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Sommario

Questa tesi si colloca nell’ambito di ricerca riguardante la rappresentazione, la modellazione

e la codifica della conoscenza connessa a forme digitali, dove per forma si intende l’aspetto

visuale di ogni oggetto che esiste in due, tre o più dimensioni. Le forme digitali sono rappre-

sentazioni di oggetti sia reali che virtuali, che possono essere manipolate da un calcolatore.

Lo sviluppo tecnologico degli ultimi anni in materia di hardware e software ha messo a

disposizione una grande quantità di strumenti per acquisire, rappresentare e processare la

geometria degli oggetti; tuttavia per gestire questa grande mole di dati è necessario svilup-

pare metodi in grado di fornirne una codifica efficiente.

In questa tesi si propone un modello concettuale che descrive un oggetto 3D attraverso la

codifica delle caratteristiche salienti e ne definisce una bozza ad alto livello, tralasciando

dettagli irrilevanti. Alla base di questo approccio è l’utilizzo di descrittori basati su funzioni

reali in quanto forniscono un’astrazione della forma molto utile per analizzare e strutturare

l’informazione contenuta nel modello discreto della forma. Una peculiarità di tali descrittori

di forma è la capacità di combinare proprietà topologiche e geometriche consentendo di

astrarne le principali caratteristiche. Per sviluppare questo modello concettuale, è stato

necessario considerare gli aspetti sia teorici che computazionali relativi alla definizione e

all’estensione in ambito discreto di vari descrittori di forma.

Particolare attenzione è stata rivolta all’applicazione dei descrittori studiati in ambito com-

putazionale; a questo scopo sono stati considerati numerosi contesti applicativi, che variano

dal riconoscimento alla classificazione di forme, all’individuazione della posizione più signi-

ficativa di un oggetto.
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Abstract

This thesis lays in the context of research on representation, modelling and coding knowledge

related to digital shapes, where by shape it is meant any individual object having a visual

appareance which exists in some two-, three- or higher dimensional) space. Digital shapes are

digital representations of either physically existing or virtual objects that can be processed

by computer applications.

While the technological advances in terms of hardware and software have made available

plenty of tools for using and interacting with the geometry of shapes, to manipulate and

retrieve huge amount of data it is necessary to define methods able to effectively code them.

In this thesis a conceptual model is proposed which represents a given 3D object through the

coding of its salient features and defines an abstraction of the object, discarding irrelevant

details. The approach is based on the shape descriptors defined with respect to real func-

tions, which provide a very useful shape abstraction method for the analysis and structuring

of the information contained in the discrete shape model. A distinctive feature of these shape

descriptors is their capability of combining topological and geometrical information proper-

ties of the shape, giving an abstraction of the main shape features. To fully develop this

conceptual model, both theoretical and computational aspects have been considered, related

to the definition and the extension of the different shape descriptors to the computational

domain.

Main emphasis is devoted to the application of these shape descriptors in computational

settings; to this aim we display a number of application domains that span from shape

retrieval, to shape classification and to best view selection.
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to Laura Paraboschi, my coauthor and first graduate student.

Moreover, I thank all people of the Istituto di Matematica Applicata e Tecnologie Infor-

matiche of the Consiglio Nazionale delle Ricerche for the friendly atmosphere in the depart-

ment, in particular I list Riccardo Albertoni who shares the office with me, Chiara Catalano

for the kind friendship and the encouragements, Daniele D’Agostino a “wizard” to decode

binary files, Corrado Pizzi for his helpful technical support, Marinella Pescaglia and Sandra

Burlando for their first class management of all administrative stuffs, Antonella Galizia,

Elena Camossi, Maria Grazia Ierardi, Francesco Robbiano, and the other graduate students

iii



with whom I lunch every day: I had a very enjoyable time!.

Last but not certainly least, I would like to thank my family and friends for their love and

patience. A special thank goes to Paolo who suffered me during these years.

This work has also been partially supported by the European FP6 Network of Excellence

“AIM@SHAPE”, contract number 506766, by the Italian National Project “SHALOM”

funded by the Italian Ministry of Research under contract number RBIN04HWR8, by

the CNR research grants Topologia e omologia nell’analisi di forme geometriche 3D, grant

DG.RSTL.050.004 and Tecniche avanzate per l’analisi e la sintesi di forme digitali 3D, grant

ICT.P10.

iv



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 1 Background notions . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Computational background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Real functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 2 Describing shapes using real functions . . . . . . . . . . . . . . 17

2.1 Morphology-based shape descriptors . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Morse complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.2 Morse-Smale complex . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.3 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Graph-based shape descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Contour tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



2.2.2 Reeb graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.3 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Algebraic shape descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.1 Size theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.2 Persistent homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.3.3 Morse descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.3.4 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.4 Shape descriptors based on distance transform . . . . . . . . . . . . . . . . . 73

2.4.1 Medial axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.4.2 Shock graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.4.3 Centrelines and Curve skeleton . . . . . . . . . . . . . . . . . . . . . . 77

2.4.4 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.4.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.5 Discussions and comparative remarks . . . . . . . . . . . . . . . . . . . . . . . 82

2.5.1 Overall comparison and general remarks . . . . . . . . . . . . . . . . . 83

2.5.2 Expressiveness of shape descriptors . . . . . . . . . . . . . . . . . . . . 85

2.5.3 Suitability for applications . . . . . . . . . . . . . . . . . . . . . . . . . 88

Chapter 3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.1 The Shape Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.1.1 Coupling the graph representation with geometric attributes . . . . . 93

3.1.2 Extension to sets of objects . . . . . . . . . . . . . . . . . . . . . . . . 99

3.2 Higher-dimensional size functions . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.2.1 Size functions of 3D objects from topological graphs . . . . . . . . . . 102

3.2.2 Multidimensional size functions . . . . . . . . . . . . . . . . . . . . . . 107

3.3 Comparison of real functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

vi



3.3.1 Continuous case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.3.2 Discrete case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Chapter 4 Applications and Results . . . . . . . . . . . . . . . . . . . . . . 119

4.1 Shape Matching and Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.1.1 Shape retrieval using high dimensional size functions . . . . . . . . . . 121

4.1.2 Sub-part correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.1.3 Scene comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.2 Shape Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.2.1 Creative prototypes using structural descriptors . . . . . . . . . . . . . 152

4.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.3 Best view selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.3.1 View descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.3.2 Sampling the view space . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.3.3 Experimental Results and discussions . . . . . . . . . . . . . . . . . . 168

4.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Chapter 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.2 Directions for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

vii



viii



List of Figures

1 Even if geometrically non equivalent, all these chair models have a similar

structure and the human brain groups them in the same object class. . . . . 1

2 The peaks, pits and passes of the model in (a) may be formal expressed in

mathematical terms as critical points (maxima, minima and saddles) (b). . . 2

3 Shape matching framework: one or more shape descriptors, or signatures, are

associated to a 3D model; then a distance between shape descriptors is defined. 5

1.1 Examples of 0-, 1-, 2- and 3-simplices. . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Configuration of vertices around a maximum, saddle, and monkey saddle point. 14

1.3 (a) Height function, (b) Euclidean distance from the barycenter, (c) average

geodesic distance in [HSKK01], (d) distance from curvature extrama, (e) first

eigenfunction of the Laplacian matrix of the model. . . . . . . . . . . . . . . . 16

2.1 (a) The ascending Morse complex of a two-dimensional scalar field (the 2-cells

correspond to the minima). (b) The Morse-Smale complex. Its 1-skeleton (the

set of simplices of dimension 0 and 1) is the critical net. . . . . . . . . . . . . 23

2.2 (a) The integral lines emanating from the higher saddle s reach s′, but a

slight perturbation of the height direction causes the integral lines to reach

m instead (b). The Morse complex is shown in (c). In (c) the black vertex

correspond to the 0-cell, the blue lines represent the 1-cells while the light

blue region is the 2-cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 The four possible configurations for the slope districts in a CPCG. . . . . . . 27

2.4 The normal space for a cluster of triangles incident on a vertex. . . . . . . . . 28

ix



2.5 (a) Visualization of the bubble structures in a Rayleigh-Taylor instability

problem [LBM+06]. (b) The initial Morse-Smale complex of spatial probabil-

ity distribution of electrons in a hydrogen atom under a large magnetic field

and the Morse-Smale complex features after simplification.[BPH05] . . . . . . 31

2.6 Isosurfaces around a minimum (a) and a saddle (b-c). At the saddle point in

(d), a torus evolves into a sphere changing the genus of the isosurface without

altering the number of components (1) of the level set. . . . . . . . . . . . . . 35

2.7 A two-dimensional scalar field (a,b) and its contour tree (c,d). The edge

orientation and the spatial embedding of the contour tree are shown in (d). . 36

2.8 The join tree and the split tree (left) of the contour tree (right) of the scalar

field in Figure 2.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 Reeb graph with respect to the height function (a) and to the distance from

a point (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.10 Pipeline of the multi-resolution Reeb graph extraction in [HSKK01]. . . . . . 46

2.11 Level sets (a) and the centerline (b,c) of an horse using the geodesic distance

from a source point as proposed in [Lazarus and Verroust 1999]. . . . . . . . 49

2.12 (a) Vertex classification based on Gaussian curvature; (b) high curvature re-

gions are depicted in red; (c) topological rings expanded from centers of high

curvature regions; (d) the graph obtained as proposed in [Mortara and Patané
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Introduction

Shape recognition and classification are basic steps to capture and understand the shape of

spaces, identifying how they match and differ in shape. In this context shape descriptions

are the starting point to define representation frameworks available for graphics and design.

