kern, $(A3DT)\cstr, $(A3DT)\base, $(A3DT)\intr
This could be reached in the IDE through

• Project -> Settings -> C/C++ tab -> Preprocessor (in category) -> Additional include
directories: text field

Object/Library modules

Add kernel.lib and acisstep.lib to the Object/Library modules text field.

This could be reached in the IDE through

• Project -> Settings -> Link tab -> General (in category) -> Object/Library modules: text
field

Code
To build a simple application, follow the sequence below:

• Initialize the translator
o To make the translator APIs available for the application, it needs to be initialized by

invoking api_initialize_xstep.
• Translation

o Translate ACIS entity list to STEP file by invoking api_xstep_write methods
respectively.

• Terminate the translator
o Release all the resources and unload all the libraries specific to the translator by

invoking api_terminate_xstep.

Build the application
Build the application using the IDE.

Running the application
Run the application by supplying the command line arguments depending on the application
developed.

 21

Bibliography

[ACIS01] J.Corney - T.Lim, “3D Modeling with ACIS” , 2001
[GAMetal96] F.Gamba – F.Petta – S.Haßinger – G.Brunetti , “Integrated Feature-Based Prototype
System – Developer’s Guide”, European HCM Programme No. ERB CHBGCT 930380 , 1996
[ND] Nicola, “Il completamento volumetrico di feature”
[PET95] F.Petta , “Progetto e sviluppo di un interprete di feature funzionali” , Tesi di Laurea in
Scienze dell’Informazione , AA. 1994/95
[INTDOC] “3D Interop ACIS STEP Reader/Writer version R11”, available in DOC folder of the
software release by Spatial.

Francesco Robbiano
March 24th, 2004

