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Sommario

Questa tesi tratta l’analisi e la parametrizzazione di superfici rappresentate da griglie triango-
lari, cioè, surperfici lineari a tratti che ne costituiscono una semplice rappresentazione e che ven-
gono comunemente utilizzate in matematica e scienze dell’informazione. Fornire rappresentazioni
equivalenti e ad alto livello di una triangolazione tridimensionaleM è di basilare importanza per
poter trattare problemi computazionali e applicativi nei campi di ricerca della Geometria Com-
putazionale, della Grafica Computerizzata, e della Modellazione di Forma. Lo scopo della tesi è di
mostrare come rappresentazioni ad alto livello di una data superficie M possano essere utilizzate
per determinare altre descrizioni ad alto livello o equivalenti di M, e viceversa. Inoltre, questa
analisi è legata allo studio di proprietà locali e globali di griglie triangolari tridimensionali sulla
base dell’informazione che si vuole estrarre, anche significativa per il contesto applicativo in esame.

L’analisi locale di una griglia triangolare tridimensionale arbitraria M è basata su una sua seg-
mentazione multi-scala cui è associata una parametrizzazione locale, dove l’ipotesi usuale di de-
comporre M in una famiglia di regioni omeomorfe a un disco (cioè, regioni di genere zero e con
una componente di bordo) è sostituita da una segmentazione di M in caratteristiche di forma
ciascuna delle quali di genere zero senza vincolarne il numero delle componenti di bordo. Tale
scelta ed estensione è motivata dalla necessità di identificare le regioni della segmentazione con
caratteristiche di forma, di ridurre la distorsione della parametrizzazione, e di fornire un miglior
supporto ad applicazioni usuali della parametrizzazione quali l’approssimazione diM con superfici
lineari e non, la mappatura di tessiture, e la compressione.

L’analisi, la caratterizzazione, e l’astrazione globale di M considerano gli aspetti topologici e
geometrici di M rappresentati dalla struttura combinatoria (cioè, la connettività della griglia) e
associati al relativo embedding in R

3. La dualità e la regolarizzazione Laplaciana duale sono le
prime caratterizzazioni di M presentate con lo scopo finale di una migliore comprensione delle
relazioni tra connettività e geometria della griglia M, come indicato in letteratura, e qui esteso
al caso della parametrizzazione 3D. L’analisi globale di M è stata inoltre trattata attraverso la
definizione di una funzione reale su M che induce un grafo di Reeb invariante rispetto a trasfor-
mazioni affini e particolarmente adatto ad applicazioni quali il confronto e il riconoscimento di
forma. La teoria di Morse e il grafo di Reeb sono state inoltre utilizzate per definire un metodo
nuovo e semplice per risolvere il problema della parametrizzazione globale, cioè, la ricerca di un
grafo di taglio di una superficie arbitraria rappresentata da una griglia triangolare tridimensionale.
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Le caratteristiche principali dell’approccio proposto rispetto allo stato dell’arte consistono nella
capacità di definire una famiglia di grafi di taglio, in luogo di un unico taglio, per superfici con
bordo o chiuse, che sono trattate con un unico approccio. Inoltre, ciascun grafo di taglio è regolare
e il modo in cui è costruito è basato sulla procedura di taglio di superfici di genere zero utilizzata
per la parametrizzazione locale di M. Come discusso nella tesi, definire una famiglia di grafi di
taglio garantisce una maggiore flessibilità e effettive semplificazioni nell’analisi, modellazione, e
visualizzazione di campi scalari e vettoriali (anche dipendenti dal tempo); infatti la parametriz-
zazione globale di M permette di ridurre la “dimensione” dei problemi sopra citati attraverso la
riformulazione di ciascuno di essi da una superficie 3D con genere arbitrario a un modello 2.5D
(cioè, un modello di elevazione). I risultati della tesi sono rivolti principalmente ai campi di ricerca
precedentemente elencati, ma alcuni di essi quali la parametrizzazione locale e globale hanno im-
portanti legami e applicazioni relativi all’analisi del segnale (wavelets e compressione), all’Analsi
agli Elementi Finiti (approssimazione adattiva di grigile tridimensionali), e all’analisi numerica per
l’interpolazione e l’approssimazione di superfici (interpolazione polinomiale, mediante B-splines, e
NURBS). Lo scopo finale della tesi è di convertire una grigia triangolare tridimensionaleM, cos̀ı
come un problema formulato suM, in una che sia ad essa equivalente (griglia duale), basata sulla
semantica (segmentazione in caratteristiche di forma, parametrizzazione locale), ad alto livello
(famiglie di grafi di taglio, grafo di Reeb, parametrizzazione globale), e in ogni caso più semplice.
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Abstract

This dissertation deals with the analysis and parameterization of surfaces represented by trian-
gle meshes, that is, piecewise linear surfaces which enable a simple representation of 3D models
commonly used in mathematics and computer science. Providing equivalent and high-level repre-
sentations of a 3D triangle meshM is of basic importance for approaching different computational
problems and applications in the research fields of Computational Geometry, Computer Graphics,
Geometry Processing, and Shape Modeling. The aim of the thesis is to show how high-level rep-
resentations of a given surface M can be used to find other high-level or equivalent descriptions
ofM and viceversa. Furthermore, this analysis is related to the study of local and global proper-
ties of triangle meshes depending on the information that we want to capture and needed by the
application context.

The local analysis of an arbitrary triangle mesh M is based on a multi-scale segmentation of M
together with the induced local parameterization, where we replace the common hypothesis of
decomposing M into a family of disc-like patches (i.e., 0-genus and one boundary component)
with a feature-based segmentation ofM into regions of 0-genus without constraining the number
of boundary components of each patch. This choice and extension is motivated by the necessity of
identifying surface patches with features, of reducing the parameterization distortion, and of better
supporting standard applications of the parameterization such as remeshing or more generally
surface approximation, texture mapping, and compression.

The global analysis, characterization, and abstraction ofM take into account its topological and
geometric aspects represented by the combinatorial structure of M (i.e., the mesh connectivity)
with the associated embedding in R

3. Duality and dual Laplacian smoothing are the first charac-
terizations of M presented with the final aim of a better understanding of the relations between
mesh connectivity and geometry, as discussed by several works in this research area, and extended
in the thesis to the case of 3D parameterization. The global analysis of M has been also ap-
proached by defining a real function onM which induces a Reeb graph invariant with respect to
affine transformations and best suited for applications such as shape matching and comparison.
Morse theory and the Reeb graph were also used for supporting a new and simple method for
solving the global parameterization problem, that is, the search of a cut graph of an arbitrary
triangle mesh M. The main characteristics of the proposed approach with respect to previous
work are its capability of defining a family of cut graphs, instead of just one cut, of bordered
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and closed surfaces which are treated with a unique approach. Furthermore, each cut graph is
smooth and the way it is built is based on the cutting procedure of 0-genus surfaces that was used
for the local parameterization of M. As discussed in the thesis, defining a family of cut graphs
provides a great flexibility and effective simplifications of the analysis, modeling, and visualization
of (time-depending) scalar and vector fields; in fact, the global parameterization ofM enables to
reduce the “dimension” of the above-mentioned problems by recasting each of them from a 3D
surface with an arbitrary genus to a 2.5D model (i.e., an elevation model). The results of the
thesis are mainly targeted to the above-mentioned research fields, but some of them such as the
local and global parameterization have important links and applications related to image process-
ing (e.g., wavelets and compression), FEMs (e.g., adaptive remeshing of 3D grids), and numerical
analysis for surface interpolation and approximation (e.g., interpolation with polynomial func-
tions, B-splines, and Non-Uniform Rational B-Splines (NURBS)). The final aim of the thesis is
to convert an arbitrary triangle meshM, as well as a problem formalized onM, to an equivalent
(e.g., dual mesh), approximated (e.g., remeshed surface), semantic-based (e.g., feature-based seg-
mentation and local parameterization), high-level (e.g., family of cut graphs, Reeb graph, global
parameterization), and hopefully simpler, representation ofM or formulation of the problem.
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Introduction

This dissertation deals with computational geometry and topology, and it tackles the problem of
analyzing, representing, and abstracting surfaces represented by triangle meshes, that is, piecewise
linear surfaces which enable a simple representation of 3D models commonly used in mathematics
and computer science. Triangulated surfaces are generated by polygonizing implicit functions,
or sampling parametric surfaces, or scanning real 3D objects with optical devices. All these
generation processes provide complex discrete models with arbitrary genus and curvature which
are usually unsatisfactory for mathematical modeling (i.e., topological and geometric analysis),
numerical simulations, and approximation. In fact, they may consist of a huge number of vertices
many of them being redundant, and the vertex sampling as well as the mesh connectivity may be
irregular. Therefore (see Figure 1), a basic task consists of improving an arbitrary triangulated
surfaceM in terms of sampling density and distribution, regular or semi-regular connectivity, and
mesh quality (e.g., size and shape of triangles). Other main issues to be taken into account are the
relation between the accuracy and size of the approximation, the validity of the new representation
which has to tileM without self-intersections and to best approximate the original shape geometry
(i.e., fidelity of the representation).

(a) (b) (c) (d) (e)

Figure 1: (a) Input triangle mesh M generated by polygonizing an implicit function f : R
3 → R,

i.e. M = {p ∈ R
3 : f(p) = 0}; note the presence of tiny triangles which make unstable the

convergence of Finite Element Methods. (b-d) Equivalent representations ofM at different levels
of resolution (i.e., number of vertices), (e) dual mesh.
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Introduction 2

These aims are achieved by building a set of equivalent representations ofM, possibly where differ-
ent types of geometric models (e.g., piecewise linear, polynomial, B-splines, Non-Uniform Rational
B-spline (NURBS), and implicit functions) are used to approximateM. Providing equivalent rep-
resentations of M is of basic importance for approaching different computational problems and
applications which take as input a previously meshed surface. For instance, Finite Element Meth-
ods (FEM) require a triangle mesh with triangles whose angles are greater than a pre-defined
threshold in order to guarantee the stability and convergence of approximated and discrete solvers
of Partial Differential Equations (PDE’s), commonly used to calculate mechanical stress or solve
heat and flow equations. The categories of applications range from geometric modeling to simu-
lation, and in the thesis we will focus our discussion on surface approximation, duality, editing,
smoothing, and fairing.

(a) (b) (c) (d)

Figure 2: (a) Topology-based segmentation and (b) feature-based segmentation of the bitorus.
(c-d) Local parameterization parameterization with respect to the patch decomposition shown in
(b); on each patch, the red line represents the cut that has been used for its unfolding.

Beside the reduction of the complexity and optimization ofM, surface properties, such as normal
vectors, curvature values, and critical points, provide only local information about the geometric
and topological features of M and they lack in providing a global characterization ofM. There-
fore, the next step consists of associating a set of high-level representations to M which extract
and organize the geometric and topological information of M to reflect and/or to make explicit
its sub-parts. The choice of these sub-parts depends on the use of the characterization ofM, and
their invariance under rotations, translations, and scalings is important for studying the shape of
3D surfaces; for instance, ridges given by the extrema of the principal curvatures along their corre-
sponding curvature lines are important view- and scale-independent features of a smooth surface.
Therefore, among specific criteria used for the extraction of the high-level representations we can
identify some basic properties that the final representation has to fulfill such as invariance with
respect to a chosen set of transformations (e.g., affine transformations), stability to local noise
and surface perturbations which may affect both the geometry and connectivity, computational
feasibility, and expressiveness of the representation. These requirements for the identification of



Introduction 3

high-level shape representations lead to the necessity of descriptions based on shape segmentation.
At the same time, the problem of decomposing a given surface into sub-parts is strongly inter-
correlated with the problem of describing those parts and cannot be performed independently.
Segmenting a 3D surfaceM into basic parts enables to describe its shape in terms of components,
their characteristics and spatial arrangement; then, the final result is an abstract description of
M that can be more useful for many purposes such as interpretation, matching, retrival, local pa-
rameterization and approximation. Following these principles, the thesis discusses two approaches
to surface segmentation based on topological and geometric analysis. Topology-based segmentation
identifies patches ofM by studying the evolution of the iso-contours of a given function f :M→ R

and each patch is classified taking into account its genus and number of boundary components (see
Figure 2(a)). Feature-based segmentation (see Figure 2(b)) generates patches of M by clustering
those points which share common local properties such as curvature values, closeness with respect
to the geodesic distance, or membership to a region with a specific structure (e.g., planes, gener-
alized cone and cylinders). Other examples of high-level representations are the Reeb graph ofM
induced by a function f :M→ R (see Figure 3(a)), which synthetically representsM preserving
the topological properties and the main morphological characteristics, and cut graphs (see Figure
3(b)) commonly used for surface classification through the evaluation of polygonal schemes.

(a) (b) (c) (d)

Figure 3: High-level representations of the bitorus: (a) Reeb graph induced by a harmonic function
with a unique maximum (red point) and minimum (blue point), (b) cut graph γ, (c) global
parameterization (and polygonal schema) of the input triangle mesh, (d) geometry image.

Extracting high-level representations of a given surfaceM is beneficial to a wealth of applications;
for instance, surface classification relies on the use of topological invariants (e.g., orientability,
genus, number of boundary components) which can be coded in high-level descriptors such as cut-
graphs and the Reeb graph, surface recognition and interpretation are based on the identification of
parts ofM which characterize the semantic meaning of the surface with respect to the application
context.

Previous considerations convey the idea that a multi-layered modeling of computational problems
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in the research fields of Computational Geometry, Computer Graphics, Geometry Processing, and
Shape Modeling have to study the different aspects and representations of the input surface M.
The aim of the thesis is to show how high-level descriptions of a given surfaceM can be used to find
other high-level or equivalent representations ofM and viceversa. For instance, we will compute a
family of cut graphs {γ} ofM by evaluating the Reeb graph RG ofM with respect to a mapping
function f : M → R; therefore, RG and each cut graph in {γ} (see Figure 3(a-b)) represent
different high-level descriptions ofM. At the same time, the global parameterization ϕ :M→ Ω ⊆
R

2 ofM with respect to any cut graph in {γ} is a simplicial isomorphism (see Figure 3(b-c)) which
enables to define equivalent representations by using standard methods of surface approximation,
and to improve visualization and compression techniques. The global parameterization provides
a simple approach to surface approximation by using remeshing techniques; here, the parameter
domain Ω is resampled and the new triangulation is projected back into 3D space by ϕ−1, thus
resulting in an improved version of the original model. Finding a global parameterization of the
input mesh is a complex problem which is usually computationally expensive, suffers from accuracy
issues, and requires restrictions on the mesh. These constraints are due to the problem of mapping
a nontrivial 3D structure with an arbitrary genus and number of boundary components to a 2D
parametric domain, while minimizing the induced metric distortion and the loss of information
usually located by high-curvature regions of M. Furthermore, if the parameterization is based
on a segmentation of M (i.e., local parameterization) it is possible to have discontinuities of the
embedding along the boundary components of adjacent patches, or to create an over-segmentation
of the surface whose patches do not identify features of M. If M is parameterized into a 2D
square by using a stretch-minimization method, it can be represented as a geometry image which
stores the geometry as well as any other vertex attribute (e.g., normal vectors, colors) as RGB
values of a compact grid structure (see Figure 3(d)). The compactness and regularity of this
data structure implicitly stores the connectivity, improves and facilitates the implementation of
several algorithms such as efficient rendering with no cache indirection, texture and transparency
mapping. Coding M as a range image shifts 3D signal processing into image (or 2D signal)
analysis; then, this approach makes available techniques developed in the 2D setting to the 3D
case stressing the central role of global parameterization and motivating our choice of developing
new, stable, efficient, and simple methods for the evaluation of families of cut graphs of arbitrary
triangle meshes.

Converting a given representation of M into an equivalent or high-level one has a central role
in applied mathematics and also important links to new research fields where the information
implicitly or explicitly stored and represented by digital surfaces (e.g, discrete surfaces, images)
has to be extracted, analyzed, and compared [AIM]. In the following, we introduce the structure
and the main contributions of the thesis; conclusions and future work are discussed in Chapter 5.
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Overview

In Chapter 1, we consider basic relations between a 2-manifold triangle mesh M and its dual
representation M′. The achieved combinatorial properties represent the starting point for the
reconstruction algorithm which maps M′

to its primal representation M, thus defining their
geometric and topological identification. This correspondence is further analyzed in order to
study the influence of the information in M and M′

for the reconstruction process. Therefore,
the first goal of the chapter consists of defining a homeomorphism between a 2-manifold triangle
mesh and its dual representation with optimal (i.e., linear) computational cost and numerical
stability avoiding the least-squares formulation whose solution requires O(n3

V ) flops, with nV

number of vertices ofM, and it only achieves an approximated reconstruction of the input mesh.
We also derive two combinatorial properties which highlight the redundancy of the geometry
stored in a triangle mesh. The second goal is the definition of the “dual Laplacian smoothing”,
which combines the application to the dual meshM′

of well-known smoothing algorithms with an
inverse transformation for reconstructing the regularized triangle mesh. The use ofM′

instead of
M exploits a topological mask different from the 1-neighborhood one, related to Laplacian-based
algorithms, guaranteeing good results and optimizing storage and computational requirements.

Tools for the automatic decomposition of a surface into shape features will facilitate the editing,
matching, texturing, morphing, compression, and simplification of 3D shapes. Different features,
such as flats, limbs, tips, pits, and various blending shapes that transition between them may be
characterized in terms of local curvature and other differential properties of the surface or in terms
of a global skeletal organization of the volume it encloses. However, both solutions are extremely
sensitive to small perturbations in the surface smoothness and to quantization effects when they
operate on triangulated surfaces. In Chapter 2, we propose a multi-resolution approach, which
not only estimates the curvature of a vertex over neighborhoods of variable size, but also takes into
account the topology of the surface in that neighborhood. The approach is based on blowing a
spherical bubble at each vertex and studying how the intersection of that bubble with the surface
evolves. We describe an efficient approach for computing these characteristics for a sampled set of
bubble radii and for using them to identify features, based on easily formulated filters, that may
capture the needs of a particular application.

Chapter 3 deals with the continuous and discrete definition and analysis of scalar fields f :
M→ R on smooth and discrete surfaces. We also discuss the definition of topological graph-like
representations (i.e., the Reeb graph) which provide a powerful and synthetic sketch of the surface.
Then, we present the extraction of a Reeb graph achieved by expanding topological rings on M
starting from high-curvature regions identified by the algorithm described in Chapter 2. Among
the possible applications of these concepts (e.g., modeling, morphing, matching, and recognition),
in Chapter 4 we use this theory for generating an atlas decomposition of an arbitrary surface
finalized at the local parameterization problem and the Reeb graph is used for solving the global
parameterization of surfaces with an arbitrary genus.

Chapter 4 describes a novel approach to the local and global parameterization of triangle meshes
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representing 2-manifolds with an arbitrary genus. Concerning the local parameterization, decom-
positions of the shape based on several criteria (i.e., topology, morphology, and geometry) are
computed and used to segment the shape into primitives, which define a chart decomposition of
the mesh. Then, each chart is parameterized using an extension of the barycentric coordinates
method. The charts are all 0-genus and can be of three types only, depending on the number of
boundary components. The chart decomposition and the parameterization are used to define a
shape-graph where each node represents one primitive and the arcs code the adjacency relations
among the primitives. The primitives are coded together with their skeletal lines that are computed
from and aligned with their parameterization. Concerning the global parameterization, given an
arbitrary triangle mesh M our approach searches a cut graph made of the iso-contours of a fair
function f : M → R and it works in a planar domain where geodesic curves are defined by line
segments whose counterparts onM, with respect to an appropriate diffeomorphism φ :M→ R

2,
give smooth approximations of geodesic paths. The emphasis of the proposed approach is on the
definition of a simple method for finding a family of cut graphs ofM and guided by several criteria
which spread from the global parameterization (e.g., minimal length, minimization of the para-
meterization distortion, or interpolation of points as required by remeshing and texture mapping)
to the calculation of polygonal schemes for surface classification. Finally, Chapter 5 discusses
various applications to surface deformation and approximation, and perspectives of future works.

Contribution

The contributions of the thesis related to the local analysis of an arbitrary triangle mesh M is
represented by the multi-scale segmentation of M together with the induced local parameteri-
zation, which has replaced the common hypothesis of decomposing M into a family of disc-like
patches (i.e., 0-genus and one boundary component) with a feature-based segmentation ofM into
regions of 0-genus without constraining the number of boundary components of each patch. This
choice and extension is motivated by the necessity of identifying surface patches with features, of
reducing the parameterization distortion, and of better supporting standard applications of the
parameterization such as remeshing or more generally surface approximation, texture mapping,
and compression. The proposed approach builds on a new parameterization method of a 0-genus
surface P with k boundary components and which consists of reducing P to a disc-like surface
through a cut γ which is evaluated in linear time, is not affected by the mesh connectivity and
geometry (e.g., irregular sampling, tiny triangles, noise), and can be constrained to interpolate
source points with the possibility of admitting bifurcations of γ. These elements are the most
significant characteristics of the proposed framework and not shared by the previous work on
local parameterization; furthermore, the generality of the cutting procedure has been used for
approaching the global parameterization problem.

The contributions related to the global analysis, characterization, and abstraction ofM take into
account its topological and geometric aspects represented by the combinatorial structure of M
(i.e., the mesh connectivity) with the associated embedding in R

3. Duality and dual Laplacian



Introduction 7

smoothing are the first characterizations ofM presented with the final aim of a better understand-
ing of the relations between mesh connectivity and geometry, as discussed by several works in this
research area, and extended in the thesis to the case of 3D parameterization in Chapter 4. The
global analysis ofM has been also approached by defining a real function onM which induces a
Reeb graph invariant with respect to affine transformations and best suited for applications such
as shape matching and comparison [BMM+03]. Morse theory and the Reeb graph were also used
for supporting a new and simple method for solving the global parameterization problem, that
is, the search of a cut graph of an arbitrary triangle mesh M. The main characteristics of the
proposed approach with respect to previous work are its capability of defining a family of cut
graphs, instead of just one cut, of bordered and closed surfaces which are treated with a unique
approach. Furthermore, each cut graph is smooth and the way it is built is based on the cutting
procedure of 0-genus surfaces that was used for the local parameterization ofM. As discussed in
the thesis, defining a family of cut graphs provides a great flexibility and effective simplifications of
the analysis, modeling, and visualization of (time-depending) scalar and vector fields; in fact, the
global parameterization ofM enables to reduce the “dimension” of the above-mentioned problems
by recasting each of them from a 3D surface with an arbitrary genus to a 2.5D model (i.e., an
elevation model). The results of the thesis are mainly targeted to the above-mentioned research
fields, but some of them such as the local and global parameterization have important links and
applications related to image processing (e.g., wavelets and compression), FEMs (e.g., adaptive
remeshing of 3D grids), and numerical analysis for surface interpolation and approximation (e.g.,
interpolation with polynomial functions, B-splines, NURBS). The final aim of the thesis is to
convert an arbitrary triangle mesh M, as well as a problem formalized on M, to an equivalent
(e.g., dual mesh), approximated (e.g., remeshed surface), semantic-based (e.g., feature-based seg-
mentation and local parameterization), high-level (e.g., family of cut graphs, Reeb graph, global
parameterization), and hopefully simpler, representation ofM or formulation of the problem.



Chapter 1

Triangle mesh duality:
reconstruction and smoothing

In the first part of the chapter we introduce basic concepts related to surface topology and polyhe-
dral surfaces which represent the input of all the methods discussed in the thesis. Then, we focus
our attention on duality considering the relations between a 2-manifold triangle meshM and its
dual representation M′. The achieved combinatorial properties represent the starting point for
the reconstruction algorithm which maps M′

to its primal representationM, thus defining their
geometric and topological identification. This correspondence is further analyzed in order to study
the influence of the information inM andM′

for the reconstruction process. Therefore, the first
goal of the chapter consists of defining a homeomorphism between a 2-manifold triangle mesh and
its dual representation with optimal (i.e., linear) computational cost and numerical stability avoid-
ing the least-squares formulation whose solution requires O(n3

V ) flops, with nV number of vertices
of M, and it only achieves an approximated reconstruction of the input mesh. We also derive
two combinatorial properties which highlight the redundancy of the geometry stored in a triangle
mesh. The second goal is the definition of the “dual Laplacian smoothing”, which combines the
application to the dual mesh M′

of well-known smoothing algorithms with an inverse transfor-
mation for reconstructing the regularized triangle mesh. The use of M′

instead of M exploits a
topological mask different from the 1-neighborhood one, related to Laplacian-based algorithms,
guaranteeing good results and optimizing storage and computational requirements.

1.1 Topology of surfaces

In the following sections, we review basic concepts related to simplicial complexes, surface topology
and classification; for further readings, we refer the reader to [DoC76, GP74, Mas67, Mor85]. This
initial background is the minimal one required for starting the reading of the thesis; details on
these and related concepts will be introduced in each chapter which uses them for the development

8
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of the presentation.

1.1.1 Simplices and simplicial complexes

We introduce basic definitions and concepts related to simplicial complexes.

Definition 1. A finite set of points a0, . . . , an in R
m is said to be affinely dependent if there exist

coefficients α0, . . . , αn, not all zero, such that
∑n

j=0 αjaj = 0 and
∑n

j=0 αj = 0. Otherwise, they
are called affinely-independent.

Definition 2. If A ⊆ R
m, the affine hull of A consists of the points x ∈ R

m of the form x =∑n
j=0 αjaj, where aj ∈ A, αj ∈ R, j = 0, . . . , n,

∑n
j=0 αj = 1.

Let H be the affine hull of an affinely independent sequence of points a0, . . . , an. Every map
f : H → R

p with the property

f

 n∑
j=0

αjaj

 =
n∑

j=0

αjf(aj),

where
∑n

j=0 αj = 1, is called an affine transformation. A bijective, affine transformation between
two affine subspaces is called an affine isomorphism.

Let the points a0, . . . , an of a m-dimensional Euclidean space R
m be an affinely independent set

(see Definition 1); the convex hull of this set of points

∆(a0, . . . , an) :=


n∑

j=0

αjaj : αj ≥ 0, j = 1, . . . , n,
n∑

j=1

αj = 1


is called n-dimensional simplex of vertices a0, . . . , an. Therefore, the 0-dimensional simplex ∆(a0)
consists of the point a0, the 1-dimensional simplex ∆(a0, a1) is the non-degenerate line seg-
ment with end-points a0, a1, the 2-dimensional simplex is the triangle with non-collinear vertices
a0, a1, a2, and finally the 3-dimensional simplex is the tetrahedron with non-co-planar vertices
a0, a1, a2, a3. The empty set is considered as (−1)-dimensional simplex.

LetH(a0, . . . , an) be the n-dimensional affine subspace in R
n uniquely defined by the set of vertices

of the simplex ∆(a0, . . . , an); then,

• ∆(a0, . . . , an) ⊆ H(a0, . . . , an). The set H(a0, . . . , an) is called the carrier of ∆(a0, . . . , an);

• ∆(a0, . . . , an) is closed in H(a0, . . . , an);

• every simplex is compact;

• every n-dimensional simplex is homeomorphic to the n-dimensional closed unit ball.
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For any subset {ai0 , . . . , aik
} of an affinely independent set of points {a0, . . . , an} in R

m, the
simplex ∆(ai0 , . . . , aik

) is called k-dimensional face of the simplex ∆(a0, . . . , an). The (n − 1)-
dimensional simplices are called facets.

Definition 3. A finite set K of simplices lying in the Euclidean space R
m is called a simplicial

complex if the following conditions hold:

1. the family K contains all the faces of each simplex in the family;

2. the intersection of any pair of simplices of K is a common face.

It is possible to prove that the second condition is equivalent to require that the interiors of
distinct simplices in the family K are disjoint. If K is a non-empty simplicial complex, the number
dim(K) := max{dim(∆) : ∆ ∈ K} is called dimension of K, and the set |K| := ∪{∆ : ∆ ∈ K}
is called the underlying space of the complex K. Any subset X of R

m for which there exists a
simpicial complex K with |K| = X is defined as polyhedron; the complex K is a triangulation of
the polyhedron X (see also Section 1.1.2).

Proposition 1. The following properties of polyhedra hold:

• every polyhedron is compact;

• the prolyhedron |K| is connected if and only if the complex K is connected;

• if |K| = |K′ |, then dim(K) = dim(K′
).

In defining an n-dimensional simplex we assumed that its vertices are affinely independent, and
therefore they are distinct points in R

m. Before introducing the definition of simplicial mappings,
we introduce the following notation: we use {a0, . . . , an} if repetitions of the points are admitted
and the corresponding simplex is denoted with ∆{a0, . . . , an}. Let K and L be simplicial com-
plexes with respective vertex sets K◦ := {a0, . . . , an} and L◦. A map ϕ◦ : K◦ → L◦ is called a
simplicial map of the vertices if for every set of vertices aj0 , . . . , ajn which determines a simplex
∆(aj0 , . . . , ajn) ∈ K the vertices ϕ(aj0), . . . , ϕ(ajn) determine a simplex ∆{ϕ(aj0), . . . , ϕ(ajn)} ∈
L. A one-to-one simplicial map is called simplicial isomorphism.

Let ϕ : K → L be a simplicial map and let K◦ := {a0, . . . , an} and L◦ := {b0, . . . , bl} be the vertex
sets of K and L, respectively. The map ϕ induces a map |ϕ| : |K| → |L| by using the barycentric
coordinates defined by

|ϕ|
(

n∑
i=0

αiai

)
=

l∑
j=0

βjbj,

where βj equals the sum of all the αi for which ϕ(ai) = bj , if any exists, and is otherwise zero.
Therefore, we have that βj ≥ 0 for j = 0, . . . , l, and

∑k
i=0 αi =

∑l
j=0 βj = 1 (see also Section

4.5); furthermore, since ϕ is simplicial we have that if x ∈ |K| then |ϕ|(x) ∈ |L|. The following
proposition gives some basic properties of simplicial functions.
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Proposition 2. • The composition of two simplicial maps (resp., isomorphisms) is a simpli-
cial map (resp., isomorphism);

• for every simplicial map ϕ : K → K, the induced map |ϕ| : |K| → |L| is continuous;

• if ϕ : K → L and ψ : L →M, then |ψϕ| = |ψ||ϕ|. Furthermore, |idK| = id|K|;

• if ϕ is a simplicial isomorphism, then |ϕ| is a homeomorphism.

1.1.2 Topology of surfaces and polyhedral surfaces

In this section, we give some basic notions related to topological spaces and polyhedral surfaces.

Definition 4. A topological space (X, τ) is a set X with a collection τ of subsets of X, called
open sets, such that:

1. the empty set ∅ and X are open;

2. any union of open sets is an open set;

3. any finite intersection of open sets is open.

Using the notion of neighborhood of each point x ∈ X (i.e., a set containing x and open in
(X, τ)) the notion of continuity, limit, etc. are defined; for more details, we refer the reader to
[DoC76, GP74, Mas67, Mor85].

Let us consider a topological space made of a disjoint union P of simple polygons (i.e., homeomor-
phic to a disc and without holes); we suppose that an orientation of the edges of each polygon has
been fixed and let (e1, . . . , en) be a partition of these edges. We create the quotient space P

′
by

identifying the edges ei, i = 1, . . . , n. This identification of edges corresponds to an identification
on vertices of the polygons of P ; in fact, two vertices are identified on the surface if and only if
they are the sources or targets of two edges of P belonging to a same set ei. Then, a polyhedral
surface is a topological space obtained identifying the vertices and edges of a finite number of
simple polygons, which become the faces of the polyhedral surface, in such a way that:

• the resulting space is a surface (each point has a neighborhood homeomorphic to a disc or
half-disc);

• two distinct edges or vertices of a given polygon are not identified on the surface;

• the intersection of two distinct polygons is either empty, a common vertex, or a common
edge.

The above conditions guarantee that the topological space P
′

(i.e., a polyhedral surface) is a
surface; the viceversa also applies as stated by the following theorem [DoC76, GP74, Mas67,
Mor85].
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Theorem 1. Any (compact) surface is homeomorphic to a polyhedral surface.

Therefore, the study of surface topology can be done on polyhedral surfaces represented as a finite
graph G := G(V,E) such that:

• each face of G is homeomorphic to the open unit disc and incident to at least three edges;

• the boundary of each face is made of a cycle which alternates distinct vertices to distinct
edges;

• the closure of two distinct faces are disjoint, or share only one vertex or edge.

1.1.3 Manifolds

Let M be a compact metric space and m a non-negative integer.

Definition 5. A topological Hausdorff spaceM is a m-dimensional topological manifold without
boundary if each point p ∈ M admits a neighborhood Ui ⊆ M homeomorphic to the open disc
Bm := {x ∈ R

m : ‖x‖2 < 1} and M = ∪i∈NUi.

Definition 6. A topological Hausdorff space M is a m-dimensional topological manifold with
boundary if each point p ∈ M admits a neighborhood Ui ⊆ M homeomorphic either to the open
disc Bm := {x ∈ R

m : ‖x‖2 < 1} or to the open half-space R
m−1 × {xn ∈ R : xn ≥ 0} and

M = ∪i∈NUi.

The set of points of an m-dimensional manifold M for which there exists a set U ⊆ M homeo-
morphic to the m-dimensional open ball Bm such that p ∈ U◦ is called the interior M◦ of M;
the complement ∂M :=M\M◦ is the boundary of the manifoldM and it is characterized by the
following theorem.

Theorem 2. If the boundary of an m-dimensional manifold is non-empty, then it is a (m − 1)-
dimensional manifold.

A homeomorphism ϕi : Ui → Bm is associated to each open subset Ui and each pair (Ui, ϕi) is
called a map or a chart ; the union of charts {(Ui, ϕi)} is called the atlas of the manifold M; to
each atlas on a manifold there is associated the concept of transition function. Let Ui and Uj be
two arbitrary charts and Ui ∩ Uj be their intersection. On this intersection set, two coordinate
maps ϕi : Ui ∩ Uj → ϕi(Ui ∩ Uj) and ϕj : Ui ∩ Uj → ϕj(Ui ∩ Uj) are defined; therefore, their
composition ϕi,j : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) such that ϕi,j := ϕj ◦ ϕ−1

i , is well defined and is
called a transition map.

Definition 7. A manifold M is called orientable if there exists an atlas {(Ui, ϕi)} on it such that
the Jacobian of all transition maps ϕi,j from a chart to another one are positive for all intersecting
pairs of regions. Manifolds which do not satisfy this property are called non-orientable.
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Let f : M → N be a function from a smooth m-manifold M into a smooth n-manifold N ; f is
smooth if it is smooth when expressed in local coordinates. The differential dfp of f at p is the
linear map

dfp : TpM→ Tf(p)N
from the tangent space toM at p into the tangent space to N at f(p), defined in local coordinates
by the Jacobian matrix df of f

df =

(
∂y1

∂x1
. . . ∂yn

∂x1
∂y1

∂xm
. . . ∂yn

∂xm

)

where (x1, . . . , xm) and (y1, . . . , yn) are two systems of local coordinates in a neighborhood U of p
and W of f(p) respectively. If (a1, . . . , am) ∈ TpM is a tangent vector toM at p, its image under
dfp is the vector b ∈ Tf(p)N with components

bi =
m∑

j=1

∂yi

∂xj
aj , i = 1, . . . , n.

From now on, we omit the subscript p in dfp in order to simplify the notation.

Definition 8. Let f : M → N be a smooth map; a point p ∈ M is a regular point of f if
the differential dfp is surjective. A point q ∈ N is regular if all points in its inverse image
f−1(q) := {p ∈ M : f(p) = q} are regular points of f . A point or a value that is not regular is
called singular or critical.

If p is a regular point, it follows that m ≥ n and the Jacobian matrix of f at p has rank n.

Theorem 3. Let f :M→ N be a smooth map and q ∈ f(M) be a regular value of f ; then, the
inverse image f−1(q) is a smooth manifold of dimension (m− n).

For more details on the case m = 2, we refer the reader to Section 3.2 and 4.2.

1.1.4 Classification and decomposition of surfaces

This section introduces topological invariants for an arbitrary polyhedral surface M, that is,
quantities which are equal for two surfacesM andM′

ifM andM′
are homeomorphic; a simple

invariant of M is given by the number of connected components of its boundary. Let M a
polyhedral surface with v vertices, e edges, and f faces; then, the Euler characteristic of M is
defined as χ(M) := v − e + f . The following theorem states that the Euler characteristic and
orientability (see Definition 7 and [Mas67]) are topological invariants.

Theorem 4. Let M and M′
be two polyhedral surfaces which are homeomorphic. Then:

• M is orientable if and only if M′
is orientable;
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• χ(M) = χ(M′
).

From the above theorem it follows that two polyhedral surfaces with different invariants are not
homeomorphic; the following theorem classifies surfaces up to homeomorphism and specifies which
invariants guarantee that two surfaces are homeomorphic.

Theorem 5 (Classification theorem for surfaces). LetM be a compact, connected, and orientable
surface. There exist two unique non-negative integers g and b such that M is homeomorphic
to a sphere to which are glued g handles and removed b pairwise disjoint disks. Furthermore,
χ(M) = 2− 2g − b.