To made this task computationally affordable, shapes are transformed in some fixed way

to obtain a description which is both easily computable and able to keep the main shape

properties.

An important issue of shape descriptions is their capability of decomposing the model into

sub-parts, each presumably simpler to describe than the original one and, at last, combin-

ing these sub-descriptions in a global description. This approach is supported by cognitive

research, for instance the human perception theories proposed by Marr [Mar82] and Bie-

dermann [Bie87, Bie95], where experimental results are used to show that people, when

interpreting the meaning of a novel scene, attend only to a few details and recognize an

object on the basis of basic level shapes called geons. Finally, a representation that specifies

parts (geons), attributes and relations between them, independently and explicitly is called

a structural decomposition. In Figure 1, we show a list of shapes that the human intuition

refers to the same basic level shape: a chair model; these models are not geometrically equiv-

alent but they share a common structure, which can be summarized by a seat, a rear part,

etc.

Figure 1: Even if geometrically non equivalent, all these chair models have a similar structure and the
human brain groups them in the same object class.

To set the computational framework for shape description which is the purpose of this dis-

sertation, it is necessary to establish which are the most relevant characteristics with respect

1
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(a) (b)

Figure 2: The peaks, pits and passes of the model in (a) may be formal expressed in mathematical terms
as critical points (maxima, minima and saddles) (b).

to the application domain; to define the features in which the object will be decomposed,

and to define the mathematical/computational framework that identifies them; to develop

algorithms for the extraction of salient features; to encode the achieved decomposition and

construct an explicit structure as shape descriptor.

Computational topology may give a theoretical framework for the formalization and solution

of problems related to shape and shape understanding [VY90, Veg97, DEG99]. Since the

beginning, the importance of topological aspects in modeling and analysis has been recog-

nized in many computer application areas [Fro90, Har99, Axe99, BFS00, EHZ03, BFD+08].

For instance, there is a parallelism between the salient features of a terrain (e.g. peaks, pits

and passes) and the critical points with respect to the height direction of the corresponding

digital terrain model (see Figure 2). In general, computational approaches to topological

questions deal with the complexity of issues related to the study of invariants under contin-

uous deformations such as the number of connected components, holes, tunnels, or cavities

and with the design of efficient algorithms for solving them.

This thesis deals with the analysis and the definition of an automatic and computationally

affordable shape description framework available for shape understanding and coding. The

main emphasis is devoted to its application in computational settings; to this aim we will

display a number of application domains that span from shape classification, retrieval and

matching to best view selection. In the remainder of the introduction, we firstly organize and

motivate our work, then an overview of the main contribution of this thesis to the research

in Shape Modeling is proposed; finally, the description of the organization of the following

chapters ends this part.
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Motivation

The major role of Computer Graphics and Computer Vision is the study of basic models and

methods to represent, generate and analyze shapes. At the beginning, Computer Graphics

mostly focused on solving basic problems related to representation issues of subspaces of

the Euclidean 3D-space R
3 [Req80, M8̈8]. Then, the increasing popularity of videos and

animations coming from real (e.g. medical) and virtual worlds (e.g. cartoons, animation

of virtual characters) makes necessary the use of time-varying and higher dimensional data.

In Computer Vision, less emphasis has been put on representation issues, as in this field

digital representations are generally limited to the pixel-, or voxel-based encoding of objects

acquired from the real world. On the other hand, researchers in Computer Vision introduced

the fundamental idea of using compact representations of shapes, namely shape descriptors,

and addressed issues related to analyzing, understanding and recognizing objects.

More recently, we have seen a gradual shift of research interests from methods to represent

shapes towards methods to describe shapes in Computer Graphics as well. While a dig-

ital model, either pixel- or vector-based, is a digital representation that is quantitatively

similar to an object, its description is only qualitatively similar. The distinction between

representation and description can be expressed as follows [Nac84]:

an object representation contains enough information to reconstruct (an approx-

imation to) the object, while a description only contains enough information to

identify an object as a member of some class.

The representation of an object is thus more detailed and accurate than a description, but it

does not necessarily contain any high-level information on the shape of the object explicitly.

The description is more concise and conveys an elaborate and composite view of the object

class. Therefore, the concept of description implicitly refers to an important aspect of

modeling: the analysis and the simplification of the representation.

The reason for the shift of interest from representations to descriptors is the need of rapidly

and effectively extracting knowledge from massive volumes of digital content and the demand

of handling new forms of content, such as 3D animations and virtual or augmented reality.

While the technological advances in terms of hardware and software have made available

plenty of tools for using and interacting with the geometry of shapes, there is an increasing

demand of methods for the automatic extraction of the structure and the semantic content of

digital shapes and the generation of shape models to be retrieved, shared, exploited and used

to construct new knowledge [IST]. While research in modeling shapes has mainly focused

on geometry, with the aim of defining effective representations and accurate approximations

of objects [FS97, Spa97, FS98], the new challenge in Shape Modelling is how to interpret

and retrieve models from large repositories.

Shape analysis and understanding are basic tools to construct object descriptions, as the
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processes aiming at detecting the main features of a given shape and their configuration.

Several methods have been proposed in the literature, ranging from segmentation meth-

ods to skeletonization techniques, to the computation of global shape signatures. These

tools are fundamental for classification and retrieval, to create new shapes using innova-

tive modeling by composition paradigms [FKS+04] and devise effective semantics-driven

rendering of complex shapes. Beside a large number of contributions in image processing

[BJ85, Pav95, DM98, Lon98], in Computer Graphics shape segmentation is now recognized

to be a key ingredient in many shape manipulation processes [Sha06], and shape descriptors

are crucial for 3D search and retrieval [VH01, TV04b, BKS+05, IJL+05b, DP06].

Shape interpretation is especially relevant for the perception of complex forms, in which the

ability to vary the level of descriptive abstraction is the key to recognizing and classifying

highly complex shapes. In particular, a model description should be accessible/computable

and there should exist a clear definition of the object classes for which the model is suitable

and the representation is unique, the so-called scope/uniqueness. In addition, to similar ob-

jects must correspond similar descriptions, even if the model should reflect subtle differences

between shapes [NP85].

Contribution

Among the different domains related to Computer Science, this work deals with the aspects

of computational topology that are the most related to shape analysis and description. In

this direction, the contribution of this thesis is both the analysis of existing approaches and

the definition and use of new shape descriptors. Efforts have been devoted to systematize

both the theoretical and descriptive aspects, providing an original interpretation of the shape

description framework at the light of the complexity of the mathematical structure embedded

in the descriptors.

Starting from the theoretical background provided by differential topology, and in particular

Morse theory [Mil63], we derive a conceptual model for shape description based on topology

and geometry suitable for shape abstraction. In our framework, we analyze different aspects

of shape description and matching pursuing the problem of moving from a geometric model

to a computational one. In particular, we propose a computational approach that is suitable

to analyze any data that can be modeled as a subspace of R
n and whose shape characteristics

may be measured by one or a set of real functions. To fulfill this task, the first step is to

associate a signature (i.e., a kinf of code) to a geometric model. In our understanding, our

description organizes the object shape in a way which reflects the topology of the original

model. Moreover, it is suitable for those application tasks, like shape recognition, simplifica-

tion, retrieval and similarity evaluation, for which the capability of detecting the main shape

characteristics and evaluating how much two shapes overlap or have common components is

fundamental.
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Figure 3: Shape matching framework: one or more shape descriptors, or signatures, are associated to a 3D
model; then a distance between shape descriptors is defined.

In general, the shape matching problem is solved/approached in the computational settings

by instantiating a pipeline which is made of two basic steps as shown in Figure 3. First, the

shape (usually in R
3) is mapped into an abstract space that contains descriptions, while the

second phase deals with the definition/use of distances, or similarity/dissimilarity measures,

between shape descriptors. In this scenario, our approach mainly deals with the defini-

tion of shape descriptors that are both concise, significant, computationally efficient and

mathematically well-defined.

To this aim, we introduce the Shape Graph (SG) descriptor that combines the classical topo-

logical shape abstraction provided by the Reeb graph with additional geometric information

able to code the local shape characteristics. The Shape Graph can be used to describe the

overall appearance of the shape object, discarding irrelevant details and classifying its topo-

logical type. Two techniques to associate geometry information to a topological graph have

been explored and applied to shape matching and retrieval context. Then, the Shape Graph

has been extended to the comparison of sets of objects. In addition, we have adopted the

Shape Graph to extend for the first time the size descriptor to surface models. the Shape

Graph can be used to describe the overall appearance of the shape object, discarding irrel-

evant details and classifying its topological type. As further contribution, we also address

the direct computation of the size function descriptor with respect to multivariate functions

on data of any dimension (multi-dimensional size descriptor).

To prove the effectiveness of the shape description framework proposed, both descriptors

(Shape Graph and multi-dimensional size descriptor) software prototypes have been imple-

mented. Moreover, all tools have been validated in several application domains with main

focus on shape matching applications.



6 Introduction

Overview

Before presenting a detailed layout of the chapters of this thesis, we would like to make some

general remarks about their structure. After preliminary definitions in Chapter 1, Chapter 2

is mainly devoted to the presentation of tools based on real functions for shape analysis and

synthesis. Our contribution to the definition of new descriptors is detailed in the Chapter 3

while their application to the computation context is described and discussed in Chapter 4.

The preamble of each chapter will contain a short motivation of the topics proposed there,

while a short summary at the end of the chapters 2, 3 and 4 will collect the main results,

draw some conclusions and outline perspectives for possible future work. Finally, we remark

that these chapters list a set of original publications related to the work proposed in each

chapter. The reminder of this dissertation is organized as follows.