A polygonal schema of a connected surface M is a simple polygon Ω with an identification of
its edges such that M is obtained by performing these identifications; therefore, the polygonal
schemes define a simple way of building surfaces by indicating the list of the edges on Ω and the
identifications that have to be performed. As detailed in Section 4.8, any graph γ embedded on
M such thatM− γ is a disc-like surface defines a polygonal schema ofM by cutting this graph
along its edges.

1.2 Polygonal meshes and duality

A polygonal mesh is defined by a pair M := (M,T ) where M is a set of vertices M := {xi ∈
R

m, i = 1, . . . , nV }, and T an abstract simplicial complex which contains the connectivity infor-
mation (see Section 1.1.1). Traversing the mesh is achieved by using the relations [Man88]:

• vertex-vertex V V (v) = (v1, . . . , vk), face-face FF (f) = (f̃1, . . . , f̃m);

• face-vertex V F (v) = (f1, . . . , fk), vertex-face FV (f) = (v1, . . . , vq).

In the following of the chapter, we assume that the previous relations are consistently evaluated.
A vertex v is defined as internal if its 1-neighborhood V V (v) is closed, i.e. v is not on the
boundary of M. Different authors have proposed optimized data structures [GS85, Man88] for
efficiently representing and traversing a polygonal mesh; specializations of these techniques to
triangle meshes are described in [DM02]. The duality of structures arises in different contexts
such as functional/numerical analysis (e.g., dual of Hilbert spaces) and computational geometry.
In the last field, one of the fundamental data structure is the Voronoi diagram [Aur91, dBKOS97,
Ede87, GS85, PS85] of a discrete set of points. Its study, which has influenced different application
areas such as math, computer, and natural science is strictly related to the Delaunay triangulation
and their duality relations. In the sequel of the section, we briefly review the duality in the plane
and its extension to 3D meshes. If M := {xi}nV

i=1 is a set of nV points in R
m, its Voronoi diagram

V (M) is a cell complex which decomposes R
m into nV cells {V (xi)}nV

i=1 where V (xi) is defined as

V (xi) := {x ∈ R
m : ‖x− xi‖2 < ‖x− xj‖2, j �= i}
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and ‖ ‖2 denotes the Euclidean distance. This definition introduces a proximity relation among
points in R

m. In the planar case, i.e. m = 2, the dual graph G of V (x) has a node for every cell and
it has an arc between two nodes if the corresponding cells share an edge. The Delaunay graph of M
is defined as the straight-line embedding of G obtained by identifying the node corresponding to the
cell V (xi) with xi and the arc connecting the nodes of V (xi) and V (xj) with the segment xixj . The
Delaunay graph of a planar point set is a plane graph and, if M is in general position (i.e., no four
points lie on a circle), all vertices of the Voronoi diagram have degree three. This result guarantees
that all bounded faces in the Delaunay graph are triangles, thus defining the Delaunay triangulation
of M . The extension of this theory for triangulating a set of points in R

3 is not trivial; as a
result important properties of the two dimensional Delaunay triangulation, e.g. optimal storage
requirement and computational cost, partially apply to the 3D setting. Previous considerations
have required the definition of new algorithms [BE92, HDD+92] and 3D triangulation remains a
challenging problem in Computer Graphics.

The use of several algorithms for constructing a polygonal mesh of a 3D point cloud (i.e., m = 3)
requires to define the dual graph in a general way, taking out of consideration the method that
has been used for the mesh construction. Given a polygonal meshM, its dual graph G has a node
v� for each face f(v�) in M and it has an arc between two nodes v� and w� if and only if f(v�)
and f(w�) share an edge (see Figure 1.1). In analogy with the previous definitions, the barycenter
dual graph of M is defined as the straight-line embedding M′

of G obtained by identifying each
one of its nodes with the barycenter bf(v�) of the corresponding face f(v�), and the arc connecting
the nodes v� and w� with the segment bf(v�)bf(w�). Therefore, in the dual mesh M′

:= (B,G)
each vertex bf(v�) corresponding to the face f(v�) = (v1, . . . , vl) is computed as

bf(v�) :=
1
l

l∑
i=1

xvi

and the connectivity G is completely defined by T . From the previous description it follows that
each face of the dual mesh generally has a different number of vertices even if the input mesh is
triangular, quadrilateral, etc.. Clearly, if M is a triangle mesh l is three.

Finally, we note that the genus of the dual mesh is equal to that of the input mesh, thus preserving
its topology. This simply follows observing that the Euler characteristic χ(M) = nV − nE + nF

is the same of M′
being n′

V = nF , n′
E = nE , n′

F = nV , where nV , nE , nF and n
′
V , n

′
E , n

′
F are

the number of vertices, edges, and faces ofM andM′
respectively. Therefore, we can summarize

this property as: the genus of a polygonal mesh is invariant under the duality transformation.

Overview and contributions. Recent applications to compression [LK98], smoothing [Tau02],
and subdivision [ZS01] reveal an increasing attention to the correspondence between a mesh M
and its dual representationM′

. The growing interest on the primal-dual correspondence is due to
a greater regularity of the dual mesh connectivity which corresponds to storage and computational
optimization. The first part of the chapter analyzes in detail the topological and geometric identifi-
cation betweenM andM′

; more precisely, we provide a reconstruction algorithm of the geometry
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of M through that of M′
, also achieving basic combinatorial properties of the 1-neighborhood

of each internal vertex in M. This correspondence results in the definition of a discrete home-
omorphism between M and M′

whose computational cost is linear in the number of faces in
M. The stability to noise on the mesh vertices is studied underlining the correlation among ad-
jacent neighborhoods in M. The developed framework is used to look at the signal processing
theory of triangle meshes by considering the dual mesh as noisy, and successively defining the
regularized mesh through a process different from the primal-dual identification which cannot be
applied due to the violation of the derived combinatorial properties. Therefore, the “dual Lapla-
cian smoothing” reveals the way the regularization process affects the input mesh geometry. This
approach to smoothing enables to consider a new topological mask for the mesh regularization
whose effectiveness is compared with that of the Taubin’s λ|µ algorithm [Tau95b].

The rest of the chapter is organized as follows: combinatorial relations and triangle mesh recon-
struction through duality are discussed in Section 1.3, providing several considerations on the
primal-dual correspondence. The dual Laplacian smoothing is analyzed in Section 1.4 underlining
its relations with analogous methods and triangle mesh duality previously analyzed.

1.3 Combinatorial properties of triangle meshes

In the previous section, we have derived the invariance of the genus of M under the duality
transformation. We are now concerned with the analysis of the geometry of M and M′

. The
most general and strictly related questions which give a deeper understanding of the relations and
differences between M and M′

can be summarized as follows.

• Is it possible to locally characterize the 1-neighborhood structure of each vertex ofM?

• Is it possible to reconstruct the input mesh by using only the dual mesh? Which is the
minimal information, if any, required for this purpose?

In the next section, we answer these questions by taking into account the case where M is a
2-manifold triangle mesh; the analysis of the general problem is discussed in Section 1.3.3.

1.3.1 1-neighborhood analysis

We are going to derive two basic combinatorial properties of the 1-neighborhood structure of each
internal vertex v inM. These relations are used in the sequel for describing the linear reconstruc-
tion algorithm of M from M′

thus defining a complete topological and geometric identification
between a mesh and its dual representation.

Proposition 3 (1-neighborhood characterization). LetM be a 2-manifold triangle mesh with two
adjacent vertices v and w, V F (v) = (f1, . . . , fk) the faces incident in v, and bi the barycenter of
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Figure 1.1: Triangle mesh and dual graph (marked line).

the face fi, ∀i = 1, . . . , k (see Figure 1.2(a)). If v is an internal vertex, the following conditions
hold:

• if k is even,
k∑

i=1

(−1)ibi = 0 (1.1)

• if k is odd,

3
k∑

i=1

(−1)i+1bi = xv + 2xw (1.2)

Proof. Considering V V (v) = (v1, . . . , vk), with

a1 := xv1 = xw, al := xvl
, l = 2, . . . , k

the idea is to express each vertex al as a linear combination of {bi}l−1
i=1, 2 ≤ l ≤ k, xv and xw. For

each triangle fl, we have that

bl =
1
3
(al+1 + al + xv)⇐⇒ al+1 = 3bl − al − xv.

Substituting in the last equality the expression of al in terms of bl−1, al−1, xv, and recursively
applying this process we achieve that

al+1 =

{
3
∑l

i=1(−1)ibi + a1 if l is even,
3
∑l

i=1(−1)i+1bi − a1 − xv if l is odd.

The condition ak+1 = a1 implies (1.1) if k is even, and (1.2) if k is odd.

The interesting element in (1.1), (1.2) is that the coefficients which appear in the linear combination
of the barycenters are constant and not related to their positions. Furthermore, if k is even the
manifold structure of M ensures that k ≥ 4; therefore, identifying bi with the vector (bi − xv)
(1.1) gives their linear dependency relation in the vector space R

3 only using constant coefficients.
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(a) (b)

Figure 1.2: (a) 1-neighborhood of the vertex v, (b) 1-neighborhoods of v and w used for the
reconstruction of the mesh geometry.

1.3.2 Triangle mesh reconstruction through duality

The first step of the reconstruction algorithm (see Figure 1.2(b)) chooses two internal vertices xv,
xw of an edge in M and associated to the neighborhoods

V V (v) = (v1, . . . , vn1), V V (w) = (w1, . . . , wn2).

Selected the vertex xv, each one of its incident triangles V F (v) = (f1, . . . , fn1), n1 ≥ 3, is rep-
resented by a vertex in the dual mesh M′

which is the barycenter of the related triangle in M.
Supposed to have calculated the vertices xv, xw and indicated with f one of the two triangles
which have (u, v) as edge, the third vertex xu of f is evaluated as

xu = 3b− xv − xw (1.3)

where b is the barycenter of f . After this calculation, the triangle f is marked as visited and
its adjacent ones (t1, t2, t3) = FF (f) are considered. Using (1.3), the new vertices u

′
, v

′
, w

′

are calculated marking these triangles as visited. Growing from the visited faces by using their
adjacent triangles and recursively applying this criterion to the non-marked faces ofM enables to
reconstruct the geometry of the input mesh with exactly nF steps.

It remains to describe the method for evaluating the two vertices xv and xw which have been used
for reconstructing the input mesh geometry. Without loss of generality 1 we can suppose that n1

and n2 are odd; applying (1.2) to xv and xw leads to the symmetric linear system
3
∑n1

i=1(−1)i+1bi = 2xw + xv

3
∑n2

i=1(−1)i+1b
′
i = 2xv + xw

1For instance, if n1 is even we can split fn1 into two new triangles; i.e., joining its vertex v with the middle
point of the edge opposite to v in fn1 .
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(a) (b) (c)

Figure 1.3: (a) Input dual mesh with 5.804 vertices and 2.904 faces, (b) dual graph colored with
respect to the number of vertices in each face (see Table 1.1), (c) reconstructed triangle mesh.

Table 1.1: Face coloring in the dual graph.
Color Number of face vertices k

yellow k = 1
cyan 2 ≤ k < 6
blue k = 6
red 7 ≤ k < 10
black k ≥ 10

where V F (w) = (f
′
1, . . . , f

′
n2

) and b
′
i is the barycenter of the face f

′
i . Since these relations are

linearly independent, its unique solution is{
xw = 2α− β
xv = 2β − α (1.4)

with α =
∑n1

i=1(−1)i+1bi and β =
∑n2

i=1(−1)i+1b
′
i.

The relation (1.4) expresses these vertices as a linear combination of the barycenters of the triangles
of their 1-neighborhoods; we also underline the symmetry in the expression of xv and xw with
respect to α, β. The computational cost of the proposed algorithm is optimal because it only
requires to visit all the triangles of the input mesh, and the expression (1.3) is computationally
stable minimizing the numerical instability of the algorithm. Therefore, the transformation which
mapsM toM′

is linear in nF as its inverse. An example of dual mesh and of the reconstruction
process is given in Figure 1.3.

1.3.3 Considerations on the primal-dual correspondence

We present in this section several considerations on the primal-dual correspondence which is related
to the dual Laplacian smoothing described in the following of the chapter. The extension of the
reconstruction process from the dual mesh of a q-mesh, q ≥ 4, cannot be directly derived from
the approach previously described. In fact, supposed that (l− 1) vertices (xv1 , . . . , xvl−1) of a face
f = (v1, . . . , vl) in M have been calculated, the last vertex xvl

is evaluated using the barycenter
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of f

bf =
1
l

l∑
i=1

xvi

as

xvl
= lbf −

l−1∑
i=1

xvi ;

however, this information is not sufficient for finding the position of all the vertices in the adjacent
faces of f (see Figure 1.4). We answer questions given in Section 1.3 in a simple way as summarized
by Theorem 6.

Theorem 6. Given a 2-manifold triangle mesh M with or without boundary and with at least
two internal vertices, the following conditions hold:

• M and its dual mesh M′
are topologically equivalent, i.e. χ(M) = χ(M′

);

• M and M′
are geometrically equivalent, i.e. M (resp., M′

) is reconstructed in nF steps
(resp., nV ) from its dual representation M′

(resp., M);

• the vertices of M and M′
satisfy conditions (1.1), (1.2) given in Proposition 3.

In Theorem 6, it has been pointed out that the dual mesh is sufficient for identifying the input
triangle mesh geometry and topology without storing additional information. We want to analyze
the influence of the information in M′

for the reconstruction process; equivalently, we study how
the geometry ofM is affected by changing the position of xv and xw. To this end, we add a noise
e to each one of them considering the new points

ṽ := xv + e, w̃ := xw + e.

Denoted with M the triangle mesh reconstructed from M′
, xv, xw and with Mnoise the one

achieved with M′
, ṽ, w̃, we want to estimate their deviation by using a norm for the error evalu-

ation. The comparison of two triangle meshes with different geometry and connectivity has been
studied in [CRS98]. Since M := (M,T ) and Mnoise := (M̃, T ) share the same connectivity T , a
simpler comparison among vertex positions and triangle normals is introduced using the following
vectors:

dv(M,M′
) :=

(‖xi − x̃i‖2
CV

)nV

i=1

, CV := max
i=1,...,nV

{‖xi − x̃i‖2}

dn(M,M′
) :=

(‖ni − ñi‖2
CN

)nF

i=1

, CN := max
i=1,...,nF

{‖ni − ñi‖2}

with ni and ñi unit normals to the faces fi and f
′
i .

For a better visualization, the increasing reorder of dv(M,M′
) and dn(M,M′

) is plotted without
normalization (i.e., CV := CN := 1). As underlined in Figure 1.5(a), a small perturbation e creates
a wrong reconstruction of the input triangle mesh showed in Figure 1.3(c). This phenomena is
mainly due to the high correlation between vertices inM andM′

resulting in an error propagation
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Figure 1.4: Quadrilateral mesh: dual representation (dotted line) and non-reconstructed geometry.

which grows in parallel with the visiting triangle process. This aspect is a consequence of the fact
that each new vertex is calculated starting from those ones previously evaluated; indeed, after k
steps (1.3) results affected by an error which is proportional to ek. These considerations also apply
if we add a noise to the vertices in M′

as underlined in Figure 1.5(b).

We associate to a mesh three matrices which code in a compact form its topology. If V F (v) =
(f1, . . . , fm) is the set of faces incident in a vertex v of M, we construct the corresponding face-
vertex matrix IV F ∈MnV ,nF (R)

IV F (i, j) :=
{

1 if fj ∈ V F (vi),
0 else,

and its normalization

NV F (i, j) :=
{

1/mi if fj ∈ V F (vi), #V F (vi) = mi,
0 else.

In a similar way, we define the normalized vertex-vertex matrix NV V ∈MnV ,nV (R) as

NV V (i, j) :=
{

1/mi if vj ∈ V V (vi), #V V (vi) = mi,
0 else,

and the normalized vertex-face matrix NFV ∈MnF ,nV (R)

NFV (i, j) :=
{

1/mi if vj ∈ FV (fi), #FV (fi) = mi,
0 else.

The properties of their spectrum have important connections with the topological characteristics
(e.g., number of connected components) of the input mesh [Moh91] and with numerical properties
of the Laplacian smoothing and re-sampling operator studied in [Tau02, Tau95b, TZG96] (see also
Section 1.4). Using these matrices, we want to settle the numerical approach to the reconstruction
process from M to M′

, which is expressed as

NFVM = B, (1.5)
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(a) (b)

Figure 1.5: Noise influence on the reconstruction process using: (a) noised vertices ṽ, w̃ in M,
e := 5.0 ∗ 10−6, (b) a noised vertex in M′

, e := 5.0 ∗ 10−6.

that is, a linear system with nV unknowns (xi)nV

i=1 and nF equations. Since nF ≈ 2nV , (1.5)
is undetermined if rank(NFV ) < nV , over-determined if rank(NFV ) > nV , and it has a unique
solution otherwise. In order to define a well-posed problem, (1.5) can be replaced by the least-
squares problem [GL96]

‖NFV M̄i −Bi‖2 = min
Pi

{‖NFVMi −Bi‖2},

or equivalently NT
FVNFV M̄i = NT

FVBi, i = 1, 2, 3 where Mi and Bi is the i-th component of M
and B respectively. This choice produces a family of triangle meshes {M̃}

M̃i := M̄i + Ei, Ei ∈ ker(NFV ), i = 1, 2, 3

each one represents an approximated solution of (1.5), and the computational cost is O(n3
V ). With

respect to the primal-dual correspondence described in Section 1.3.2, this strategy faces-up to its
expensive computational cost providing a family of approximated triangle meshes (M̃, T ) instead
of the initial mesh M.

1.4 Dual Laplacian smoothing

In the previous section, we have focused our attention on the relation between a triangle mesh
M and its dual representation underlining their correlation. Here, we consider applications of
the dual representation for smoothing noised data sets. The key observation is that, considering
the 1-neighborhood structure related to each point, M has a little regularity while M′

can be
considered with more simplicity because each of its vertices has three links if the related triangle of
M is internal, and one or two if it belongs to the mesh boundary. This observation is the base in
[LK98] for the compression of triangle meshes; furthermore, primal-dual correspondence is partially
exploited in [ZS01] for primal-dual subdivision schemes, and in [Tau02] for the definition of dual
re-sampling and non-shrinking smoothing operators. Firstly, we review Laplacian and Taubin’s
smoothing algorithms [Tau02, Tau95b, TZG96] which are strictly related to our approach.
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• Laplacian smoothing. Each internal vertex xv of the input mesh is updated using its
1-neighborhood structure V V (v) := (v1, . . . , vn) as described by the following procedure:

x(1)
v := (1 − λ)xv +

λ∑n
i=1 wi

n∑
i=1

wixvi

where λ ∈ [0, 1] is a positive parameter controlling the smoothing process. The weights
(wi)n

i=1 can be chosen in different ways even if the following ones are commonly used:

– constant weights : wi = 1, i = 1, . . . , n, i.e.

x(1)
v := (1− λ)xv +

λ

n

n∑
i=1

xvi ; (1.6)

– adaptive weights [Tau95b]: wi is proportional to the inverse of the distance between xv

and its neighbor xvi , i.e. wi := ‖xv − xvi‖−1
2 . A general choice is given by wij ≥ 0,∑

j wij = 1 whose properties rely on the stochastic matrix theory [GL96, Tau00].

We write (1.6) as
M (1) = [(1− λ)InV + λNV V ]M = fλ(L)M

where InV is the identity matrix of order nV , fλ(t) = (1− λt), L := InV −NV V and

M =

 x1

...
xnV

 ∈MnV ,3(R).

The Laplacian smoothing reduces all non-zero frequencies of the signal corresponding to the
mesh and tends to shrink its geometry. To partially solve this drawback, in [DMSB99] each
smoothing iteration is combined with a mesh volume-restoring and re-scaling step.

• Taubin’s smoothing. The solution to shrinkage proposed in [Tau95b] is based on the
alternation of two scale factors of opposite signs λ, µ in the Laplacian smoothing, i.e.

M
(1)
Taubin := fλ(L)fµ(L)M

where −µ > λ > 0. Using this filter enables to suppress high frequencies while preserving
the low ones. Good results are achieved by choosing the input parameters which satisfy the
condition

1
λ

+
1
µ

= 0.1.

The application of k iteration steps gives

M
(k)
Taubin = f

(k)
λ,µ(L)M

with f (k)
λ,µ(t) := [fλ(t)fµ(t)]k.
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Figure 1.6: Topological masks used for the primal and dual Laplacian smoothing.

1.4.1 Dual approach to triangle mesh smoothing

Considered a noised meshMnoise := (M,T ), the idea is to apply the Laplacian smoothing and its
extensions to the dual mesh M′

noise := (B,G) which is affected by noise as well as Mnoise. The
merit of using the dual mesh instead of the input one is mainly due to the following considerations.
Firstly, the normalized vertex-vertex matrix NFF ofM′

noise, which will be used for the smoothing
process, has at most three non zero elements in each row. This implies the optimization of storage
and computational requirements which grow with the complexity of the input mesh in terms of
the number of vertices. Furthermore, the construction of the incident matrix ofM′

noise is simply
achieved with the constant relation FF applied toM. Secondly, the dual smoothing considers at
each vertex of M a different topology for the regularization with respect to the 1-neighborhood
structure used for the (primal) Laplacian smoothing (see Figure 1.6).

Denoted with L
′
the Laplacian matrix ofM′

noise, and withM′
smooth the smoothed dual mesh, the

last step reconstructs the regularized meshMsmooth. Since the vertices ofM′
smooth do not satisfy

(1.1) and (1.2), the considerations about the high correlation between M′
smooth and Msmooth

(see Section 1.3.3) highlight the impossibility of reconstructingMsmooth by using the primal-dual
correspondence previously described. The solution to this problem is achieved by defining the new
vertices ofMsmooth := (Msmooth, T ) as the barycenters of the faces inM′

smooth which are exactly
nV . This process can be summarized as

M
(k)
smooth = NV F f

(k)
λ,µ(L

′
)B︸ ︷︷ ︸

Dual smooth

= NV F f
(k)
λ,µ(L

′
)NFV M (1.7)

with L
′
:= InF −NFF . The previous relation expresses the regularized mesh geometry only using

the information onMnoise. In the following proposition, we compare (1.7) with the mesh achieved
by applying the Taubin’s smoothing using the same number of iterations k, and parameters λ̄, µ̄

M
(k)
Taubin = f

(k)

λ̄,µ̄
(L)M.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.7: (a) Input data set: num. vertices 2.904, num. triangles 5.804, (b) Laplacian smoothing
applied to the dual mesh λ = 0.6, µ = −0.5640, k = 10, (c) average reconstruction, (d) Taubin’s
smoothing with previous λ, µ, k, (e) error evaluation on vertices, (f) error evaluation on normals.
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Proposition 4. The asymptotic behavior of M (k)
smooth resembles that of M (k)

Taubin and its compu-
tational cost is linear in the number of vertices nV .

Proof. From the previous relation, it follows that 2

‖M (k)
smooth −M (k)

Taubin‖2
‖M‖2 ≤ ‖NFV ‖2‖NV F ‖2gk(λ, µ) + gk(λ̄, µ̄)

with g(x, y) := (x−y)2

−4xy . Since |λ| < 1, |µ| < 1 (resp., |λ̄| < 1, |µ̄| < 1), we have |g(λ, µ)| < 1 (resp.,
|g(λ̄, µ̄)| < 1) thus guaranteeing that

lim
k→+∞

‖M (k)
smooth −M (k)

Taubin‖2 = 0.

All previous considerations also apply if we consider adaptive weights instead of constant ones.
Finally, we observe that we have not applied the least square approach (1.5) for reconstructing
M fromM′

because it is computationally expensive and without evident benefits with respect to
the previous choice and other examples are given in Figure 1.7, 1.8, and 1.9.
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.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 1.8: (a) Input data set: num. vertices 7.308, num. triangles 14.616, (b) noised data set with
normal error, (c) Laplacian smoothing applied to the dual mesh λ = 0.6, µ = −0.5640, k = 20,
(d) average reconstruction, (e) Taubin’s smoothing with previous λ, µ, k, (f) error evaluation on
vertices, (g) error evaluation on normals, (h) Laplacian matrix sparsity.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 1.9: (a) Input data set: num. vertices 22.813, num. triangles 45.626, (b) noised data set
with normal error, (c) Laplacian smoothing applied to the dual mesh λ = 0.6, µ = −0.5640, k = 10,
(d) average reconstruction, (e) Taubin’s smoothing with previous λ, µ, k, (f) error evaluation on
vertices, (g) error evaluation on normals.



Chapter 2

Geometric classification and
decomposition of 3D surfaces

Tools for the automatic decomposition of a surface into shape features will facilitate the editing,
matching, texturing, morphing, compression, and simplification of 3D shapes. Different features,
such as flats, limbs, tips, pits, and various blending shapes that transition between them may
be characterized in terms of local curvature and other differential properties of the surface or in
terms of a global skeletal organization of the volume it encloses. Unfortunately, both solutions are
extremely sensitive to small perturbations in the surface smoothness and to quantization effects
when they operate on triangulated surfaces. Thus, we propose a multi-resolution approach, which
not only estimates the curvature of a vertex over neighborhoods of variable size, but also takes into
account the topology of the surface in that neighborhood. Our approach is based on blowing a
spherical bubble at each vertex and studying how the intersection of that bubble with the surface
evolves. We describe an efficient approach for computing these characteristics for a sampled set of
bubble radii and for using them to identify features, based on easily formulated filters, that may
capture the needs of a particular application.

2.1 Introduction

An abstract description of a shape usually combines a set of primitives, that are relevant to
the specific context, and is defined in terms of their type and intrinsic shape parameters. As
suggested in [Lon98], methods for shape description can be classified into two broad categories:
those considering only the local properties of the boundary of the shape, and those measuring
properties of the enclosed volume. Typically, boundary-based methods evaluate accurate and
mathematically well-defined local characteristics, such as critical points or curvature. They may
also identify specific loci on the surface, such as curvature extrema or ridges, but they generally
lack in providing a global view of the shape. Furthermore, they typically work at a single resolution

29
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and thus do not organize features into a hierarchy of global and local details.

Conversely, interior-based methods, which assume that the surface is the boundary of a solid,
generally provide descriptions which better highlight the global structure of the shape. Skeletons,
such as the medial axis or the Reeb graph belong to this class of descriptors [ABS03, POB87,
SKK91]. The great advantage of skeletons is that they provide an abstract representation by
idealized lines that retain the connectivity of the original shape, thus reducing the complexity
of the representation. Usually, each arc is associated with a portion of the original shape that
corresponds to a feature. For example, in 2D the medial axis is constructed using the paradigm of
the maximal enclosed discs, whose centers define a locus of points which describes, together with
the associated radius, the width variation of the shape. The medial axis induces a decomposition
of the shape into protrusion-like features, while concavities of the shape are not directly identified
by the medial axis of the interior. However, the medial axis of a 3D shape is not any longer a
one-dimensional graph, but it is made of surface pieces as well. Moreover, the instability of the
medial axis with respect to noise has prevented its use in many application areas. Approaches to
construct and store the medial axis at different scales have been also proposed, which implicitly
address the problem of noise reduction as well [POB87, DLN87, Ogn94].

Another notable example of topology-driven skeleton is given by the Reeb graph [SKK91, ABS03].
The Reeb graph is a topological structure which codes a given shape by storing the evolution of
criticalities of a mapping function defined on the boundary surface. In particular, when the
height function with respect to a predefined direction n is chosen, the Reeb graph describes the
evolution of the contours obtained by intersecting the shape with planes orthogonal to n. The
decomposition induced by the Reeb graph corresponds to a segmentation of the solid into slices and
the corresponding branches of the Reeb graph identify the connected components of the surface.
The description obtained using a Reeb graph approach is suitable for matching purposes especially
if the mapping function is chosen in order to provide invariance under affine transformations. Such
orientation-independent approaches have been proposed in [HSKK01, MP02a, MP02b]; however,
they are computationally intensive and offer little control over the scale at which the shape is
analyzed. For more details on these techniques, we refer the reader to Chapter 3.

Overview and contributions. Shape analysis and coding are challenging problems in Com-
puter Vision and Graphics. An ideal shape description should be able to capture and compute the
main features of a given shape and organize them into an abstract representation which can be
used to automate processes such as matching, retrieval, or comparison of shapes. We have tackled
the problem in the context of 3D surfaces represented by triangular meshes, having in mind that a
good shape description should be able to distinguish between global and local features and should
be based on geometric properties of the shape which are invariant under rotation, translation, and
scaling. To characterize a shape we have used the paradigm of blowing bubbles : a set of spheres
of increasing radius Ri, i = 1, . . . , n is drawn, whose centers are at each vertex of the mesh,
and whose radius represents the scale at which the shape is analyzed. The number of connected
components of the intersection curve between each bubble and the surface gives a first qualitative
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Figure 2.1: Star(p) is enclosed by a curve γ. The exterior angles {ai} and interior angles {αi} are
shown.

characterization of the shape in a 3D neighborhood of each vertex. Then, the evolution of the ratio
of the length of these components to the radius of the spheres is used to refine the classification
and detect specific features such as sharp protrusions or wells, mounts or dips, blends or branching
parts. For example, a point on a thin limb will generate an intersection curve made of only one
component, which will rapidly split into two connected components as soon as the radius of the
sphere exceeds the limb size. Conversely, the tip of a protrusion will always generate only one
connected component, and the ratio between the intersection curve length and the sphere radius
can be used to evaluate how curved is the surface at the protrusion tip.

The description achieved provides an insight on the presence of features together with their mor-
phological type, persistence at scale variation, amplitude and/or size. The algorithm for the
decomposition is concise and simple, and the decomposition is independent on the orientation of
the surface in space and equally distributed in all directions. The number of radii and the interval
given by the minimum and maximum radius is related to the spectrum of sizes of the features of
interest. Moreover, the multi-scale approach and the chosen descriptors reduce the influence of
noise on the shape evaluation, it gives us more flexibility to formulate the filters for shape analysis,
and it captures the more representative properties in a more detailed description. In this chapter,
we focus on the method adopted for the segmentation, while applications to skeleton extraction
and local parameterization are given in Chapter 3 and 4 respectively.

The chapter is organized as follows: in Section 2.2, previous work and the theoretical background
relevant for the described method is briefly reviewed. The approach to shape classification is pre-
sented in Section 2.3. The algorithm details are described in Section 2.4, the mesh decomposition
strategy is discussed in Section 2.5, and Section 2.6 includes critical considerations and remarks.
Then, a feature-based segmentation is detailed in Section 2.7 and 2.8; links to further applications
discussed in the thesis are given in Section 2.9.
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(a) (b) (c) (d)

Figure 2.2: (a) 1-star neighborhood, (b) barycentric neighborhood, (c) Voronoi cell, (d) angles of
the triangles belonging to the 1-star of p.

2.2 Theoretical background

This section provides definitions and concepts [GP74, Lip69, Mor85] useful for describing our
approach. Let ϕ : U ⊆ R

2 → R
3 be a C2-parameterization of the surface M := {ϕ(u, v) :

(u, v) ∈ U} (see also Section 4.2); the classification of local properties of M is traditionally
based on the study of its mean and Gaussian curvature. More precisely, chosen a point p ∈ M
we locally approximate the surface by its tangent plane with normal vector n. For every unit
vector eθ := (cos θ, sin θ) in the tangent plane, the normal curvature κN (θ) at p is defined as the
curvature (at p) of the curve that belongs to the surfaceM and to the plane which interpolates p
and contains the vectors n and eθ. The two principal curvatures κ1 (maxima), κ2 (minima) ofM,
with their associated orthogonal directions eθ1 , eθ2 are the extrema of all the normal curvatures
{κN(θ) : θ ∈ [0, 2π)}. Using the identity κN (θ) = κ1 cos2 θ + κ2 sin2 θ, θ ∈ [0, 2π), the mean-
curvature κ is defined as the average of the normal curvatures

κ :=
1
2π

∫ 2π

0

κN (θ)dθ =
1
2
(κ1 + κ2),

and the Gaussian curvature is set as κG := κ1κ2. Previous definitions formalize the relation
between the surface shape and its position with respect to the tangent plane. For elliptic-shaped
surfaces, the centers of curvature of all the normal sections will lie on the same side of the tangent
plane with positive values for the minimum and maximum of curvature. For hyperbolic-shaped
surfaces, the centers of curvature will move from one side of the surface to the other, with a
negative minimum value and a positive maximum value assumed at opposite sides with respect
to the tangent plane. For parabolic-shaped surfaces, one of the principal directions will have
curvature equal to zero, that is, along that direction the normal section will be a straight line; this
is the case of ruled surfaces which are also said to have no double curvature. The planar case is
obvious.

The mean-curvature provides a link between surface area minimization and mean curvature flow
as expressed by the relation

κn =
1
2

lim
diam(N )→0

∇N
N ,

where N is an infinitesimal area around the point p onM, diam(N ) is its diameter, and ∇ is the
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Figure 2.3: Discrete Gaussian curvature and sensibility to local noise: red and blue vertices
represent elliptic and hyperbolic points.

gradient with respect to p. The Gaussian curvature is expressed by the limit

κG = lim
diam(N )→0

NG

N

where NG is the area of the Gauss map (i.e., its spherical image) associated to the infinitesimal
patch N ; therefore, it represents a measurement at any point p ofM which is the excess per unit
area of a small patch of the surface. Given a closed curve γ on a surface M, let Tγ be the total
turning that the unit tangent t undergoes when it is carried along γ, defined as the sum of the
local turnings, i.e. exterior angles [Lip69] (see Figure 2.1). Then, the quantity Iγ = 2π − Tγ is
called the angle excess of the curve γ and it is related to the curvature ofM within γ, as described
by the Gauss-Bonnet formula.

Theorem 7 (Gauss-Bonnet Formula). Let γ be a curvilinear polygon of class C2 on a surface
patch of class Ck, k ≥ 3. Suppose γ has a positive orientation and its interior on the patch is
simply connected. Then, ∫

γ

κgds+
∫∫

Σ

κGdS = 2π −
∑

i

αi = Iγ (2.1)

where κg is the geodesic curvature along γ, Σ is the union of γ and its interior, {αi} are the
exterior angles of γ, ds and dS are the curve and surface element respectively.

Among the properties of the angle excess, the following ones have a particular interest for our
approach:

• Iγ is independent of the chosen starting point on γ;

• Iγ is additive;

• for any topological disc on an arbitrary surface at p, the angle excess around the boundary
is equal to the total curvature of the interior.
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Figure 2.4: Gaussian curvature evaluation on the bitorus at different levels of resolution.

The definition of the curvature at each point of a triangulation is not trivial because a triangular
mesh is parameterized by a piecewise continuous function [FS93, GW92]. These methods can
be divided into two main groups: continuity-based and property-based algorithms. The first ones
are developed transforming the discrete case to the continuous one by using a local fitting of the
surface which enables to apply standard definitions. For example, in [Ham93] an approximation
of the curvature is derived at each vertex by applying the continuous definition to a least-squares
paraboloid fitting its neighboring vertices, while in [Tau95a] it is evaluated by estimating its
tensor curvature. The second class of algorithms defines equivalent descriptors starting from basic
properties of continuous operators but directly applied to the discrete settings. In this case, the
reformulation of the mean and Gaussian curvature for C0 surfaces uses a neighborhood of each
internal vertex p of the triangle mesh M; among the range of possibilities, common choices (see
Figure 2.2(a-c)) are the 1-ring neighborhood (i.e., the set of triangles incident to p), the barycentric
neighborhood, and the Voronoi cell. For the barycentric neighborhood (resp., Voronoi cell), the
patch around p on M is achieved by connecting the barycenter (resp., circumcenter) of each face
t incident to p to the midpoints of the edges of t emanating from p. The methods proposed in
[DMSB02, PS99] are based on the Laplace-Beltrami operator, the Gauss map, and the Gauss-
Bonnet theorem guaranteeing the validity of differential properties such as area minimization and
mean curvature flow [GP74]. Indicated with N one of the previous neighborhoods of p on an
arbitrary triangle meshM, it is possible to prove that the mean curvature at p can be evaluated
as follows

κn =
1

A(N )

∑
q∈N(p)

(cot θj + cotβj)(q − p),

where A(N ) is the area of N , f is the number of faces incident to p, and the angles θj , βj are
depicted in Figure 2.2(d).

The angle excess can be used to evaluate the Gaussian curvature at mesh vertices [FS93, PS99];
in fact, the boundary of the Voronoi cell N (see Figure 2.1) defines a closed path on the mesh
to which we may apply the Gauss-Bonnet formula (2.1). Since the geodesic curvature along the
boundary is obviously zero (edges are straight), the total curvature at p is simply quantified by the
sum of the exterior angles. To understand better the geometry of the situation, we can imagine
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(a) (b) (c) (d)

Figure 2.5: Evolution of the intersection curves between the input surface and a set of spheres
with the same center and increasing radius.

to locally cut N along any of the edges incident in p, and to develop N onto the plane without
shrinking the surface. The sum of the exterior angles corresponds to the sum of the angles at p
in N . This result is consistent with the intrinsic nature of the Gaussian curvature since the angle
excess only depends on the angles, that is, this value does not change if the mesh is deformed
preserving the distance among points. Also, the computation of the angle excess can be performed
without resorting to any coordinate system, as the angles may be obtained using only the edge
length and not the vertex coordinates. The discrete Gaussian curvature at a vertex p of the mesh
can be therefore evaluated by

κG =
2π −∑f

i=1 αi

A(N )
,

with f number of triangles incident in p; that is, the local angle excess in p weighted by the area
A(N ) of a small patch of surface around p given by N (see Figure 2.2(d) and 2.1).

The above-mentioned approaches are usually sensitive to noise and, even if a multi-resolution
setting is chosen, they usually require smoothness conditions on the input mesh. Furthermore, the
smoothing process used to get stable and uniform curvature estimations introduces a deficiency in
the magnitude evaluation and, consequently, difficulties in the accurate distinction between planar
patches and curved surfaces with low curvature. In Figure 2.3 and 2.4, the Gaussian curvature is
shown; it can be seen how the results are effected by small local undulations.

2.3 Geometric and topological classification

The approach proposed here for describing a 3D shape integrates boundary and interior infor-
mation of the shape finalized at defining a complete multi-scale vertex classification. The link
between closed paths and curvature has suggested to specialize its study to the family of closed
paths built by intersecting the surface with spheres centered in each of its points. The study of
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(a) (b)

Figure 2.6: A tip detected at a small radius (a) will be characterized as a mount at a larger radius
(b).

the evolution of these curves and the geometric characterization of the mesh areas intersected by
the spheres are the core of the proposed method. The topology of the intersection curves changes
according to the surface shape: in Figure 2.5(a-c), the highlighted sphere intersects the surface
only at one curve, while in (d) the boundary of the intersection area splits into two connected
components. This is likely to happen, for example, near handles and branches, or around deep
pits. Therefore, the variation in the boundary suggests that the vertex is located on a feature,
which becomes relevant at the scale, or radius, at which the change occurs.

Given a set of radii Ri, i = 1, . . . , n, each vertex of the mesh is classified with a n-dimensional
vector of morphological labels, each corresponding to its type at the related scale. Shape features
of the mesh are then identified by connected regions of vertices with the same label at a given
scale, and the geometric parameters computed to assign the label will characterize the feature.
For example, a tip and a mount are both characterized by one intersection curve, but they can
be distinguished measuring the curvature induced by the intersection curve on the surface (see
Figure 2.6).

Features which are identified by two intersection curves are further characterized by measuring
the relative curve length and by checking if they define a volume which is inside or outside the
shape (see Figure 2.7). The vector of labels and corresponding geometric parameters, together
with the persistence of type through the scale values, are used to distinguish between global and
local features with respect to the scale range.

Given a point p, a scale Ri and the corresponding intersection curve γ(p,Ri), the point p is
classified according to the number of connected components of γ(p,Ri), to the curvature value if
γ(p,Ri) has only one component, or to the relative length if γ(p,Ri) has two components, and
according to a concavity/convexity check in all cases.

The classification criteria lead to a complete characterization of vertices, which expresses both
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(a) (b) (c)

Figure 2.7: A handle (a) is distinguished from a through hole (b), (c).

geometric and morphological properties of the surface. In the following, the main steps of the
classification procedure are detailed and the descriptors used to refine each class are introduced.
We distinguish between geometric descriptors, which are the surface curvature and the relative
length of the intersection curves, and the so-called status descriptors which distinguish between
concave/convex or empty/full features.

2.3.1 Classification based on intersections

Given a 3D mesh Σ and a set of radii Ri, i = 1, . . . , n, let S(p,Ri) be the sphere of radius Ri and
center p, and γ(p,Ri) the boundary of the region of Σ containing p delimited by the intersection
curves between the mesh and S(p,Ri). Other regions of intersection might occur, but only the
one containing p is taken into account. The first morphological characterization of the surface at
a vertex p at scale Ri is given by the number of connected components of γ(p,Ri). We consider
the following cases:

• 1 component : the surface around p can be considered topologically equivalent to a plane (see
Figure 2.8(a));

• 2 components : the surface around p is tubular-shaped (see Figure 2.8(b));

• 3 or more components : in a neighborhood of p a branching of the surface occurs (see Figure
2.8(c)).

In topological terms, two components identify a handle in the surface, three or more components
highlight a split. If γ(p,Ri) is made by one component, the angles excess is computed and the
vertex is classified as sharp, rounded, or blend (see Section 2.3.2). If γ(p,Ri) is made by two
components, their lengths are used to distinguish between conic and cylindrical shapes. For
branching parts, no further geometric parameters are computed (see Table 2.1).
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(a) (b) (c)

Figure 2.8: Intersection between the input surface and spheres of the same radius R centered in
different vertices of Σ: the number of intersection curves changes according with the local shape of
Σ around v. In (a) (resp., (b) and (c)) the vertex v, at the level of detail R is classified equivalent
to a disc (resp., tubular-shaped and branch).

To run the process, a set of radii must be selected for the computation of the intersections.
The maximum and minimum radii (Rmax and Rmin respectively) determine an interval which is
uniformly sampled according to the number of radii the user wants to use. This step produces the
values of Ri, i = 2, . . . , n−1 (R1 := Rmin and Rn := Rmax). Both Rmin and Rmax can be defined
by the user by means of a slider in the GUI; otherwise, they are automatically set proportionally
to the size of the surface. In this latter case, Rmin is set to the minimum edge length and Rmax

to the half of the diagonal bounding box of the surface. The choice of the radius range obviously
influences the classification results because it defines the number and sizes of neighborhoods used
to analyze the surface shape around each point. In this sense, a-priori knowledge about the feature
size of interest surely improves the decomposition.

2.3.2 Curvature characterization

As described in Section 2.2, when γ(p,Ri) has only one boundary component, the curvature at
the point p, at scale Ri, is the angle excess of γ(p,Ri). Instead of using the angle excess, we use
the length of γ(p,Ri) divided by the radius Ri, i.e. Lγ(p,Ri) = length(γ(p,Ri))/Ri. Note that
this value has the dimension of an angle and it always assumes a positive value. Since we want to
characterize the curvature of a surface, vertices will be labeled as sharp, rounded, or blend points
according to their approximated curvature values by establishing some thresholds on the interval
[0,+∞). We can distinguish the following cases (see Figure 2.9):

• sharp vertices : let us consider a conic surface, with spike point p and α ∈ (0, π/2] the half
amplitude of the cone. Intersecting the cone with a sphere centered in p and with radius
Ri generates a circular curve of length 2πRi sin(α) with Lγ(p,Ri) = 2π sin(α), which is an
increasing function of α ∈ (0, π/2]: the lower the value of α, the more the surface around
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(a) (b) (c) (d)

Figure 2.9: Several cases of one intersection curve: note the relation between the intersection
curve length and the curvature of the surface in the neighborhood of the center of the sphere. (a)
Vertex classification: (b) blend, (c) sharp, (d) planar.

p tends to a cone shaped point. Intuitively, we consider p a sharp vertex if α ≤ π/4 and
consequently the curvature threshold is set to Ts =

√
2π.

• rounded/blend : to distinguish between these two situations, we observe that the surface is
rounded in a neighborhood of a point if its curvature is positive while a blend occurs when
the surface is hyperbolic, that is, its curvature is negative. The limit case between the two
is obviously a flat point and, considering that we use Lγ(p,Ri) to evaluate the curvature, it
is clear that setting the threshold to Tb = 2π discriminates between rounded and blend. The
intersection between the sphere and a plane, indeed, results in an intersection curve whose
length is equal to 2πRi.

Summarizing (see Figure 2.10), the characterization of a point p at scale Ri is set as follows:

• 0 ≤ Lγ(p,Ri) ≤
√

2π : p is sharp;

• √2π < Lγ(p,Ri) ≤ 2π : p is rounded ;

• Lγ(p,Ri) > 2π: p is blend.

2.3.3 Relative length characterization

We now consider the case of two connected components in the intersection curve γ(p,Ri). As
mentioned above, this means that p lies on a region of the surface which appears as an elongated
shape at that scale, like a tubular protrusion or a handle in the surface. We can specialize this
remark as follows: if the length of the two intersection components is nearly the same, the shape
at the scale Ri can be approximately considered cylindrical; if one is much longer than the other,
it means that the shape may be seen as a conic part (see Figure 2.11). Let γ1 and γ2 be the two
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Figure 2.10: Several cases of one intersection curve: note the relation between the intersection
curve length and the curvature of the surface in the neighborhood of the center of the sphere. (a)
Vertex classification: (b) blend, (c) sharp, (d) planar.

intersection components, and l1, l2 their lengths with l1 ≥ l2. The shape is considered conical
if l1 ≥ 2l2, cylindrical otherwise. The related threshold is Tc = 1/2 which guarantees that the
amount l2/l1 (belonging to [0, 1]) uniquely determines whether the local shape of the surface
around p is cylindrical or conic.

2.3.4 Status characterization

The extraction of morphological features on a surface is based on different operators, each related
to a different aspect or property of the related feature. Up to now, we have seen how to distinguish
between sharp or rounded, tubular or branching and so on, while the status characterization allows
us to distinguish between convex/concave or, more generally, full/empty features. For instance, to
discriminate between convex and concave vertices would lead to refine the classification of a sharp
point as a tip or a pit, a rounded point as a mount or a dip. Obviously, the distinction between
convex and concave does not make sense for blend points. For vertices on tubular features, that
is with two or more connected components in γ(p,Ri), it is checked if the surface intersected by
the sphere encloses a volume which is inside or outside the surface (see Figure 2.7). In this case,
the status characterization allows to distinguish a handle from a deep tubular depression of the
surface.

Let us consider the status characterization in the case of one component first. As for curvature
computation, concavity/convexity evaluation at a vertex p of a triangular mesh is highly affected
by local noise in the Star(p). The local geometry is depicted in Figure 2.12(a): a given edge e
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(a) (b) (c)

Figure 2.11: (a) Blend vertices classified as (b) cylindrical and (c) conical.

shared by triangles t1, t2 of a mesh is convex (resp., concave) if the angle formed by t1, t2, inside
the surface, is less (resp., more) than π.

Consequently, a given vertex p is defined strictly convex (resp., strictly concave) if all the incident
edges in p are convex (resp., concave). Because in most cases the incident edges in p are both convex
and concave, the previous classification cannot be applied. Note that even a slight modification
of the point coordinates can produce a complete different classification. For these reasons, the
method adopted for assigning a convex or concave label to a vertex p at scale Ri again uses the
intersection between the mesh and the sphere. In the case of one connected component of the
intersection curve, the center of mass b of γ and the average normal N of the intersected triangles
are computed. The vertex p is considered concave (convex) at scale Ri, if p lies below (resp.,
above) γ, that is < N, b − p > 0 (resp., < 0), where ‘< , >’ denotes the inner product. We refer
to Figure 2.12(b) for an easier understanding.

Suppose now that γ(p,Ri) has two intersection components. Again we can distinguish between
the case in which the local shape is a tubular protrusion or a tubular well of the surface (see Figure
2.7(a), (b)), in analogy with the property of convex/concave mentioned above for points generating
one intersection curve. If the number of connected components of the intersection curve is two, as
in Figure 2.13(a), we consider the orientation of each component of γ(p,Ri) as naturally induced
by the surface orientation (see Figure 2.13(b)). If p lies on a tubular protrusion of the surface,
it happens that the normal vector of the average plane related to each connected component of
γ(p,Ri) is directed towards p (see Figure 2.13(c)) according to the right-hand rule; if p appears
on a tubular depression of the surface, the vectors have opposite directions. This statement holds
for three or more connected components too, thus it is possible to discriminate between a branch
on the outer surface or a splitting cavity.
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(a) (b)

Figure 2.12: (a) Edge concavity or convexity criterion and (b) configuration of the intersection
curve normals around a concave point.

2.4 Algorithm and implementation details

This section deals with the implementation details of the algorithm used for the sphere-mesh
intersection, which is the core of the shape characterization. Throughout the discussion we refer
to the pseudo-code given at the end of the section. The mesh is encoded by means of a triangle-
based data structure which stores:

• for each triangle, its three vertices and its three adjacent triangles, which represent the
Triangle-Vertex (TV ) and Triangle-Triangle (TT ) relations, respectively

• for each vertex, its coordinates and one (arbitrary) of its incident triangles (V T ∗).

The Vertex-Triangle relation (V T ) associating to a vertex all its incident triangles is necessary
to navigate the mesh, but the memory space required can be strongly optimized by coding just
one of those triangles per vertex (partial Vertex-Triangle relation or V T ∗). The total V T relation
can be retrieved in linear time by iteratively applying the TT relation starting from the stored
triangle. A scheme of the data structure is given in Figure 2.14. The storage of this data structure
requires 3nV ∗ sizeof(float)+ 6 ∗ nT ∗ sizeof(int)+ nV ∗ sizeof(int), since vertices and triangles
occur in the TT , TV , and V T ∗ structures as integers.

For each vertex v the computation of the intersection curves between the mesh and a set of n
spheres centered in v with increasing radii R1,. . ., Rn is computed as follows:

• one of the triangles incident in v is inserted in the queue Q (this operation takes constant
time if we have the V T � data structure) and it is marked as visited;

• a triangle t is extracted from Q and the main loop is repeated until Q is empty;
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(a) (b) (c)

Figure 2.13: Situation in which two orientation curves are generated: (a), (b) curve orientation
derived by triangle orientation, (c) average normal of intersecting curves.

• the algorithm checks if the spheres intersect t: for each radius Ri, if at least two vertices p,
q of t, distinct from v, satisfy the conditions ‖p− v‖2 ≤ Ri, ‖q − v‖2 ≥ Ri, t is intersected
by the sphere S(v,Ri). This operation takes constant time. In this case, t is considered
as a seed triangle for tracing the whole line of intersection whose continuation is searched
in the triangles adjacent to t. The function intersection is thus invoked to complete the
intersection curve starting from t and moving on its neighbors intersected by S(v,Ri). The
curve t ∩ S(v,Ri) is calculated considering the intersection points between the sphere and
each edge of t. More precisely, given an edge [a, b] of t, we can parameterize it as u(s) :=
sa+ (1 − s)b, 0 ≤ s ≤ 1; the intersection points, if any, are located as u(s0), u(s1) with s0,
s1 solutions in [0, 1] of the equation ‖u(s)− v‖22 = R2 of degree two in the unknown s. As
shown in Figure 2.15, the length of γ(v,Ri) is the sum of the composing arc lengths, each one
belonging to an intersecting triangle, and given by Riθ where θ is the angle âpb, a, b being the
intersection points. The call of this function increases the number of connected components
of the intersection line for a given radius. Moreover, the neighbors of the intersection triangles
traversed but not marked, that is, those ones which lay outside S(v,Ri) but inside S(v,Rn),
are inserted in Q;

• If t is not an intersection triangle and it lies inside the sphere of maximum radius S(v,Rn),
its neighbor triangles (if not marked) are inserted in Q; otherwise, it is simply discarded.

The construction of a connected component of the intersection line may take as many constant
operations as the number of intersection triangles, i.e. O(nT ) in the worst case. However, in
this implementation each triangle is visited only once marking triangles when they are inserted
in Q avoids to consider them more than once, and the intersection triangles traversed during the
execution of intersection are not stored in Q. Therefore, the main loop takes O(nT ), that is O(nV );
doing this operation on the whole mesh takes O(n2

V ) time. Note that if the step between the radii
is small with respect to the average edge length, a triangle can be easily intersected by more than
one sphere, and the function intersection could be invoked on the same triangle as many times
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Figure 2.14: Data structure organization: the information for the vertex vi and the triangle tj are
shown.

Figure 2.15: Approximated length of the intersection paths.

as the number of radii. Anyway, once the number n of radii is chosen this is a constant value, so
that the loop (L) does not increase the complexity.

main(){
Q = ∅;
�(connected comp. for Ri):=0;
for all v ∈ V {

Q←− TV �(v);
// main loop
while( Q �= ∅ ) {

t = first element removed from Q;
(L) for (Ri = R1, . . . , Rn)

if ( ∃ vl, vm ∈ TV (t) : ‖v − vl‖2 ≤ Ri

& ‖v − vm‖2 ≥ Ri ){
intersection(t, Ri,v);
� (connec. comp. for Ri) ++;}

}
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for all ti ∈ TT (t)
if( ti is not marked & (∃vl ∈ TV (ti) : ‖v − vl‖2 ≤ Rn ) )

Q←− ti;
}

intersection(t,Ri,v) {
Li= intersectionLength(t,Ri,v);
tnext = t;
do {

tnext = ti ∈ TT [tnext] : ti ∩ S(v,Ri) = ∅
Li += intersectionLength(tnext,Ri);
if( ti is not marked & (∃vl ∈ TV (j, i) : ‖v − vl‖ ≤ Rmax ) )

Q←− ti;
} while(tnext �= t);

}

2.5 Mesh decomposition

The focus of this section is the integration of the different characterizations, described in Section
2.3, to achieve a unique segmentation of the input mesh into morphological features represented by
closed regions with uniform properties. In Table 2.1, a summary of the labels assigned to vertices,
for a given scale Ri, is shown. After the label assignment, the input mesh is decomposed into
patches using a region-growing procedure, and each patch corresponds to a shape feature relevant
at scale Ri.

The morphological classification associates a vector of feature labels to each vertex, and each
label describes the vertex at the corresponding scale. Selecting the scale of interest, the surface
can be rendered using a color-coding of the feature labels. The achieved decomposition is an
affine-invariant segmentation into disjoint, non-empty subsets which code the geometry and shape
evolution through scale changes. In Figure 2.16, an example is shown; the different views display
the mesh decomposition at different scales, and the colors are those give in Table 2.1.

The tools defined are used to analyze a shape at different scales, but they can also be used to
derive information about the persistence of a shape feature across the scale range. It is also
possible to define a basic query language which allows to extract features defined by the user as
relations among morphological labels at different scales. For example, there has been defined a
coarse feature-based query language, which allows the user to submit a query like “which are the
vertices whose feature type is TIP at scale R3 and MOUNT at scale R6?”. To this purpose, a
query vector with wild card vq, where vq[i] specifies the requested feature type at scale Ri, and the
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Table 2.1: Morphological feature characterization.
Label Feature Color #∩ Geometric Status

T TIP red 1 L/Ri ≤ Ts convex
P PIT blue 1 L/Ri ≤ Ts concave
M MOUNT orange 1 Ts < L/Ri ≤ Tb convex
D DIP cyan 1 Ts < L/Ri ≤ Tb concave
B BLEND pink 1 L/Ri > Tb –
L LIMB yellow 2 L2/L1 ≥ Tc full
W WELL violet 2 L2/L1 ≥ Tc empty
J JOINT brown 2 L2/L1 < Tc full
F FUNNEL gray 2 L2/L1 < Tc empty
S SPLIT green ≥ 3 – full
H HOLLOW-Y black ≥ 3 – empty

AND/OR Boolean operators are used. For instance, suppose we used a set of ten radii; the vector
[*,*,T,*,*,M,*,*,*,*] with the AND operator specify the previous query. Here, feature labels are
those in Table 2.1, and the symbol ‘*’ means that, at that scale, each feature type is allowed.

The combination of morphological labels with logical operators enables the construction of a high-
level language for shape interrogation guaranteeing a multi-task model. In fact, the user is able to
extract a single shape element using a single query, to combine them and, as discussed in Chapter
4, to locally modify the geometry, by using other surface patches, or modifying the topology by
changing the structure of the adjacency graph which codes the shape decomposition.

The results obtained (see Figure 2.17) suggest that further improvements of the query language
will allow the extraction of higher-level features, like handles or main body of a given surface.
Tubular components can be extracted choosing LIMB OR JOINT vertices; among them, han-
dles correspond to cycles in the region adjacency graph, and protrusions are adjacent to TIP or
MOUNT zones. Selecting points which assume TIP OR MOUNT OR DIP OR BLEND features
at most levels of detail identify the main body of the surface, and so on. Using the described
language, a mesh can be analyzed in a rather flexible way.

Instead, if we are willing to extract a global shape description which takes into account the
whole range of scales into a single decomposition of the mesh, the following voting algorithm for
persistence can be used. First, the points are classified according to the intersection connectivity,
that is, according to the number of single, double, or multiple components in the intersection
boundary, considering the whole range of scales. The mesh is therefore segmented in parts which
are characterized by having either almost always one intersection, or two, or more. This step
provides a first insight on features which are persistently protrusion-like, handle-like or branch-
like, without distinguishing if they are convex/concave or full/empty. In Figure 2.18(a), the result
of this segmentation is shown, where the blue parts are composed by vertices having only one
intersection for more than the 75% of scales, the red are those having two intersections for the
same threshold. Finally, the grey areas are those corresponding to shape transitions where both
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Figure 2.16: Shape segmentation on the pot at different scales.

one and two intersections occur approximately in the same percentage.

Within each of the resulting parts, a further classification can be done considering the related
geometric characterization. For example, in Figure 2.18(b) the shape vertices are colored with
different blue saturations depending on the curvature; a darker blue corresponds to a higher
curvature. An analogous criterion is applied to vertices with two intersections using their relative
length where a lighter red is related to cylindrical-like features. With regard to the choice of the
threshold for the persistence analysis, the value has to be tuned according to the number of radii
used. In our experiments, we used an average of ten radii and the value 75% provided good results.
A threshold bigger than 75% has also been used, and it results in a stricter selection of patches
with one or two intersections; this choice generally enlarges transition areas.

2.6 Method insights

In this section, results and properties of the shape characterization are discussed, focusing on the
comparison between the multi-scale and the persistence analysis. Examples of an application of
this method for skeleton extraction are also given in Chapter 3.

First of all, let us discuss the behavior of the curvature evaluation using different scales. The
curvature is analyzed in a neighborhood whose size depends on Ri: for small values of Ri, such as
the average length of the edges incident in p, the curvature approximation resembles the discrete
curvature estimation proposed in [DMSB02] and shows similar problems while, for increasing
values, it becomes more stable to noise. We have tested the behavior of the curvature on smooth
and rough surfaces, as follows.
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Figure 2.17: Queries with matched points are depicted in red. The use of AND, OR operators
among the scales is specified before the label vector. The round parenthesis between labels work
as OR between feature at the same scale.

The first test surface used is a torus and the multi-resolution curvature has been compared using
two radii: Ri equal to the minimum edge of the input mesh and 2Ri. Curvature values achieved
with Ri corresponds to the theoretical point classification into parabolic, hyperbolic, and elliptic
regions on the torus (see Figure 2.19(a)). Increasing the radius to 2Ri, results in a similar classifi-
cation where parabolic points, identified as the boundary between hyperbolic and elliptic ones, are
shifted with respect to their theoretical position represented by the green line (see Figure 2.19(b),
(c)).

The shape decomposition has been tested for stability to noise also on a rough surface. In Figure
2.20(a) and (c), the results obtained on the rabbit and on the same data set with added noise are
compared. The main features, like tips and limbs, are preserved and the influence of the thresholds
involved is lessened by the persistence analysis (see Figure 2.20(b) and (d)).

The multi-scale decomposition depends on the chosen set of radii, and if a too small radius leads
to noise problems on the other hand, a too large radius can give a meaningless result. Small radii
can be used to determine detail features while bigger ones are able to capture global characteristics
of the surface. From these considerations, it follows that the choice of Ri is related to the scale
of the features which have to be extracted, and the use of a set of increasing radii is suitable for
performing a multi-scale analysis of the shape.

The multi-scale analysis can be used also for a generic segmentation of the surface according to the
curvature evaluation, by grouping those points which share a similar curvature value with respect
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(a) (b)

Figure 2.18: (a) Persistence analysis of the number of intersection curves and (b) its refinement
using geometric information.

(a) (b) (c)

Figure 2.19: The point classification corresponding to Ri chosen as the minimum edge: (a) red
and blue vertices locate elliptic and hyperbolic points while the green line visualizes the theoretical
parabolic line. The results obtained with radius 2Ri are shown in (b), (c).

to a given threshold ε and a radius Ri, i.e.

p, q belong to the same patch⇐⇒ |Lγ(p,Ri)− Lγ(q,Ri)| ≤ ε.

This approach is commonly applied by segmentation methods based on curvature. Depending on
the type and complexity of the shape to be analyzed, the simple curvature evaluation may give
better results than the refined segmentation. The segmentation described by the labels in Table
2.1 corresponds, indeed, to a decomposition into protrusion-like and handle-like features which
might be not relevant for certain shapes. As shown in Figure 2.21, shapes composed by detailed
and unstructured features are better analyzed with the multi-scale curvature evaluation, because
in such case a decomposition into features, such as limbs and tips, is not meaningful. Future
developments will mainly focus on the specification of the feature adjacency graph and on the
study of its evolution within the scale range required.
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(a) (b)

(c) (d)

Figure 2.20: (a), (b) Shape segmentation and persistence analysis on the original rabbit, and
(c), (d) on the model with added noise. Achieved segmentation based on persistence analysis are
nearly identical.

2.7 Feature-based segmentation

The evolution of intersection curves produced by blowing bubbles at mesh vertices has been proved
to be a good approach to characterize a shape using meaningful shape features. Increasing the
radius of the bubbles produces an easy and efficient multi-scale analysis of the shape, which
can be effectively used to produce a set of specific and flexible tools for shape analysis. The
resulting description is an affine-invariant segmentation of disjoint, non-empty subsets and equally
distributed in all directions, which codes the geometry and shape evolution through scale changes.
Finally, the decomposition is computationally affordable and consistent with previous work on
these topics.

In the following, we specialize this shape classification method for detecting tubular features of
3D surfaces represented by a triangle mesh. The Plumber algorithm segments a surface into
connected components that are either body parts or elongated features, that is, handle-like and
protrusion-like features, together with their concave counterparts, i.e. narrow tunnels and wells.
The segmentation can be done at single or multi-scale, and produces a shape graph which codes
how the tubular components are attached to the main body parts. Moreover, each tubular feature
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Figure 2.21: Feature decomposition on the dragon at three different scales.

(a) (b) (c) (d) (e)

Figure 2.22: Global framework: (a) curvature estimation on the horse with different radii, (b)
peak regions are extracted with a query, (c) regions selected in (b) are used as seed points for
extracting the skeleton, (d), coarse persistence analysis, (e) refined persistence analysis.

is represented by its skeletal line and an average cross-section radius.

Given a two-manifold closed surface represented by a triangle mesh, Plumber automatically ex-
tracts the features that can be described as generalized cylinders or cones; we call these features,
together with their concave counterparts, i.e. narrow tunnels and wells, tubular features. The
Plumber approach classifies the vertices of a given triangle mesh according to their curvature and
shape behavior in neighborhoods of increasing size (see Figures 2.23, 2.24). Seed vertices are
located on tubular features, and clustered to form candidate seed regions which are then used to
compute the first reliable tube section, called the medial loop, which is ensured to be around each
candidate tube and which works as a generator of the feature. Then, the medial loop is moved in
both directions on the surface, by using spheres placed at the barycenters of the new medial loops,
until the tube is completely swept. The size of the tube is related to the radius of the sphere, and
the stop criterion is given by the abrupt variation of the medial loops’ lenght. The tube detection
is devised in order to work in a multi-scale fashion, where small tubes are detected at first and
larger ones at following steps. After the surface segmentation, a geometric representation of each
tubular feature is constructed by computing its skeletal line. The configuration of each feature,
whose section and length can arbitrarily vary, and its attachments to the body are hierarchically
coded in a shape graph.

Different application fields make the surface segmentation an important task. For instance, while
tubular structures can be quite easily defined during design processes their automatic extraction
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(a) (b)

Figure 2.23: Tubular features recognized by Plumber on a complex model: (a) tube axis and loops,
(b) tubes colored with respect to their scale.

from 3D meshes is not a trivial task. We believe that a variety of applications, especially shape
recognition and analysis, will benefit if tubular features are identified and abstracted to a centerline
and a set of sections. These abstract models, may facilitate the measurements of changes over
time in medical applications (e.g., calcification process), or detect abnormalities such as unnatural
narrowing or ballooning. Finally, reliable cylindrical models are essential for proper design of
prosthetic tubular structures.

The basic idea of Plumber consists of describing a shape by using both local point-wise, and global
region-wise measures for shape decomposition and skeleton extraction; in the following, we review
the state of the art on those concepts used in the chapter.

In [KT03], the segmentation method is defined as a fuzzy clustering of vertices where the prob-
ability that a face belongs to a patch depends on its distance from the other faces of the patch.
The advantage of the method is the avoidance of over-segmentation, and that boundaries between
adjacent regions are not jagged. The results show that the segmentation is meaningful, in the
sense that the extracted components locate the main natural features of the surfaces. In [LTH01],
tubular parts are identified using a sweeping techniques along the arcs of the skeleton which is
constructed by joining the edges remaining after an edge collapse process on the whole mesh.
These edges are linked in a tree structure, and it is used as a support for the sweeping process
where the mesh is intersected by a set of planes and tubes are identified by looking at the geometry
of the cross-sections.

The main difference between Plumber and segmentation methods previously discussed is that
we extract building primitives of the surface with a specific structure, i.e. generalized cones
and cylinders, and not only related to a curvature and concavity analysis [MPS+04a, KT03].
Furthermore, while skeletal representations do not provide a scale-based decomposition of the
shape and are usually unstable with respect to wripples or wrinkles, Plumber differentiates tubular
features of different dimension.
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(a) (b) (c) (d)

Figure 2.24: Plumber method: (a) identification of limb vertices, (b) extraction of their connected
components and medial loop, (c) iteration, (d) tube and a cap (black) found at this scale.

2.8 The Plumber method

Intuitively, ideal tubes are identified by parts of the shape whose intersection with a sphere of
appropriate radius produces two intersection curves. The section of the tube and its axis can be
arbitrarily shaped, and the size of the tube is kept as a constraint during the identification process.
Chosen a level of detail R, Plumber performs the following steps:

1. identify limb-regions associated with at least two loops on M (see Figure 2.24(a)). This
classification is achieved by using the approach described in the first part of this chapter;

2. shrink each of the two selected boundary components along the surface to its medial-loop,
whose points are nearly equidistant from the two border loops (see Figure 2.24(b));

3. expand-back the medial-loop by sweeping the extent of the shape in both directions. More
precisely, at each iteration we place a sphere of radius R in the barycenter of the new medial
loops. If the intersection between the sphere and the surface generates two loops, mesh
vertices inside the sphere are marked as visited;

4. the procedure is iterated in both directions until:

• no more loops are found, or more than one loop is found on not-visited regions;

• the new loop lies on triangles that are already part of another tube, or the length of
the new loop exceeds a pre-defined threshold.

5. the tube skeleton is extracted by joining the loops’ barycenters.

The previous steps are detailed in the following paragraphs.

Vertex classification. Intersecting the mesh with a sphere with radius Ri allows to identify
limb-vertices if they lay on a tube of diameter Ri or smaller. At each vertex p ∈ M , we consider
three spheres of radius Ri− ε, Ri, and Ri + ε with ε given threshold proportional to the minimum
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(a) (b) (c) (d)

Figure 2.25: In yellow limb-vertices found at scale R − ε (a), R (b), and R + ε (c). All the limb
vertices are depicted in (d).

edge in the triangulation. We consider limb vertices those ones whose curve γi has two or more
boundary components (see Figure 2.25). This classification improves stability for identifying tubes
of arbitrary cross section where isolated limb-vertices could appear; a stricter choice consists of
considering as limb vertices those ones classified with the same label at all the three scales.

Identification of tube candidates from limb vertices. The second step is the identification
of the maximal edge-connected components of limb-vertices, using a depth-first search. Note that
while the analysis of the evolution of γi produces a vertex-oriented classification of M , regions
composed by limb-vertices are not guaranteed to be tube-shaped as a whole (see Figure 2.24(a), on
the handle). In particular, limb regions may have not two boundary curves. Therefore, the next
step defines a criterion for judging if a limb-region is a good candidate for the tube identification;
that is, the limb-region is around the tube. For instance, in the case that the tube section is
ellipsoidal and its size is greater than the chosen scale, it may happen that the spheres used to
classify the vertices produce only one intersection curve on one side of the tube, and two on the
other side (see Figure 2.26), thus giving rise to a limb-region not surrounding the tube. Therefore,
the region is not tube-shaped at the given scale and it has to be discarded; it will be found at a
larger scale.

Medial loop generation. Seed tubular regions are used to construct a medial loop around each
candidate tube that will be used for the tube identification and its centerline construction.

Since we have already detected all the candidate tubular regions, a seed point for each tube is
selected; for instance, we could choose the centroid of each region, i.e. the point with maximum
distance from the region boundary, and then generate the loop with one of the methods proposed
in [VF02, GW01, LPVV01]. Instead, Plumber relies on the limb-region boundaries which are
loops surrounding the tube. The idea is to find the medial loop by moving the boundary loops in
the middle of the limb-region; to this end, we perform a morphological shrink by simultaneously



Geometric classification and decomposition of 3D surfaces 55

Figure 2.26: Example of limb-regions (in yellow) whose vertices on γ have one boundary compo-
nent.

invading the component from its two boundary components.

Firstly, the two boundary components of the limb-region (the two of greater length if the region
has three or more border loops, as in Figure 2.27(e)) are computed. Let R and L (for “right”
and “left” respectively) be the two boundary components of the tube; at first, each vertex p on L
is associated with the couple (0,+∞) that indicates that p has distance 0 (resp., +∞) from the
boundary L (resp., R). The same initialization applies to R.

The distance of a vertex p from one boundary is computed as the shortest edge path connecting
p with a boundary vertex. Then, the distance values of all points are updated, propagating from
L and R towards the interior of the region. The distance propagation from L will update the
first value of the distance vector, while that from L will affect the second field; at the end of the
process, vertices are classified as nearer to L or R (see Figure 2.28). Edges connecting vertices
of different type are cut by the medial loop we are looking for; that is, we join the mid-points
of those “medial edges” to produce a medial loop. This construction achieves two good effects
with respect to other methods [Kar99, VF02]: the medial loop is guaranteed to be non-trivial and
inside the region. The non-minimality of its length does not affect the growth of the tube and
the construction of the skeleton. In the case of three or more boundary components, the choice
of starting from the two loops of greater length is to guarantee a stronger reliability to the tube
extraction with respect to smaller intersection curves which may be due to local undulations of
the shape.

Loop expansion and skeleton construction. The loop expansion is controlled by a verifica-
tion procedure which, at each step, extends the center-line and at the same time ensures that the
surface is tubular around it. A first medial sphere is drawn, whose center p is the barycenter of
the medial loop, and whose radius is R. If M ∩ S(p,R) has not two boundary components, the
growing stops and the candidate tube is discarded. Otherwise, a new sphere with the same radius
is centered in the barycenter of the two loops; the process is then split into two parts, trying to
grow the tube in both directions. Now we focus on the sphere moving in one of the two directions,
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(a) (b) (c) (d) (e)

Figure 2.27: A tubular region affected by small features, like the neel. The configuration of the
sphere/mesh intersection is depicted, with spheres centered in vertices of different feature types:
(a) limb, (b) blend, (c), (d) tip, (e) split.

(a) (b) (c)

Figure 2.28: (a) Limb vertices, (b) connected component of the limb vertices with two boundary
components, and medial loop (marked curve), (c) medial sphere centered in the barycenter of the
medial loop, and tube growing.

since the other case is symmetric.

At each iteration, the sphere rolls to the barycenter of the next loop and the triangles laying com-
pletely or partially inside the sphere are marked as belonging to that tube. Then, the intersection
between the sphere in the new position and the mesh is again computed, taking into account only
the intersection curves through non visited triangles (all the spheres except the medial one have
always a “backward” loop, passing on the already marked triangles). During the loop expansion,
the following cases may arise:

• no intersection curves are found. This is the case of a tubular protrusion terminating in a
tip; visited triangles locate a cap (see Figure 2.29(a), in the square);

• the intersection curve consists of one loop (see Figure 2.29(a)). If its length is less than a
pre-defined threshold, the size of the tube section is not varying too much; the loop becomes
a new cross section and its barycenter contributes to the skeleton as a new node. Otherwise
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(a) (b)

Figure 2.29: (a) No new loop is found on the snake tail (in the box), and a loop discarded after
the length check on the head (in the oval). (b) A branching occurs on the dolphin tail.

(see Figure 2.29(b), in the oval), the growth stops.

• the intersection counts two, or more loops; that is, a bifurcation occurs (see Figure 2.29(b)).
The growing of the tube in this direction stops and the last visited triangles are unmarked.

Finally, the barycenters of the medial loops are joined to define the tube skeleton.