First of all, Chapter 1 contains preliminary definitions and concepts related to the math-

ematical background and the discretization issues behind the shape descriptors discussed

throughout the thesis. Then, the Chapter lists the real functions used in the 3D shape

analysis.

In Chapter 2 we overview methods for shape description, focusing on techniques that make

use of theoretical frameworks that are developed mainly for classes of real functions. These

methods describe a shape using both geometry and topology information: geometric, or

metric, properties and attributes are crucial for characterizing specific instances of features,

while topological properties are necessary to abstract and classify shapes according to in-

variant aspects. More in detail, we consider the Morse and Morse-Smale complex, the Reeb

graph and the contour tree, the size functions, the persistent homology tools, the Morse

descriptor and methods derived from the distance transform, such as the curve skeleton.

All approaches are analyzed with respect to theory, computation and application providing

comparative remarks and application domains.

Chapter 3 details our contribution to shape description. Since we aim at characteriz-

ing a shape on the basis of basic functions that act as lens through which the shape is

inspected; first, we overview some of the functions more popular for shape description.

Starting from one or a set of real functions we derive two kinds of shape descriptors. First,

we consider a Shape Graph that derives from a discretization of the Reeb graph definition

[Ree46, BGSF08b] and couples the topological graph with a set of geometric attributes. In

particular, we propose two possible ways of associating geometric attributes to a Reeb graph

and also extend this graph representation to 3D scenes made of a set of objects. Second, we

investigate the extension of the size function computation to 3D shape. In the initial phase,

the size functions are extended to closed triangle meshes using the shape graph and geomet-

ric attributes as measuring functions; then their computation has extended to multi-variate

functions defined both on surface and volume models.

Since the descriptors proposed rely on the use of real functions defined on the objects at
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hands, it is important to compare the properties expressed by teo or more different functions

defined on the same shape. This is presented at the end of the Chapter, where we also de-

scribe how to build a new function whose characteristics are almost everywhere orthogonal

to a given one, and therefore we contribute to the solution of finding a “basis” of functions

that independently describe the shape properties.

Chapter 4 focuses on the application domains of the descriptors proposed in the thesis.

The first application we consider is shape matching and retrieval. In particular, we test our

tools with respect to well known retrieval techniques. Then, we move from global similarity

evaluation to partial matching and sub-part correspondence problems. We highlight that our

Shape Graph is well suited for partial matching applications and we show its performance

on the SHREC benchmark. A generalization of the partial correspondence problem is scene

comparison, which is addressed in Section 4.1.3. Moreover, we address the shape classifica-

tion problem, highlighting how shape prototypes generated on the basis of the Shape Graph

may reduce the number of comparison operations involved in the classification process. Fi-

nally, the Chapter ends showing how the shape characterization process involved in Shape

Graph extraction is also suited for the selection of the best view of an object.

Conclusions and hypotheses on further developments of the topics described throughout the

thesis are discussed at the end of the dissertation (Chapter 5).
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Chapter 1

Background notions

This Chapter outlines the background notions related to the theoretical aspects of the meth-

ods discussed in the thesis. Concepts and theories that are frequently encountered in the

literature are briefly listed. More in detail, Section 1.1 provides a review of the mathematical

concepts underlying the methods presented in this thesis, while Section 1.2 sketches some

of the issues arising when applying concepts and theories defined in the continuum to a

computational setting. Then, we end the Chapter with an overview of the real functions

mainly used by the shape descriptors considered.

1.1 Mathematical background

Topological spaces are mathematical structures that allow the generalization of concepts such

as closeness, limits, connectedness, or continuity, from the Euclidean space R
n to arbitrary

sets of points. This is achieved using relationships between sets, rather than distances

between points. A detailed treatment of this subject can be found in [Wil70].

In order to construct topological spaces, one can take a collection of simple elements and glue

them together in a structured way. Probably the most relevant example of this construction

is given by simplicial complexes, whose building-blocks are called simplices.

A k-simplex ∆k in R
n, 0 ≤ k ≤ n, is the convex hull of k + 1 affinely independent points

A0, A1, . . . , Ak, called vertices. Figure 1.1 shows the simplest examples of simplices: ∆0 is a

point, ∆1 an interval, ∆2 a triangle (including its interior), ∆3 a tetrahedron (including its

interior).

A k-simplex can be oriented by assigning an ordering to its vertices: two orderings of

the vertices that differ by an even permutation determine one and the same orientation

of the k-simplex. In this way, each k-simplex with k > 0 can be given a positive or a

negative orientation. The oriented k-simplex with ordered vertices (A0, A1, . . . , Ak) is de-

9
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Figure 1.1: Examples of 0-, 1-, 2- and 3-simplices.

noted by [A0, A1, . . . , Ak], whereas the k-simplex with opposite orientation is denoted by

−[A0, A1, . . . , Ak].

A face of a k-simplex ∆k is a simplex whose set of vertices is a non-empty subset of the

set of vertices of ∆k. A finite simplicial complex can now be defined as a finite collection of

simplices that meet only along a common face and their faces of any dimension. A concrete

example of a simplicial complex is given by triangulated surfaces, where the vertices, edges

and faces of the triangulation are 0-, 1- and 2-simplices, respectively. The dimension of a

simplicial complex is the maximum dimension of its simplices. For more details on simplicial

complexes we refer to [Mun00]. In addition, we mention that a more general class of spaces

are cell complexes [GH81].

The approach adopted by algebraic topology is the translation of topological problems into an

algebraic language, in order to solve them more easily. A typical case is the construction of

algebraic structures to describe topological properties, which is the core of homology theory,

one of the main tools of algebraic topology, see [Spa66]. In particular, the homology of a

space is an algebraic object which reflects the topology of the space, in some sense counting

the number of holes.

Morse theory can be seen as the investigation of the relation between functions defined on a

manifold and the shape of the manifold itself. Intuitively, a manifold is a topological space

that is locally Euclidean, meaning that around every point there is a neighborhood that is

topologically the same as the open unit ball in R
n; the number n is the dimension of the

manifold, [Hir97].

The key feature in Morse theory is that information on the topology of the manifold is derived

from the information about the critical points of real functions defined on the manifold. Let

us first introduce the definition of Morse function, and then state the main results provided

by Morse theory for the topological analysis of smooth manifolds, such as surfaces. A basic

reference for Morse theory is [Mil63], while details about notions of geometry and topology

can be found, for example, in [Hir97].
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Let M be a smooth compact n-dimensional manifold without boundary, and f : M → R a

smooth function defined on it. Then, a point p of M is a critical point of f if we have

∂f

∂x1
(p) = 0,

∂f

∂x2
(p) = 0, . . . ,

∂f

∂xn
(p) = 0,

with respect to a local coordinate system (x1, . . . , xn) about p. A real number is a critical

value of f if it is the image of a critical point. Points (values) which are not critical are said

to be regular. A critical point p is non-degenerate if the determinant of the Hessian matrix

of f at p

Hf (p) =
( ∂2f

∂xi∂xj
(p)

)

is not zero; otherwise the critical point is degenerate.

We say that f : M → R is a Morse function if all its critical points are non-degenerate. The

Morse Lemma states that the function f looks extremely simple near each non-degenerate

critical point p. Indeed, we can choose appropriate local coordinates (x1, . . . , xn) around p,

in such a way that f has a quadratic form representation: f(x1, . . . , xn) = f(p)−∑λ(p)
i=1 x2

i +
∑n

i=λ(p)+1 x2
i . Therefore, intuitively, the index of a critical point is the number of inde-

pendent directions around the point in which the function decreases. For example, on a

2-manifold, the indices of minima, saddles, and maxima are 0, 1, and 2, respectively.

An important property is that a Morse function defined on a compact manifold admits only

finitely many critical points, each of which is isolated. This means that, for each critical

point p, it is always possible to find a neighborhood of p not containing other critical points.

Topological information about M is captured by the changes of the level sets and the lower

level sets of M relative to the function f . The level set of f corresponding to the real value

t is the set of points Vt = {p ∈ M | f(p) = t} = f−1(t); t is called an isovalue of f . The

lower level set is given by Mt = {p ∈ M |f(p) ≤ t} = f−1((−∞, t]).

Morse theory states that the topology of Mt stays unchanged (formally, the homotopy type

is preserved) as the parameter t goes through regular values of f , while changes occur when

t passes through a critical value.

In order to study the changes in the level sets Vt = f−1(t), an approach to Morse theory

based on the attaching of handles [Mil65], rather than cells, can be used, as in [Gra71] for

the case of surfaces. When f is defined on a surface, if t is a regular value for f then Vt, if

not empty, is the union of finitely many smooth circles. Moreover, if a, b are real numbers

such that a < b, then

1. if the set f−1([a, b]) contains no critical points for f , then Va and Vb are diffeomorphic;

2. if the set f−1([a, b]) contains only one critical point of index 0 for f , then Vb is the

union of Va with a circle;
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3. if the set f−1([a, b]) contains only one critical point of index 2 for f , then Vb is diffeo-

morphic to Va without one of its circles;

4. if the set f−1([a, b]) contains only one critical point of index 1 for f , then the number

of connected components of Vb differs from that of Va by −1, 0 or 1 depending on the

attaching map.

In case (4), the difference in the number of connected components is non-zero if the handle

(in this case, the strip [0, 1] × [0, 1]) is attached without twists (or with an even number of

twists), while it is 0 if there is an odd number of twists. The presence of an odd number of

twists implies that the surface is non-orientable. Therefore, when the surface is embedded

in R
3, Va and Vb necessarily have a different number of connected components.

Morse theory asserts that changes in the topology of a manifold endowed with a Morse

function occur in the presence of critical points; since most manifolds can be triangulated

as simplicial complexes and a Morse function can be discretized on simplices, those changes

in the topology can be interpreted in terms of homology, [GH81].