Multi-scale analysis. The extraction of tubes at scales R1, . . . , Rn adopts a fine-to coarse
strategy, marking triangles as visited while the tube grows and which are not taken into account
during the following steps (see Figure 2.30). Analogously, the medial loop computation simply
does not take into account smaller tube vertices, propagating distance values only on not-visited
vertices (Figure 2.30(d)). Decisions are taken when the loop passes partially on not-visited and
tube triangles. For example, in the case depicted in Figure 2.30(e), the two smaller loops fall on
tube triangles, and are not counted; therefore, this is the case of two intersection loops and not
that of a branching. The tube is grown and the result of the two iteration steps is shown in Figure
2.30(f). This set of radii is selected by the user or assigned by uniformly sampling the interval
from the minimum edge length in M to that of the diagonal of its bounding box.

At the end of the whole process, tubes are labeled with respect to the scale at which they were
found. The connected components of the shape parts which are not classified as tubes or caps define
body parts of the surface, and the resulting decomposition is coded in a tube-body connectivity
graph which represents the spatial arrangement of the tubular features onto bodies. A smooth
transition of radii ensures a meaningful growth of the tube at a scale Ri, while discarding smaller
features and analyzed at the previous levels of detail Rj , j = 1, . . . , i− 1.

Strict/non strict mode. Together with the size of the sphere rolling over the centerline, the
other parameter to be fixed in the tube growing step is the threshold in the loop length check. To
this end, we stop the growing when the tube becomes too large, i.e. the length of the intersection
loops varies too much.
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(a) (b) (c) (d) (e) (f)

Figure 2.30: Iteration of Plumber at increasing scales.

If we consider a natural surface, we probably do not want to decompose natural limbs into pieces;
on the other hand, in the case of a manufactured model, we may want to be precise with respect
to the tube size, eventually splitting a tube into components of (even slightly) different sections.
For this reason, two alternatives are available (see Figure 2.31):

• a strict mode, useful in CAD and medical applications;

• a non-strict mode, for other applications where a continuous variation of the tube size does
not require to split the tube.

In the strict mode, each time a new loop is generated its length is compared with that of the
intersection loops associated to the medial sphere at the beginning of the process, and not with
the length of the medial loop tube section which can be non minimal and misleading. Other
choices were also taken into account, such as average, minimum, and maximum tube length; the
one adopted is a compromise between the required strictness and robustness. In the non strict
mode, a loop is accepted if its length is less or equal to twice the length of the previous loop. In
both cases, the user can select values on the base of a-priori information or specific needs.

Shape graph. Throughout the previous paragraphs we have detailed a method for identifying
and classifying tubes of different size and bodies achieving a segmentation of the input surface.
We enrich this geometric classification with an explicit representation of the structure of the model
which codes the relations between primitives in a hierarchy of tubes and bodies. This structured
representation is a shape-graph whose nodes are the extracted primitive shapes, while the arcs
code the adjacency relation among the previous ones, i.e. their relative position and orientation.
Each node is a tube, whose labels are the medium radius and the axis length, a body, whose labels
are the number of holes and the approximate volume, or a cap, whose labels are the basis section,
the axis length and the curvature extrema. Each arc between two adjacent nodes falls into one
of these cases (see Figure 2.32 and 2.33): tube-body, tube-tube, cap-tube. The tube-body or
tube-tube adjacency is called H-junction (i.e., handle-junction) if both boundaries of the tube lay
on the same body or tube respectively; in this case, the arc is a loop and the tube locates a handle
on the input surface. In the case that only one boundary of the tube belongs to the tube-body
the adjacency is called a T-junction.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (l)

Figure 2.31: (a) Initial level of detail, (b) limb-region, (c) tube growing in non-strict mode, and (d)
tube extraction. In (e), tube growing from the same limb-vertices in strict mode, (f) the extracted
tube, (g-i) next iterations, (l) achieved segmentation at the chosen scale.

Computational complexity. The predominant cost of the method is represented by the initial
surface characterization [MPS+04a] to detect limb vertices, which is O(n2

V ) with nV number of
mesh vertices. The following tube extraction procedure is much faster. The clustering of limb
vertices into regions is treated triangle-wise; starting from a first seed triangle having three limb
vertices, the region is constructed adding neighboring limb triangles through a breadth-first search.
The boundary computation of a region is linear in the number of vertices of the region: all the
vertices are visited, and when a seed boundary vertex is found, the boundary loop which it belongs
to is computed moving by adjacency.

The medial loop computation is in the worst case very expensive: the problem of computing the
minimal distance between two vertices can be solved by the Dijkstra’s algorithm in O(nlog(n)),
where n is the region cardinality, but in our case the minimum distance from all the boundary
points takes O(n2log(n)). In practice boundary vertices are much less than n, about n1/2, thus
reducing time complexity in the average case. The tube growing procedure consists at each step in
a triangle visit, starting from those laying on the previous medial loop, until a triangle intersected
by the sphere is found. Each triangle inside the sphere is visited once, and the computation of the
intersection curve itself is linear in the number of intersected triangles, determined by adjancency.
So each tube is grown in linear time with respect to the number of triangles it includes. Timings
are reported in Table 2.2.

2.9 Applications and Conclusions

The Plumber algorithm provides a multi-scale method to decompose a complex shape into its
tubular features and bodies. The segmentation considers as bodies those regions that are not
tubular shaped; therefore, a sub-classification of these primitives is necessary. Main difficult
tasks are their identification, general configuration and the identification of a basic shape for the
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(a) (b) (c) (d)

Figure 2.32: (a) Centerlines on a tea-pot with respect to two levels of detail, (b), (c) segmentation
of the tea pot into cap, body, tubes and adjacency relations, (d) shape graph.

(a) (b)

Figure 2.33: Surface decomposition and shape-graph: (a) decomposition of the inner part of the
ear into four tubular patches codes as H-junction; (b) the corns of the goat are coded in the shape
graph as T-junction.

abstraction.

The interpretation and categorization of tubular features has the drawback of introducing heuristic
thresholds to make decisions on the tube size, or for distinguishing branching parts from compli-
cated configurations of tubes as in Figure 2.23 and 2.30. The reduction of the influence of these
parameters and the abstraction of tubular features with generalized cylinder and cones for collision
detection applications are the further improvements of Plumber.

The usefulness of the description obtained goes beyond the problem of shape decomposition or
applications to virtual humans (see Figure 2.34); in Chapter 3 and Chapter 4 it serves as a basis
and for building effective tools for shape processing and editing. More precisely, in Chapter 3 the
multi-scale curvature evaluation is used to find the seed points for the construction of an affine-
invariant skeleton which represents the input for a wide class of applications, such as matching
and topological characterization of 3D-shapes; Figure 2.22 shows all the steps of the construction.
This segmentation is also exploited in Chapter 4 for defining a feature-based local parameterization
of surface with an arbitrary genus.
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Table 2.2: Plumber timings (m:s:ms) performed on an Athlon 1000 MHZ.

Model nV Vert. classif. Medial loop Tube grow

Cylinder 4038 00.26.84 00.15.45 < 1sec.
Pot (1 iter.) 14616 00.08.47 00.03.24 < 1sec.
Pot (2 iter.) – 00.13.45 00.13.50 < 1sec.
Schale 10892 00.19.65 02.25.96 < 1sec.

Figure 2.34: Segmentation into tubular features, and related skeletal lines, of human bodies with
respect to different levels of detail.
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Chapter 3

Topological analysis of 3D surfaces

This chapter deals with the continuous and discrete definition and analysis of scalar fields f :
M → R on smooth and discrete surfaces. We discuss the definition of topological graph-like
representations (i.e., the Reeb graph) which provide a powerful and synthetic sketch of the surface.
Then, we present the extraction of a Reeb graph achieved by expanding topological rings on M
starting from high-curvature regions identified by the algorithm described in Chapter 2. Among the
wide range of applications of these concepts (e.g., modeling, morphing, matching, and recognition),
in Chapter 4 we use this theory for generating an atlas decomposition of an arbitrary surface
finalized at the local parameterization problem and the Reeb graph is used for solving the global
parameterization of surfaces with an arbitrary genus.

3.1 Introduction

A possible approach to the problem of shape classification and understanding is to represent
shape properties of a given surface through shape descriptors which are useful to detect those
characteristics which are invariant to position, orientation, and local noise. Among all, descriptors
based on geometry and topology are suitable for dealing with the definition of basic models for
representing and generating shapes. For these reasons, an increasing attention has been focusing
on the formalization of shape as a combination of geometry, topology, and semantic in order to
define tools for assessing the similarity among different models. Shape interpretation is especially
relevant for the perception of complex forms, where the ability of varying the level of descriptive
abstraction is the key for recognizing and classifying highly complex shapes through a multi-
resolution framework which abstracts the surface at different levels of detail. The aim of skeleton
extraction is to take out and convert shape characteristics and properties of the surface into a
compact representation. One of the best known shape descriptor is the Medial Axis introduced in
Section 2.1. From a mathematical point of view, classical tools as Morse theory, homotopy, and
homology are appropriate to deal with topological questions in Computer Graphics applications.

62
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A high level representation of M, and strictly related to our method, is provided by the Reeb
graph [Ree46] which is defined by coding the evolution of the level setsMα := {x ∈ M : f(x) = α},
α ∈ R, on M with respect to a given smooth function f : M → R. When the height function
is chosen, the graph results in an intuitive representation but it does not distinguish between
structural and detail features. Furthermore, the description is not affine-invariant depending on
the direction of the chosen height function and providing different graphs according to the position
of the surface in space.

Overview and contributions. The main contribution of this chapter is the extraction of a Reeb
graph RG of a surface triangulation M which is invariant with respect to affine transformations.
Using RG as an alternative representation of M is of basic importance for solving several and
different problems which spread from recognition to matching [BMM+03] and parameterization
[PSF04]. The following discussion provides the background exploited in Chapter 4 for studying
the local and global parameterization of surfaces represented by triangle meshes. More precisely,
the Reeb graph RG induced by an arbitrary scalar field f on M will be used for defining a
decomposition of M into 0-genus charts each one is parameterized with respect to a smooth cut
which reduces it to have one boundary component (see Section 4.6). The global parameterization
is based on the link between the combinatorial structure of RG and the topology of M; in fact,
the cycles of RG will be used for identifying the topological handles of M and the associated
iso-contours locate the meridian curves along which the surface is cut for reducing its genus to
zero (see Section 4.8).

The chapter is organized as follows: in Section 3.2, we introduce definitions and properties of
Morse Theory and the Reeb graph detailing its discrete counterpart for continuous functions
defined on arbitrary triangle meshes [Bia04]. Then, in Section 3.3 we present an affine-invariant
skeletal representation of triangle meshes starting from high-curvature regions of the input surface
[MP02a, MP02b, MPS+04a], extracted using the method detailed in Chapter 2. In Section 3.4,
we prove that this skeleton is a Reeb graph with respect to the topological distance from global
features defined by curvature extrema. The properties of the proposed approach and a comparison
with the Reeb graph induced by the set of functions which is commonly used is provided in Section
3.5.

3.2 Critical points and Morse functions

Let f :M→ R be a smooth function defined on a manifold M (see Section 1.1.3); if p ∈ M is a
critical point of f (i.e., ∇f(p) = 0), we can consider the second differential of f

d2f =
(

∂2f

∂xi∂xj

)
i,j
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: (a) Maximum, (b) saddle, and (c) minimum. (d-f) Associated iso-contours with respect
to the height function.

which defines the symmetric bilinear form on TpM× TpM,

d2f(a, b) =
∑
i,j

∂2f

∂xi∂xj
aibj

where a := (a1, . . . , an) and b := (b1, . . . , bn) are tangent vectors in TpM.

Let V be a vector space of finite dimension, B : V × V → R a symmetric bilinear form, and
Q : V → R, Q(v) := B(v, v), v ∈ V , the corresponding quadratic form. The index of B is the
dimension of the maximal linear space W ⊆ V where B is negative definite, that is, B(v, v) =
Q(v) < 0, for all v ∈ W , v �= 0. The nullity of B is the dimension of the nullspace of B defined
as Ker(B):={w ∈ V : B(v, w) = 0, ∀v ∈ V }; B is defined degenerate or singular if its nullity is
greater than zero. Since B and Q are uniquely determined by their system of eigenvalues and
eigenvectors, the index (resp., nullity) of Q corresponds to the number of negative (resp., null)
eigenvalues.

Definition 9. A critical point p of f is non-degenerate if d2f is non-degenerate at p, that is,
det(d2f) �= 0 at p. The index (resp., nullity) of f at p is the index (resp., nullity) of d2f at p.

Definition 10. A smooth function f :M→ R is Morse if all its critical points are non-degenerate.

It is possible to prove that non-degenerate critical points are isolated, that is, it does not exist a
sequence of non-degenerate critical points of f which converges to these points; therefore, surfaces
with plateaux or volcano rims do not comply with the definition of Morse functions [Mil63].
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Figure 3.2: Evolution of the iso-contours with respect to the height function.

The characterization of non-degenerate critical points is given by the Morse Lemma which locally
characterizes f as a diagonalized quadratic function on appropriate neighborhoods of these vertices.

Lemma 1 (Morse Lemma). If p is a non-degenerate critical point of a function f on a manifold
M, there exists an open neighborhood of p in M and a set of local coordinates (x1, . . . , xn) such
that f has the form

f(x) = f(p)− (x1)− . . .− (xλ)2 + (xλ+1)2 + . . .+ (xn)2

where λ is the index of f at p.

We now consider the case m = 2. If α ∈ R is a regular value of f (see Definition 8), the level curve
(or iso-contour)

Cα := f−1(α) = {x ∈ M : f(x) = α}
is a smooth submanifold ofM (see Theorem 3 at page 13). If we consider

Mα := f−1((−∞, α]) = {x ∈M : f(x) ≤ α},
thenMα is a two-manifold with boundary Cα. The analysis of the changes of the level curves Cα

when α varies in R is detailed in the following proposition.

Proposition 5. Let f be a smooth function on a compact surfaceM, and assume that the interval
[α, β], α < β, does not contain critical values of f . Then,

• the level sets Cα and Cβ are diffeomorphic;

• Mα and Mβ are diffeomorphic as two-manifolds with boundary.

We analyze the evolution of the level curves of f near a non-degenerate critical point p of f ;
without loss of generality, we assume that f(p) = 0. Using the Morse Lemma 1, there exists a
neighborhood U of p and a system of local coordinates (x, y) at p such that:

• the index of f at p is two, that is, f = −x2 − y2; in this case, p is a maximum (see Figure
3.1(a, d)). If ε is a small negative regular value of f , the level set f−1(ε) has a connected
component near p which is a circle with center p in the Morse coordinates x and y;
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(a) (b)

Figure 3.3: Surface of genus two and iso-contours with respect to the height function f , (b) Reeb
graph where the red nodes are related to saddle points and the yellow and green node corresponds
to a maximum and minimum respectively.

• the index of f at p is one, that is, f = −x2 + y2 or f = x2 − y2; in this case, p is a
saddle (see Figure 3.1(b, e)). Let us take into account the case f = −x2 + y2; analog
considerations apply to f = x2 − y2. On U , we consider the three level curves C−ε :=
f−1(−ε) = {(x, y) ∈ U : −x2 + y2 = −ε}, C0 := f−1(0) = {(x, y) ∈ U : x = ±y}, and
Cε := f−1(ε) = {(x, y) ∈ U : −x2 + y2 = ε}. Therefore, C−ε and Cε are the union of
hyperbolas, while C0 is the union of two lines x = ±y;

• the index of f at p is zero, that is, f = x2 + y2; in this case, p is a minimum (see Figure
3.1(c, f)). If ε is a small positive regular value of f , the level set f−1(ε) has a connected
component near p which is a circle with center p in the Morse coordinates x and y.

Theorem 8 (Morse). LetM be a smooth manifold. Morse functions are everywhere dense in the
space of all smooth functions on M.

From the above theorem, it follows that any smooth function onM can be converted to a Morse
function as a result of a perturbation which splits degenerate critical points into non-degenerate
singularities. A Morse function f → R is simple if its critical points have different values; otherwise,
it is called complicated. Using Theorem 8, we can convert a complicated Morse function into a
simple one by moving the critical points which belong to the same iso-contour to closely spaced
contour levels. However, this construction is not always possible if, for example, we want to
maintain symmetries on the distribution of the critical points.

Let us now suppose that M is a compact surface and f : M → R is a Morse function. If f is
simple, the Morse Lemma implies that for every regular value α ∈ R the iso-contour f−1(α) has
the local structure of an isolated point at a maximum or minimum, a transversal crossing of two
curves at a saddle, and a smooth curve at other points. As α varies on R and reaches a critical
value, the corresponding level sets merge, split, appear, or disappear and their evolution (see
Figure 3.2) can be converted into a graph representation as detailed by the following definition.
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Definition 11. LetM be a 2-manifold and f :M→ R be a smooth mapping function. The Reeb
graph RG ofM with respect to f is the quotient space ofM×R defined by the relation “ ∼ ” with

(p, f(p)) ∼ (q, f(q)) ↔ f(p) = f(q)

and p, q belong to the same connected component of f−1(f(p)).

Therefore, the Reeb graph is a linear skeleton which consists of two types of elements (see Figure
3.3):

1. arcs coming from the connected components related to the part of the surface M which is
located between two critical values. All arcs are oriented according to increasing of f ;

2. nodes representing critical points. To each node we associate a label depending on its clas-
sification as maximum, minimum, saddle, or regular point.

For a closed surface M, the relation between the critical points of (M, f) and χ(M) (or equiva-
lently, its genus g) is given by the condition

χ(M) = minima − saddles + maxima, (3.1)

and the following result provides the link between the topology of M and the combinatorial
structure of its Reeb graph [CMEH+03].

Proposition 6. Let M be a connected, orientable 2-manifold of genus g, f : M → R a Morse
function, and RG the Reeb graph of M with respect to f . Then,

• if M is closed, RG has g loops;

• if M has b ≥ 1 boundary components, RG has k loops with g ≤ k ≤ 2g + b− 1.

On the set Q of pairs (M, f) such that M is an orientable, compact manifold and f :M→ R is
a Morse function, we consider the equivalence relation R defined as: (M, f)R(N , g) if and only if
there exists a diffeomorphism ϕ :M→ N which maps iso-contours of f onM to iso-contours of
g on N . In this case, (M, f) and (N , g) are called fiber-equivalent.

Definition 12. Given (M, f) and (N , g) in Q, the associate Reeb graphs RM := M/ ∼f and
RN := N/ ∼g are isomorphic if there exists a homeomorphism between them that:

• preserves the node classification;

• either preserves the orientation of the edges or changes it on all the edges simultaneously.

As stated by the following proposition, the Reeb graph RM of (M, f) uniquely defines the equiv-
alence class of (M, f).

Proposition 7. Let (M, f), (N , g) be in Q with f and g simple Morse functions. Then, (M, f)R(N , g)
if and only if RM and RN are isomorphic. In particular, M and N are diffeomorphic.



Topological analysis of 3D surfaces 68

3.2.1 Discrete Morse Theory and Reeb graph

Above this point, it has been shown that if f is at least C2(M) Morse theory guarantees that
the topological changes of the iso-contours occur only at the critical values of f , and the Reeb
quotient space is represented by a graph whose nodes correspond to critical values and whose arcs
code the evolution of contours. In this section, we consider the discretization of Morse theory
when f is sampled on the vertices of a triangle mesh M and extended to the faces of M by
linear interpolation (see Section 4.5 at page 96, for more details). Common approaches to the
characterization of discrete surfaces use local point-wise criteria to detect and classify critical
points, by simulating the concept of critical point using the connectivity of the mesh as underlying
topological space [Ban67, EHNP03]. Two drawbacks can be identified: first, these methods rely on
the hypothesis that f assumes a different value on all edge-adjacent vertices; second, the number
of the detected critical points is usually very high and pruning or simplification steps are necessary
to make the resulting structures meaningful.

Following the approach proposed in [Bia04], another solution is to observe that the contour levels
decomposeM into a set of regions, whose boundaries contain a complete information for detecting
critical areas and for classifying them as maximum, minimum, and saddle areas. For example, if a
contour does not contain any other contour and the value of the function on it is higher than the
successive one, then the contour identifies a local maximum area for the chosen function f . Let
f : M → R be a real mapping function defined on a triangle mesh M, [fmin, fmax] an interval
containing f(M), and fmin =: f0 < f1 < · · · < fn < fmax := fn+1 the distribution of the values of
the contour levels Cf (M), which are supposed to be all non degenerate contours 1. In addition, let
I = {(fi, fi+1), i = 0, . . . , n}∪{fmin = f0, f1, . . . , fn, fmax = fn+1} be the partition of the interval
[fmin, fmax] provided by the set of the n+ 1 open interior parts of [fmin, f1, . . . , fn, fmax] and the
function values of the contour levels. Starting from Definition 11, we define its counterpart in the
discrete setting as defined below.

Definition 13. The Extended Reeb equivalence between two points p, q ∈ M is given by the
following conditions:

1. f(p) and f(q) belong to the same element of t ∈ I;
2. p, q belong to the same connected component of f−1(f(t)), t ∈ I.

Therefore, by applying the notion of the quotient relation, it follows that all points belonging to
a region R are Reeb-equivalent in the extended sense and they may therefore collapse into the
same point of the quotient space. The quotient space obtained from such a relation is a discrete
space, which is called Extended Reeb quotient space (ER). The characterization criterion depends
on the frequency of the slicing process; however, holes contained within two consecutive slices are
detected by using the Euler formula which enables to locally update the structure of the Extended
Reeb graph while keeping its topological correctness.

1A contour is degenerate if it is a connected component of an iso-contour of f related to a critical value; in this
case, it is always possible to slightly change that value and get a non degenerate contour.



Topological analysis of 3D surfaces 69

(a) (b) (c)

Figure 3.4: (a-b) The quotient space induced by f , and (c) its graph-like representation. Connect-
ing points are depicted by using red rectangles while normal points are shown as circles; circles
represent the quotient of a region, while rectangles are images of contour levels.

The construction of the Extended Reeb graph [Bia04, ABS03] is based on a slicing strategy that
traces the iso-contours of f on M while inserting them in the mesh as constraints; in this way,
studying the properties of the resulting mesh strips delimited by the iso-contours corresponding to
consecutive iso-values guarantees that the holes of M are correctly represented in the associated
Reeb graph. The idea is to locate critical areas within which at least one critical point occurs and
identify, starting from them, the smallest area onM whose behavior is topologically equivalent to
the critical point (i.e., the influence zone of the critical point). The number of connected compo-
nents in the boundary of these regions and the corresponding iso-values of f allow to distinguish
between regular and critical regions, the latter containing critical points of the function f . More
precisely, if a region has one or more than two boundary components, then it is classified as crit-
ical; otherwise, if the two boundary components are related to two different iso-levels, the region
is regular.

Critical regions with only one boundary component contain a critical point which is either a
minimum or a maximum, and they are distinguished by checking the values of f outside the region.
A region with two boundary components with the same iso-value identifies either a degenerate
critical area of f , or a handle-like maximum or minimum critical point. The distinction between
the two cases is done by checking the behavior of the surface across the region boundary:

• if all the connected components have ascending directions, then the area corresponds to a
minimum;

• if all the connected components have descending directions, then the area corresponds to a
maximum;

• otherwise, it is a saddle.

For maxima and minima, it is possible to distinguish between degenerate and handle-like situa-
tions by considering the inclusion relations of the corresponding iso-contours. In particular, two
configurations can happen: if one boundary component contains all the others, then the region
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: (a-b) Iso-contours and the Reeb graph of the input surface with respect to the height
function, (c) the distance from the barycenter, (d) the geodesic distance, (e-g) the geodesic distance
from one point, and (h) the proposed method. Red regions are related to maxima, blue areas locate
minima, and green regions identify saddles zones.

represents a degenerate area otherwise it is a handle-like critical area. The influence zones of
saddle points may be also regarded as the area onM where the topological change of the surface
occurs, when the surface is analyzed at the chosen frequency. Note that all critical areas may
contain degenerate critical points, i.e. non-isolated ones, and that influence zones may contain
more than one isolated critical point corresponding at the same iso-level, that is, they may locate
non-simple critical points.

During the ER graph construction, the number of boundary components and the genus of the
current regions are updated; after this step, if a region contains a hole (i.e., its genus is equal or
greater than one), then the slicing is insufficiently sampled and a more dense distribution is used.
The coding of the critical areas in the ER graph still verifies the Morse relation (3.1); since the
genus of each region is zero we are guaranteed that the Euler characteristic of each slice is two
and therefore the contribution of each critical area is given by (2 − b̃), where b̃ is the number of
its boundary components.

To represent the ER quotient space as a graph, the classes which are defined by points on contours
are represented by connecting points, while all other classes are represented by normal points,
simply called points (see Figure 3.4(a-b)). Connecting points are representative of contours and
normal points are representative of regions. A point p representing a region R is adjacent through
a connecting point to another point q representing another region R′ in the quotient space, and a
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normal point is adjacent to as many connecting points as the number of connected components of
the border of the associated region. From this point of view, the image of a regular region ofM
in the ER quotient space is adjacent only to two connecting points. Therefore, the connectivity
changes of the graph representation are concentrated in the image of the critical areas, and they
are equivalent to the standard Reeb graph representation which can be easily derived by merging
the intermediate nodes representing regular areas into a single arc; in Figure 3.4(b), normal points
that correspond to critical areas are depicted in orange. After this merging step, the ER graph
simply consists of nodes representing critical areas and the associated connecting arcs. In Figure
3.4, an example of the Extended Reeb quotient space is shown for a torus with respect to the
height function f ; in particular, the sequence of points between p1 and p2 of the quotient space
ER in (b) represents an arc between the nodes n1 and n2 in (c).

3.2.2 Choosing the function f

The choice of each function f highlights one shape aspect discarding others; for preferring a
particular function f with respect to another one, a constraint on its choice is to be a good
compromise between calculation, invariance with respect to an appropriate set of transformations
(e.g., affine transformations), and description efficacy. Furthermore, we can distinguish two classes
of mapping functions: those ones which are defined in the continuous case and then applied to the
discrete context (e.g., the height function, the Euclidean distance from the surface barycenter),
and maps directly defined on the input triangle mesh (e.g., discrete harmonic scalar fields). In this
last case, an approximation of the function values on the edges and faces is achieved by linearly
interpolating the values of f on the vertices, and then used for the contour level calculation
[Bia04, PCM02]. While the properties of the segmentation are completely independent of the
chosen mapping function f , different f functions generate different decompositions and this allows
to adapt the decomposition to the characteristics of the specific shape. We briefly review several
choices [BMMP03] for the construction of the ER graph to give an idea of the kind of graph they
produce. The use of the decomposition for local parameterization is discussed in Section 4.6.

Reeb graph with respect to the height function. If the map f is the height function (∀p =
(x, y, z) ∈ R

3, f(x, y, z) = z), its critical points are peaks, pits, and passes and the equivalence
classes correspond to the intersection of the triangle mesh with a set of planes orthogonal to the
direction e3 := [0, 0, 1]. The height function with respect to e3 is best suited for digital terrain
models where associating to each point its elevation value is a natural choice. Since the height
function with respect to the vector e3 can be non-optimal with respect to the shape of an arbitrary
input surface (see Figure 3.5(a-b)), we describe an automatic method for selecting the direction of
the height function and based on a clustering of the normal vectors ofM [Pat04]. To this end, a
face fi of the input triangle meshM is called degenerate with respect to the view direction v if its
projection along v is a line segment, that is, the plane containing fi is parallel to v. Therefore, we
define the best view direction w forM as the solution of the following problem (see Figure 3.6)
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(a) (b) (c) (d)

Figure 3.6: (a) Normal vectors of the faces of the teapot, (b) clustered regions on the unit sphere,
and (c) induced segmentation (the faces belonging to the same cluster are represented with the
same color). (d) Optimal (on the bottom) and worst view (on the top) of the input surface given
by the eigenvectors of the matrix A.

min
v∈S2

{
d̂(v) :=

1
n

nF∑
i=1

d̂(fi, v)

}

where d̂(fi, v) := 1 − | < ni, v > |2 ∈ [0, 1] is the “degeneracy” of the face fi with respect
to the view direction v, ni is the unit normal of the face fi, nF is the number of faces, and
S2 := {v ∈ R

3 : ‖v‖2 = 1} is the unit sphere. Therefore, we are searching the direction w which
minimizes the degeneracy of the faces, that is, the one which minimizes the alignment of the
normal vectors of M with respect to w. Since the function d̂ is continuous and S2 is compact, a
global minimum and maximum exist. For finding them, we use the Lagrange multipliers and we
search the critical points of the function Fλ(v) := d̂(v) + λ(‖v‖2 − 1), v := (x, y, z) ∈ S2, which
are achieved by solving the following system

∂xFλ = 0 (a)
∂yFλ = 0 (b)
∂zFλ = 0 (c)
∂λFλ = 0.

If ni := (ni,x, ni,y, ni,z), we have that

∂xFλ(v) = 2

[
− 1
nF

nF∑
i=1

ni,x < ni, v > +λx

]

and therefore omitting the constant factor 2

∂xFλ(v) = − 1
nF

[
nF∑
i=1

n2
i,xx+

nF∑
i=1

ni,xni,yy +
nF∑
i=1

ni,xni,zz

]
+ λx.

Since analogous relations hold for ∂yFλ and ∂zFλ, the conditions (a+b+c) are equivalent to the
linear system

Av = λv
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where A is the symmetric 3× 3 matrix

A :=
1
nF

∑nF

i=1 n
2
i,x

∑nF

i=1 ni,xni,y

∑nF

i=1 ni,xni,z

−− ∑nF

i=1 n
2
i,y

∑nF

i=1 ni,yni,z

−− −− ∑nF

i=1 n
2
i,z

 .

From the previous relation, it follows that we need to analyze the eigenvalues 0 ≤ λ1 ≤ λ2 ≤ λ3

and eigenvectors v1, v2, v3 of A with Avi = λivi; if λi = 0, the corresponding solution vi = 0 is not
meaningful because we require that ‖vi‖2 = 1. Therefore, the unitary eigenvectors corresponding
to the non-zero eigenvalues are solutions of our problem and among them we select the one that
minimizes the function d̂. We note that the above procedure is equivalent to consider the principal
component analysis [Jol86] of the set of unit normals of M. More precisely, the PCA on the set
{ni : i = 1, . . . , nF} considers the spectrum of the matrix GTG,

G :=

 n1

. . .
nnF

 ;

therefore, we have that A = 1
nF
GTG. Analogous considerations apply to the weighted problem

with

d̂(v) :=
1∑nF

i=1 wi

nF∑
i=1

wid̂(fi, v)

and wi ≥ 0, i = 1, . . . , nF .

Reeb graph with respect to the distance from the barycenter. The distance function
of the surface vertices from a given point p of the Euclidean space, fp(x) := ‖p − x‖2, x ∈ M,
represents a class of Morse functions. The point p could belong to the mesh or not, even though a
reasonable choice is the barycenter of the surface which is easily calculated and, due to its linear
dependence on all the vertices, stable to small perturbations. In this case, the iso-contours of f
correspond to the intersection ofM with a set of spheres centered in the barycenter p ofM and
with different radii; therefore, it is possible to recognize protrusions and hollows with respect to p
by analyzing the maxima and minima of the function f (see Figure 3.5(c)).

Reeb graph with respect to the geodesic distance. In [HSKK01], a map based on the
geodesic distance from a source point p ∈ M has been defined. The determination of p is not
simple and the solution proposed by the authors is to define, for every point x ∈ M, h(x) as the
sum of all geodesic distances g(x, p) from x to p when p varies on the input manifold (see Figure
3.5(d)), that is,

h(x) :=
∫
M
g(x, p)dp.

This function is not invariant to scaling of the surface and it is replaced by its normal representation
defined as

∀x ∈M, hn(x) :=
h(x)−minx∈M{h(x)}

maxx∈M{h(x)} .
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Figure 3.7: Iso-contours and Reeb graph associated to the harmonic scalar field f : M → R

achieved by using as points for the Dirichlet boundary conditions the marked vertices; the blue
node locates the minimum and the red one the maximum of f .

Reeb graph with respect to the geodesic distance from one point. The approach to
shape description described in [VL99, WDSB00] deals with the construction of centerlines from
unorganized point sets and later developed for polyhedral surfaces in [LV99]. This graph is “es-
sentially” a tree whose edges connect the barycenters of the level sets of the function given by the
shortest approximated geodesic distance from a source point. The resulting skeletal curve depends
on the appropriate choice of the order of the neighborhood graph, on the location of the source
point, and on the number k of level sets which slice the surface. To choose the seed point an
heuristic is used which seems to work well on elongated tubular shapes such as blood vessels and
bones; furthermore, examples are given to show that on these kinds of input data the centerlines
obtained with different source points are nearly the same. However, the choice of only one seed
point determines a privileged slicing direction; this element and a wrong choice of k can lead to
the loss of some features if the surface is not strictly cylindrical (such as the ear of the horse in
Figure 3.5(e-g)).

Harmonic fields on arbitrary triangle meshes. In this paragraph, we define a method for
constructing harmonic scalar fields over arbitrary surface triangulations [NGH04]; the specializa-
tion of this approach to the planar parameterization of disc-like surfaces (i.e., 0-genus and one
boundary component) is discussed in Section 4.5.2. Let M be an arbitrary surface triangulation,
i.e. arbitrary genus and boundary components, and X := {xi : i = 1, . . . , nV } be the set of
vertices of M. We want to define a scalar function f : M → R satisfying the Laplace equation
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(a) (b) (c) (d)

Figure 3.8: Orthogonal and tangent vector field associated to the harmonic field shown in Figure
3.7 on (a-b) the teapot, (c-d) the bitorus.

with Dirichlet boundary conditions, that is,{
∆f = 0 in M,
f = f0 in C ⊆M.

Using barycentric coordinates (see also Section 4.5 and equation (4.8)) and the fact that M is a
triangle mesh, it is enough to define the values of f on the set X and then to extend them from
X to M through linear interpolation over each triangle ofM; that is, if x ∈ ∆ := [xi1 , xi2 , xi3 ] ∈
M, x = λ1xi1 + λ2xi2 + λ3xi3 , with barycentric coordinates λ1, λ2, λ3, then

f(x) := λ1f(xi1) + λ2f(xi2) + λ3f(xi3 ).

Let C ⊆ V be a set of indices and {αi}i∈C ⊆ R arbitrary real values; then, the values {f(xi)}i∈V \C

are defined as the solution of the linear system of equations{ ∑
j∈N(i) wij(f(xj)− f(xi)) = f(xi) i ∈ V,

f(xi) = αi, i ∈ C. (3.2)

with coefficients
wi,j := cot(αij) + cot(βij),

where αij and βij are the angles of the 1-star of xi opposite to the edge (i, j) (see also Section
4.5.2 and equation (4.20) at page 103). The main properties of the scalar field f overM are:

1. f has no local extrema other than at constrained vertices;

2. if all the constrained minima {αi : i ∈ Cmin ⊆ C} are assigned the same global minimum
value αmin and all the constrained maxima {αi : i ∈ Cmax ⊆ C} are assigned to the same
global maximum αmax then all the constraints are extrema of the resulting scalar field f .

In Figure 3.7, the iso-contours of harmonic scalar fields over different triangulated manifolds are
shown.
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(a) (b) (c)

Figure 3.9: Overview of the main steps of the proposed approach: (a) high-curvature regions, (b)
topological ring expansion, (c) skeleton.

3.2.3 Vector fields associated to scalar fields

Let us assume that a scalar field f on M has been assigned; we want to define the orthogonal
g1 := ∇f and tangent g2 := Rf vector field to f , where R is the counter-clockwise rotation by
π/2 in the local tangent plane. To this end, we consider the triangle ∆ := [xi, xj , xk] ∈ M with
unit normal vector

n :=
N

‖N‖2
, N := (xj − xi) ∧ (xk − xi).

Then, the gradient vector g1 at the vertices of the triangle ∆ is the solution of the 3 × 3 linear
system

 xj − xi

xk − xj

n

 g1 =

 f(xj)− f(xi)
f(xk)− f(xj)
0

 .
An example is given in Figure 3.8.

3.3 Reeb graph from curvature extrema

In the following sections, we describe a new approach to the construction of a Reeb graph of
M which takes into account high-curvature regions and topological rings on M. A surface can
be seen as made essentially of a main body with several protrusions: for instance, the overall
shape of a man consists of the torso from which head, arms, and legs depart. From this point of
view, the main features of a 3D surface are its protrusions and these are detected by curvature
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(a) (b) (c)

Figure 3.10: Local neighborhood system on a triangular mesh: (a) input triangle mesh, topological
rings of order 1 in (b), and 2 in (c).

extrema. Following these considerations, we are going to construct the skeleton of a 3D surface as
a graph which, starting from high curvature regions, grows on the surface towards the main body
according to the mutual adjacency among features. The proposed construction of the skeleton of
a 3D surface represented by a triangle mesh is made in three steps.

1. A curvature estimation is performed on the mesh and several zones of high curvature, which
identify the surface features, are extracted (see Figure 3.9(a)). The procedure of curvature
estimation is discussed in Chapter 2 and it detects regions which identify “global” curvature
features and it creates a hierarchy of such elements with respect to their scale. For each high
curvature region Γi, a representative vertex pi is selected. For a more pleasant visualization pi

is chosen as the centroid of Γi and computed as the farthest vertex from the region boundary;
anyway, we underline that, from the topological point of view, the arbitrary choice of pi is
irrelevant. Each vertex in the set {pi} represents the terminal node of the graph.

2. Starting simultaneously from the centroids of the high curvature regions, topological rings
consisting of vertices which have the same topological distance (i.e., minimum number of
edges) from the nearest centroid are computed, growing of one edge at a time, until the
surface is covered (see Figure 3.9(b)).

3. The centroid of each high curvature region becomes the terminal node of the graph, while
points of split or collision among topological rings during the expansion phase individuate
its branching nodes. The centroids of consecutive rings are connected to form an edge of the
skeleton (see Figure 3.9(c)).

Mesh connectivity and topology. As detailed in Section 1.1.1, we represent a triangle mesh
M as the pair M := (M,T ) where M := {xi ∈ R

3, i = 1, . . . , nV } is a list of nV vertices and T

is an abstract simplicial complex [ES92] which contains the adjacency information whose subsets
come in three types: vertices {i}, edges {i, j}, and faces {i, j, k}. Using T , we can construct the
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1-neighborhood structure as
{N(i) : i = 1, . . . , nV }

with
N(i) := {j ∈ {1, . . . , nV } : (i, j) ∈ T }.

The previous relation assigns each vertex i the set of its 1-neighborhoods, that is, the vertices j
such that (i, j) is an edge of the triangulation T . The size of the neighborhood structure can be
recursively enlarged by defining a n-neighborhood as

N(ii, . . . , ik) :=
⋃k

l=1N(il),
N0(i) := {i},
N1(i) := N(i),
Nn(i) := N1(Nn−1(i)), n ≥ 2.

Therefore, given a vertex i ∈ {1, . . . , nV } we can define its local neighborhood system as

Bi := {T (Nk(i)) : k = 0, . . .}

with
T (Nk(i)) :=

⋃
l,p,q∈Nk(i),{l,p,q}∈F

T (l, p, q)

and T (l, p, q) triangle with vertices xl, xp, xq. Finally, we refer to the border of T (Nk(i)), i.e.
∂T (Nk(i)), as topological ring of order k for i (see Figure 3.10). From the previous definitions the
following conditions hold: ∀i ∈ {1, . . . , nV }

• xi ∈ T (Nk(i)), k = 0, . . .

• T (Nk(i)) ⊆ T (Nk+1(i)), k = 0, . . .

• ifM is connected, then
M =

⋃
k=1,...

T (Nk(i)).

Topological expansion. Above this point, we have segmented the mesh into significant/non
significant regions, according to the curvature value at each vertex. Since high-curvature regions
identify the extremities of the surface protrusions, the skeleton of a surface characterized in this way
has their representative points as terminal nodes. Therefore, for each region a representative vertex
is chosen as the farthest one, with respect to the topological distance, to the boundary. Starting
from the representative vertices we can construct a skeleton of the surface using a topological
expansion approach, based on the idea of topological rings growing from representative vertices
and traversing the mesh, until rings split, collide with others, or can be expanded no more (see
Figure 3.11). Starting at the same time from all the representative vertices, the topological rings
grow one step at a time until:
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(a) (b) (c)

Figure 3.11: (a) Vertex classification on the hand, (b) high curvature regions, (c) topological rings
achieved by using the red areas depicted in (b) as seed regions.

• rings belonging to different representative vertices collide: a union occurs;

• a ring intersects itself: a split occurs;

• a ring can be expanded no more: the ring terminates.

Union. When expanding a topological ring we meet a vertex already belonging to the topological
ring (of the same order) of another representative vertex, the two rings intersect. From the point
of view of the surface, this means that we have found a branching zone of the surface where two
distinct protrusions depart. In the same way, the corresponding skeleton will have a branch with
two edges joining. The rings of each representative vertex, which determined the collision, can be
expanded no more and the construction of their ring sets is completed. A new topological ring is
created for the intersection vertex; in this case, unlike what happens for representative vertices,
the first topological ring coded is the union of the two rings colliding (see Figure 3.12(a)).

Split. It can also happen that a ring intersects itself in one or more of its vertices; this is the
situation of rings expanding near handles, through holes of the surface or where a new protrusion
starts. In this case, the intersecting ring splits in two parts and its expansion stops in favor of two
new rings derived from the split. Like the union case, the adjacency between the father vertex
and the two children is set (see Figure 3.12(b)).

Termination. After a finite number of steps, the splitting and joining rings will cover the whole
surface. A ring terminates when the next step would produce a non valid boundary, that is, with
less than three vertices. When a ring terminates, it means that there were no more significant
features in the surface. Therefore, branches of the skeleton will be not produced in the case of a
ring which terminates without having a union or a split (see Figure 3.12(c)).
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(a) (b) (c)

Figure 3.12: Example of (a) union, (b) split, (c) termination.

Graph visualization. When all the ring sets of the representative vertices and the ones created
during their expansion are terminated, the algorithm can draw the skeleton as the adjacency graph
encoded during the expansion phase:

• each representative vertex gives a terminal node;

• each intersection vertex (occurring in a union or a split configuration) gives a branching
node;

• the topological rings, belonging to the ring set of a node, give an arc which goes out from
that node2. In particular, an arc is drawn by joining the centers of mass of all its topological
rings.

In Figure 3.13 the skeleton of a woman body has been extracted by using high curvature regions
located by red areas.

3.4 Graph as quotient space

In this section, we are concerned with the formulation of the graph construction for triangular
meshes and manifolds demonstrating that it is the quotient space of the input surface M with
respect to an equivalence relation “∼”. The proposed construction of G as M/ ∼ given in
Proposition 8 enables to:

• verify that G depends only on the topology ofM and on a finite set of representative points
{p1, . . . , pn} in M of high-curvature values;

• prove that G is affine-invariant: this characteristic represents one of the main properties of
G;

2Note that when a split or a union occurs, there can be two arcs going off the same node: in this case two
distinct ring sets are created for the same node. So each ring set always defines one node and one arc.
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Figure 3.13: Example of skeleton on the woman body.

• extract the information on G (e.g., compactness, connectivity, etc.) starting from M and
exploiting the properties of the quotient space.

Proposition 8. The graph G previously defined is a Reeb graph.

Proof. We have to define a function f :M→ R such that G =M/ ∼ with ∼ equivalence relation
induced by f and given in Definition 11. Selected a point pi in M we introduce the function

fpi :M −→ N

x �→ fpi(x) := min{k : x ∈ T (Nk(i))},
i.e., fpi(x) is the minimal topological distance between pi and x. We can extend in a simple way
the previous function to a finite set of vertices {p1, . . . , pn} as

f :M −→ N

x �→ f(x) := mink=1,...,n{fpk
(x)},

i.e., f assigns to x its minimal topological distance with respect to the case of more than one
vertex (n = 1, f = fn1). Starting from f andM we are able to construct the relation ∼ as follows
(see Figure 3.14):

p, q ∈M, p ∼ q iff f−1(f(p)) ∩ f−1(f(q)) �= ∅. (3.3)

First of all, (3.3) implies that if f(p) �= f(q) then p �∼ q; in fact, we have

f−1(f(p)) ∩ f−1(f(q)) = f−1(f(p) ∩ f(q)) = f−1(∅) = ∅.

Therefore, necessary condition for p ∼ q is that f(p) = f(q), that is, p and q have the same
topological distance from the selected set of vertices {p1, . . . , pn}. Secondly, two points p and q are
identified by ∼ if and only if they have non-disjoint topological rings (i.e., f−1(f(p))∩f−1(f(q)) �=
∅) of the same order (i.e., f(p) = f(q)). These conditions guarantee that G =M/ ∼.
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Figure 3.14: Example of topological rings on a manifold.

Using the definition of G as quotient space, we derive a set of properties of G; more precisely, from
the previous relations it follows that:

G =M/ ∼= {[x] : x ∈ M}
where the class of x is represented by the set

[x] := {y ∈ M : y ∼ x}.

Furthermore, the following conditions hold:

• [x] �= ∅, ∀x ∈M (i.e., every class is not empty);

• x ∼ y ⇒ [x] ∩ [y] = ∅ (i.e., two vertices which satisfy the relation ∼ have non-empty
intersection. Generally, the inverse condition is not true because ∼ is not transitive.);

• ⋃x∈M[x] =M (i.e., {[x]}x∈M represents a cover ofM).

Graph definition for manifolds. We extend the previous model to a compact manifold with-
out boundary embedded in R

3 with the Euclidean topology underlining the general application of
our model for the extraction of an affine-invariant shape description. In the following, we review
definitions and concepts on topology introducing the basic notions and referring to [ES92] for
further readings. The structure of the section reflects that of the previous one facilitating the
parallelism between the continuous case study and the discrete one which has been used for the
implementation of the algorithm. Given a topological space (X, τ), we define as

• induced topology of X in S ⊆ X : the topology τS defined as

τS := {A ∩ S : A ∈ τ};
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Figure 3.15: Input mesh, topological rings, and skeleton on the same surface at two level of
resolution.

• local base of p in X : the family Bp consisting of neighborhoods of the point p such that for
every neighborhood U of p there is a set V ∈ Bp such that V ⊆ U ;

• boundary of A ⊆ X : ∂A := A ∩X −A, that is, the intersection between the closure of the
set A and its complement (X −A) in X .

Given a point p ∈ M we define, for every R > 0, the open ball of center p and radius R as

B(p,R) := {x ∈ R
3 : ‖x− p‖2 < R}

and with U(p,R) the connected component of p in M ∩ B(p,R). Therefore, we can associate
to each point p ∈ M the family of neighborhoods {U(p,R)}R>0, with U(p, 0) := {p}, centered
in p. From the previous relations we can derive the following properties which will be used for
constructing the graph ofM:

• {U(p,R)}R>0 is a local base of the spaceM at the point p with respect to the topology τS
induced by the Euclidean topology τ inM. This property follows using the definition of τS
and the fact that the set {B(p,R)}R>0 is a local base of p in (R3, τ);

• R1 < R2 ⇒ U(p,R1) ⊆ U(p,R2): in fact, R1 < R2 ⇒ B(p,R1) ⊆ B(p,R2) ⇒ M ∩
B(p,R1) ⊆ M∩ B(p,R2) ⇒ the connected component of p in M∩ B(p,R1) is a subset of
that in M∩B(p,R2).
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Introduced the counterparts of the concepts defined for the triangular mesh, we can extend the
previous functions as described in the following. Chosen a point p ∈ M, we define the map

fp : R
3 −→ R

x �→ fp(x) := ‖p− x‖2
and then, fixed a set of points P := {p1, . . . , pn} ⊆ M, we construct its extension to the set P as

f : M −→ R

x �→ f(x) := mink=1,...,n{fpk
(x)}.

The function f is continuous because it is the composition of the continuous maps

(fp1 , . . . , fpn) : M −→ R
n

x �→ (fp1(x), . . . , fpn(x))

and
min : R

n −→ R

(x1, . . . , xn) �→ mini=1,...,n{xi}.

Therefore, in analogy with the previous section we can introduce the relation ∼ as: p, q ∈ M, p ∼ q
if and only if there exists R > 0 such that f(p) = f(q) and p, q belong to the same connected
component of f−1(f(p)). In other words, necessary and sufficient condition for p ∼ q is that p and
q have the same topological distance from the selected set of points {p1, . . . , pn} and they belong
to the connected component of the pre-image of their (common) value f(p). The relation ∼ is
symmetric, reflexive, and transitive because it is the intersection of two equivalence relations (i.e.,
function equality and membership to the same connected component). Using the properties of the
quotient space, we deduce that∼ induces inM a decomposition into a family of non-empty, disjoint
topological classes. If the input surface M is compact/connected then G is compact/connected;
anyway, the canonical projection

π : M −→ G =M/ ∼
x �→ [x]

is continuous with respect to the quotient space topology (i.e. A ⊆ G is open if π−1(A) is open in
(M, τ)). Now we want to investigate the properties of ∼:

• reflexive: ∀p ∈ M, p ∼ p;

• symmetric: ∀p, q ∈M, p ∼ q ⇒ q ∼ p;

• transitive: ∀p, q, r ∈ M, p ∼ q, q ∼ r �⇒ p ∼ r. In fact, the intersection of sets is not
transitive on P (X) := {X : X ⊆M}.

The previous construction can be reduced to define the function f such that Im(f) := {f(x) :
x ∈ M} ⊆ N choosing, for a given point p ∈ M, its local base as Bp = {M∩ B(p, kn)}n∈N, with
k ∈ R

+ step, and defining for every x ∈ M f(x) := mink=1,...,n{fpk
(x)} where fpi(x) := min{n :

x ∈ B(pi, kn)}.
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Figure 3.16: Reeb Graph on the rabbit with respect to the height function related to different
directions.

3.5 Conclusions

We present the main properties of the graphG and a comparison with respect to other approaches.
The complexity of the proposed graph, in terms of number of nodes and branches, depends on the
shape of the input surface and on the set of points {pi}ni=1 that have been selected by the multi-
scale curvature evaluation. The construction of G is guided, in the first step, by the topology of the
mesh through the connectivity relations in T and, secondly, by the geometry ofM which influences
the chosen representative point p for its equivalence class [p]. The only requirement for an optimal
construction of the graph deals with a uniform mesh finalized at having a topological distance
between points to which corresponds a medium step on the mesh (see Figure 3.15). The graph
structure is not incremental in the sense that if we add a point pn+1 to the set {p1, . . . , pn}, which
is used for the construction of G, the new graph G̃ defined by {p1, . . . , pn, pn+1} is not achieved
by adding to G the new branch starting from pn+1. The proposed graph is affine-invariant with
respect to translation, rotation, and scaling because the function f which has been used for defining
the relation ∼ and the quotient space G does not rely on a local system of coordinates in which the
surface is embedded as it happens in the case of the Reeb graph constructed, for example, using the
height function (see Figure 3.16). However, we stress that both graphs are built in the same way by
choosing only two different functions; our graph (resp., the Reeb graph) codes the surface shape
by analyzing the evolution of topological arcs (resp., contours) obtained by the mesh topology
(resp., intersecting the surface with a family of planes orthogonal to a chosen direction). On the
other hand, if the curvature evaluation process does not recognize at least one feature region (e.g.,
surfaces with constant curvature values such as spheres), our approach is not useful to extract a
description of the shape; on the contrary, the height function always guarantees to get a result.
The Reeb graph with respect to an arbitrary function f and the related shape decomposition
are used in Chapter 4 for defining a new approach to the local and global parameterization of
triangulated 2-manifolds with an arbitrary genus. Other examples are given in Figure 3.17 and
Table 3.1 gives the list of computational costs.
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Figure 3.17: Example of skeletons of different surfaces.
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Table 3.1: The computational cost for the extraction of the medial axis transformation depends
on the number of line elements, ns, the number of steps taken along each seam s, and the number
of boundary entities n of the MAT (details can be found in [SPB96]). The computational costs
related to the evaluation of f (worst and average case) and to the extraction of the induced Reeb
graph are expressed in terms of the number b of triangle bases used for the evaluation of f , (in
practice, b is less than 150), n is the number of vertices of the input triangle mesh, kmax is the
size of the maximum neighborhood of each vertex used to approximate the curvature.

Method/f Graph Constr. Funct. Eval. (worst) Funct. Eval. (average)

MAT O((n + s)ns logn) - -
Height O((n + k) log(n+ k)) O(1) O(1)
Dist. from bar. O((n + k) log(n+ k) O(n) O(n)
Int. geod. dist. O(n+ k) O(n2 logn) O(bn logn)
Dist. source point O(n) O(n log n) O(n logn)
Top. dist. curv. extr. O(n) O(n2) O(nkmax)
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Chapter 4

Local and global parameterization
of surfaces with arbitrary genus

This chapter describes a novel approach to the local and global parameterization of triangle meshes
representing 2-manifolds with an arbitrary genus. Concerning the local parameterization, decom-
positions of the shape based on several criteria (i.e., topology, morphology, and geometry) are
computed and used to segment the shape into primitives, which define a chart decomposition of
the mesh. Then, each chart is parameterized using an extension of the barycentric coordinates
method. The charts are all 0-genus and can be of three types only, depending on the number
of boundary components. The chart decomposition and the parameterization are used to define
a shape-graph where each node represents one primitive and the arcs code the adjacency rela-
tions among the primitives. The primitives are coded together with their skeletal lines that are
computed from and aligned with their parameterization. The surface decomposition is used for
extracting a skeleton aligned with the local parameterization which is exploited for shape deforma-
tions which are free of artifacts. The application of the parameterization approach to remeshing
(i.e., piecewise linear interpolation and approximation) guarantees that extraordinary vertices are
localized only where two patches share a boundary and they are not scattered on the whole sur-
face. Concerning the global parameterization, given an arbitrary triangle mesh M our approach
searches a cut graph made of the iso-contours of a fair function f : M → R and it works in a
planar domain where geodesic curves are defined by line segments whose counterparts onM, with
respect to an appropriate diffeomorphism φ : M → R

2, give smooth approximations of geodesic
paths. The emphasis of the proposed approach is on the definition of a simple method for finding
a family of cut graphs ofM and guided by several criteria which spread from the global parame-
terization (e.g., minimal length, minimization of the parameterization distortion, or interpolation
of points as required by remeshing and texture mapping) to the calculation of polygonal schemes
for surface classification.

88
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4.1 Introduction

The parameterization of 2D manifold triangle meshes has been largely analyzed in Computer
Graphics due both to its theoretical importance for surface classification and impact on appli-
cations such as texture mapping, compression, and animation. While the parameterization of
manifolds homeomorphic to a disc is well understood, the case of surfaces with an arbitrary genus
is still a challenging research topic. This problem is usually approached in two different ways:
either the surface is decomposed into a family of disc-like patches (i.e., local parameterization, or
atlas generation), or a cut is defined on the surface which is successively unfolded onto a planar
domain (i.e., global parameterization).

Existing methods of local parameterization are mainly driven by considerations concerning texture
mapping and compression as primary application of the parameterization results; therefore, the
patches are generally not related to features of the surface and the number of generated patches is
mainly driven by error or distortion metrics. These side-effects are the starting point of our work
and motivate the necessity of studying more general methods for local parameterization which
extend the state of the art in the field, maintaining simplicity, robustness, and range of applicabil-
ity. We approach the problem by discussing the properties of shape segmentation methods from a
general perspective, focusing on a minimal set of constraints that the segmentation should satisfy
in order to be a valid input for the proposed framework. The final result is a general framework
which defines a family of local parameterizations guided by different criteria such as the shape
of the input surface, its topology, or any other property which guarantees that each patch has
0-genus and by the aim of building a centerline skeleton, aligned with the parameterization, and
which can be used for deformations in a simple manner.

Alternatively, an arbitrary surface can be unfolded into a single planar domain, by cutting the
surface along a connected path. Using a single patch allows to apply regular remeshing and to
achieve high compression rates; however, it can create parameterizations with greater distortion
and a less uniform sampling with respect to the use of multiple local charts. This phenomenon is
mainly due to the difficulty of finding a good cut and of controlling its alignment with sharp features
(e.g., high-curvature lines); furthermore, the construction of the cut can create complicated and
noisy line networks for unfolding surfaces of high genus. The proposed approach is based on
the characterization of a given surface M provided by the Morse Theory and the Reeb graph
as described in Chapter 3. More precisely, the Reeb graph of M with respect to a function
f :M→ R codes M as a graph whose cycles are used to identify the topological handles of M
and the associated iso-contours correspond to the meridian curves along which the surface has to
be cut for reducing its genus to zero.

4.1.1 Overview and contributions

The local parameterization problem is approached by defining an atlas generation method for
2-manifold triangle meshes of arbitrary genus, which produces a canonical decomposition of the
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shape, a minimal number of charts, a flexible decomposition schema able to capture the most in-
teresting shape features, and a coding of the parameterization which is useful for applications such
as editing and deformation. The crux of the proposed method is the exploitation of the informa-
tion about both the surface topology for optimizing its decomposition and cutting, and the surface
geometry for minimizing the parameterization distortion. The use of topological information pro-
vides evident benefits in all subsequent stages of the parameterization and its applications. The
proposed approach is applied to remeshing, and produces remeshed shapes whose extraordinary
vertices (i.e., with valence different than six) are localized on smooth boundaries where adjacent
patches join, and they are not scattered on the surface as in previous work.

Segmentation methods. The only assumption on the surface decomposition used as a basis
for the local parameterization is that each patch has 0-genus, without constraining the number of
boundaries. This general requirement provides a higher degree of flexibility for the choice of the
segmentation method and for the identification of patches which represent features of the input
shape. With respect to methods based on mesh simplification, a feature-based segmentation could
produce better results from the point of view of the parameterization: patch boundaries could be
drawn at lines of high curvature, symmetries of the input surface could be exploited, or patches
could be defined to identify topological primitives.

The concept of feature depends on the application context. For instance, in CAD, features of a
shape are slots, pockets through holes, and many more. In our general case, features represent
regions of interest with respect to the geometric and topological aspects. Each patch could rep-
resent a geometric or morphological feature, for instance a protrusion of the shape, a topological
feature, such as a part of the surface whose level sets are homeomorphic, or also a patch blending
two features. Let J be the family of segmentation methods which decompose a given surfaceM
into 0-genus patches (see Section 4.6 for the formal definition). In the chapter, we review different
methods which belong to J and we show how the use of these primitives enables to segmentM
in a natural way, both in terms of the geometry of the primitives and their adjacency relations,
thus proving the flexibility of the proposed framework and how different decomposition strategies
provide several inputs for the local parameterization. The selected segmentation methods can
be applied to closed or bordered meshes and produce smooth patch boundaries. In particular,
we will discuss topology-based segmentation which makes use of the Reeb graph [PSF04, SKK91]
or of dynamic structures [DGG03], morphology-based segmentation which is related to a multi-
scale shape analysis [MPS+04b], and geometry-based segmentation defined by a clustering among
vertices [KT03].

Patch classification and parameterization. For defining a local parameterization based on
any segmentation method in J , we need a simple method for parameterizing patches of 0-genus
with an arbitrary number of boundaries. Independently of the specific segmentation used to define
the charts, we classify the patches according to the number of their boundary components into
three types: generalized cones, cylinders, and bodies. Then, each patch type is parameterized
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using an extension [PSF04] of the barycentric coordinates method [Flo97, Tut63]. More precisely,
we reduce this problem to finding a path on each patch with two or more boundary components
which joins them; in this way, we convert it to a new surface with one boundary. The produced
cuts are well shaped and stable with respect to the quality of the input patch in terms of tiny
triangles and irregular sampling. After this step, the geometric properties that have been used for
the patch identification (i.e., curvature, pre-defined shape) can be taken into account by a specific
parameterization method of disc-like surfaces. A straightforward solution could be subdividing
each patch into triangular regions; however, in this manner we lose the identification of patches with
significant shape features, which limits in practice the use of the parameterization to simplification-
based approaches.

Applications. The low distortion provided by the feature-based segmentation corresponds to
a more regular sampling of M and remeshed surfaces have extraordinary vertices localized on
smooth boundary components of adjacent patches. In Chapter 5, the proposed method is used
for extracting a skeleton of the input surface aligned with its parameterization, and the skeletal
line of generalized cones and cylinders is used for local deformations which are free of artifacts.
Furthermore, the approach enables to resample and apply arbitrary textures to the patch while it
evolves from the initial to the final state.

Global parameterization. The set of cut graphs for a given triangle meshM with an arbitrary
genus depends on the underlining topology and the selection of a specific one should be guided
by the surface geometry and targeted applications. The influence of the mesh connectivity on
the cut graph search affects previous work due to the use of algorithms based on mesh traversal
techniques for the evaluation of the geodesic metric. Our solution is to search a cut graph made
of the iso-contours of a fair function f :M→ R and to work in a planar domain where geodesic
curves are defined by line segments whose counterparts on M, with respect to an appropriate
diffeomorphism φ :M→ R

2, give smooth approximations of geodesic paths. The emphasis of the
proposed approach is on the definition of a simple method for finding a family of cut graphs of
M and guided by several criteria which spread from the global parameterization (e.g., minimal
length, minimization of the parameterization distortion, or interpolation of points as required by
remeshing and texture mapping) to the calculation of polygonal schemes for surface classification.
The proposed approach finds a cut graph of a closed or bordered triangle meshM with n vertices
in O(n) time if M has 0-genus, and O(n log(n)) time if g ≥ 1; finally, the associated polygonal
schema is reduced if g = 0 and with a constant number of redundant edges otherwise.

The chapter is organized as follows: in Section 4.2 and 4.3 we review basic concepts on surfaces
and intrinsic geometry, Sections 4.4 and 4.5 introduce the parameterization problem. In Section
4.6, we describe the segmentation of surfaces with an arbitrary genus based on different methods,
define its coding as a shape-graph, and discuss the properties of the graph. In Section 4.7, the
parameterization of the graph nodes is presented, and its application to deformation and remeshing
are detailed in Chapter 5. The global parameterization problem is presented in Section 4.8 and
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conclusions are discussed in the last section.

4.2 Surfaces and fundamental forms

Definition 14. A regular parametric representation of class Cm, m ≥ 1, of a set of points S in
R

3 is a mapping ϕ = ϕ(u, v) of an open set U in the uv plane onto S such that:

• ϕ is of class Cm in U ;

• if (e1, e2, e3) is a basis in R
3 and ϕ(u, v) := (ϕ1(u, v), ϕ2(u, v), ϕ3(u, v)), then for all (u, v) ∈

U

rank

 ∂uf1 ∂vf1
∂uf2 ∂vf2
∂uf3 ∂vf3

 = 2.

From the previous definition it follows that a mapping ϕ of an open set U onto S is a regular
parametric representation of class Cm of S if and only if (i) ϕ belongs to class Cm (m ≥ 1) on
U , (ii) n := (ϕu ∧ ϕv) �= 0 in U ; the condition (ii) guarantees that the tangent plane at S in
ϕ(u0, v0), (u0, v0) ∈ U , is well defined and its equation is < n(u0, v0), (x, y, z) > −ϕ(u0, v0) = 0.

Definition 15. A coordinate patch of class Cm, m ≥ 1, in S is a mapping ϕ = ϕ(u, v) of an open
set U into S such that

• ϕ is of class Cm on U ;

• ϕu ∧ ϕv �= 0 for all (u, v) ∈ U ;

• ϕ is injective and bi-continuous on U .

Let ϕ = ϕ(u, v) be a coordinate patch on a surface of class Cm, m ≥ 1; then, the differential
of ϕ at (u, v) is a 1-1 linear mapping dϕ = ϕudu + ϕvdv of the vector (du, dv) in the uv plane
onto the vectors ϕudu+ ϕvdv parallel to the tangent plane at ϕ(u, v). We now consider the first
fundamental form defined as

I := ‖dϕ‖22 = Edu2 + 2Fdudv +Gdv2 (4.1)

where we set
E := ‖ϕu‖22, F :=< ϕu, ϕv >, G := ‖ϕv‖22.

The function I(du, dv) is homogeneous of degree two in du and dv; arranging the coefficients E,
F , G in a symmetric matrix

T :=
(
E F
F G

)
(4.2)

we have

I = (du dv)T
(
du
dv

)
.
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We recall that I depends only on the surface S and not on the particular parametric representa-
tion ϕ, and that under the assumptions of regularity for ϕ the matrix T is positive definite (or
equivalently, I is a positive definite quadratic form). The first fundamental coefficients E, F , G
play a basic role in calculating arc length, angles, and surface area; in fact, the following relations
hold.

• Let γ(t) := ϕ(u(t), v(t)), a ≤ t ≤ b, be a regular arc on a patch ϕ = ϕ(u, v); then, its length
is the integral

s =
∫ b

a

∣∣∣dγ
dt

∣∣∣dt =
∫ b

a

[
E

(
du

dt

)2

+ 2F
du

dt

dv

dt
+G

(
dv

dt

)2
]1/2

dt; (4.3)

• the area of a region R on S parameterized by ϕ = ϕ(u, v) is defined as

A(R) :=
∫∫

U

√
EG− F 2dudv (4.4)

where U is the set of points in the parameter plane which maps onto R. We note that in
(4.4) g := det(T ) = (EG− F 2) > 0 in U ;

• let γ(t) := ϕ(u(t), v(t)), a ≤ t ≤ b, and β(τ) := ϕ(η(τ), ξ(τ)), c ≤ τ ≤ d, be two curves on S
intersecting at p with tangents γ

′
= ϕuu

′
+ϕvv

′
and β

′
= ϕuη

′
+ϕvξ

′
. If θ = ∠(β, γ) is the

angle between γ
′
and β

′
at p, then

cos(θ) =
Eu

′
η

′
+ F (u

′
ξ
′
+ v

′
η

′
) +Gv

′
ξ
′

[E(u′)2 + 2Fu′v′ +G(v′)2]1/2 [E(η′)2 + 2Fη′ξ′ +G(ξ′)2]1/2
. (4.5)

4.3 Intrinsic geometry

Let S be a surface of class Cm, m ≥ 1, and f : S → S� be a function (see Figure 4.1). If for
every coordinate patch ϕ = ϕ(u, v) on S with domain U , the composite mapping ϕ� = ϕ�(u, v) :=
f(ϕ(u, v)) of U into S� is a regular parametric representation of class Cr (see Definition 14),
r ≤ min{m,n}, then f is called a regular differentiable mapping of S into S� of class Cr. Using
the fact that a regular parametric representation is locally 1-1 and bicontinuous, it is possible to
prove the following theorem.

Theorem 9. Let f be a regular differentiable mapping of class Cr, r ≥ 1, from a surface S into
a surface S�.

• For every point p ∈ S there exists a coordinate patch ϕ = ϕ(u, v) on S containing p such
that ϕ� = f(ϕ(u, v)) is a coordinate patch on S�.

• If γ = γ(t), a ≤ t ≤ b, is a regular curve of class Cr on S, then ϕ� = ϕ�(t) := ϕ(γ(t)) is a
regular curve of class Cr on S�.
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Figure 4.1: Regular differentiable mapping f between two surfaces S and S�.

A 1-1 mapping f of a surface S onto S� is called an isometry if the length of an arbitrary regular
arc γ = γ(t) on S is equal to the length of its image γ� = γ�(t) := f(γ(t)) on S� (see equation
(4.3)). If there exists an isometry from S onto S�, then S and S� are said to be isometric; finally,
if f is an isometry from S onto S� then f−1 is an isometry from S� into S.

A regular differentiable mapping f of a surface S into a surface S� is said to be equiareal if every
region of S is mapped onto a region of S� with the same area (see equation (4.4)). The mapping f
is defined as conformal, or angle-preserving, if the angle between two oriented curves γ = γ(t) and
β = β(τ) on S intersecting at p is the same as that of the corresponding images on S� through f
at the corresponding point f(p) (see equation (4.5)).

Using the expression of the arc-length (4.3), area (4.4), and angle between two curves (4.5) as
function of the coefficients E, F , G of the first fundamental form I in (4.1), it is possible to prove
that isometric, angle-preserving, and equiareal mappings between S and S� are fully characterized
by I as stated by Proposition 9.

Proposition 9. Let f : S → S� be a 1-1 mapping, I = Edu2 + 2Fdudv + Gdv2 and I� =
E�du2+2F �dudv+G�dv2 be the first fundamental form of (S, ϕ) and (S�, ϕ� := f(ϕ)) respectively.
Then,

• f is an isometry if and only if I = I�, that is,

E = E�, F = F �, G = G�;

• f is equiareal if and only if the matrices T and T � associated to I and I� have the same
determinant, that is,

det(T ) = det(T �) ⇐⇒ EG− F 2 = E�G� − F � 2;

• f is conformal if and only if there exists a function η = η(u, v) �= 0 in U such that I = ηI�,
that is,

E = ηE�, F = ηF �, G = ηG�;

• f is an isometry if and only if f is equiareal and conformal.
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These concepts will be used in Section 4.5 for characterizing the distortion of the parameterization
of triangle meshes.

Conformal and harmonic mappings. We now want to investigate the link between conformal
and harmonic mappings proving that a function ϕ which is conformal is also harmonic. Let ϕ
be any mapping from a surface S to the plane and be (u1, u2) the related coordinates of S. By
Proposition 9, if ϕ is conformal there exists a scalar function η = η(u1, u2) such that

ds2 = η(u1, u2)
(
(du1)2 + (du2)2

)
. (4.6)

If S� has coordinates (ũ1, ũ2) and E�, F �, G� are the coefficients of its first fundamental form, it
is possible to show that (4.6) implies the equations [DoC76]:

∂u1

∂ũ1
=
E�

√
g̃

∂u2

∂ũ2
− F �

√
g̃

∂u2

∂ũ1
,

∂u1

∂ũ2
= −G

�

√
g̃

∂u2

∂ũ1
+
F �

√
g̃

∂u2

∂ũ2
, (4.7)

where g̃ := E�G� − (F �)2.

If we differentiate one equation in (4.7) with respect to ũ1 and the other one with respect to ũ2

(and viceversa), by summing them we obtain the generalization of the Laplace equation

∆Su
1 = 0, ∆Su

2 = 0,

where ∆S is the Laplace-Beltrami operator

∆S :=
1√
g̃

(
∂

∂ũ1

(
G�

√
g̃

∂

∂ũ1
− F �

√
g̃

∂

∂ũ2

)
+

∂

∂ũ2

(
E�

√
g̃

∂

∂ũ2
− F �

√
g̃

∂

∂ũ1

))
.

Finally, we note that a harmonic function is not necessarily conformal; an example is given by
f(x, y) := (x(1 + y), y).

4.4 Graphs and triangulation

In this section, we introduce the definition of parameterization and we review some concepts on
surface triangulations (see Section 1.1) from the perspective of graph theory [Die00]. A simple
graph G = G(V,E) is a set of nodes V := {i : i = 1, . . . , n} and a set of edges E := {(i, j) ∈ V ×V :
i �= j} subset of all unordered pairs of distinct nodes. A graph G is planar if it can be embedded
in the plane such that:

• each node i ∈ V is mapped to a point ui ∈ R
2;

• each edge (i, j) ∈ E is mapped to a curve whose end points are ui, uj ;

• the only intersections between two curves corresponding to two distinct edges are at common
endpoints.
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Such a planar embedding of G is referred to as a plane graph. A plane graph G partitions the
plane into connected regions called faces which can be bounded or unbounded; in this last case,
each face is called an outer face. Let ∂G be the set of nodes and edges incident to the outer faces;
if ∂G is a simple planar curve, G is called a simply connected graph with boundary ∂G. Finally, a
plane graph is triangulated if all its bounded faces are triangular, that is, they have three edges.

Definition 16. A planar triangulation G is a simply-connected triangulated plane graph whose
edges are straight.

Let F be the set of bounded triangular faces of G, then we write G = G(V,E, F ).

Definition 17. A surface triangulation S = S(G, X) is an embedding in R
3 of a simply-connected

triangulated plane graph G = G(V,E, F ), V := {i : i = 1, . . . , n}, with node set X := {xi ∈ R
3 :

i = 1, . . . , n}, straight lines for edges, and triangular facets for faces.

Since the boundary ∂G of a simply-connected plane graph G is a simple closed planar curve it has
a well-defined orientation, which we take as the anti-clockwise direction.

Definition 18. Two simply connected triangulated plane graphs G1 and G2 are isomorphic if
there is an injective correspondence between their nodes, edges, and faces in a such way that
corresponding edges join corresponding nodes, corresponding faces join corresponding nodes and
edges, two anti-clockwise sequences of nodes in ∂G1 and ∂G2 correspond.

The above definitions enable to define the parameterization as follows.

Definition 19. A parameterization of a surface triangulation S = S(G, X) is any planar trian-
gulation P which is isomorphic to G.

Definition 19 does not depend on the set X which defines the geometry of the surface triangulation
S; however, a “good” parameterization (see Section 4.5.3) will be defined in a such way that
corresponding neighborhoods on S and P will have a local geometry with a low “distortion”.

Example 1. Given n distinct points Ω := {ui := (ai, bi), i = 1, . . . , n} in R
2, let P be any

triangulation (e.g., the Delaunay triangulation [BE92]) of Ω and X := {xi := (ai, bi, ci), i =
1, . . . , n} a point cloud in R

3 with {ci}i=1,...,n ⊆ R arbitrary values. Then, S(P , X) is a surface
triangulation with parameterization P. An example is given in Figure 4.2.