1.2 Computational background

Generally speaking, a shape can describe any phenomenon in the real or virtual world which

is characterized by a geometric nature. Thus, we have shapes acquired from existing objects

(e.g. images, 3D scans), shapes that are defined by sampling mathematical surfaces (e.g.

implicit or algebraic surfaces), or shapes that are defined by the behavior of a physical

quantity (e.g. temperature, or viscosity of a fluid).

From a mathematical point of view, a shape can be modeled as a topological space in R
n,

and usually we consider shapes in R
3 when dealing with applications in Computer Graphics.

Often these shapes are abstracted as manifolds embedded in R
n, usually orientable and

smooth.

This first stage in the modeling pipeline is known as mathematical modeling [Req80] and

consists of formulating the basic properties that an abstract computational model should

have. In most of the methods discussed (e.g. contour trees, Reeb graphs, Morse decompo-

sitions), shapes are abstracted as manifolds , but we also discuss methods that assume the

shape to be a more general topological space (e.g. in the context of size theory).

The next step is the selection of a computational representation scheme consistent with the

mathematical model. Cell decompositions are the most common geometric model used in

computer graphics and CAD/CAM [M8̈8, Mor86]. From a historical perspective, the first

type of model used was the wireframe model, which consists of the representation of edge

curves and points on the object boundary. This has been developed further into surface
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models, that provide the full representation of the geometry of the boundary of a 3D shape,

and by solid models, that encode a shape as a composition of volumes.

Shapes defined as graphs of scalar fields are the simplest kind of shapes studied in the

methods surveyed. Formally, a scalar field is defined by any real-valued function f : R
n → R.

In practice, f is considered only on a domain D ⊂ R
n corresponding to a d-dimensional

interval in R
n, where d ≤ n. Generally, a d-dimensional scalar field Γ is denoted by the pair

(D, f) and the values of f describe a physical phenomenon measured at a discrete set of

points in D. Usually, such points form the vertices of a hypercubic grid.

Representing a scalar field Γ in a computational setting implies the discretization of the

domain D as well as the discretization of the range of f . The domain is generally partitioned

through a d-dimensional simplicial or cell complex. Thus, a model for a scalar field is called

simplicial if the domain decomposition is a simplicial complex, while it is called regular if

the domain is discretized through a regular gridor digital spaces, i.e, a cell complex in which

all the cells are hypercubes. These cells are known as pixels in 2D and voxels in 3D, when

the scalar field describes a two-dimensional or three-dimensional image [EL03, KR04]). In

a regular model the value of the field can be associated either with vertices or with d-cells,

and it is interpolated at other locations.

In general, most of the methods discussed in this dissertation deal with shape models rep-

resented by simplicial meshes (e.g. 3D shapes discretized as triangle or tetrahedral meshes,

scalar fields defined on simplicial decompositions of the domain) or regular grids (e.g. scalar

fields defined on rectangular 2D or 3D grids). Moreover, a binary image in 2D, 3D and

higher dimensions is represented through a geometric realization of a graph that encodes the

non-zero elements of the image as nodes and the neighborhood adjacency among the digital

points as edges. Simplicial meshes are usually based on a piece-wise linear interpolation

of the shape geometry. Regular grids define a step-wise or analytical approximation of the

shape geometry, according to the type of interpolation associated with the hypercubes.

Finally, we mention that differential concepts have been adapted to discrete settings (e.g.

the definitions of critical points proposed in [Ban67, Ban70, EM90]) or re-defined, like the

Discrete Morse theory [For98, For02b]. Since in Section 3.3.2 we adopt the definition of

critical points defined by Banchoff [Ban70], here we briefly summarize his approach.

The Banchoff’s definition was originally devoted to height functions defined over polyhedral

surfaces, or cell complexes, and are currently used by most of the computational approaches.

This method uses a geometric characterization of the critical points that takes into account

the position of the tangent plane with respect to the surface. A small neighborhood around a

local maximum and minimum never intersects the tangent plane, while for saddles the small

neighborhood is split into at least four pieces (see Figure 1.2). The number of intersections

r is used to associate a discrete index i(p, f) to a critical point p with respect to a given f .

Under the assumption that the function is general, i.e. f(v) 6= f(w) for all v and w vertices

of D, critical points may occur only at those points p whose index i(p, f) = 1 − 1
2r is not
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Figure 1.2: Configuration of vertices around a maximum, saddle, and monkey saddle point.

null. In particular, the index is equal to 1 for maximum and minimum points, and can be a

negative integer for saddles. For example, a monkey saddle has index −2. Finally, Banchoff

proved that the relation
∑

p∈D i(p, f) = χ(D), where χ denotes the Euclidean characteristic,

holds for polyhedra.

1.3 Real functions

In the variety of real-valued functions that have been used in the Computer Vision and

Graphics literature for characterizing relevant features of objects and shape matching appli-

cations, we summarize those that hold with our shape description framework and rely to the

topics treated in the remainder of this thesis. Notice that, when dealing with applications

in the discrete context, also functions that are not Morse have been considered.

Height and elevation functions The height [SKK91, FK97] function is among the most

intuitive and simple choices for analysing the shape of an object; since it depends on the

direction considered, its usage is preferred for applications in which objects have a natural

predefined direction (Figure 1.3(a)).

A more elaborate characterization of the shape according to differences in the elevation value

is provided by the elevation [AEHW06] function, which derives from the traditional height

function but aims at a rotation invariant analysis. The notion of elevation captured by this

function measures how much a point is relevant in its normal direction with respect to it of

the height function in all directions.

Distance functions To describe a shape S, the Euclidean distance from a point p ∈ R
3,

f1(v) =| v − p |E, ∀v ∈ S, [FK97, SV01] has also been used. In case p is the center of mass

(barycenter) of S (see Figure 1.3(b)), f is invariant to rotations with respect to the point

p and detects protrusions (resp. hollows) of S with respect to p as regions of influence of

maxima (resp. minima) of the function f .

Geodesic-based functions Since shape properties can be effectively characterized by

measuring distances between feature points or by evaluating the elongation of the shape,
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the approaches based on the geodesic distance generally provide and isometry invariant

characterization of a shape [SSK+05, BBK06]. Geodesic distances from selected feature

points have been evaluated on mesh vertices [MP02, EK03], as well as average geodesic

distances [HSKK01], (Figure 1.3(a). In the latter case the function f may be expressed as

f(v) =
∫

p∈S g(v, p)dS, where g(v, p) represents the geodesic distance between v and p, when

p varies on S. Variations of this function can be found in [ZMT05, KT03, GSCO07].

Curvature-based functions Curvature-based analysis measures the local concavity/con-

vexity of a shape. A classical method to evaluate the curvature in a vertex v is the standard

angle-deficit approximation, as in [PKS+03]: C(v) =
2π−

P

i θi
3

P

iAi
where θi and Ai are the apex

angles and areas in the one ring of triangles incident on v, respectively. Unfortunately, the

straighforward evaluation of curvature analysis on mesh vertices it is rather sensitive to noise

or small features and to the quality of the shape discretization in terms of sampling density

and tiny triangles [Spa97].

More robust computation is achieved either using variations of the curvature evaluation

function (e.g. [GCO06]), polynomial surface fitting [ZP01], or with a multi-scale curvature

evaluation based on the ratio between the lenght of the intersection line of a collection of

spheres centred into mesh vertices and their radius [MPS+04].

Harmonic and Laplacian-based functions The harmonic [NGH04, Flo97, PP93] and

Laplacian-based functions [RWP06, DBG+06] have been recently introduced into Computer

Graphics literature to provide a set of descriptors that are intrinsic to the shape, as they are

a discretization of the Laplacian operator:

∆f =

n∑

i=1

∂2f

(∂ix)2
(1.1)

A solution of the Laplacian eigenvalue problem:

∆f = −λf. (1.2)

is named an eigenfunction of the shape and, in the planar 2D case, it can be understood

as the natural vibration form of a homogeneous membrane with the eigenvalue λ. Several

discrete methods exist to solve the Laplacian eigenfunction problem, one of the most popular

are the Finite Element Method [RWP06]. Figure 1.3(d) shows the second eigenfunction of

the dancer model.

Distance transform function Finally, the distance transform is a well known function

in the Computer Vision and Graphics literature, that is related to the medial axis radius.
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(a) (b) (c) (d) (e)

Figure 1.3: (a) Height function, (b) Euclidean distance from the barycenter, (c) average geodesic distance in
[HSKK01], (d) distance from curvature extrama, (e) first eigenfunction of the Laplacian matrix of the model.

For a 3D shape, this means that the distance transform measures its interior volume rather

than its surface. In any dimension, a distance function f : R
n → R is defined over the space

R
n where the shape S is embedded by the relation [DGG03]:

f(x) = min
p∈S

‖ p − x ‖2,∀x ∈ R
n.

Note that the distance transform function is not a Morse function.

Another function that provides a volumetric rather than a boundary characterization is

the local diameters function [GSCO07]. Differently from the distance transform it aims at

measuring the shape by computing the diameter of the volume enclosed by the surface.

In general, it is difficult for a single function to fully describe the properties of a complex

shape. Moreover, we conjecture that the number of functions necessary to describe a shape

depends on its complexity rather than on the storage size. This is the reason why we are

focusing on shape descriptors characterized by the flexibility with respect to the function f ;

in particular, we have approached the problem of considering more functions at the same

time, see Section 3.2.2.



Chapter 2

Describing shapes using real

functions

The use of structures for shape description has been widely addressed in Computer Graphics

and Vision. In this Chapter we focus on descriptors grounded in Morse theory that make

use of the properties of real functions.

The intuition behind Morse theory is that of combining the topological exploration of a

shape S with quantitative measurements of its geometrical properties provided by a mapping

function f , defined on S [Mil63]. Integrating the classifying power of topology with the

differentiating power of geometry enables us to extract information about shapes at different

levels, taking into account global as well as local shape properties. Therefore, we focus on

methods for shape understanding that find their roots in Morse theory, ranging from simple

to complex shapes, from single to arbitrary mapping functions, and from unstructured to

algebraically structured sets of descriptors [BFD+08].

Broadly speaking, the methods discussed in the thesis can be divided into four groups:

methods studying the configuration of critical points on the shape boundary (Morse and

Morse-Smale complexes), methods studying the evolution of the level sets of f (contour trees

and Reeb graphs), methods studying the evolution, or growth, of the lower level sets of f (size

theory, persistent homology and Morse shape descriptors) and methods that refer to distance

transform and, more in general, to skeletal structures. The first three groups of methods

discussed reflect, to different extents, the modularity of the approaches based on Morse

theory, especially from the point of view of the applications they have been traditionally

designed for while the fourth is more oriented to a practical definition of the skeleton.

Morse and Morse-Smale complexes were introduced in Computer Graphics for the analysis of

two-dimensional scalar fields, but recently their use has also been extended to handle generic

3D shapes. These structures provide a view of shape properties from the perspective of the

gradient of the mapping function [BDFP07]. Intuitively, the aim is to describe the shape

17
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by decomposing it into cells of uniform behavior of the gradient flow. The decomposition

can be interpreted as having been obtained by a network on surface, that joins the critical

points of the mapping function f through lines of steepest ascent or descent of the gradient.

The theory behind Morse and Morse-Smale complexes is of general application, and is also

related to the theory of dynamical systems. These two views are clearly reflected in the

literature and a considerable number of techniques have been developed to extract critical

points and lines, especially for terrain surface modelling and analysis.

Contour trees have been used mainly to study the shape of scalar fields, and no distinction

is made between the shape and the function used to analyze it: both coincide with the

scalar field itself. Contour trees describe the shape of a scalar field f by analyzing the

evolution of its level sets, as f spans the range of its possible values: components of level

sets may appear, disappear, join, split, touch the boundary or change genus. The contour

tree stores this evolution and provides a compact description of the properties and structure

of the scalar field. Contour trees, however, could, in principle, be defined for any shape with

any mapping function, and the theory behind them is general. Contour trees, in all their

variants, are discussed with emphasis on the methods developed in Computer Graphics and

with pointers to similar structures defined in Computer Vision.

The generalization of a contour tree is given by Reeb graphs, even if their definition is slightly

different, as presented in the literature [BGSF08b]. While the definition and use of contour

trees developed mainly as an answer to computational issues, Reeb graphs have a more

theoretical nature. Their definition and theoretical study date back to 1946, thanks to the

research work of a French mathematician, George Reeb. With respect to the modularity of

Morse theory, Reeb graphs are the first example of a fully modular framework for studying

the shape of a manifold: here the shape exists by itself and the function used to study it

can be arbitrarily chosen. In recent years, Reeb graphs have become popular in Computer

Graphics as a tool for studying shapes through the evolution and arrangement of the level

sets of a real function defined over the shape. Reeb graphs effectively code the shape,

both from a topological and geometrical perspective. While the topology is described by the

connectivity of the graph, the geometry can be coded in a variety of different ways, according

to the type of applications the Reeb graph is devised for.

Contour trees and Reeb graphs are frequently associated, in the literature, with the concept

of skeletal graphs or centerline skeletons. By coding the centroids of each level set, it is

indeed very easy to trace a kind of centerline spanning the volume enclosed by the shape.

Centerline skeletons are very popular in Computer Graphics and Vision, and are, in principle,

related to the medial axis transformation, in the sense that they represent an effective

way of reducing a complex 3D shape to a simple one-dimensional geometric abstraction

[CSM05, LLS92]. Probably the medial axis transformation is the best-known structure and

provides a decomposition of the shape in protrusions detected by spheres of different radius

inscribed in the shape, [Blu67]. While the notion of centerline skeleton and medial axis, per
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se, does not fall within the ambit of this overview, we discuss some recent results in that

specific field in the section devoted to Reeb graphs, in order to point out their similarities

in theory and applications.

Besides the possibility of adopting different functions for describing shapes, at a higher level

of abstraction, the modularity of the approach based on Morse theory can be extended to

the choice of the space used to represent the shape, or phenomenon, under study. The

third group of methods reflects this higher degree of modularity, and it is concerned with

methods allowing one or more real functions to be defined on spaces associated with the

shapes under study. Size theory and persistent homology theory fall in this last group and

are characterized by the possibility of varying the space underlying the shape and the real

functions defined on it. Furthermore, an extensive use of algebraic structure characterizes

these techniques.

Size theory has been developed since the beginning of the 1990s with the idea of defining a

suitable mathematical setting for the problem of shape comparison, and, as such, it relies

on four basic concepts: the natural pseudo-distance between size pairs, as a key tool for

shape comparison, and the size functions, the size homotopy groups and the size functor for

shape description and discrimination. A common property shared by these descriptors is

that shapes are studied by varying the underlying space and the real functions defined on

it.

Persistent homology follows a similar approach, but introduces another paradigm, persis-

tence, which is based on growing a space (i.e., the shape) incrementally, and analyzing the

topological changes that occur during this growth. The occurrence and placement of topo-

logical events (e.g., creation, merging, cancellation of the connected components of the lower

level sets) within the history of this growth characterize the shape. Persistent homology

aims to define a scale of the relevance of these topological events, characterizing the features

of the shape. The main assumption is that longevity is equivalent to significance. In other

words, a significant topological attribute must have a long life-time in a growing complex.

Also, another contribution pertaining to this class is discussed, the Morse shape descriptor,

which differs from the other two, as it makes use of the theory of relative homology groups

to define a shape description.

The medial axis nicely simulates the human intuition and it is well-suited for shape matching

especially for 2D shapes, like for example done in [SKK04] using shock graphs, and more

recently proposed for 3D shapes through thinning [SSGD03, SBTZ02, CSM05, ZSM+05,

IJL+05a]. Several geometric descriptors have been proposed for associating to the nodes

of a skeletal graph the description of the related model sub-parts [BAB+07]. A minimal

solution consists in coding in a vector the relevance of the skeletal edges incident in a node

(e.g. edge length, diameters and average circumference of the skeleton loops) as proposed in

[SSGD03, IJL+05a]. Another strategy is to use geometric descriptors able to support global

comparison of 3D shapes, like the mean curvature histogram [ZSM+05], or associating a
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weight (for example the volume) to the centroids of a shape segmentation, like proposed in

[DGG03].

2.1 Morphology-based shape descriptors

The intuition behind Morse and Morse-Smale complexes is nicely described by Maxwell

[Max70]:

Hence each point of the earth’s surface has a line of slope, which begins at a

certain summit and ends in a certain bottom. Districts whose lines of slope run

to the same bottom are called basins or dales. Those whose lines of slope come

from the same summit may be called, for want a better name, hills. Hence,

the whole earth may be naturally divided into basins or dales, and also, by an

independent division, into hills, each point of the surface belonging to a certain

dale and also to a certain hill.

If we consider the height function on a terrain, the partition of the surface into its hills

corresponds to the decomposition defined by the unstable, or ascending, Morse complex.

Similarly, the decomposition of the surface into its dales corresponds to the partition defined

by the stable, or descending, Morse complex. If we overlap the decompositions based on the

hills and on the dales, we obtain what is called a Morse-Smale decomposition.

This intuitive notion generalizes to any smooth surface and any mapping function f . The

distinctive characteristics of Morse and Morse-Smale complexes are that they provide the

study of shape properties from the perspective of the gradient of the mapping function.

Morse and Morse-Smale complexes describe the shape by decomposing it into cells of uniform

behavior of the gradient flow and by encoding the adjacencies among these cells in a complex

which describes both the topology and the geometry of the gradient of f .

The use of Morse and Morse-Smale complexes was originally introduced in Computer Graph-

ics for the analysis of two-dimensional scalar fields, but, recently, their use has been extended

to handle three-dimensional scalar fields as well as generic 3D shapes. The theory behind

Morse and Morse-Smale complexes, however, is of general application and has its roots in

the theory of dynamical systems [PM82]. Moreover, Morse and Morse-Smale complexes are

strongly related to visualization of vector field topology [HH89, TRW07]. Morse complexes

correspond to a decomposition of the shape into either the stable or unstable manifolds

associated with the mapping function, and the Morse-Smale complex is defined as the inter-

section of the stable and unstable manifolds, under some hypotheses that will be discussed

below. Alternatively, this decomposition can be interpreted as having been obtained by join-

ing the critical points of the mapping function f by lines, in the case of a two-dimensional
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scalar field, (or surfaces in the case of a three-dimensional scalar field), of steepest ascent or

descent of the gradient.

These two views are clearly reflected in the literature. A considerable number of algorithms

have been developed for extracting critical points and lines, with a specific focus on terrain

modeling and analysis. Morse and Morse-Smale complexes have been extensively studied,

mainly for the understanding and visualization of scalar fields, but also for more general

applications in shape analysis, by using as a mapping function the curvature [MW99, Pag03],

or the Connolly function [CCL03].

In this section, we review relevant works reported in the literature that cover both inter-

pretations of Morse and Morse-Smale complexes, including also methods that are oriented

towards a segmentation of the shape into catchment basins of its minima, that again can

be seen as a geometric interpretation of the same mathematical concept, namely regions of

uniform flow of the gradient vector field of the mapping function. In other words, we have

collected all methods that are rooted, explicitly or not, in the same mathematical framework.