4.5 The parameterization problem

In this section, we make explicit the concept of surface parameterization and how it is approached.
Let S = S(G, X) be a surface triangulation and Sk(S), k ∈ N, be the linear space of all continuous
functions ϕ : S → R

k which are linear on each triangle of S, that is,

Sk(S) :=
{
ϕ : S → R

k : ϕ ∈ C0, ϕ|∆ ∈ P
1 ∀∆ ∈ S}
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(a) (b) (c)

Figure 4.2: (a) Input surface triangulation, (b) planar parameterization achieved as described in
the example 1, (c) shape-preserving parameterization on the unit square (see Section 4.5.1 and
4.5.2).

with P
1 the linear space of linear functions from R

3 to R
k. From now on, we consider the case

k := 2 (i.e., we search an embedding of S on the plane), while more general considerations are
given in Section 4.8 and 4.8.1. If we focus our attention on a single triangle ∆ := [xi1 , xi2 , xi3 ] ∈ S,
the linearity of ϕ on ∆ enables to write

ϕ(x) = λ1ϕ(xi1 ) + λ2ϕ(xi2 ) + λ3ϕ(xi3 ), x ∈ ∆ (4.8)

where

λ1 :=
area([x, xi2 , xi3 ])

area(∆)
, λ2 :=

area([xi1 , x, xi3 ])
area(∆)

, λ3 :=
area([xi1 , xi2 , x])

area(∆)
, (4.9)

λi ≥ 0, i = 1, 2, 3, λ1 + λ2 + λ3 = 1, are the barycentric coordinates of x with respect to the
vertices of the triangle ∆ (i.e., x = λ1xi1 + λ2xi2 + λ3xi3). Therefore, the parameterization of S
is an isomorphism ϕ : S → P ⊆ R

2, with P = P(G,Ω) parameterization domain, such that

ϕ|X : X → Ω ⊆ R
2

xi �→ ϕ(xi) := ui
(4.10)

and P is a valid triangulation (i.e., without foldovers). The map ϕ is extended from the set of
vertices X to the surface S by using barycentric coordinates as in (4.8).

4.5.1 A family of parameterizations based on convex combinations

The method that we are going to present [Flo97] defines a parameterization of a surface triangula-
tion S (i.e., 0-genus and one boundary component) through the solution of a linear system which
requires that each internal vertex of P is a convex combination of its neighborhoods, while the
boundary vertices are constrained to belong to a convex polygon. The choice of the coefficients of
the convex combination provides several embeddings of S onto P (i.e., a family of parameteriza-
tions) whose effectiveness for applications such as surface approximation depends on the way P
locally preserves the shape of S (see Section 4.5.3).
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Let S = S(G, X), G = G(V,E, F ), be a planar surface triangulation with vertices X := {xi : i =
1, . . . , n}; without loss of generality, we assume that XI := {xi : i = 1, . . . , n} are the internal
vertices andXB := {xi : i = n+1, . . . , n} are the k := n−n boundary vertices in any anti-clockwise
order. The construction of the embedding ϕ in (4.10) is achieved as follows:

• choose {un+1, . . . , un} to be the vertices of any k-sided convex polygon Ω ⊆ R
2 in an anti-

clockwise sequence;

• for each internal node i = 1, . . . , n, choose any set of real numbers λi,j , j = 1, . . . , n, such
that

λi,j = 0, (i, j) /∈ E, λi,j > 0, (i, j) ∈ E,
n∑

j=1

λi,j = 1; (4.11)

• define {ui : i = 1, . . . , n} to be the solution of the linear system of equations

ui =
n∑

j=1

λi,juj, i = 1, . . . , n; (4.12)

• let P = P(G,ΩB,Λ), with ΩB := {un+1, . . . , un} and Λ := (λi,j) ∈ Mn,n(R), be the em-
bedding of G in R

2 with nodes {ui : i = 1, . . . , n}, straight lines for edges, and triangles for
faces.

In the following, we present the main properties of the method proving that P is a parameterization
of S. First of all, we note that the relation (4.12) can be written as

ui −
∑

j∈N(i)∩I

λi,juj =
∑

j∈N(i)∩B

λi,juj , i = 1, . . . , n

with N(i) := {j ∈ V : (i, j) ∈ E} 1-star of i in G, I := {i : i = 1, . . . , n}, and B := {i : i =
n+ 1, . . . , n}, or as a matrix equation

Au = b (4.13)

where A := (aij)i,j ∈Mn,n(R) is defined by the relations

aii = 1, aij = −λi,j , i, j ∈ I, i �= j,

u := (ui)i=1,...,n ∈ Mn,2(R), b :=
(∑

j∈N(i)∩B λi,juj

)
i=1,...,n

∈ Mn,2(R). As stated by Theorem

10, the existence and uniqueness of a solution to (4.12) is guaranteed by the non-singularity of the
matrix A in (4.13), while the meaningfulness of the solution as parameterization of S depends on
the geometric properties of the convex combinations 1.

Theorem 10. For the parameterization problem (4.12) the following properties hold:

• the matrix A in (4.13) is non-singular;
1If a point p ∈ R2 is a convex combination of s points {pi : i = 1, . . . , s} and l is any line passing through p,

then either all the points pi belong to l or there is at least one point pj on the other side of l.
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• every internal point ui, i = 1, . . . , n, of P belongs to the convex polygon Ω;

• let P (S) be the class of all parameterizations of the surface triangulation S. Define T (S) ⊆
P (S) to be those parameterizations of the form (4.12) and let C(S) ⊆ P (S) be those parame-
terizations whose boundary nodes are the vertices of a convex polygon in an anti-clockwise
sequence. Then, T (S) = C(S).

Therefore, the convexity of the polygon Ω is of basic importance because it guarantees that ϕ
is an isomorphism between the surface triangulation S and its parameterization P , and it fully
characterizes the set of mappings which embed S onto convex polygons of the plane. In [LKL02],
the drawback of mapping the boundary of the 3D mesh onto a convex planar curve has been
solved by using a multi-layered virtual boundary. Finally, the method of barycentric-coordinates
has been extended in [GGS03] to the case of closed manifold triangle meshes with 0-genus, defining
all its possible spherical parameterizations.

Since
∑n

j=1 λi,j = 1, i = 1, . . . , n, the coefficient matrix in (4.13) is sparse and diagonally dominant;
therefore, the associated linear system can be solved in O(n3) time with direct methods such as
the QR and the LU factorization, or iteratively in O(n) time by using the Bi-CGSTAB conjugate
gradient [GL96]. Usually, iterative solvers are preferable to direct methods due to the growth of
the dimension of the matrix A with the number of vertices of the input surface triangulation.

4.5.2 Weights choice and related approaches

By allowing each internal vertex ui ∈ Ω, i = 1, . . . , n, to be any convex combination of its
neighboring vertices, the procedure provides all possible valid planar embeddings of the graph
G associated to S onto a convex and planar domain. The choice of the weights λi,j affects the
distortion of the parameterization (see Section 4.5.3); therefore, they have to be chosen in order
to minimize the triangle deformation with respect to the geometry of the 3D mesh. We now
describe several methods for selecting the weights λi,j and whose choice depends on the targeted
applications; Figure 4.3 shows the different embeddings of a given surface S.

Constant weights [Tut63]. If we consider the parameterization problem as the search of a
planar embedding of a plane graph G, it is natural to choose the coefficients of Λ as λi,j := 1/di,
where di is the number of nodes incident in i, that is, di = �N(i). This choice is independent of
the geometry X of S and it is only related to the connectivity of the graph G.

Weighted least-square coefficients [Flo97]. Suppose the boundary vertices un+1, . . . , un

have been chosen and are fixed; then, we define the internal points {ui : i = 1, . . . , n} as the
minimum of the convex functional F : R

n×2 → R:

F (u1, . . . , un) :=
∑

(i,j)∈E

wi,j‖ui − uj‖22, (4.14)
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where the weights wi,j = wj,i > 0 are symmetric for all (i, j) = (j, i) ∈ E. If ui := (ui,x, ui,y) ∈ R
2,

the global minimum of (4.14) is attained when (∂ui,xF, ∂ui,yF ) = 0 for all i = 1, . . . , n, that is, at
the points

ui =
∑

j:(i,j)∈E

wi,j∑
j:(i,j)∈E wi,j

uj, i = 1, . . . , n. (4.15)

Therefore, we have that the previous equation is equivalent to solving (4.12) with

λi,j :=
wi,j∑

j:(i,j)∈E wi,j
,

and the weighted least-squares coefficients are defined proportional to the edge lengths of S as

wi,j := ‖xi − xj‖−q
2 , q ∈ N.

Even thought these weights take into account the geometry of the input surface triangulation
S, they present some oscillations probably due to the constraints of having symmetric weights
wi,j = wj,i, (i, j) ∈ E, [Flo97].

Shape-preserving weights [Flo97]. The search of the coefficients λi,j in (4.11) is also related
to the problem of finding the barycentric coordinates as defined below.

Definition 20. Let N := (v1, . . . , vk) be k points in the plane arranged in an anti-clockwise
ordering around v0. The coefficients (λ1, . . . , λk) are barycentric coordinates of v0 with respect to
N if 

λ1 > 0, . . . , λk > 0,∑k
i=1 λi = 1,∑k
i=1 λivi = v0.

(4.16)

In the simplest case k = 3 (see also (4.8) and (4.9)), the weights λ1, λ2, λ3 are the barycentric
coordinates of v0 with respect to the triangle ∆ := [v1, v2, v3] and they are uniquely determined
by the previous conditions (4.16). If k > 3, the problem (4.16) has not a unique solution; in fact,
since v0 belongs to the convex hull of N there must exist at least one triangle ∆ := [vi1 , vi2 , vi3 ]
such that v0 ∈ ∆ and therefore we can choose as coordinates

λi :=
{
λil

i = il, l = 1, 2, 3,
0 else.

However, these coordinates depend randomly on the choice of the triangle ∆ which contains v0.
In order to supply to this drawback, the shape-preserving coefficients related to the node i are
calculated by averaging the barycentric coordinates of ui over certain covering triangles belonging
to the local conformal parameterization of the 1-neighborhood of xi. These coefficients depend
continuously on {xj : j ∈ {i} ∪N(i)} and, as stated by Proposition 10, their main feature is the
reproduction property of the parameterization with respect to affine transformations.

Proposition 10 (Reproduction property). Suppose that S is a planar surface triangulation and
that its boundary vertices xn+1, . . . , xn form a convex polygon Ω containing S. Let P(G,ΩB,Λ) be
the shape-preserving parameterization and such that the boundary vertices xn+1, . . . , xn are mapped
affinely into un+1, . . . , un. Then, the parameterization P is an affine mapping of S.
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: (a) Input surface triangulation, parameterization with (b) constant, (c) least-squares,
(d) shape-preserving, (e) conformal, and (f) harmonic weights.

Mean-value weights [Flo03]. The Mean-Value Theorem 11 [Rud70] enables to derive new
(barycentric) coordinates of v0 with respect to N which depend infinitely smoothly on the data
points v0, v1, . . . , vk as summarized by Proposition 11.

Theorem 11 (Mean-value Theorem). Let f : Ω → R be a harmonic function on an open and
bounded set Ω in R

2 (i.e., ∆f = 0 in Ω). Then, for a disc B(v0, r) ⊆ Ω with boundary Γ

f(v0) =
1

2πr

∫
Γ

f(v)ds.

Proposition 11 (Mean-value coordinates). Let αi, 0 < αi < π, be the angle at v0 in the triangle
∆ := [v0, vi, vi+1] defined cyclically (see Figure 4.4(a)). Then,

• the weights

λi :=
wi∑k

j=1 wj

, wi :=
tan(αi−1/2) + tan (αi/2)

‖vi − v0‖2 , (4.17)

are barycentric coordinates for v0 with respect to v1, . . . , vk;

• each weight λi is bounded
1
Ck

< λi <
C

k
,

where
C :=

L� tan(α�/2)
L� tan(α�/2)

≥ 1,

with L� := maxi{‖vi−v0‖2}, L� := mini{‖vi−v0‖2}, α� := maxi{αi}, and α� := mini{αi}.
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• Let S = S(G, X) be a planar surface triangulation of a domain Ω. If fG : Ω → R is a
piecewise linear function which satisfies the mean value theorem for each interior vertex v0,
and r > 0 is a suitable radius such that Γ belongs to the convex hull of N , then fG(v0) is
given by the convex combination

fG(v0) =
k∑

i=1

λifG(vi)

with the weights λi in (4.17).

Given a planar surface triangulation S and an internal node i ∈ V , we can consider its 1-star
N(i) := {j1, . . . , jk}; if S is a 2D surface (i.e., X ⊆ R

2), from the previous discussion it follows
that the problem (4.12) is equivalent to searching the coordinates (λjl

)k
l=1 of xi with respect to

{xjl
}kl=1. If S is a 3D surface, the use of the mean-value weights locally mimics the planar case.

Harmonic weights [EDD+95, PP93]. We now describe a parameterization method which is
based on the discretization of harmonic maps using the Finite Element Methods [QA94]; then, we
analyze its relations with the convex combination maps. Given a surface S with regular parametric
representation ϕ : U → S, the method consists of the following steps:

• fix the boundary condition, i.e. ϕ|∂S = ϕ0, by mapping the polygon boundary ∂S homeo-
morphically to some polygon in the plane;

• find the function ϕ ∈ S2(S) which minimizes the Dirichlet energy

ED(ϕ) :=
1
2

∫∫
U

‖∇ϕ‖22dudv

with boundary condition ϕ|∂S = ϕ0.

From equation (4.4), it follows that

A(S) =
∫∫

U

√
EG− F 2dudv =

∫∫
U

√
‖ϕu‖22‖ϕv‖22 − | < ϕu, ϕv > |2dudv =∫∫

U

‖ϕu ∧ ϕv‖2dudv ≤(a)

∫∫
U

‖ϕu‖2‖ϕv‖2dudv ≤(b)

1
2

∫∫
U

(‖ϕu‖22 + ‖ϕv‖22
)
dudv =

1
2

∫∫
U

‖∇ϕ‖22dudv,

where the last integral is the Dirichlet energy of S achieved by using its parametric representation
ϕ over U . The inequality (a) becomes an equality if and only if < ϕu, ϕv >= 0, while (b) does
iff ‖ϕu‖2 = ‖ϕv‖2. Furthermore, the minimum of the Dirichlet energy is the area of S and it is
attained only for conformal mappings, i.e. when the two conditions on ϕ previously introduced
hold.
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(a) (b) (c)

Figure 4.4: (a) 1-star of v0, (b) corresponding triangles on the input triangle mesh and the
parameterization domain, (c) angles related to the triangles belonging to the 1-neighborhood of
xi.

Let us now consider the discrete case where S is a surface triangulation and ϕ is a piecewise linear
function. If ∆ := [x1, x2, x3] is a triangle in S, it is possible to prove that [DMA01, EDD+95]∫

∆

‖∇ϕ‖22dx =
1
2
[
cot(θ3)‖ϕ(x1)− ϕ(x2)‖22 + cot(θ2)‖ϕ(x1)− ϕ(x3)‖22 + cot(θ1)‖ϕ(x2)− ϕ(x3)‖22

]
,

(4.18)
where the angles θi, i = 1, 2, 3, are shown in Figure 4.4(b). Therefore, using the additivity of
the integral, the symmetry of the expression ‖ϕ(xi) − ϕ(xj)‖2 with respect to (i, j) ∈ E, and
differentiating ED(ϕ) with respect to the unknowns ϕ(xi), i = 1, . . . , n, the minimum of the
convex functional ED is the solution of the linear system of equations:∑

j∈N(i)

wi,j(ϕ(xi)− ϕ(xj)) = 0, i, . . . , n, (4.19)

where (see Figure 4.4(c))

wi,j := cot(αij) + cot(βij) =
sin(αij + βij)

sin(αij) sin(βij)
. (4.20)

Since the coefficient matrix (4.20) associated to the equations (4.19) is symmetric and positive
definite, the system admits a unique solution (ϕ(xi))i=1,...,n. Expression (4.19) is equivalent to
(4.15) but the weights (4.20) might be negative; in fact,

wi,j > 0 ⇐⇒ (αij + βij) < π.

This condition is fulfilled when all angles of S are less than π/2; if it is not satisfied, the discrete
harmonic map may not be injective and some triangles may have the wrong orientation. Propo-
sition 12 gives the link between the injectivity of piecewise linear harmonic functions and convex
combination maps for the parameterization problem.

Proposition 12. A discrete harmonic map ϕ : S → P solution of (4.19) is injective if it maps
∂S homeomorphically into a convex polygon ∂P and if the sum of every pair of opposite angles in
S is less than π. In this case, ϕ is a convex combination map.
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We explicitly underline the analogy between the above discussion and the definition of harmonic
scalar fields over arbitrary surface triangulations given in Section 3.2.2. In fact, equation (3.2) at
page 75 is equivalent to (4.19) with the difference that there we deal with an arbitrary manifold
M, and the constraints on f are given on the set {xi : i ∈ C} which not necessarily coincides
with the boundary ofM (if any).

4.5.3 Parameterization distortion

From Proposition 9, it follows that it is possible to measure the “quality” of a given parameter-
ization ϕ : S → P ⊆ R

2 by analyzing if ϕ preserves intrinsic properties such as the arc length,
angles, and area. This aim is achieved by studying the properties of the matrix T in (4.2) associ-
ated to the first fundamental form I = ‖dϕ‖22 of ϕ (see Section 4.3); the further T deviates from
the identity matrix, the more the intrinsic properties of S are distorted when it is mapped onto
P . We specialize the discussion given in Section 4.2 to the case of a triangle mesh; then, new
embeddings of S onto a planar domain are defined by different techniques which aim at producing
least-distorted parameterizations, and vary by the distortion functionals they deal with.

Let S = S(G, X) 2 be a planar surface triangulation and ϕ : S → P ⊆ R
2, ϕ ∈ S2(S), P = P(G,Ω),

be a parameterization of S. The distortion of ϕ over S is defined by averaging the stretch between
each triangle ∆ ∈ S and its image ϕ(∆) ∈ P [FH02]. Since ϕ is a piecewise linear mapping, by
introducing an orthonormal coordinate system over ∆ with the third axis perpendicular to ∆,
equation (4.8) can be written as ϕ|∆ = f |∆ where

f(x) = Fx+ c, x ∈ R
2 (4.21)

with F ∈ R
2×2 and c ∈ R

2. Using (4.21), we want to express the shape deformation of ∆ in terms
of the matrices (F, c); to this end, we set

Π1 := {f : R
2 → R

2 : f(x) = Lx+m, L ∈ R
2×2, m ∈ R

2}
and π ∈ Π1. Then, for all f ∈ Π1 we have that (π ◦ f) ∈ Π1. A functional E : Π1 → R is defined
invariant with respect to π if E(π ◦ f) = E(f), ∀f ∈ Π1, and E is a deformation functional if it is
invariant with respect to affine transformations (i.e., π(x) := Qx + r with Q orthogonal matrix).
The deformation functionals are characterized by Proposition 13.

Proposition 13. Let E : Π1 → R be a deformation functional and f be as in (4.21). Then, E(f)
only depends on the ratio ρ := σ1/σ2 of the singular values σ1 ≥ σ2 ≥ 0 of F . In particular, E
can be expressed as a function from {ρ ∈ R : ρ ≥ 1} to R.

We note that if

• ρ = 1, the singular values of F are proportional and ϕ does not distort the shape of the
triangle ∆;

2The definition of parameterization distortion is valid for any triangulated manifold without assumptions on its
genus and number of boundary components. For more details, we refer the reader to Section 4.8.
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• ρ→ +∞, the shape of ∆ is increasingly distorted and ∆ is collapsed to lines when σ2 = 0.

Then, if E is a deformation functional we can define the global deformation functional as the
average of the values of E on ϕ|∆ for each triangle ∆ in S; that is,

D(ϕ) :=
∑
∆∈S

E(ϕ|∆). (4.22)

The functional D in (4.22) satisfies the following properties:

1. rotation and translation invariance: since these affine transformations do not change the
surface geometry, the functional D is not affected by rotations and translations;

2. continuity: the deformation functional E used to define D converges to a continuous measure
when we provide finer triangulations of S; then,

D(ϕSk
)→ D(ϕS)

where ϕSk
is the parameterization of Sk and limk→+∞ Sk = S in R

3;

3. additivity: the functional D does not depend on the sampling of the input surface, that is,

D(ϕS1∪S2) +D(ϕS1∩S2) = D(ϕS1) +D(ϕS2)

for all S1 and S2 triangle meshes.

We explicitly underline that the previous properties can be defined on S instead of its parameter-
ization ϕ; furthermore, the area, the Euler characteristic, and the perimeter of the boundary of S
fulfill the previous conditions.

Definition 21. A proper deformation functional is a deformation functional E which is monoton-
ically increasing as a function of ρ.

As suggested in [FH02] and stated by Proposition 14, several proper deformation functionals can
be defined by considering the condition number κ(F ) := ‖F‖‖F−1‖ of F ∈ Gl2(R) with respect
to a matrix norm ‖ ‖ 3 [GL96].

Proposition 14. The condition numbers κ2 and κFrob. of the matrix F in (4.21) and of its first
fundamental form FTF are proper shape deformation functionals. Furthermore, the following
relations hold:

• E1(f) := κ2(F ) = ρ;
3A norm ‖ ‖ in Rn induces a norm in Mn,n(R) defined as

‖A‖ := sup
x �=0

�‖Ax‖
‖x‖

�
, A := (aij ) ∈ Mn,n(R).

The Frobenius norm of A is defined as ‖A‖F rob. :=
��

i,j |aij |2.
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• E2(f) := κFrob.(F ) = ρ+ 1
ρ ;

• E3(I) := κ2(FTF ) = ρ2;

• E4(I) := κFrob.(FTF ) = ρ2 + 1
ρ2 .

An alternative estimation of the surface stretch [SSGH01] which will be used for comparing dif-
ferent cuts on a given surface S (see Section 4.7.1) is defined by the functionals

L2(ϕ) :=

√∑
∆∈S A(∆) (L2(∆))2∑

∆∈S A(∆)
, L∞(ϕ) := max

∆∈S
{L∞(∆)}, (4.23)

with L2(∆) :=
√

(σ1 + σ2)/2, L∞(∆) := σ1, and A(∆) area of the triangle ∆.

Given a surface S, it is possible to define an isometry ϕ on S if it is developable 4; if S is a piecewise
linear surface, it is developable if the sum of the angles incident to each interior vertex of S is 2π.
Usually, 3D surface triangulations do not satisfy this last condition and the common approach to
the search of a parameterization of S consists of finding ϕ which minimizes the parameterization
distortion and which is as close as possible to an isometry, or to a conformal or area-preserving
mapping. In the following paragraphs, we describe linear and quadratic methods that accomplish
this strategy and that have been defined during the last years.

Discrete isometric parameterization. If we consider one of the previous deformation func-
tionals Ei, i = 1, . . . , 4, the corresponding functional D in (4.22) is not quadratic as it happens
in (4.14) or for the discretization of harmonic maps (4.18). This means that if we want to select
as ϕ the minimum of D we have to solve a non-linear problem; for example [HG99], the proper
shape deformation functional E2 is given by

E2(ϕ|∆) =
cot(θ1)‖ϕ(x3)− ϕ(x2)‖22 + cot(θ2)‖ϕ(x3)− ϕ(x1)‖22 + cot(θ3)‖ϕ(x2)− ϕ(x1)‖22

< ϕ(x3)− ϕ(x1), ϕ(x2)− ϕ(x1) >
4We introduce developable surfaces as a special case of ruled surfaces. A ruled surface R carries a one parameter

family of straight lines L; these lines are called generators. The general parameterization of a ruled surface R is

x(u, v) := c(u) + ve(u)

where c(u) is called directrix curve and e(u) is a vector field along c(u). For fixed values u, this parameterization
represents the straight lines L(u) on R. The normal vector n(u, v) of the ruled surface x(u, v) is computed as cross
product of the partial derivative vectors xu and xv, and we have that

n(u, v) = c
′
(u) ∧ e(u) + ve

′
(u) ∧ e(u).

For fixed u = u0, the normal vectors n(u0, v) along L(u0) are linear combinations of the vectors c
′
(u0)∧ e(u0) and

e
′
(u0) ∧ e(u0). The parameterization x(u, v) represents a developable surface D if for each generator L all points

x ∈ L have the same tangent plane (with the exception of the singular points on L). Any regular generator L(u)
of a developable surface D carries a unique singular point s(u), and s(u) = x(u, vs) is determined by the parameter
value

vs := −< c
′ ∧ e, e

′ ∧ e >

‖e′ ∧ e‖2
.

If e and e
′

are linear independent, the singular point is at infinity; otherwise, it is a proper point. In R3, there
exist three basic classes of developable surfaces: cylinders, cones, and surfaces consisting of the tangent lines of a
regular space curve s(u) which is the singular curve of the surface. For more details on the analysis of developable
surfaces, we refer the reader to [Pet04].



Local and global parameterization of surfaces with arbitrary genus 107

where the angles {θi}i=1,2,3 of the triangle ∆ := [x1, x2, x3] are shown in Figure 4.4(b). In this case,
it is not necessary to fix the boundary of the parameterization domain which evolves according
to the optimization process. The global deformation functional associated to E2 has twice the
number of triangles in S as upper bound and it is achieved by choosing E2(ϕ|∆) = 2, that is,
when ϕ is conformal. Since a conformal and piecewise linear function ϕ is an isometry, minimizing
this functional gives a parameterization which is as isometric as possible.

Discrete conformal parameterization. From (4.21), it follows that we can consider intrinsic
properties for piecewise linear mappings ϕ|∆ ∈ P

1, ∆ ∈ S. To this end, let g : R
2 → R

2,
g(x, y) := (u(x, y), v(x, y)) be an arbitrary function; therefore, we have that the Jacobian matrix
of g is given by

J :=
(
ux uy

vx vy

)
,

and the matrix T in (4.2) associated to the first fundamental form I is

T = JTJ =
(
u2

x + v2
x uxvy − uyvx

uxvy − uyvx u2
y + v2

y

)
; (4.24)

if λi, i = 1, 2, λ1 ≥ λ2, are the eigenvalues of T , and σi, i = 1, 2, σ1 ≥ σ2, the singular values of
J , we have that λi = σ2

i , i = 1, 2.

Using (4.24), we can write

trace(T ) = trace(JTJ) =
{
u2

x + u2
y + v2

x + v2
y,

λ1 + λ2 = σ2
1 + σ2

2 ,

det(J) =
{
uxvy − uyvx,
σ1σ2,

and therefore

ED(g) =
1
2

∫∫
U

‖∇g‖22dxdy =
1
2

∫∫
U

(‖∇u‖22 + ‖∇v‖22
)
dxdy =

1
2
(σ2

1 + σ2
2)A(U), (4.25)

and
σ1σ2 =

A(g(U))
A(U)

(4.26)

with A(U) the area of U . Following [DMA01], we introduce the quadratic area-energy related to
ui ∈ P as

A(ui) :=
∑

j∈N(i)

µij‖ui − uj‖22, µij :=
cot(γij) + cot(δij)
‖xi − xj‖22

where the angles γij and δij are depicted in Figure 4.4(c). Since a conformal mapping g : R
2 → R

2

satisfies the Cauchy-Reimann conditions ux = vy, uy = −vx, these last relations can be used for
defining the conformal energy of g as

EC(g) :=
1
2

[
(ux − vy)2 + (uy + vx)2

]
.
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Then, an almost conformal parameterization ϕ : S → P is achieved by minimizing the global
conformal functional

EC(ϕ) :=
∑
∆∈S

A(∆)EC(ϕ|∆)

where the restriction ϕ|∆ of ϕ to ∆ has to be intended as in (4.21). From (4.25) and (4.26), it
follows that ∀∆ ∈ S

EC(ϕ|∆) =
1
2
(σ1 − σ2)2

and
EC(ϕ) = ED(ϕ)−A(ϕ)

which shows that the minimization problem is quadratic and the solution is achieved by solving
the linear system ∑

j∈N(i)

(wi,j − µij)uj = ui, i = 1, . . . , n. (4.27)

In [DMA01], EC is generalized by considering a linear combination of ED and A, that is,

ẼC(ϕ) := αED(ϕ) + βA(ϕ)

where α and β are two arbitrary real constants. In both cases, the intrinsic parameterization
which solves (4.27) is invariant to rotation and translation, and it minimizes the distortion defined
as the linear combination of the Dirichlet [PP93] and area-energy (also called χ-energy).

An alternative approach to the search of a conformal parameterization consists of defining an
angle-based flattening which minimizes the distortion of the planar angles with respect to their 3D
counterparts [SdS00]. To each node i ∈ V we assign the sum of the angles around its corresponding
vertex xi ∈ S and ui ∈ P ; that is,

θ(i) :=
∑

j∈N(i)

θj , α(i) :=
∑

j∈N(i)

αj = 2π.

Then, we define the set of weights on the vertices as

s(i) :=
{

2π
θ(i) i ∈ I,
1 i ∈ B,

and the angles of the triangles in P are defined as the minimum of the quadratic functional

E(α1, . . . , αn) :=
∑
i∈V

[
αi

βi
− 1

]2

, βi := θis(i). (4.28)

The minimum is attained if and only if S is developable with θ(i) = 2π, i ∈ I, and in this case the
embedding of S onto P is conformal with αi = βi = θi, i ∈ I. Therefore, the solution of (4.28) is
used for constructing the corresponding piecewise linear mapping ϕ which is the most conformal
parameterization of S. However, for achieving a good parameterization the proposed approach
requires to insert a set of additional constraints on the solution which converts the problem to a
non-linear one.
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Discrete area-preserving parameterization. As stated by Proposition 9, the condition that
ϕ has to satisfy in order to be a conformal mapping is weak and this implies that is possible
to build several area-preserving mappings on a given surface S. As a consequence, minimizing
area-based functionals such as

EA(ϕ) :=
∑
∆∈S

[A(ϕ(∆)) −A(∆)]2 (4.29)

gives an ill-posed problem due to the non-uniqueness of the solution of (4.29) which is no longer
quadratic in its unknowns.

In the following sections, we consider the local and global parameterization of a triangle meshM
with an arbitrary genus; therefore, we will use and generalize the previous discussion where we
assumed that S was a planar surface triangulation (i.e., 0-genus and one boundary component).

4.6 Segmentation methods for local parameterization

Local parameterization methods build a segmentation of a surface triangle mesh into patches
homeomorphic to a disc, and then map each of them into the plane by a local convex-combination
map. The segmentation of a surfaceM into a family of disc-like regions uses algorithms for mesh
decimation [KCS98], e.g. vertex-removal or half-edge-collapse, where the simplified triangular
meshMS ⊆M approximates the shape ofM, sharing the same genus, and provides a correspon-
dence among the points of M and MS (see Figure 4.5). The number of patches is equal to the
number of triangles in MS , and the simplification is guided by a set of criteria and runs until
the coarse mesh is as simple as possible without violating quality measures, which aim to reduce
the distortion of the embedding. In general, an over-segmentation can create distortions along
the boundaries of adjacent regions which affect the texture mapping and remeshing results in
spite of local adjustments (e.g., smoothing, re-sampling, constrained boundaries). The decompo-
sition of the input manifold into a set of arbitrarily-shaped patches enables to remesh each chart
with a regular subdivision, which cannot be extended to the entire surface due to the induced
irregular covering of M; therefore, they achieve only a semi-regular remeshing. The properties
of the segmentation usually depend on the application of the parameterization: for example, for
remeshing or morphing purposes, triangle-shaped or quadrilateral-shaped patches are often used
to build the base mesh, as they well support subdivision schemes and spline-based representations
[FHR02, LSS+98, IBMJ04]. The main problems to be solved are the smoothness of the mapping
across the patch boundaries, the control over the shape, and the number of patches which, for
complex shapes, may produce a large number of small charts with simple borders.

We approach the search of an extension of simplification-based methods for the local parameter-
ization by discussing surface decomposition from a general perspective; to this end, we consider
the class of methods J which subdivideM into disjoint regions of 0-genus, i.e. a family of patches
{Ri}i=1,...,m such that:
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Figure 4.5: Input model of genus six and decomposition into disc-like charts as shown in [SWG+03].

1.
⋃m

i=1Ri =M;

2. Ri is a connected region, i = 1, . . . ,m;

3. R◦
i ∩R◦

j = ∅, i �= j, with X◦ internal part of X ;

4. Ri �= ∅ has 0-genus and ki boundary components {γj}ki

j=1.

Each primitive {Ri}i has 0-genus but a different number of boundary components; more precisely,
a cone has one boundary, a cylinder has two boundary components, and finally a body has ki

loops, with ki ≥ 3. We now review different methods which belong to J and we show how the use
of these primitives enables to segmentM in a natural way, both in terms of the geometry of the
primitives and their adjacency relations.

4.6.1 Topological segmentation based on the Extended Reeb equiva-
lence

Our approach to the topology-based segmentation builds on the shape decomposition method
discussed in Chapter 3 and it uses the concept of quotient space introduced by Reeb [Ree46, Mil63]
to classify manifolds under the action of a real smooth function f . The function f induces a
segmentation of the manifold into cells, or primitives, related to its critical points. Each cell has
0-genus and only three types of patches are possible, according to the number of their boundary
components: conical primitives have one boundary, cylinders have two, and bodies have three or
more boundary components. More precisely according to the description given in Section 3.2.1,
we define the following patches:
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• a cone primitive is defined for each terminal node of the Extended Reeb Graph (ERG), by
merging the regions associated to the terminal node and all the normal regions associated
to the arc connecting the terminal node to its adjacent one. Therefore, a cone primitive has
only one boundary component by definition, it identifies a critical region containing either a
maximum or minimum, and it covers the portion of the shape until it meets the next critical
region;

• a cylinder primitive is related to each arc connecting two internal nodes n1 and n2 of the
ERG, by merging all the regions associated to the arc connecting n1, n2. This primitive has
two boundary components, and it either corresponds to a degenerate maximum or minimum
(e.g., a volcano rim) or it simply corresponds to the part of the mesh that connects two
critical regions;

• a body primitive is defined for each critical region associated to an inner node, containing
a saddle point of the ERG. Therefore, a body primitive may have k boundary loops, with
k ≥ 3, and it corresponds to a critical region containing a saddle point.

The most important point is that each primitive {Ri}i=1,...,m has 0-genus, but a different number of
boundary components. The correctness of the chosen primitives, i.e. their topological equivalence,
is based on the fact that the topological type of a patch Ri depends only on the number of its
boundary components and on the genus of the surface R�

i obtained by gluing a disc to each loop
γj , j = 1, . . . , ki. The general case is detailed by the following theorem [Mas67] (see also Theorem
5 at page 14).

Theorem 12 (Classification of compact surfaces). Let M1 and M2 be two compact bordered
surfaces; assume that their boundaries have the same number of components. Then, M1 and
M2 are homeomorphic if and only if the surfaces M�

1 and M�
2, obtained by gluing a disc to each

boundary component, are homeomorphic.

While the properties (1-4) at page 109 are completely independent of the chosen mapping function
f , different f functions generate different decompositions and this allows to adapt the decompo-
sition to the characteristics of the specific shape (see Section 3.2.1). The decomposition method
as well as the parameterization of the primitives (see Section 4.7) is fully automatic. The user
may, however, control the process in three different stages: the choice of f , the granularity of the
decomposition, and the optimization criteria for the parameterization of each primitive. The use
of the Reeb quotient space ensures the minimal number of charts with respect to the number of
critical points of (M, f); however, the user could further segment the primitives ofM to produce
a finer segmentation. Finally, the user could select any other criteria for optimizing the parame-
terization, even a different one for each cell, as the zippering of the parameterization is highly
simplified by the connectivity of the patches. The generality of the approach, indeed, enables to
adapt the segmentation to the parameterization distortion of each patch (see Section 4.6.2), and
to choose any other embedding of the charts. Moreover, the connectivity of the segmentation is
very simple because the cells can be adjacent only by a whole boundary component, therefore
preventing the creation of corner vertices.
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(a) (b) (c) (d)

Figure 4.6: (a-b) Minimal decomposition with respect to the height function for the teapot and
the geodesic distance from curvature extrema for the feline. (c-d) Adaptive segmentation induced
by the parameterization distortion.

4.6.2 Adaptive approach to the topological decomposition

We deal with complex 3D shapes in a more flexible way through an adaptive implementation of
the previous method which slices the surface in correspondence of topological changes and where
high parameterization distortions or curvature extrema [MPS+04a, CSM03] occur. To this end,
after the identification of the regions {Ri}i=1,...,m we proceed as follows. For each patch Ri,

1. we locate its subregions S with high L2, or L∞ (see Equation (4.23)) stretch (resp., multi-
resolutive curvature [MPS+04a]);

2. we use the averaged value α of f on its boundary components to define the corresponding
iso-contour f−1(α) on Ri;

3. we subdivide Ri in correspondence of the new contours (if any).

The type of each new sub-patch can be different with respect to that of Ri, but it always falls
in the previous classification of the building primitives. In this way, the refined segmentation of
M enables to reduce the distortion of the parameterization; alternative criteria can be introduced
with the unique constraint of defining 0-genus patches. In Figure 4.6, the minimal and adaptive
segmentation are shown; Table 4.1 gives the number and type of primitives of the segmented
surfaces related to the examples shown in the chapter.