We have interpreted different classes of methods as different computational approaches for

detecting the same geometric and topological characterization of a shape.

2.1.1 Morse complex

The definition of Morse complexes relies on the concepts of critical point and of integral line,

as discussed below.

2.1.1.1 Theoretical aspects

Let M be a smooth compact n-manifold without boundary, and let f : M → R be a smooth

Morse function. Let us also assume that M is embedded in R
n or that a Riemannian

metric is defined on M . An integral line γ : R → M of f is defined as a maximal path on

M whose velocity vectors, or tangent vectors, agree with the gradient of f , meaning that
∂γ
∂s = ∇f(γ(s)) for all s in R. Each integral line is open at both ends, having its origin (i.e.,

lims→−∞ γ(s)) and its destination (i.e., lims→+∞ γ(s)) at critical points of f [PM82]. Note

that the critical points are images of constant integral lines by themselves.

It can be shown that integral lines are pair-wise disjoint, that is, if their images share a

point, then they are the same line. The images of integral lines cover the whole M , but if

we consider the integral lines associated with the critical points of f , their images define a

partition of M .

This partition is used to decompose M into regions of uniform flow, thus capturing the

characteristics of the gradient field. More precisely, the descending manifold of a critical

point p is the set D(p) of points that flow towards p, and the ascending manifold of p is the
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set A(p) of points that originate from p. In formulae:

A(p) = {q ∈ M : lim
t→+∞

γq(t) = p}

D(p) = {q ∈ M : lim
t→−∞

γq(t) = p},

where γq is the integral line at the point q. Note that the descending manifold of f is the

ascending manifold of −f .

In the mathematical literature, the term unstable is used instead of ascending, and the term

stable is used instead of descending [PM82]. Note also that the partition into ascending

manifolds is similar to watershed decomposition [Mey94, VS91, MW99], as we will discuss

below.

Here, we follow the terminology and notations adopted in the description of the majority of

the methods we discuss. Note that there are slight differences in the definitions of ascending

or descending manifolds, depending on whether the critical points are considered as belonging

to the manifolds or not. For instance, in [EHZ03, BEHP04], the critical points are added to

the related descending and ascending manifolds.

The descending manifold of a critical point p of index i is an open i-cell. Similarly, the

ascending manifold of a critical point of index i is a n − i open cell. For example, if M is

a 2-manifold the descending manifold of a maximum is an open disk, that of a saddle is an

open interval, and that of a minimum is the minimum itself.

The collection of all descending manifolds form a complex, called the descending Morse com-

plex, and the collection of all ascending manifolds also form a complex, called the ascending

Morse complex, which is dual with respect to the descending complex. For instance, when

M is a 2-manifold, the 2-cells of the descending Morse 2-complex correspond to the maxima

of f , the 1-cells to the saddle points, and the 0-cells to the minima. Symmetrically, the

2-cells of the ascending Morse 2-complex correspond to the minima of f , the 1-cells again

to the saddle points, and the 0-cells to the maxima. An example of a decomposition of the

domain of a two-dimensional scalar field into an ascending Morse complex is shown in Figure

2.1 (a). When M is a 3-manifold, the 3-cells of a descending Morse 3-complex correspond

to the maxima, the 2-cells to the 2-saddles, the 1-cells to the 1-saddles, and the 0-cells to

the minima. Symmetrically, the 3-cells of the ascending Morse 3-complex correspond to

the minima, the 2-cells to the 1-saddles, the 1-cells to the 2-saddles, and the 0-cells to the

maxima.

2.1.1.2 Computational aspects

The majority of the algorithms for Morse complex computation have been developed for two-

dimensional scalar fields, or for scalar functions defined over a 2-manifold without boundary.
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Figure 2.1: (a) The ascending Morse complex of a two-dimensional scalar field (the 2-cells correspond to
the minima). (b) The Morse-Smale complex. Its 1-skeleton (the set of simplices of dimension 0 and 1) is the
critical net.

Most of these algorithms use what we call a boundary-based approach, since they extract

the complex, by computing the critical points and then tracing the integral lines joining

them, or their approximations, starting from saddle points and converging to minima and

maxima. Other algorithms use a region-based approach in the sense that they compute

an approximation of the ascending and/or descending Morse complex by growing the 2-

cells corresponding to the minima, or to the maxima, of the Morse function f defined on a

manifold M .

In [DDM03b, MDD+07], algorithms have been presented for computing the descending and

ascending Morse complexes for a 2D simplicial model. These algorithms have been applied

to the segmentation and morphological analysis of terrain models, and the algorithm in

[MDD+07] has also been applied to 3D shape segmentation. In both algorithms, the ascend-

ing and descending complexes are computed independently by applying a region-growing

technique on the triangles of the simplicial model. Basically, the algorithms perform a

breadth-first traversal of the dual graph of the triangle mesh, in which the nodes correspond

to triangles of the mesh, and the arcs to the edges shared by edge-adjacent triangles. When

extracting the descending Morse complex, maxima are extracted. A descending 2-cell C,

associated with a current maximum m, is initialized with all the triangles in the star of m,

which have not yet been assigned to any 2-cell. Then, the cell C is grown in a breadth-first

fashion by adding one triangle at a time according to a criterion which is specific for each

algorithm.

The algorithm described in [DDM03b] has been defined in a dimension-independent way

and implemented for 3D simplicial models as well. In [MD07] the authors have defined the

discrete gradient vector field associated with the decomposition produced by the algorithm

in [DDM03b] and have shown that it is a subfield of the gradient field of a Forman function

F whose restriction over the vertices of the simplicial model coincides with the given scalar

field function f .
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A region-based combinatorial algorithm for computing ascending manifolds has been pro-

posed in [DGG03] to segment a 3D shape M into meaningful features. In this case, the

shape is defined by a set of points belonging to its boundary and is discretized as a Delau-

nay tetrahedral mesh Σ with vertices at the data points. In this case, a distance function

is defined over the space and, most importantly, the results are discussed for that specific

function selection. Note that the distance function is not a Morse function, so we cannot

properly talk about a Morse complex, but the authors are interested in the computation

of the ascending manifolds of maxima. Maxima of the distance function are detected at a

subset of the vertices of the dual Voronoi diagram of the mesh Σ. Approximations of the

three-dimensional ascending manifolds are computed by a region-growing approach starting

from the tetrahedra which contain the maxima. A discrete gradient field is computed by

defining a flow relation between face-adjacent tetrahedra, whose transitive closure is acyclic

[EFL98, GJ03].

In [NGH04], a boundary-based approach to the computation of the descending Morse com-

plex is proposed. The algorithm is applied to a triangle mesh Σ discretizing a 2-manifold

without boundary endowed with a Morse function f which minimizes the number of critical

points. The algorithm extracts first the critical points and successively traces the descending

1-manifolds starting from the saddles, in no specific order. If a point p is a multiple saddle of

multiplicity m, then m manifolds start at p, each corresponding to one connected component

of the lower link of p. Descending 1-manifolds are constructed by moving along the edges of

the triangle mesh by choosing each time a point with lowest height in the lower link of the

current point (as in [BS98, TIS+95]). These manifolds can merge, but they cannot cross,

and they do not separate after merging. Descending 1-manifolds are not allowed to pass

through saddles other than their starting saddle. In other words, if a descending 1-manifold

has reached a point p in the link of a saddle s, then the edge ps cannot be used to extend

the manifold, i.e., saddle s is not taken into account when searching the neighbor of p with

lowest height. Further improvements are proposed, which include handling flat regions, or

plateaus, or surfaces with boundary. In the case of plateaus, each simply-connected flat

region is considered as a single vertex. This is equivalent to collapsing edges connecting

vertices in the flat region. Surfaces with boundary are treated by adding a vertex p for

each boundary component, together with edges and triangles connecting p to vertices on the

boundary loop, producing a model without boundary.

The ascending and descending Morse complexes can also be computed by applying the dis-

crete watershed transform. The watershed transform was first introduced in image analysis

for the segmentation of gray-scale images and several definitions exist in the discrete case

[BL79, BM98, MR96, Mey94, VS91]. It provides a decomposition of a the domain of a C2

function f into regions of influence of the minima, called catchment basins. The boundary of

the catchment basins of the minima form the watershed lines. Catchment basins and water-

shed lines are described in terms of topographic distance, using the formalization proposed

in [Mey94]. In the 2D case, if f is a Morse function, it can be seen that the catchment
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basins of the minima of f are the 2-cells in the ascending Morse complex of f and the wa-

tershed lines are 1-cells in such complex. Through a change in the sign of function f , the

descending manifolds of the maxima can be extracted, and thus, we can obtain the descend-

ing Morse complex for the original function. Several algorithms have been developed for the

computation of the watershed transform (see [RM00, NC03] for a survey).

2.1.2 Morse-Smale complex

Morse-Smale complexes are defined for functions belonging to the important class of dy-

namical systems, called Morse-Smale systems. They are structurally stable on compact

manifolds meaning that their structure is preserved under topological equivalencies of the

manifold. Intuitively, this means that the topological behavior of the images of the integral

lines does not change under small perturbations of the vector field [PM82]. This property is

guaranteed when function f is a Morse-Smale function, that is, the descending and ascend-

ing Morse complexes intersect only transversally1. In 2D this means that, if an ascending

1-manifold intersects a descending 1-manifold transversally, they cross at exactly one point.

An example can be found in Figure 2.1 (b), where the two lines in the 1-skeleton intersect at

most in one point (a saddle). The importance of the above condition is that it is a stable and

generic condition, which is independent of small perturbations of function f and of manifold

M . In Figure 2.2, an example of function whose gradient is not Morse-Smale is shown. The

height function on the torus defines four critical points, one maximum, one minimum and

two saddles. The integral lines emanating from the higher saddle have the lower saddle as

destination in (a), but a slight perturbation of the height directions causes the gradient to

flow towards the minimum m instead, as illustrated in (b,c).

2.1.2.1 Theoretical aspects

In the case of Morse-Smale functions, it is possible to define a complex, called the Morse-

Smale complex, as the intersection of the ascending and descending manifolds. The cells of

the Morse-Smale complex are the components of sets D(p) ∩ A(q), for all critical points p

and q of function f [EHZ01, EHNP03]. Each cell of the Morse-Smale complex is the union

of the integral lines sharing the same origin p of index i and the same destination q of index

j. The dimension of the cell is given by the difference of the indices. Figure 2.1 (b) shows

an example of a Morse-Smale complex. complexes, t Notice that, in general, the closure of

the cells of a Morse-Smale complex may not be homeomorphic to a closed ball.

The Morse-Smale complex is characterized by cells with a regular connectivity. In the

2D case, each saddle point p has four incident 1-cells, two joining p to maxima, and two

joining p to minima. Such 1-cells alternate in a cyclic order around p. Also, the 2-cells are

1By definition, two submanifolds A and B of a manifold M intersect transversally in p if TpA+TpB = TpM

where Tp is the tangent space at p.
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(a) (b) (c)

Figure 2.2: (a) The integral lines emanating from the higher saddle s reach s′, but a slight perturbation of
the height direction causes the integral lines to reach m instead (b). The Morse complex is shown in (c). In
(c) the black vertex correspond to the 0-cell, the blue lines represent the 1-cells while the light blue region is
the 2-cell.

quadrangles whose vertices are critical points of f of index 1, 0, 1, 2 (i.e., saddle, minimum,

saddle, maximum) in this order. In the 3D case, all 2-cells are quadrangles whose vertices

are a minimum, 1-saddle, 2-saddle, 1-saddle in this order (quadrangles of type 1) , or a 1-

saddle, a 2-saddle, a maximum, a 1-saddle in this order (quadrangles of type 2). A 1-cell

connecting a 1-saddle and a 2-saddle is on the boundary of four quadrangles that alternate

between quadrangles of type 1 and type 2. The 3-cells are called crystals and are bounded

by quadrangles [EHZ01, EHNP03].

It is interesting to note the similarity between the Morse-Smale complex and the configura-

tion of slope districts defined in [Nac84], where the function is not necessarily a Morse-Smale

one, but simply a Morse function. In particular, Nackman defined a graph, called the Critical

Point Configuration Graph (CPCG), in which the nodes represent critical points and the arcs

represent the integral lines connecting them. The CPCG is a planar graph and its embedding

on the domain M of f induces a partition of M into two-dimensional regions, called slope

districts, characterized by the uniformity of the gradient flow. Since f is not necessarily a

Morse-Smale function, there are configurations of the critical points of f which do not occur

for Morse-Smale functions. Nackman shows [Nac84] that there are only four basic possible

configurations for a slope district and they can be obtained, up to equivalence, by inserting

saddle points in the arcs. These configurations are illustrated in Figure 2.3. The configura-

tions in Figures 2.3(a), (b) and (c) are formed by saddle, minimum, saddle, and maximum.

All three illustrate the possible types of 2-cells in a Morse-Smale complex. The ones in

Figures 2.3 (b) and (c) correspond to degenerate situations, usually called strangulations

[GNP+05]. The configuration in Figure 2.3(d) cannot happen for a Morse-Smale function,

since ascending and descending 1-manifolds do not intersect transversally, but coincide.

The 1-skeleton of a Morse-Smale complex is a 1-complex formed by integral lines joining

critical points. Similar structures among critical points have been widely studied in the
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minimum saddle maximum

(a) (b) (c) (d)

Figure 2.3: The four possible configurations for the slope districts in a CPCG.

literature under the name of critical nets. A graph representation of the critical net in a

two-dimensional Morse-Smale complex is the so-called surface network [Pfa76, SW04], widely

used in spatial data processing for morphological terrain modeling and analysis (see [Ran04]

for an interesting collection of contributions on this specific topic).

2.1.2.2 Computational aspects

In general region-based methods aim to extract a Morse complex, while boundary-based

approaches typically focus on the extraction of a Morse-Smale complex. In particular, when

f is a Morse-Smale function, the Morse-Smale complex can be obtained as the intersection

of the ascending and descending Morse complexes.

Most boundary-based methods for computing a Morse-Smale complex [TIS+95, BS98, EHZ01,

BEHP03, Pas04, BP07] from two-dimensional complexes follow the same algorithmic ap-

proach, consisting of two basic steps:

• extract the critical points and unfold multiple saddles;

• compute the 1-cells of the Morse-Smale complex, or their approximations, by starting

from the saddle points, and tracing two paths on the underlying shape model which

stop at minima and maxima, respectively.

The extraction of the critical points is usually performed based on techniques implementing

the classification by Banchoff [Ban67]. In [BS98], a different approach is used even if, as in

the previous algorithms, the technique performs the classification of vertices with respect to

the local neighborhood. In this case, at a given vertex of the simplicial model, the authors

estimate the gradient as it can take a range of values based on the normals of the triangles

incident in that vertex. As a result, critical points are defined as vertices at which the normal

space of the incident triangles includes the vector (0, 0, 1) (see Figure 2.4).

The main difference among the different methods relies in the technique used to trace the

integral lines that define the 1-cells: either the steepest ascent or descent is traced, or
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Figure 2.4: The normal space for a cluster of triangles incident on a vertex.

approximated integral lines are used instead, provided that they respect the connectivity of

the Morse-Smale complex.

The algorithms in [TIS+95, BS98, BP07] extract the integral lines forming the Morse-Smale

complex by computing paths only along the edges of the triangle mesh, selecting the vertex

of highest, or lowest, height at each step. As observed by [CLLR05], the time complexity of

[TIS+95] is O(nc), where c denotes the number of critical points. As a pre-processing step,

to simulate that the critical points are non degenerate and there exist no boundary saddles,

[BP07] adopted a symbolic perturbation of the mesh before extracting the Morse-Smale

complex. The algorithms in [BEHP03, Pas04] estimate the gradient along 1-simplices and

2-simplices, and compute the ascending and descending paths not only along the edges, but

possibly crossing triangles in order to follow the actual paths of steepest ascent, or descent.

In [EHZ01, EHNP03] the notion of Quasi Morse-Smale (QMS) complex is introduced as

an intermediate step towards the computation of the Morse-Smale complex. The QMS is

defined for 2D and 3D simplicial complexes, which triangulate a 2-manifold or a 3-manifold

without boundary, respectively. The QMS has the same combinatorial structure of a Morse-

Smale complex, but it differs from it in that the 1-cells in 2D, and the 1-cells and 2-cells in

3D are not necessarily those of maximal ascent, or descent. The idea behind a QMS, called

simulation of differentiability is that of extending the smooth notions to the piece-wise

linear case so as to guarantee that the complex has the same structural form of the smooth

counterpart, and to achieve numerical accuracy via local transformations that preserve the

structure of the complex [EHZ01].

The QMS is a splittable quadrangulation of M whose vertices are the critical points of f and

whose arcs are strictly monotonic in f . The 0-cells of a QMS complex are the critical points

of f , the 1-cells connect minima to saddles (1-saddles in 3D), maxima to saddles (2-saddles

in 3D) and, in the 3D case, 1-saddles to 2-saddles [EHNP03]. Since the computed lines are

an approximation of the integral lines in the smooth case, the algorithm resolves problems

arising when merging and forking of paths occur. Once the QMS complex is computed, a

series of operations, called handle slides, are applied to turn the QMS into a Morse-Smale

complex. For 2-manifolds, it is possible to find a sequence of handle slides that brings the

QMS close to a Morse-Smale complex, while how to construct a sequence of operations that

yield the same result for 3-manifolds is still an open question [EHNP03].
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The boundary-based algorithm in [EHNP03] extracts the Quasi Morse-Smale complex for

a simplicial model of a three-dimensional scalar field by computing first the critical points

through the reduced Betti numbers of the lower link of the vertices. Second, the descending

Morse complex is computed and, finally, the algorithm extracts the ascending manifolds in

pieces inside the cells formed by the descending manifolds. In other words, the structure of

the descending manifolds is used while computing the ascending ones in order to maintain

the structural integrity of the whole complex. Note that it is not guaranteed that the same

complex would be obtained if first the ascending, and then the descending manifolds were

computed. An implementation of this algorithm is described in [NP05]. The running time

of the algorithm for computing the Morse-Smale complex is bounded from above by the

time for sorting the vertices, plus the input size, for constructing and analyzing the vertex

links, plus the output size for describing the resulting Morse-Smale complex, as pointed out

in [EHNP03]. Sorting the n vertices of the input model takes O(n log n) time, the input size

is O(n2), while the worst case for the size of the output can be arbitrary large.