Table 4.1: Number of patches of the segmentation.
Surface Figure �Patches �Cones �Cylinders �Bodies

Teapot 4.14(a) 9 3 3 3
Teapot 4.14(b) 9 3 3 3
Feline 4.6(a) 12 6 2 4
Feline 4.6(b) 17 7 4 6
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4.6.3 Morphological and geometric segmentation

We now discuss segmentation methods based on geometric and morphological properties of the
input surface which provide a decomposition belonging to J . As discussed in Section 2.7 and 2.8,
Plumber is a specialized shape classification method for detecting tubular features (i.e., generalized
cones and cylinders) of 3D surfaces. The algorithm segments a surface into connected components
that are either body parts or elongated features, that is, handle-like and protrusion-like features,
together with their concave counterparts, i.e., narrow tunnels and wells. The multi-resolutive
segmentation codes each primitive with the level of detail at which it has been identified. In
[KT03], the segmentation method is defined as a fuzzy clustering of vertices where the probability
that a face belongs to a patch depends on its distance from the other faces. The advantage of the
method is the avoidance of over-segmentation and that boundaries among adjacent regions are
not jagged.

The segmentation provided by these methods is meaningful in our context if each patch Ri has
0-genus. Therefore, this last constraint has to be added as additional stop criterion and it is simply
tested by evaluating the Euler formula on Ri. In special situations, such as presence of topological
noise, it may happen that the previous methods are not able to proceed in the segmentation until
the patch has 0-genus; in this case, the region is partitioned by using the topological segmentation
induced by the Reeb graph. Even though topological noise can be removed during a pre-processing
step, an adaptive segmentation seems to be a possible solution for handling these situations without
modifying the input surface.

The use of the primitives provided by these different segmentation methods enables to segmentM
in a more natural way with respect to [FHR02, LSS+98], while maintaining their parameterization
and distortion control at a simple level. The factors which mainly differentiate this decomposition
from simplification-based segmentation are the geometry of the allowed patches and their connec-
tivity relations. Since we deal with a simplified situation on the adjacency between patches, we
guarantee a regular remeshing on the whole surface with the exception of localized vertices (see
Section 5.2).

4.7 Patch parameterization

In this section, the method of barycentric coordinates discussed in Section 4.5 is extended to the
case of a surface triangulation M with 0-genus and k simply-connected boundary components
{γi}ki=1; this result has an importance which is independent of the local parameterization and
which will be used in Section 4.8 for the global parameterization of surfaces with an arbitrary
genus. Then, we describe how each patch Ri of the segmentation J is parameterized.

Proposition 15 (Extended convex combination maps). Given a triangulated manifold M of 0-
genus and k boundary components {γi}ki=1, there exists an embedding ofM onto a planar domain
with k convex boundary components.
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Figure 4.7: General framework for the parameterization of a surface patch with k = 4 boundary
components.

Proof. Chosen one boundary component γ1 (for example, the one with the greater number of
vertices or length), we parameterizeM with respect to γ1, that is, we consider the vertices of the
remaining boundary components as unknowns in the linear system (4.13). In this way, we get
a parameterization φ : M → D := (Ω

′
, T ) where Ω

′ ⊆ R
2 is a planar domain with k boundary

components {βi := φ(γi)}ki=1. Clearly, different initial choices of γi produce different φ. We now
prove that each curve βi, i = 1, . . . , k is convex. Let us suppose that the internal boundary
component β is not convex; then, there exist two non-consecutive vertices up and uq on β given
by

up =
∑

j∈N(p)

wp,juj, uq =
∑

j∈N(q)

wq,juj ,

a point a := λup + (1 − λ)uq, λ ∈ [0, 1], on the line segment which joins up to uq, and a triangle
∆ := [ui1 , ui2 , ui3 ] ∈ D such that a ∈ ∆. Therefore, we express a as a linear combination of the
vertices of ∆

a = t1ui1 + t2ui2 + t3ui3 , t1, t2, t3 ≥ 0, t1 + t2 + t3 = 1

and from the identities
uik

=
∑

j∈N(ik)

wik ,juj , k = 1, 2, 3

we have that ∑
j∈N(p)

wp,j(λuj) +
∑

j∈N(q)

wq,j((1− λ)uj) +
∑

j∈N(i1)

wi1,j(−uj)+

+
∑

j∈N(i2)

wi2,j(−uj) +
∑

j∈N(i3)

wi3,j(−uj) = 0.

The previous identity implies that A in (4.13) is singular; from Theorem 10, it follows that it is a
contradiction.
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: (a) Input cylindrical surface R; (b) least-squares parameterization of R with respect
to the boundary depicted in yellow in (a), and minimal cut γ (green line); (c) shape-preserving
unfolding of Ω

′
with respect to the depicted cut in (b); (d) 3D cut Γ; shape-preserving parame-

terization of R with respect to Γ on the (e) unit square, and (f) on the unit circle.

Another choice, which resembles the statement of Theorem 12 at page 111, consists of closing
(k − 1) boundary components ofM, thus defining a new surface triangulationM� with just one
boundary, mappingM� to Ω

′
, and then removing the closed loops; we discard this method because

the internal loops of the planar parameterization are generally non-convex. Moreover, even if Ω
′

is homeomorphic to the input mesh, this approach is not useful for texture mapping, especially
when the texture is non-uniform. In this case indeed, the entire image should be mapped onto the
surface and not a part of it only. For remeshing applications or uniform textures, the presence of
holes is simply solved by avoiding operations on them.

First of all, conical primitives, i.e. for k = 1, fall into the standard case and they are parameterized
by solving the equation (4.12) with shape-preserving weights. We now analyze the case k ≥ 2 (see
Figure 4.7) distinguishing the case k = 2 (i.e., parameterization of cylindrical primitives) and k ≥ 3
(i.e., parameterization of bodies). Using Proposition 15, we build a parameterization φ :M→ Ω

′

where Ω
′
is a planar domain with k convex loops {βi := φ(γi)}ki=1. As detailed by Proposition 16,

for the removal of the internal closed curves {βi}ki=2 we define a new planar domain Ω with only
one boundary and a homeomorphism ψ : Ω

′ → Ω ⊆ R
2 with the following properties:

• the boundary ∂Ω of Ω is convex;
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(a) (b)

Figure 4.9: (a) Cut of the triangle through a vertex, (b) re-triangulation.

• each internal boundary component βi of Ω
′
is mapped to a curve ψ(βi) of ∂Ω, i = 2, . . . , k.

Proposition 16. Given a triangulated manifold M of 0-genus and with k boundary components,

1. it is always possible to convertM to a surface of 0-genus with only one boundary component
γ in O(nV ) time, with nV number of vertices of M;

2. the curve γ joins the boundary components of M without self-intersections and it is not
affected by the mesh connectivity.

Proof. Parameterization of cylindrical surfaces. If k = 2, the surface triangulation is topologically
equivalent to a cylinder and the parameterization φ :M→ Ω

′
embedsM onto a domain Ω

′
with

two boundary components β1 := φ(γ1) and β2 := φ(γ2). Let p and q be the closest points, with
respect to the Euclidean distance, on β1 and β2; that is,

‖p− q‖2 ≡ min
r∈β1,s∈β2

{‖r − s‖2},

and [p, q] the line segment from p to q (see Figure 4.8(a-b)).

The cut [p, q] is inserted in the input triangulation before unfolding the parameter domain onto
Ω. To this end, if [p, q] intersects a triangle t passing through one of its vertices t is split into two
new faces t1, t2 which share a part of the cut (see Figure 4.9(a)). Otherwise, [p, q] splits t into one
triangle and a quadrilateral q; then, q is re-triangulated by subdividing it along its shortest diagonal
(see Figure 4.9(b)). This update is also performed on the 3D triangulation in order to ensure that
M and Ω

′
share the same connectivity. Successively, we cut Ω

′
along [p, q], thus unfolding Ω

′
to

Ω through ψ. The unfolding map ψ is achieved by duplicating the cut [p, q] to [q, p], converting
β1, β2 and the cuts into one connected loop {β1, [p, q], β−1

2 , [q, p]}, and applying the Floater’s
parameterization (see Figure 4.8(c)). Each closed curve γ has an anticlockwise orientation; γ−1

means that we have reversed the ordering of its vertices (i.e., clockwise orientation). Finally,
the cut operation is coded into a relation R between ψ([p, q]) and ψ([q, p]). Therefore, the map
ϕ := ψ ◦ φ embedsM onto Ω.

General case. We solve the case of k boundaries, with k ≥ 3, by using an iterative procedure.
Supposed that we have removed (i− 1) boundary components, at the ith step we cut the current
parameter domain Ω

′
i along the line segment of minimal length which joins its external loop with
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Figure 4.10: Cut evaluation and parameterization with shape-preserving weights of a surface of
0-genus with four boundary components. The first row shows the different steps on the 3D surface
and the second row their 2D counterparts on the parameterization domain.

the closest internal boundary component. If Ω
′
1 := Ω

′
, let ψi : Ω

′
i → Ω

′
i+1 be the ith embedding;

at the end of this process, the internal loops of Ω′ are mapped onto ∂Ω
′
k through the function

ψ := ψk−1 ◦ . . . ψ2 ◦ψ1 (see Figure 4.10). Each step of the procedure used for joining the boundary
components of M requires to update and introduce the only entries of the matrix A in (4.13)
related to those points in Ω

′
that have been affected by the cut. The computational cost for

updating W (resp., for solving (4.13) with an iterative solver [GL96]) is linear in the number of
vertices of Γ (resp.,M).

The independence of γ of the mesh connectivity is a consequence of the way we have built the path
γ; self-intersections are avoided because at each step we map the joined boundary components on
the external boundary component of the current parameterization domain.

The linear path [p, q] exploited for mapping Ω
′
to Ω defines a curve Γ := φ−1([p, q]) onM, called

link path; the more φ maintains the geometry of the input mesh the better the line connecting
φ−1(p) to φ−1(q) approximates the corresponding geodesic (see Figure 4.8(d)). Alternatively to the
previous approach, we can parameterize a primitive directly using the 3D cut Γ without applying
two consecutive unfoldings with the aim of avoiding to accumulate the distortion in the proximity
of the boundary of Ω (see Figure 4.8(e-f)). We use this new embedding ϕ : M → Ω in all the
following examples. Removing one boundary component at each step is the only constraint of the
proposed approach, while different criteria can drive the cut selection. In the following, we detail
the main options which can also be combined to define a hybrid method ; then, the properties of γ
and a comparison with previous work are discussed in Section 4.7.1.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (l) (m) (n)

Figure 4.11: (a, e, i) Input dataset with three (resp., four) boundary components, (b, f, l) the
criterion used for the cut identification is its minimal length in the parameterization domain and
the search includes link paths; therefore, bifurcations of γ are admitted. (c, g, m) The cut is
constrained to join the boundary components without bifurcations on the surface, (d, h, n) all
the link paths interpolate a given source (blue) point. The cut length and the L2-stretch of the
corresponding parameterization are given in Table 4.2.

Joining boundary components with or without bifurcations. If M has three or more
boundary components, at a given iteration k ≥ 2, the external boundary ∂Ω

′
of the current

parameter domain Ω
′

includes the boundary components removed at the previous steps and the
link paths which join them. Therefore, the line segment [p, q] of minimal length which links ∂Ω

′

to its closest internal boundary component may have its origin p on an arc which corresponds
to a link path Γ on M; in this case, the point φ−1(p) ∈ Γ will be a bifurcation of the cut (see
Figure 4.11(b, f, l)). When we evaluate the cut [p, q], we can restrict its search to the part of
the external boundary which corresponds to the boundary components that were removed at the
previous steps and neglecting the link paths which join them. In this way, we constrain the cut
to join the boundary components without admitting bifurcations on the input surface (see Figure
4.11(c, g, m)).

Joining boundary components with a given source point. In some applications such as the
search of the canonical schema ofM (see Section 4.9.2), it is useful that each link path interpolates
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.12: (a, c, d, f) Geodesic cut constrained to join the boundary components without
bifurcations on the link paths and achieved by running the Dijkstra algorithm; (g-h) zoom-in on
the spout and the handle of the teapot; (b, e, i) embedding of the input surface with respect to
the cut shown in Figure 4.11 (c, g, m). Note the difference of the cuts in terms of smoothness and
length which are given in Table 4.2.

a given point s ∈ M. Let us suppose that p is the counterpart of s on the parameterization domain.
At each step, the search of the minimum length cut is constrained to join p to its closest boundary
component with respect to the Euclidean distance. However, the use of a base point can accumulate
the parameterization distortion around s and therefore it is not optimal for applications such as
remeshing and texture mapping (see Figure 4.11(d, h, n)).

Minimizing the cut length and the related parameterization distortion. The iterative
approach to the unfolding avoids to check if self-intersections of the cut disconnect the surface
and it can also be applied to the 3D setting. In this case, at the first step we select the longest
boundary component which is then joined to its closest boundary component by the shortest path
[Dij59]. These two boundaries are then merged into a unique loop γ and we set the weights of the
edges in γ equal to +∞. This update avoids that the next link paths will cross the cut found at
the previous steps; then, the following iterations proceed as previously discussed. A comparison
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Figure 4.13: Cut, parameterization with shape-preserving weights, and normalized L2-stretch
values (y-axis) achieved by removing one boundary component at each step (x-axis).

between the cuts achieved by using the exact and the approximated approach are given in Figure
4.12.

A more general strategy consists of defining γ as the minimum of the functional which is a convex
combination between the cut length and the related parameterization stretch; this choice avoids to
have long and visible seams on the remeshed/textured dataset while guaranteeing a low distortion.
In this case, each link path is achieved by running the Dijkstra algorithm on Ω

′
with weights

�ij = λ�
(g)
ij + (1− λ)�(s)

ij

where (i, j) is an edge of T , λ ∈ [0, 1], �(g)
ij := ‖xi − xj‖2 is the edge length on M, and �

(s)
ij :=

(s(1)ij + s
(2)
ij )−1 is the average of the L2-stretch of the two triangles which share the edge (i, j) with

respect to the current φ (see also Figure 4.26). We explicitly underline that if λ = 1 we are using
the approach previously discussed.

4.7.1 Discussion

Searching and optimizing a cut on a disc-like surfaceM by taking into account the correspondence
between M and its parameterization domain was firstly proposed in [GGH02] where an iterative
procedure augments an initial coarse cut with a path which joins it to a sub-region with high L2-
stretch until the distortion is below a given threshold. The computational cost after k iterations
is O(kn log(n)) with n number of input vertices. In a similar way, we connect the boundary
components on M but for solving a different problem and providing a grater flexibility for the
cut selection and a lower computational cost. In fact, working on the parameterization domain
is motivated by its simplicity, a greater degree of flexibility of adding constraints on the final cut
(e.g., interpolation of a source point p ∈ γ, the possibility of joining the boundary components with
respect to a given order, the control of bifurcations on γ), a greater smoothness of γ which is not
affected by the mesh connectivity, and a linear computational cost for its evaluation. Since each
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Table 4.2: Length of the cut graphs achieved as approximation of the geodesic ones; the table also
shows the L2-stretch.

Cut type Figure Length |γ| L2(M)

Turtle

Bifurcations 4.12(b) 55.88 3.66× 10
No bifurcations 4.12(c) 59.32 1.38× 10
Source 4.12(d) 78.81 1.16× 10

Frog

Bifurcations 4.12(f) 12.92 9.84
No bifurcations 4.12(g) 13.54 1.10× 10
Source 4.12(h) 18.23 2.19× 102

Teapot

Bifurcations 4.12(l) 4.23 3.66× 10
No bifurcations 4.12(m) 5.08 1.43× 10
Source 4.12(n) 6.74 4.23× 10

parameterization ϕ :M→ Ω with respect to γ maps the cut to the smooth boundary of a planar
polygon, an important property of γ is its regularity. A link path achieved by using the Dijkstra
algorithm is C0, in fact it is a polyline made of edges ofM, while a path Γ(λ) := φ−1(λp+(1−λ)q),
λ ∈ [0, 1], is Cs if φ−1 ∈ Cs. If we consider the parameterization φ with respect to harmonic
weights, φ is the solution of the Laplacian equation ∆φ = 0 and s ≥ 2. It follows that each
link path of the global cut γ achieved as approximated geodesic curve is at least C2 everywhere
with the exception of the points where it intersects the other boundary components or where
bifurcations occur; in these points a C0-regularity holds (see Figure 4.12). The cut-graph achieved
as best compromise between length and induced parameterization distortion requires O(n log(n))
time and it is C0 everywhere.

The parameterization of M onto a domain without holes is necessary for generating a geometry
image [GGH02] or performing a regular remeshing; otherwise, black pixels or extraordinary vertices
will appear in a neighborhood of the boundary vertices. Furthermore, the cut generally reduces
the parameterization distortion with respect to Ω

′
because boundary vertices are not constrained

to be internal to the parameterization domain (see Figure 4.13 and Table 4.2).

Joining the boundary components ofM by using a minimum spanning tree weighted on the edge
length or geodesic curves is computationally expensive (i.e., O(n log(n))), sensible to local noise,
and it depends on the input simplicial complex on which the Djikstra algorithm runs; therefore,
these approaches usually require a post-processing step which makes γ smoother. Furthermore,
the Dijkstra algorithm can compute paths which are quite different from true geodesic curves; this
is because the algorithm takes shortcuts passing through edges instead of vertices. Searching the
cut on the parameter domain enables to forget the input triangulation because geodesic curves
are represented by line segments; therefore, the proposed approach is stable with respect to the
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Figure 4.14: Shape-graph and parameterization of the building primitives related to the minimal
segmentation induced by the Reeb graph with respect to the height function.

presence of tiny triangles, irregular sampling and connectivity.

4.7.2 Shape graph and coding of the parameterization

In the previous sections, using a segmentation J of the input surface we have identified and
parameterized cones, cylinders, and bodies. Starting from the partition {Ri}i=1,...,m of M para-
meterized by ϕi : Ri → Ωi, i = 1, . . . ,m, the graph-based parameterization of M is the collection
G := {(Ri, ϕi,Ωi)}i=1,...,m enriched with the adjacency relations among primitives coded by the
graph arcs. Equivalently, we substitute each node of the shape-graph with the parameterization
of the corresponding primitive calculated by using standard (e.g., cones) or specialized methods
(e.g., cylinders and bodies). G gives a high-level geometric and topological knowledge on where
and how regions are located and glue together; also, G specifies how we can generate the input
surface with the building primitives (or equivalently, with their planar embeddings). Moreover, G
stores information on the size and generators of cylinders and cones. Figures 4.14 and 4.15 give a
complete view of the parameterization graph. As described in Chapter 5, this high-level descrip-
tion of 3D shapes can be enriched with additional geometric structures which support applications
such as deformation or editing and stored as graph attributes.
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Figure 4.15: Shape-graph of the rabbit where the topological segmentation into three patches is
induced by the Reeb graph with respect to the distance from curvature extrema located on the
ears.

4.8 Global paramterization of bordered triangle meshes with
arbitrary genus

Let M be a compact, connected triangulated surface with n vertices, e edges, f faces, and b

boundary components; then, χ(M) := n− e+ f is called the Euler characteristic ofM and it is
related to the genus g ofM by the relation g = 1

2 (2−χ(M)−b). According to the discussion given
in Section 4.5, the global parameterization of M is an isomorphism ϕ : M → P ⊆ R

k, k = 2, 3,
with P parameterization domain (see Figure 4.16); therefore, the problem consists of finding an
injective map

ϕ|M : M → Ω ⊆ R
k

xi �→ ϕ(xi) := ui
(4.30)

with Ω := {ui : i = 1, . . . , n} and such that P := (Ω, T ) is isomorphic to M. The map ϕ is
extended from the set of vertices M to the surfaceM by using barycentric coordinates: if p ∈M
belongs to the triangle of vertices a, b, c, then p = αa + βb + γc with α ≥ 0, β ≥ 0, γ ≥ 0,
α+ β + γ = 1, and ϕ(p) is set as ϕ(p) := αϕ(a) + βϕ(b) + γϕ(c).

During the last years, the global parameterization of an arbitrary 2-manifold triangle mesh has
gained an increasing attention due to the impact on several research fields: its theoretical aspects
are related to surface classification and evaluation of polygonal schema, the computation of a
global embedding enables to apply standard techniques of approximation (i.e., remeshing and
polynomial approximation), texture mapping and compression are further applications. Even
though these problems are different they share the idea of switching each of them from the 3D
surface with arbitrary topology to one of its 0-genus representation whose choice depends on the
problem characteristics we are dealing with.

The set of cut graphs for a given triangle mesh M with an arbitrary genus depends on the un-
derlining topology and the selection of a specific one should be guided by the surface geometry
and targeted applications. The influence of the mesh connectivity on the cut graph search affects
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Figure 4.16: Two examples of global parameterization of the same surface. First row: M is
embedded onto a planar domain (i.e., k = 2) by using the red cut which converts it to a disc-like
surface. Second row: the parameterization domain is a 3D surface (i.e., k = 3) achieved by running
the shape-preserving parameterization with the (red) vertices of the convex hull ofM (blue faces)
as boundary constraints.

previous work due to the use of algorithms based on mesh traversal techniques for the evaluation of
the geodesic metric. Our solution [Pat04, PSF04] is to search a cut graph made of the iso-contours
of a fair function f :M→ R and to work in a planar domain where geodesic curves are defined
by line segments and whose counterparts on M, with respect to an appropriate diffeomorphism
φ : M → R

2, give smooth approximations of geodesic paths. The emphasis of our approach is
on the definition of a simple method for finding cut graphs of M and guided by several criteria
which spread from the global parameterization (e.g., minimal length, minimization of the para-
meterization distortion, or interpolation of points as required by remeshing and texture mapping)
to the calculation of polygonal schemes for surface classification. We propose an algorithm which
finds a reduced polygonal schema in O(n) time if M has 0-genus, and with a constant number
of redundant edges in O(n log(n)) time in the general case. The proposed approach treats closed
and bordered surfaces with a unique approach; furthermore, using standard reduction operations
[VY90] it is possible to convert the cut graph of M to a canonical one while the corresponding
polygonal schema is converted to its canonical form.

The classification theorem of compact manifolds [Mas67] guarantees the existence of a represen-
tative P for each class of homeomorphic surfaces, that is, a bordered sphere or disc for the family
of 0-genus surfaces and a bordered g-holed torus for the set of manifolds with genus g. In this
way, applications such as remeshing and texture mapping can be performed on P and then the
result is mapped back toM by ϕ−1. This approach has been applied whenM is a closed 0-genus
surface (i.e., spherical parameterization [GGS03]) or with one boundary component (i.e., convex
combination maps [Flo97] discussed in Section 4.5.1); the general case has not yet been solved
due to the difficulty of finding both P and ϕ. In Section 4.8.1, we give a first investigation on
this problem focusing our attention on the search of a “simpler” isomorphic representative of an
arbitrary triangulated surface, as done in [IGG01, SCO04], but also taking into account the under-
lining parameterization problem. Then, in the following sections we discuss the global embedding
achieved by cutting the surface along appropriated cuts which convert it to a disc-like surface (i.e.,
with 0-genus and one boundary component). An example of the results achieved by using these
two approaches is given in Figure 4.16.
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Figure 4.17: Intrinsic shape-preserving parameterization of surfaces with different genus and geom-
etry; blue faces represent the convex hull of the input dataset with vertices depicted in red.

4.8.1 3D parameterization

Given an arbitrary triangulated surface M, we want to define an isomorphic 3D domain P ; the
parameterization methods previously discussed are special cases of this problem when P is a planar
convex polygon or a sphere. We show that the convex combination maps [Flo97] can be applied
to mapM onto a 3D domain; the main idea consists of locating a set of virtual boundary vertices
ofM which are fixed through ϕ to a 3D convex (virtual) boundary and determine the remaining
“internal” vertices.

Proposition 17. Any arbitrary surface M ⊆ R
3 can be embedded onto a 3D domain P which

belongs to the convex hull of M.

Proof. Let

∆(M) :=

{
n∑

i=1

αixi : αi ≥ 0, i = 1, . . . , n,
n∑

i=1

αi = 1

}
be the convex hull of M [GP74] and B := {xi : i ∈ H} the set of its vertices (see Section 1.1.1).
We can apply the shape-preserving parameterization with VB := H where the 2D boundary of the
planar convex polygon has been replaced by the 3D convex surface ∂∆(M). Then, the solution of
the linear system (4.12) defines the intrinsic parameterization ofM, ϕ|M : M → Ω ⊆ R

3, as done
in the case of disc-like surfaces.

We now show that the vertices of Ω belongs to ∆(M) by adapting the results in [Flo97] to the
3D case. Let us suppose that there exists at least one vertex which does not belong to ∆(M) and
among all of them we select the point p which has maximum distance from ∂∆(M) 5. Let q be
the orthogonal projection of p on ∂∆(M), and π the plane passing through p with normal vector
(p − q). The way we selected p guarantees that all the points of Ω belong to the half-space H
which contains q. Since p is a strict convex combination of its neighbors which do not belong to

5The distance of a point p from a closed convex set C is defined as ‖p− q‖2 = minx∈C{‖p−x‖2}, and the unique
solution q := prC(p) is the orthogonal projection of p on C.
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(a) (b) (c)

Figure 4.18: (a) Disc-like surface with its convex hull (blue triangulation), (b) shape-preserving,
and (c) intrinsic parameterization.

HC (i.e., the complementary set of H), they belong to π. Growing from this 1-star to the adjacent
neighborhoods, we have that a point of ∂∆(M) belongs to π and this is a contradiction.

We explicitly underline that:
ϕ(M) =M↔M is convex.

In fact, ϕ(M) = M ↔ A = I in (4.13) ↔ ∆(M) = M ↔ M is convex. From this relation, it
follows that the convexity ofM represents a degree of regularity for the embedding ofM. Further-
more, the previous result can be considered as an intrinsic 3D property of the parameterization
which is independent on the choice of the weights but only depends on the geometry of the input
surface. In Figure 4.17 and 4.18, the intrinsic parameterization of several surfaces is shown.

4.8.2 Basic concepts and related work on global parameterization

From now on, we consider the case k = 2; therefore, the global parameterization of M consists
of cutting it along a path γ, called cut graph, which enables its unfolding onto a planar domain
(see also Section 1.1.4). Cutting M along γ defines the disc-like surface M := (M− γ) which
is homeomorphic to a simple polygon Ω and by identifying the edges of ∂Ω we obtain the input
surface M (see Figure 4.19). The polygon Ω with the correspondence of its boundary edges
is called polygonal schema of M and among all of them the following ones have a theoretical
importance for surface classification and Computer Graphics applications:

• polygonal schema of minimal length: γ has minimal length;

• reduced polygonal schema: γ is a fundamental system of loops with base point s ∈ M, that
is, a set of closed, simple, and pair-wise disjoint paths which share s;

• canonical polygonal schema: ∂Ω is a (4g + 3b)-sided polygon of the form

γ1β1γ
−1
1 β−1

1 . . . γgβgγ
−1
g β−1

g Γ1α1Γ−1
1 . . .ΓbαbΓ−1

b (4.31)
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(a) (b)

Figure 4.19: (a) Cut graph (red line) on a torusM with its meridian and longitude. (b) Embedding
ofM into the plane and polygonal schema; γ1 and γ3 correspond to the meridian while γ2 and γ4

give the longitude identification.

with γ1γ
−1
1 in the case of the sphere. We explicitly underline that the canonical schema of

a manifold without boundary is reduced.

Related work. Arbitrary cut graphs can be found in O(gn) time and paths interpolating a
common base point can be optimized in polynomial time [dVL02]. Finding the cut of minimal
length is NP-hard [EHP02], but any given cut can be converted to a O(log2(g))-approximation
of the minimum cut graph, which is neither reduced nor canonical, in O(g2n log(n)) time. In
[NGH04], the cut graph of a closed surface interpolates 2g + 2 points arbitrarily chosen on the
input surface and which are the critical points of a Morse function f onM (see Section 3.2.2 and
4.9.1).

The method discussed in [SF02] consists of locating a longitude for each topological handle by using
the EdgeBreaker algorithm [LTR+02] which moves a contour σ onM maintaining it homotopic to
a circle. While traversing the mesh, if σ touches itself it is split into two new contours and if two
contours intersect a third one they are merged and a longitude is generated. Then, the cut graph
γ is built as the minimum spanning tree [Kru56] of the 2g boundaries generated by duplicating
the g longitudes previously found. The identification and cut of the topological handles as well
as γ depend on the triangle mesh connectivity; therefore, a post-processing based on the Dijkstra
algorithm [Dij59] refines these generators. For bordered surfaces, longitudes cannot be extracted
because boundary components prevent to sweep σ onM in a homotopic way. A specialization of
this method for texture mapping on closed surfaces of genus one has been proposed in [SF04].

In [GGH02], the cut graph γ is built by using an iterative procedure. At first, a seed triangle is
removed fromM and its boundary is marked as active; then, at each step one triangle adjacent to
the current boundary is removed while maintaining the set of removed faces homeomorphic to a
disc. The iteration stops when all the triangles have been visited and the boundary of the region
gives the cut graph. The visiting process is performed by considering at first those faces which are
closest to the seed one; furthermore, γ is made smoother and shorter by replacing each of its arcs
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Figure 4.20: Overview: input model of genus six and steps used for converting it to a disc-like
surface.

with a constrained shortest path that connects the adjacent cut nodes within a neighborhood of
γ.

The degree of freedom in the cut selection is strongly smaller if we search the reduced polygonal
schema or a homology base ofM [Mas67] for surface classification and global conformal parame-
terization (i.e., ϕ preserves the angles). The evaluation of the canonical polygonal schema is a
complex problem because the cut loops of the topological handles and the boundary components
of M have to be linked with a minimal number of paths in spite of their shape and location on
M. Due to this difficulty, the common approach to the problem determines a polygonal schema
which is successively converted to the canonical form with a set of reduction operations whose
computational cost for a closed surface is O(t log(t)) with t total number of vertices, edges, and
faces [VY90].

In [GY03], the global conformal parameterization of an arbitrary surfaceM is achieved by solving
a sparse linear system and the method is based on the properties (i.e., closedness, harmonity, con-
jugacy, duality, and symmetry) of gradient fields of conformal maps onM. The parameterization
is independent of the mesh connectivity and it is only related to the topology of the input surface
and to the homology base used for the construction of the linear system.

Overview and contributions. All the previous methods give important theoretical and prac-
tical information for the global parameterization problem; however, they share the dependence
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(a) (b) (c) (d) (e)

Figure 4.21: (a) Iso-contours of a harmonic function with a unique minimum (blue point) and max-
imum (red point) (see Section 3.2.2 and [NGH04]), (b) Reeb graph whose nodes are the barycenters
of the corresponding iso-contours, (c) cuts along the meridian loops of the topological handles that
convert the input surface M to a new one with 0-genus and four boundary components, (d) cut
graph with a source (blue) point, and (e) shape-preserving parameterization on the unit circle.
An alternative cut used for the polynomial interpolation of M is given in Figure 4.23 and other
possible choices are shown in Figure 4.24.

of the cut graph on the mesh connectivity, it is not possible to constrain its shape, and with the
exception of [GGH02] they assume to deal with closed surfaces. These elements become drawbacks
if the embedding is finalized at remeshing and texture mapping where the irregular sampling and
connectivity of the input surface is what has to be optimized without assumptions on its regularity.

Since a cut graph γ which converts M to a disc-like surface enables to parameterize M with
any method which works on surfaces of 0-genus with one boundary component (see Section 4.5),
the search of the cut that we propose is mainly focused on its characteristics such as minimal
length, smoothness, and induced parameterization distortion. The main features of the proposed
approach are (see Figure 4.20):

• flexibility: we provide a method for building a family of cut graphs with several options
for the selection of the loops that reduce M to a 0-genus surface with 2g + b boundary
components;

• generality and openess : closed and bordered surfaces are treated with a unique approach.
Furthermore, the method proposed for joining the cut loops of the topological handles of
M, as described in Section 4.7, does not rely neither on the fact that they are meridians
or longitudes, nor on the specific methods that are used for their identification. The only
assumption is that the cut surface has 0-genus; therefore, it is also useful for parameterizing
bordered 0-genus surfaces which are the output of algorithms that cut the topological handles
ofM on the base of a different approach;



Local and global parameterization of surfaces with arbitrary genus 130

Figure 4.22: Identification and cut of the topological handles.

• smoothness and “independence” of the mesh connectivity: the cut graph is not affected by
the mesh connectivity. If harmonic weights [PP93] are chosen, the cut graph is Cs, s ≥ 2,
everywhere with the exception of few points where a C0-regularity holds. On the contrary,
previous work guarantees a C0-smoothness because they are based on mesh traversal tech-
niques such as the Dijkstra algorithm and the Minimum Spanning Tree;

• computational cost : the cut graph is achieved in O(n) time if g = 0 and O(n log(n)) time
if the input surface has genus g ≥ 1. Finally, the cut graph defines a reduced polygonal
schema or with a constant number of redundant edges which depends only on g and b.

The rest of the chapter is organized as follows: in the following section we detail the core of the
proposed framework, a discussion of its properties with respect to the state of the art in the field
is given in Section 4.9.3, and future work concludes the chapter.

4.9 Cutting surfaces of arbitrary genus

We approach the search of a cut graph of a given triangle meshM by reducing it to the following
sub-problems (see Figure 4.21):

1. locate the g topological handles ofM and cut each of them along one of its meridian loops
which is then duplicated into two identical loops (see Section 4.9.1). Therefore, we achieve
a 0-genus surfaceM� with 2g + b boundary components;

2. join the 2g + b boundary components in order to convert M� to a new surface M with
0-genus and a unique boundary (see Section 4.7). Then, the polygonal schema of M is
calculated (see Section 4.9.2) and the surface is parameterized by using the shape-preserving
parameterization. However, any other parameterization method for disc-like surfaces is
meaningful [FH04].
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(a) (b) (c) (d) (e)

Figure 4.23: (a-d) Cut evaluation and shape-preserving parameterization of a surface of 0-genus
with four boundary components. The first row shows the different steps on the 3D surface and the
second row their 2D counterparts on the parameterization domain. (e) Tri-linear interpolation of
the components x, y, and z of the vertices using the parameterization domain in (d).

4.9.1 Locating and cutting topological handles

The genus of M, which is evaluated in linear time through the Euler formula, gives useful in-
formation for finding the cut graph. In fact, it is the maximum number of disjoint and non-
separating loops γ1, . . . , γg onM; that is, the set of closed curves such that γi∩γj = ∅, i �= j, and
M− (γ1∪ . . .∪γg) is a connected 0-genus surface. It follows that we have to perform g cuts onM
in order to reduce it to a 0-genus surface; however, the Euler formula does not give information
for locating and cutting topological handles.

Our approach is based on the Reeb graph of M with respect to a mapping function f :M→ R

(see Chapter 3) which codesM as a graph whose cycles are used to identify the topological handles
ofM, and the associated iso-contours correspond to the meridian curves along which the surface
has to be cut for reducing its genus. From Proposition 6 at page 67, it follows that ifM is a closed
surface the choice of f does not affect the number of loops in the Reeb graph but only the shape
of the iso-contours, that is, the meridians used for constructing the cut graph. If we consider a
bordered surface some cycles of RG may not be related to the topological handles ofM, but they
are spurious cycles due to the boundary components; therefore, they have to be recognized and
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(a) (b) (c) (d)

Figure 4.24: Cut graph of the bitorus; each column shows the cut and the corresponding em-
bedding. (a) Bifurcations are admitted (|γ| = 19.7, L2(M) = 13), (b) bifurcations are discarded
(|γ| = 19.06, L2(M) = 20.8), (c) a given source point is interpolated (|γ| = 23.74, L2(M) = 59.9).
(d) Geometry and normal image with respect to the cut in (a).

discarded. As discussed in Section 3.2.1, each node i of RG corresponds to a connected component
of the iso-contours f−1(αi), αi ∈ R, and its degree di is defined as the number of edges incident to
i in RG. A node i is classified as terminal if di = 1, as internal if di = 2, and as branching if di ≥ 3.
In all the examples, each node is represented by the barycenter of the connected component of the
corresponding iso-contour (see Figure 4.21(a-b)).

We now describe how the topological handles of M are identified and cut without disconnecting
the input surface while reducing its genus to zero (see Figure 4.22). Starting from a branching
node bn of RG we walk on one of its branches along a path R of internal nodes until a terminal
or a new branching node occurs. Let MR be the region of M around R, that is, the sub-mesh
delimited by the iso-contours associated to bn and tn, with tn last node of R. If tn is a terminal
node, MR has 0-genus [Ree46]; therefore, cuts will not be performed. In the case that tn is a
branching node, we distinguish two situations. IfM is a closed surface, Proposition 6 guarantees
thatMR is part of a topological handle which can be cut by considering the iso-contour associated
to any internal node of R; for instance, the one of shorter length or associated to the node which
is in the middle of R are possible choices. If M is a bordered surface, we have to decide if MR
is a topological handle. In both cases, this decision is taken by considering the genus g of M
after the cut; if g = (g− 1) andM has not been disconnected,MR is sliced otherwise the handle
cut is discarded. Then, the nodes of R are marked as visited and the next iterations consider
all the other paths which outcome from bn and not yet analyzed. The algorithm proceeds on the
non-visited arcs of RG until g cuts have been performed; therefore, the stop can happen before
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(a) (b) (c) (d)

Figure 4.25: First row: family of cut graphs achieved by selecting different loops on a closed
surface. Second row: cut graph (a, c) without bifurcations and (b, d) with a source (blue) point
of a surface with one and two boundary components respectively.

visiting the whole graph and the computational cost of the loop search is sub-linear in the number
of nodes of RG.

With reference to Figure 4.21, starting from the branching node b1 in (b) we walk on the arc of the
Reeb graph until the terminal node t1 is reached; the surface patch does not identify a topological
handle of the bitorus and cuts will not be done. Then, we move from b1 to b2 along the arc on
the right side and we perform a cut using one of the shown iso-contours thus reducing the genus
to one and adding two boundary components. Let us now suppose that the algorithm visits the
graph arc from b2 to b1 on the left; in this case, each iso-contour disconnects the surface and
therefore will no be considered as a meaningful cut. The same discussion applies to the surface
patch identified by the arc from b2 to b3, and finally a cut is performed along the arc b3b4. Since
g = 2, the algorithm stops without continuing in the visiting process and its output is a surface
of 0-genus with four boundary components (see (c)). By using the method discussed in Section
4.7, these handle cuts are converted into a connected boundary component (see Figure 4.23 and
(d)) which is then used for the surface embedding on the parameterization plane (see (e)). Other
possible cut graphs are shown in Figure 4.24.

4.9.2 Global parameterization and polygonal schema

In this section, we provide the polygonal schema of a surfaceM with respect to the cuts described
in the previous section proving that they guarantee a polygonal schema which is reduced or with
a constant number of redundant edges which depends only on g and b. We remind the reader that
if g ≥ 1, M is converted to a 0-genus surface with 2g + b boundary components; therefore, we
evaluate the polygonal schema ofM throughM� and M.
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(a) (b) (c)

Figure 4.26: Cut, parameterization with shape-preserving weights, and normalized L2-stretch val-
ues (y-axis) achieved by removing one boundary component at each step (x-axis). (b) Cut without
bifurcations achieved as best compromise between cut length and induced parameterization dis-
tortion, (c) zoon-in where the arrows indicate sharp vertices (|γ| = 12.26, L2(M) = 9.80).

(a) (b) (c)

Figure 4.27: (a) Input surface with a smooth meridian loop, (b) cut graph achieved by using the
proposed approach, and (c) by running the Dijkstra algorithm. The shape-preserving parameter-
ization with respect to the cut graph in (b) is shown in Figure 4.19(b).

Cut-graph without bifurcations. Let us assume that the cut graph has been calculated by
joining the boundary components of M without admitting bifurcations on the link paths. For
calculating the polygonal schema, we can suppose without loss of generality that the boundary
component γi has been linked to γi+1 by the link path Γi, with i = 1, . . . , b− 1. Since each cut Γi

has an opposite counterpart Γ−1
i , we conclude that the polygonal schema has 2(b − 1) identified

edges corresponding to the pairs (Γi,Γ−1
i ) and γi has been subdivided by Γi into two sub-parts

γ
′
i , γ

′′
i such that γ

′
i ∪ γ

′′
i = γi. Therefore, the polygonal schema ofM is

γ1Γ1γ
′
2Γ2γ

′
3 . . . γ

′
b−1Γbγ

′
bΓ

−1
b γ

′′
b−1 . . . γ

′′
2 Γ−1

1

which corresponds to a (4b− 4)-sided polygon. From (4.31), it follows that if g = 0 the polygonal
schema has b− 2 redundant edges, and if g ≥ 1 this schema is not canonical but it has a constant
number (i.e., 4g + b− 4) of redundant edges.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4.28: (a) Cut of the topological handles of the feline (g = 2, b = 0), (b) local irregular
connectivity, (c-e) the three steps which convert the surface (a) of genus zero and with four
boundary components to (e) a disc-like surface, (f) zoom-in. (g-h) Cut graph on the feline model
(g = 2, b = 2) with two boundary components located on its korns.

Cut-gaph interpolating a source point. In this case, all the link paths share a common
point p ∈ γ1; therefore, the polygonal schema is

γ1Γ1γ2Γ−1
1 Γ2γ3Γ−1

2 . . .Γb−1γbΓ−1
b−1

which has 3b edges. The number of redundant edges is 2g and the schema is canonical if g = 0.

4.9.3 Discussion

Calculating the meridians of the topological handles as iso-contours associated to the loops of
the Reeb graph guarantees that they are smooth curves because pre-images of a fair function f .
This set of possible cuts for the topological handles of M provides several degrees of freedom
for reducing M to a 0-genus surface M� with 2g + b boundary components. Furthermore, as
previously discussed, these boundaries can be joined in different ways to define a family of cut
graphs for M (see Figure 4.25). Figure 4.26 shows the reduction of the L2-stretch of M with
respect to the current shape-preserving parameterization while the cut loops of the topological
handles are joined for reducing M� to a disc-like surface M; we refer the reader to Section 4.7.1
for the discussion on the procedure which joins the (2g + b) boundary components of M�. As
shown in Figure 4.27, dealing with smooth cut loops and a surface with regular connectivity does
not ensure that the Dijkstra algorithm builds smooth cut graphs. Additional examples of cut
graphs of closed triangle meshes are given in Figure 4.28(a-f), 4.29, 4.30, 4.31, 4.32, while Figure
4.28(g-h) takes into account a bordered surface.

4.10 Conclusions

The first part of the chapter has discussed an extension of the previous work on local parame-
terization where the constraint of having disc-like patches has been relaxed to deal with 0-genus



Local and global parameterization of surfaces with arbitrary genus 136

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (l) (m) (n)

Figure 4.29: (a) Cut loops around the topological handles of a surface with genus three. After
the cut and duplications of each curves, the six boundary components are joined step by step as
described by the couples of images: (b,h), (c,i), (d,l), (e,m), and (f,n). (g) Zoom-in on the upper
part of the cut graph.

patches. The proposed framework defines a user-independent model for graph-based parameteri-
zation of 3D shapes into a minimal number of maximal charts, and it is associated to a centerline
skeleton (aligned with the parameterization), which stores geometric information as node labels.
The patch identification locates regions, which are global features of the input shape; in fact,
cones and cylinders represent protrusions, while bodies are junctions among them. As discussed
in Chapter 5, the possibility of working with different segmentations of the same surface reduces
the number of patches with respect to the atlas generation based on the mesh simplification, and
thus improves the regularity and smoothing of the remeshing through the boundaries of adjacent
regions, which usually require a specific identification and treatment. The adaptive surface seg-
mentation enables to reduce the distortion in the parameterization of each region Ri with benefits
on the remeshing; finally, the localization of extraordinary vertices is an improvement with respect
to previous methods which do not control their location on the surface.

The proposed feature-based parameterization enables a greater degree of flexibility on the align-
ment of patches along shape features and it is based on a generalization of the parameterization
proposed in [Flo97] for embedding 0-genus charts with an arbitrary number of boundary compo-
nents. We provided several segmentation methods based on topological and geometric properties
which give a partition of surfaces with arbitrary genus meaningful for the proposed approach. The
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(a) (b) (c)

Figure 4.30: (a) Reeb graph with respect to the height function of a surface of genus three, (b)
cuts of the topological handles, and (c) cut graph without bifurcations of the link paths.

choice of using the shape-preserving parameterization as the main element of the framework and
in all the examples was intended to focus the attention on the generality of our approach; however,
any other parameterization method of disc-like surfaces is meaningful with possible specializations
and optimizations of its single steps. The procedure used for joining the boundary components
enables to add constraints on the final cut; for instance, cuts interpolating feature points and lines
are important for remeshing while cut graphs which share a common source point are used for
extracting reduced polygonal schemes.

In the second part of the chapter, we discussed a computational method for calculating cut graphs
for the global parameterization of bordered surfaces with an arbitrary genus proving that it extracts
reduced cut graphs in linear time if g = 0, and with a constant number or redundant edges in
O(n log(n)) time if g ≥ 1. In this last case, applying standard reduction operations [VY90] it is
possible to convert redundant cut graphs to a canonical form. The proposed framework builds on
the Reeb graph RG which codes in a compact form the topology of a given surfaceM and stores
additional information such as the critical points, the genus of M as number of cycles, and the
iso-contours of (M, f). In the same way, a cut graph γ is an alternative high-level representation
ofM whose genus and boundary components correspond to a set of loops and link paths together
with geometric properties such as minimal length, interpolation of a given source point. We note
that the reduced polygonal schema can also be considered as the counterpart of the Reeb graph
induced by a smooth function with a minimal number of critical points as proposed in [NGH04]. If
we suppose thatM is a closed surface, RG has g loops while the cut graph contains 2g loops related
to the g iso-contours (i.e., meridians) of (M, f) that have been cut and duplicated for converting
a bordered M to a 0-genus surface. The way these loops are joined can be different and the
resulting link paths not always are along each topological handle (i.e., longitude). Therefore, the
most interesting extension consists of evaluating a homology base of an arbitrary surfaceM and it
is based on the possibility of mapping the surfaceM� to a planar domain whose internal boundary
components are constrained to have a pre-defined position on the parameterization domain.
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Figure 4.31: Two different cut graphs on a surface of genus three achieved by cutting H3 around
and along the topological handle.

(a) (b) (c) (cd

Figure 4.32: (a) Input dataset of genus five, (b) cuts of its topological handles, (c) cut graph, (d)
planar embedding.
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Chapter 5

Applications and conclusions

This chapter presents possible applications related to the local and global parameterization; more
precisely, in Section 5.1 we present a simple method for extracting a local skeleton of a given surface
starting from its local parameterization and used for performing shape deformation. Section 5.2
discusses the remeshing of triangle meshes, and Section 5.3 presents conclusions and future work
of the thesis.

5.1 Local surface deformation

We describe the extraction of a skeleton of a surface M with arbitrary genus, which is locally
induced by the local parameterization G := {(Ri, ϕi,Ωi)}i=1,...,m (see Section 4.7.2) and used for
local shape deformations. More precisely, each patch R, which has to be deformed, is injectively
mapped onto a skeletal line Σ aligned with its parameterization

ϕ : R → Ω
pi �→ ui := (ui,s, ui,t).

(5.1)

Furthermore, Σ has the same complexity as R (i.e., the number of vertices of Σ is equal to that
of R) and R is simply coded as a displacement field with respect to Σ (see Section 5.1.2).

More in details, for extracting the skeleton Σ of a conical primitive (see Figure 5.1, first row), we
consider as Ω the unit circle with a set of circles {S(0, ri)}i centered in the origin and with radii
0 ≤ ri ≤ ri+1 ≤ 1; then, Σ is built by joining the barycenters of the curves ϕ−1(S(0, ri)) on M.
We can optimize the previous step by choosing ϕ(p) as center of the circles, where p is a critical
point of (M, f) (see Figure 5.1, second row).

For extracting a skeleton Σ of a cylindrical primitive (i.e., k = 2), we choose as Ω the unit
square [0, 1] × [0, 1] where the cuts Γ and Γ−1 are mapped onto the line segments l2, l4, while
the two boundary components γ1, γ2 are identified with l1, l3 respectively (see Figure 5.2(a-b)).

139
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Figure 5.1: First row: set of concentric circles on the parametric domain and their corresponding
curves on two disc-like surfaces. Second row: sections with respect to the critical point (f is the
height function).

First of all, we associate to the primitive a coordinate network of lines; each loop is achieved as
ϕ−1({t = constant}) and each parallel as ϕ−1({s = constant}). Then, each loop is collapsed to
its barycenter thus defining a skeletal line whose number of nodes can be refined by increasing
the number of loops in spite of the mesh density and connectivity (see Figure 5.2(c-d)). The
coordinate network is useful for visualizing the presence and location of distortions induced by the
parameterization and due to the selection of a specific set of weights in (4.12) or to a particular
cut (e.g., along feature lines) for the unfolding. Finally, Γ and a section ϕ−1({t = constant})
represent the topological generators of the cylindrical patch.

We explicitly underline that chosen a conical (resp., cylindrical) primitive R embedded by (5.1), its
skeletal line Σ is aligned with the parameterization in the sense that Σ is achieved by joining the
barycenters of the iso-curves with respect to f(x) := ‖ϕ(x)‖2, ∀x ∈ R (resp., f(x) := pr2(ϕ(x)),
with pr2(s, t) = t, ∀(s, t) ∈ R

2). This property enriches existing methods based on the Reeb
graph [FK97] with the information and applications of parameterization; we thus provide a tool
which uses topology for the patch decomposition and geometry for the parameterization. Another
example is given in Figure 5.3.

A body primitive (i.e., k ≥ 3) is segmented by clustering those vertices which are closest to the
same boundary component of Ω

′
, that is, a vertex p is associated to the boundary βs such that

‖p− prβs(p)‖2 = min
j=1,...,k

{‖p− prβj (p)‖2}

where prβj is the orthogonal projection onto the convex curve βj . Each achieved sub-patch R̃j

is a Voronoi-like region (for the definition, see Section 1.2) which includes βj , j = 1, . . . , k, (see
Figure 5.4); if R̃j has two boundary components, we extract the skeletal line by using the method
previously discussed, otherwise it is a body primitive and we perform a different step depending
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(a) (b) (c) (d)

Figure 5.2: (a) Cut Γ on a cylindrical primitive R and (b) its embedding onto the unit square
where the edges l2, l4 are identified with Γ. The parallel circles on R are mapped onto parallel lines
in Ω which are orthogonal to the edge l2. The parameterization domain is used for building the
iso-contours σi (red curves) in (c), whose barycenters bi correspond to the nodes of the skeletal line
in (d). We note that each iso-contour interpolates a given vertex pi of the primitive. The example
shows the stability of the cut identification and parameterization in spite of the high-curvature
and irregular connectivity of R.

on its area a(R̃j). If a(R̃j)/a(R) < ε with ε given threshold, we build a skeleton by connecting its
center of mass with the barycenters of the boundary components; otherwise, a new segmentation
step is performed on the current sub-patch. This procedure stops when all the sub-regions are
cylinders or the area of bodies is less than εa(R).

In Section 5.1.1, we perform shape transformations which affect the object geometry and supervised
by a check of the topological meaningfulness of the editing operations; for example, a cylindrical
primitive can be modified by altering its sections but cannot be replaced by shapes of different
genus. From now on, the term feature corresponds to a region on the input surface identified
during the segmentation or selected by the user. In the last case, if k = 1 we consider ϕ(p), with p
point selected by the user, as center of the circles in Ω; for simplifying the discussion and without
loss of generality, we suppose that circles are centered in 0 ≡ (0, 0).

5.1.1 Surface deformation

A standard approach for deforming a surface M or finding a correspondence between two poly-
hedra is to define a common embedding on a high-level description such as a multi-resolution
representation [KCVS98, ZSS97], the Medial Axis [Blu67], the Reeb graph [FK97], or the para-
meterization domain [FG99].

In multi-resolution modeling, the intrinsic representation ofM is the base meshMS with respect
to a given level of detail specified by the user and the geometric details are encoded with respect
to MS . Using mesh decimation [KCS98] instead of nested spaces related to subdivision schemes
[ZSS97] ensures a greater degree of flexibility without assumptions on the regularity of the mesh
connectivity. In both cases, modifications are applied toMS which has to include all the structural
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Figure 5.3: First row: segmentation induced by Plumber, cut, and parameterization of the two
cylindrical patches which compose the input surface. Second row: iso-contours induced by the
parameterization and zoom-in on the iso-contours around the two boundary components.

details needed for the deformation; then, local details are added thus avoiding to create a bottle
neck in real time operations.

Drawbacks of using descriptors such as the Medial Axis [YBS03] are that tiny perturbations of
the surface can produce a new element in the representation without distinction between local and
global details. Furthermore, the presence of both lines and surfaces in the Medial Axis gives a
correspondence between the surface and its abstraction which can be unnatural for the user, and
the pruning process required to get a stable representation can create loss of details and artifacts
during the deformation.

In implicit modeling [BW97], skeletons, considered as a collection of elements with associated
implicit primitives, provide a compact representation that is useful for defining both motion and
deformation. In fact, during animation the skeleton attributes may change, varying surface details,
or blend. Moreover, depending on the kind of manipulation (e.g., animation, metamorphosis,
growth, etc.) skeletal elements may rotate, stretch, appear, or disappear [Blo02, CGC+02, LCF00].
Linear skeletons, such as the Reeb graph, overcome some of the problems related to the Medial
Axis but they do not provide an injective correspondence between the surface vertices and the
graph nodes [FK97].

Deforming or morphing 3D surfaces by using their planar embeddings requires to deal with patches
of 0-genus with the same connectivity [FG99]. If a global approach is used, the identification of
features on the parameterization domain is difficult and complicated by the cut that can distort
and/or disconnect features to be deformed or morphed. The local parameterization, as approached
by previous work, identifies patches which are not meaningful for deformation because they do
not represent features of the input surface.
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Figure 5.4: Voronoi-like regions of the body primitives depicted in Figure 4.12.

5.1.2 Skeleton-driven deformation

A simple scheme for surface modeling is given by the handle metaphor [WW92], where the user
selects a region of interest on the surface M containing a second region R, i.e. the handle,
which can be moved, rotated, and scaled. The boundary of the region of interest is built as the
geodesic line connecting the surface vertices picked during the patch selection. The user is free
to manipulate the handle and the mesh in the region of interest is updated using a constrained
energy [KCVS98] or a Laplacian-based functional minimization [SLCO+04].

The core of our approach (see Figure 5.1 and 5.2) is based on the encoding of each vertex pi of
R relative to the barycenter of the iso-contour σi induced by ϕ : R → Ω and interpolating pi.
In this way, we derive an intrinsic and affine-invariant coordinate system represented by a linear
skeleton Σ whose vertices are the barycenters bi of the curves σi. Each skeletal line Σ of a conical
(resp., cylindrical) patch aligned with its parameterization (5.1) has a multi-resolutive structure
which is achieved by refining the number of circles (resp., parallel lines) in Ω. For deforming R, it
is sufficient to code each of its vertices into one node of Σ; to this end (see Figure 5.1 and 5.2(d)),
we consider the map

Θ : R→ R
3, Θ(pi) = bi

where bi is the barycenter of the 3D curve σi := ϕ−1(S(0, ‖ui‖2)) (resp., σi := ϕ−1({t = ui,t}))
on R. We note that given two vertices pi, pj ∈ M, i �= j, the curves σi, σj do not have multiple
self-intersections even though they can coincide when ‖ui‖2 = ‖uj‖2 if k = 1, or ui,t = uj,t if
k = 2; this property guarantees that Θ is injective “almost” everywhere. This process brings to
the identity

R = Σ +DN (5.2)

where D := (di)i=1,...,nV , di := ‖pi − bi‖2 is the set of distances of the vertices of R from Σ and
N := (Ni)i=1,...,nV , Ni := pi−bi

di
is the unit displacement vector of R from Σ. Clearly, Σ can be

approximated by a B-spline [GL96] in order to work with a continuous representation instead of a
polygonal line; this step is useful for producing deformations on the skeleton guided by physically-
based animations. Through the relation (5.2), deforming R is equivalent to modify the skeletal
line Σ and the vector D; the displacement field N is fixed and its role is to map changes on (Σ, D)
to R. Examples are given in Figure 5.5 and 5.6; Table 5.1 gives the computational cost of the



Applications and conclusions 144

Table 5.1: Computational cost of the main steps of the proposed framework; nV (resp., n) is the
number of vertices of the input mesh (resp., cut). For the fuzzy clustering, I is the number of
iterations.

Method Comptationa cost Reference

Shape decomposition

Reeb graph O(nV log(nV )) [BMMP03]
Plumber O(n2

V ) [MPS+04b]
Fuzzy clustering O(n2

V log(nV ) + In2
V ) [KT03]

Cut & unfolding

Approx. geodesic O(n)
Geodesic O(nV log(nV )) [Dij59]
Unfolding O(nV ) [Flo97]

Deformation

Reeb Graph O(nV log(nV )) [BMMP03]
Medial Axis O(n2

V log(nV )) [YBS03]
Shape-graph O(nV )

main steps of the proposed framework.

Strong deformations can create intersections between parts of the input surface; therefore, a
simple method for recognizing these degenerate situations is necessary. We give a simple solution
to the problem by considering a maximum and a minimum envelope of the patch and built as
follows. Since each vertex of R is coded in Σ, we approximate the corresponding iso-contour σi

with the maximum (resp., minimum) circle of center bi and radius maxp∈σi{‖p − bi‖2} (resp.,
minp∈σi{‖p − bi‖2}). Testing self-intersections is thus reduced to check the Euclidean distance
among points of Σ.

5.2 Remeshing

The advantages of using the proposed method for remeshing are discussed in this section. To this
end, we review the remeshing techniques commonly used to approximate a given surfaceM with
a new triangulationM which has a specific connectivity (i.e., regular, semi-regular) and geometry
(i.e., anisotropic, isotropic vertex sampling).

Given a disc-like surfaceM parameterized by ϕ :M→ Ω, a regular remeshing [EDD+95, HLG01]
defines a base mesh S0 with a minimal number of triangles which are subdivided to obtain a
sequence S0, S1, . . . , Sr of triangulations with subdivision connectivity and contained in Ω. The
iteration proceeds until Sr (resp., ϕ−1(Sr)) is a good approximation of Ω (resp.,M) with respect
to some geometric error (e.g., L2 norm). Therefore, this method uses the same number of samples
on the parametric domain in spite of the presence in Ω of triangles with a different area. As a result,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.5: (a) Conical (blue box) primitive, (b-c) iso-contours induced by its parameterization,
(d) skeletal line. Deformations are achieved by altering (e-g) the vector D, and (h-i) the skeletal
line of the leg. From (5.2), it follows that the primitive converges to its skeleton Σ when D tends
to zero; clearly, the previous modifications can be combined to give a more flexibility to the user.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (l)

Figure 5.6: First row: (a) input cylindrical primitive, (b) cut, (c) shape-preserving parameter-
ization on the unit square, (d) ring network, (e) zoom-in. From the second to the fourth row:
deformations achieved by affecting the skeletal line and the radius of the primitive: the marked
(resp., dotted) skeletal line represents the target (resp., input) skeleton. Fifth row: non-uniform
texture mapping and deformation of the cylindrical primitive R in Figure 5.2. (f) Discretization
of a non-uniform texture on a regular grid, (g-h) different views of its mapping on R which is
successively deformed (i) to a cylinder with boundary components of the same length. In (l),
deformation of (g) into a cylinder with irregular shape.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.7: (a) Input conical primitive, (b) shape-preserving parameterization, (c) regular grid on
the parameterization domain, and (d) it counterpart on M. (e-f) Adaptive remesh of (a). The
examples (e) and (f) show the uniform and adaptive remesh of the cylinder in Figure 4.8.

we have an oversampling of those triangles with a greater area and an undersampling in regions
where small local features are located. To overcome this drawback, two strategies are available.
The first one consists of re-parameterizing Ω to a new domain Ω with the aim of equalizing the
area of each triangle; internal vertices are updated using an area-based smoothing [HLG01] or a
relocation strategy [SG03]. This optimization step can produce inverted triangles and in the case
of small features it does not avoid a large number of subdivision steps.

To overcome the exponential growth of the number of vertices, the second choice is an adaptive
remeshing (Sk)k of Ω which localizes on the current remesh Sk those triangles where the approxi-
mation error betweenM and ϕ−1(Sk) exceeds a given error ε and which have to be split [LSS+98].
A triangle t ∈ Sk ⊆ Ω is subdivided if the following condition

E(t) := max
pi∈t,pi∈Ω

{dist(ϕ−1(pi), π)} > ε

holds, where π is the plane defined by the triangle ϕ−1(t). After this phase, the mesh Sk+1 is
achieved from Sk by using the red-green triangulation [BSW83]. The iteration terminates when
the local error E(t) does not exceed ε for all t ∈ Sr; finally, ϕ−1(Sr) is evaluated combining the
point plane location and barycentric coordinates.

Local remeshing [EDD+95, GVSS00, LSS+98] is based on partitioning 3D meshes into disc-like
patches, each one is parameterized and then remeshed. Main problems of this approach are the lack
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(a) (b) (c)

(d) (e) (f)

Figure 5.8: (a) Cut on a surface of 0-genus with three boundary components, (b) unfolding onto
the unit circle (shape-preserving weights), (c) regular sampling, (d) regular remeshing, (e) normal-
map image (1024×1024) [GGH02], (f) texture mapping.

of symmetry in the patch decomposition and the dependence of its structure from the simplified
meshMS which defines the atlas identification. The regular connectivity of each patch cannot be
extended to the entire mesh and extraordinary vertices are “randomly” located on the remeshed
surfaceM.

Global remeshing [AMD02, GGH02, HLG01] re-samples the global parameterization of M (see
Section 4.8) with a regular or an adaptive grid and thus treats the original mesh as a whole while
guaranteeing the regularity of the connectivity. The problems which affect the definition of a
“good” global parameterization, i.e. the choice of the cuts for the unfolding of surfaces with an
arbitrary genus and the parameterization distortion of regions with a high-curvature, are reflected
on the final result.

An alternative to both approaches is to work directly on the surface with an iterative procedure
which modifies local regions on M [Hop96, SG03], usually the 1-star of each internal vertex,
and controls their smoothness and sampling rate. This mesh adaptation process reduces the
computational cost and avoids the drawbacks of decomposing and cuttingM; however, the locality
of the approach does not guarantee to avoid error accumulation through feature lines and to
effectively optimize the global sampling of the original surface.
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(g) (h)

Figure 5.9: (a) Adjacent patches (Ri is a conical primitive and Rj is a body with four boundary
components), (b) topological segmentation, remeshed dataset (c) before and (d) after the update
of the common boundary, (e) final result. (g) Shape segmentation with f Euclidean distance
from the barycenter. (h) Uniform local remeshing of a bitorus; yellow curves locate boundary
components between adjacent regions.

5.2.1 Feature-based local remeshing

We apply the graph-based parameterization for the remeshing of a 3D shape with an arbitrary
genus and density. As refinement operator for uniform remeshing we consider the 1-to-4 operator
that recursively subdivides each triangular face into four sub-triangles by introducing three new
vertices on the edges. In this way, each remeshed patch has an implicitly-defined connectivity which
is exploited in several tasks such as compression, progressive transmission, and multi-resolution
editing. The adaptive remeshing is based on the method presented in [LSS+98]. We first discuss
how each primitive is remeshed by taking into account their different parameterizations and then
combined to give a coherent and global remesh of the input surface.

Remesh of conical primitives. Since Sr ⊆ Ω, we ensure the remeshing of ∂Ω by projecting
∂Sr onto ∂Ω; to this end, we map each vertex p ∈ ∂Sr to the point of intersection between the
line {λp : λ > 0} and ∂Ω. Once computed Sr, the remeshed dataset M is achieved as ϕ−1(Sr);
each vertex p ∈ Sr is written using its barycentric-coordinates with respect to the vertices of a
triangle t := (i, j, k) ∈ T which contains it, i.e.

p = αvi + βvj + γvk, α ≥ 0, β ≥ 0, γ ≥ 0, α+ β + γ = 1,
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(a) (b) (c)

Figure 5.10: (a) Local segmentation of the bitorus into a body and two cylinders induced by
Plumber, (b) parameterization, and (c) normal-map image [GGH02]. On each patch, the red line
represents the cut used for its unfolding.

whose 3D counterpart is ϕ−1(p) = αϕ−1(vi)+ βϕ−1(vj)+ γϕ−1(vk). The remeshing is reduced to
a point-location problem in an irregular triangulation whose computational cost is O(

√
n) with n

number of vertices (see Figure 5.7(a-f)).

Remesh of cylindrical primitives. For a cylindrical primitive M, we can proceed in two
different ways. As first choice, we apply the previous approach with its parameterization ϕ :
M → Ω onto the unit square; the edges l2, l4 have to be coherently re-sampled (i.e., (1, α) ∈ l2
if and only if (0, α) ∈ l4, 0 ≤ α ≤ 1), in order to ensure that ϕ−1(l2) and ϕ−1(l4) coherently
join when mapped back to Γ ⊆ M. In the case of uniform remeshing, the vertices of ∂Ω have
3-connectivity and each vertex on ϕ−1(l2) has 6-connectivity. Therefore, the remeshed patch has
6(resp., 3)-connectivity for internal (resp., boundary) vertices and the number of vertices on the
two remeshed boundary components is the same (see Figure 5.7(g)). An example of adaptive
remeshing is given in Figure 5.7(h).

The second possibility is to use the embedding φ :M→ Ω
′
onto the unit circle with the boundary

component β2 in its interior. In this case, we take care of introducing in Ω
′

the intersection
between β2 and Sr. This procedure is preferred to the previous one when the parameterization
of the cylindrical patch onto the unit square is strongly distorted by an irregular sampling of its
geometry. We explicitly note that we cannot know in advance how many vertices of β2 belong to
Sr. The same considerations apply to bodies (see Figure 5.8).
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We now consider what happens on the boundary components of adjacent patches in G. If the
same boundary component γ is used to parameterize two adjacent regions Ri, Rj (therefore,
γ ⊆ Ri ∩Rj), we consider the same orientation and starting point on it in order to ensure that it
has the same parameterization for both regions. This choice guarantees that ∂Ωi ≡ ∂Ωj and that
the corresponding remeshed regions (with respect to the same Sr) coherently join on the common
(remeshed) boundary whose vertices have valence six.

Let us now consider the common boundary component β of two adjacent patches Ri and Rj , and
suppose that one of them has been parameterized with respect to a loop γ �= β (see Figure 5.9(a)).
In this case, their remeshed boundaries Θi, Θj in R

3 corresponding to β do not coherently join
even though they are two different descriptions of ϕ−1(β). Supposed that Θi has a greater number
of vertices with respect to Θj, we substitute Θj with Θi (see Figure 5.9(b-c)) and we insert it into
the remeshed patch corresponding to Rj (see Figure 5.9(d-e)). This choice is intended to minimize
the number of extraordinary vertices, and we use this strategy if we consider a different r in Sr

for each patch or the adaptive remeshing (see Figure 5.9). An alternative zippering of adjacent
patches is discussed in [SWG+03]. An example of feature-based parameterization with respect to
a different decomposition (see Figure 5.9) of the bitorus is given in Figure 5.10.

5.3 Conclusions and future work

Topological and geometric methods for the local and global analysis, approximation, and abstrac-
tion of arbitrary triangle meshes have been proposed, discussed, and compared with respect to the
current state of the art. Future work is mainly related to specializing the feature-based segmen-
tation detailed in Chapter 4 for applications such as shape recognition, retrival [BMM+03], local
parameterization and deformation as discussed in this chapter. The local and global parameter-
ization give the most interesting perspectives for possible specializations from a theoretical and
applicative point of view. More precisely, starting from the characterization of convex-combination
maps given in Section 4.7 (i.e., Proposition 15 and 16 at page 113 and 116) it would be possible
to improve it in such a way of constraining the boundary components {γi}i=1,...,k of a 0-genus
triangle meshM to be mapped onto k convex planar curves with a predefined shape and position
on the parameterization domain. The possibility of building such an embedding ofM would give
a deeper understanding of the link between the connectivity and geometry ofM with generaliza-
tions to surfaces with an arbitrary genus as discussed in Section 4.8.1, and benefits on constrained
texture mapping and remeshing. Furthermore, solving the previous problem is of basic support
to the search of a homology base of M, the evaluation of reduced polygonal schemes, and the
construction of conformal parameterizations.

The global parameterization detailed in Section 4.8 gives also a starting point for visualizing,
modeling, and analyzing scalar and vector fields defined on an arbitrary triangle mesh M. More
precisely, let us suppose that M has been parameterized with respect to a cut graph γ by ϕ :
M→ Ω ⊆ R

2 and that a scalar field f :M→ R is assigned. As detailed in Chapter 3 and 4, any
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Figure 5.11: Proposed framework for analyzing, modeling, and visualizing a scalar field f :M→ R

defined on an arbitrary triangle meshM and based on the global parameterization. The two figures
on the right show the variation of the gradient field associated to f .

scalar field (e.g., harmonic scalar field, distance functions) (M, h) can be used for defining γ; in
some cases, we have h = f but we do not make this assumption in the following of the discussion.
Instead of characterizing f by studying the evolution of its iso-contours Cα(M) := {x ∈ M :
f(x) = α}, α ∈ R, we reduce the “dimension” of the problem by exploiting the parameterization
ϕ ofM (see Figure 5.11). Since ϕ is a simplicial isomorphism, we consider the composite mapping
ψ := f ◦ ϕ−1 : Ω → R whose graph Σ := {(u, ψ(u)) ∈ R

3 : u ∈ Ω} is a 2.5D surface; therefore,
the analysis of (M, f) is equivalent to that of Σ and the values {f(x) : x ∈ M} correspond to the
z-values of Σ. The choice of moving from (M, f) to Σ is motivated by a simpler approach to the
following tasks: scalar field analysis, approximation, and modeling.

Scalar field analysis : the critical points of f have a straightforward interpretation as maxima,
minima, and saddles of Σ. Furthermore, the analysis of f and of the associated iso-contours is
simplified by the visualization of Σ as an elevation model (i.e, a digital terrain model); for any
α ∈ R, the relation among the iso-contours on M and Σ is given by ψ−1(α) = ϕ(Cα(M)). On
the contrary, onM the analysis of f is indirect because related to the visualization of the contour
levels Cα(M), α ∈ R.

Scalar field interpolation and approximation: if x ∈ M, f(x) is usually evaluated with linear
precision by interpolating the values of f on the vertices of the triangle ∆ := [xi1 , xi2 , xi3 ] which
contains the point x. If we consider Σ, we can interpolate or approximate the values of f (or
equivalently, the z-values of Σ) by using an arbitrary functional space F ⊆ Ck(Ω,R) of real
functions defined on Ω; common choices are the space of polynomials or generated by an appro-
priate set of radial basis functions [GL96]. Finding a function ψ� ∈ F such that ψ�(ui) ≈ f(xi),
i = 1, . . . , nV , is a standard approximation problem on the parameterization domain Ω of 0-genus
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(and not of arbitrary genus as it happens for M) and it enables to approximate the value f(x)
with a greater precision with respect to a linear interpolation, and to include in the choice of F
a-priori information on the scalar field f such as its degree of smoothness k ≤ k.
Scalar field modeling: strictly related to the above-mentioned problem is the modeling of scalar
fields on arbitrary triangle meshes. Defining a scalar field f :M→ R which interpolates a given
set of samples {(xi, f(xi)) : i ∈ C}, C ⊆ {i = 1, . . . , nV }, is of basic importance when f has to
be recovered from a partial knowledge of its values on M. In this case, two options are available
depending on the meaning of the input data; if we want to characterize f focusing its modeling
on the set of critical points, the solution is to define a harmonic scalar field f thus constraining
the location onM and the values of maxima and minima of f (see Section 3.2.1). If the emphasis
of the modeling phase of f is on its values, the solution is to find an approximation of f in F
as previously discussed thus guaranteeing a greater accuracy of the sampling of f on the whole
surfaceM; in this case, the critical points of f cannot be included during the construction of the
scalar field.

The previous discussion has a simple extension to the case of vector and time-depending scalar
fields. The analysis of a vector field F := (f1, . . . , fd) : M → R

d, d ≥ 2, is reduced to the
analysis of its d scalar components fi : M → R, i = 1, . . . , d. A time-depending scalar field
ft : M → R, t ∈ I := [0, 1], can be analyzed by taking into account its 2.5D counterpart
ψt :M→ R, ψt := ft ◦ϕ−1, whose graph Σt := {(u, ψt(u)) : u ∈ Ω} gives an interpretation of the
variation of its critical points with respect to t that is simpler than the analysis of the iso-contours
Ct

α := {x ∈ M : ft(x) = α}, α ∈ R, t ∈ I. Finally, we underline that the global parameterization
ϕ ofM is calculated and then used to evaluate the whole set of 2.5D surfaces Σt, t ∈ I, through
the function ψt.
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[Pat04] G. Patanè. Parameterization of 3D triangle meshes with arbitrary genus. Istituto di
Matematica Applicata e Tecnologie Informatiche,Consiglio Nazionale delle Ricerche,
Technical Report N. 7/2004, Submitted for pubblication, 2004.

[PCM02] V. Pascucci and K. Cole-McLaughlin. Efficient computation of the topology of level
sets. In VIS ’02: Proceedings of the conference on Visualization ’02, pages 187–194.
IEEE Computer Society, 2002.

[Pet04] M. Peternell. Developable surface fitting to point clouds. Comput. Aided Geom.
Des., 21(8):785–803, 2004.

[POB87] S. M. Pizer, W. R. Oliver, and S. H. Bloomberg. Hierarchical shape description via
the multiresolution symmetric axis transforms. IEEE Trans. Pattern Anal. Mach.
Intell., 9(4):505–511, 1987.

[PP93] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conju-
gates. Experimental Mathematics, pages 15–36, 1993.

[PS85] F. P. Preparata and M. I. Shamos. Computational geometry: an introduction.
Springer-Verlag New York, Inc., 1985.

[PS99] K. Polthier and M. Schmies. Straightest geodesics on polyhedral surfaces. In Math-
ematical Visualization, pages 135–150, 1999.
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