In [CCL03], an approach, rooted in the discrete Morse theory proposed by Forman [For98,

For02a], is presented for the computation of the Morse-Smale complex for a two-dimensional

simplicial complex. In order to apply Forman theory to a scalar field f which is given only at

the vertices of a mesh, f is suitably extended by defining it on all 1- and 2-simplices (i.e. edges

and triangles), in such a way that minima, saddles and maxima of f occur at vertices, edges,

and triangles, respectively. A discrete gradient vector field is induced on the complex by the

discrete Morse function [For98, For02b]. The algorithm proposed in [CCL03] is based on the

analysis of the 1-skeleton of the simplicial complex (i.e. the graph formed by its vertices and

edges) and the dual graph of the underlying triangle mesh (in which the nodes correspond to

the triangles and the arcs correspond to the edges). The ascending manifold of a minimum

p consists of vertices and edges, while the descending manifold of a maximum q is made of

triangles and edges. In [LLT03, LLT04], it has been shown that a gradient vector field is

equivalent to two spanning forests, one on the 1-skeleton and the other on the dual graph

of the model, such that an edge cannot belong to both forests. The roots of the two forests

are the minima and the maxima, respectively. The connected components of the two forests

define the descending and ascending 2-manifolds. The Morse-Smale complex is obtained as

the intersections of these regions. This algorithm can be classified both as a boundary-based

and as a region-based technique, since the ascending 2-manifolds are computed through a

sort of region-growing approach around the maxima, while the boundaries of the descending

2-manifolds are computed from the forests in the 1-skeleton. The worst-case time complexity

of the preprocessing edge sorting step is O(n log n), and that of the forest creation step is

O(nα(n)), where n denotes the number of vertices of the model, and α is the inverse of the

Ackermann function [Ack28, CCL03].

Algorithms exist in the literature that compute the Morse-Smale complex directly from two-

dimensional regular grids [BPS98, SW04, Sch05]. They are boundary-based in nature, since

they compute the 1-skeletons of the Morse-Smale complex (i.e. the critical net), through a
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Morse and Morse-Smale complexes

Algorithm Input Output Costs

[VS91] Regular Morse complex O(n log n)

[Mey94] Regular Morse complex O(n log n)

[TIS+95] Simplicial (2D) Morse-Smale complex O(n) + O(n · cp)

[BS98] Simplicial (2D) Morse-Smale complex O(n log n)

[BPS98] Regular (2D) Morse-Smale complex O(n)

[BPS98] Regular (3D) 1-skeleton of the Morse-Smale complex O(n log n)

[MW99] Simplicial (2D) Morse complexes O(n log n)

[SS00] Simplicial (2D/3D) Morse complexes O(n log n)

[EHZ01] Simplicial (2D) Morse-Smale complex O(n log n)

[DGG03] Simplicial (3D) Morse complexes (stable manifolds) O(n log n)

[DDM+03a] Simplicial (2D) Morse complexes O(n)

[DDM03b] Simplicial (2D/3D) Morse complexes O(n)

[BEHP03] Simplicial (2D) Morse-Smale complex O(n log n)

[WSH03] Regular (3D) Critical regions for maxima and minima O(n)

[CCL03] Simplicial (2D) Morse-Smale complex O(n log n + nα(n))

[EHNP03] Simplicial (3D) Morse-Smale complex O(n log n + nα(n))

[NGH04] Simplicial (2D) Morse complexes O(n log n)

[Pas04] Simplicial (2D) Morse-Smale complex O(n log n)

[SW04] Regular (2D) Morse-Smale complex O(n)

[Sch05] Regular (2D) Morse-Smale complex O(n)

[MDD+07] Simplicial (2D) Morse complex O(n)

Table 2.1: Algorithms for the extraction of the descending/ascending Morse complex or of the Morse-Smale
complex. For each algorithm the input model is outlined (regular or simplicial) as well as the output it
produces (Morse or Morse-Smale complex).

technique conceptually very similar to the one used for two-dimensional simplicial models.

As in the case of simplicial models, the problem of computing a Morse-Smale complex from

3D regular models has not been studied extensively. There are few algorithms that extract

critical points [BPS98, WSHH02, WSH03, WS04].

2.1.3 Computational complexity

Table 2.1 summarizes the computational complexity of the main algorithms for Morse and

Morse-Smale complex computation. The running time complexity is not specified by several

of the authors and is therefore not reported in the table. However, the time complexity

varies from O(n) to O(n log n), where n is the number of vertices in the initial model. An

O(n) implementation is possible for several algorithms which do not require an initial sorting

step.
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(a) (b)

Figure 2.5: (a) Visualization of the bubble structures in a Rayleigh-Taylor instability problem [LBM+06].
(b) The initial Morse-Smale complex of spatial probability distribution of electrons in a hydrogen atom under
a large magnetic field and the Morse-Smale complex features after simplification.[BPH05]

2.1.4 Applications

Applications of Morse and Morse-Smale complexes can be found in scientific visualization

[BEHP03, Pas04, EHZ01, EHNP03, GNP+05, GNP+06, LBM+06] (Figure 2.5), where scien-

tific data consist of measurements over a geometric domain or space. Applications in physics

simulation of the turbulent mixing between two fluids are discussed in [BP07]. The segmen-

tation provided by these complexes allows modeling the bubbles formed during the mixing

process (Figure 2.5(a)). Some methods have been applied for segmenting and analyzing

molecular 3D shapes [CCL03, NWB+06, BP07] to study the role of cavities and protrusions

in protein-protein interactions.

The computation of ascending manifolds of the distance function has been used also in

shape matching and retrieval [DGG03]. Since the method is tuned on the use of the distance

function, the resulting segmentation extracts the protrusions of the shape. Based on such

segmentation, a shape signature is defined which associates with each Morse complex of the

segmented 2-manifold a number of properties, e.g. the weighted volume or the bounding

box, that are used for similarity assessment. The results are mainly geared towards shapes

that exhibit a structure that is well-described by protrusions.

Interesting results have also been reported for the analysis of terrains in Geographic Informa-

tion System applications [TIS+95, DDM+03a, BEHP03]. For example, in [DDM+03a], the

extraction of the Morse-Smale complex was applied to generate a multi-resolution model for

terrains which encodes the terrain morphology at a continuous range of different resolutions.

In the field of image analysis, watershed algorithms have been used for image segmentation

[VS91, Mey94, NS96, BM00]. Watershed approaches have been applied to 3D shape segmen-

tation, as for example in [Pag03, MW99], where the curvature is used as the height function

in order to obtain natural shape segmentations from a human perception point of view. The
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algorithm in [MDD+07] has been applied to curvature-based shape segmentation, based on

the discrete curvature estimation technique in [MDDP07]. These approaches have impor-

tant applications in form feature extraction, mesh reduction, and texture mapping. Scalar

topology detection has been proven to be useful for image co-registration, iso-contouring,

and mesh compression [BS98, BPS98].

Recent research activities have moved towards hierarchical representations of scalar fields.

For example, the Morse-Smale complex has been used to perform controlled simplification

of topological features in functions defined on two-dimensional domains [BEHP04, EHZ03,

DFPV06]. These works are motivated by two major issues.

The first issue is a common problem in both image and mesh segmentation algorithms and

is the over-segmentation due to the presence of noise in the data sets. For this purpose,

generalization algorithms have been developed by several authors that locally simplify the

structure of a Morse-Smale complex [Wol04, EHZ01, BEHP04, TIS+95, Tak04, GNP+05,

GNP+06, NWB+06]. In [LBM+06], for example, the authors build a hierarchical Morse-

Smale complex for the envelope surfaces describing the boundary between undisturbed and

mixed fluids, and they use topological persistence (see Section 2.3.2) to automatically cleanup

the noise.

The generalization of a Morse-Smale complex for a 2D scalar field consists of collapsing a

maximum-saddle pair into a maximum, or a minimum-saddle pair into a minimum, so as to

maintain the consistency of the underlying complex. This operation is called cancellation.

A generalization can be described in terms of the combinatorial representation of the critical

net, defined by the surface network [DFPV06]. The problem of generalizing 3D Morse-Smale

complexes has been recently investigated in [EHNP03, GNP+05, GNP+06], by defining three

cancellation operators and extending the 2D technique described in [EHZ01, BEHP04].

The second issue is related to the large size and complexity of available scientific data sets.

Thus, a multi-resolution representation is crucial for an interactive exploration of such data

sets. There exist just a few proposals in the literature for multi-resolution representations

for 2D scalar fields based on Morse-Smale complexes [BEHP04, BPH05, DFPV06, DDV07].

All such proposals are based on the general multi-resolution framework for cell complexes

introduced in [DMP99].

Starting from the eigenfunctions of the Laplacian matrix of a closed triangle mesh, the Morse-

Smale complexes are used as quadrangular complexes and applied to mesh parameterization

and remeshing in [DBG+06]. The Morse-Smale complexes are simplified through cancellation

operations of the critical points until a denoised complex is obtained. Then, the simplified

base complex is used to build a global parameterization over the complex. Once possibly

degeneracies of the complex were eliminated, the quadrangular complex is used to produce

a semi-regular mesh.
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2.2 Graph-based shape descriptors

In his pioneering work, Cayley [Cay59] highlighted the relevance of contour lines for topo-

graphic analysis. Cayley defined contour lines to be connected sets of points at which the

elevation field has some specific constant value. Similar concepts were extended by Maxwell

[Max70]:

The results of the survey of the surface of a country are most conveniently ex-

hibited by means of a map on which are traced contour-lines, each contour-line

representing the intersection of a level surface with the surface of the earth, and

being distinguished by a numeral which indicates the level surface to which it

belongs.

Contour trees have been used mainly to study the shape of scalar fields, and no distinction

is made between the shape and the function used to analyze it: both coincide with the

scalar field itself. Contour trees describe the shape of a scalar field f by analyzing the

evolution of its level sets, as f spans the range of its possible values: components of level

sets may appear, disappear, join, split, touch the boundary or change genus. The contour

tree stores this evolution and provides a compact description of the properties and structure

of the scalar field. Contour trees, however, could, in principle, be defined for any shape with

any mapping function, and the theory behind them is general. Contour trees, in all their

variants, are discussed with emphasis on the methods developed in Computer Graphics and

with pointers to similar structures defined in Computer Vision.

The generalization of a contour tree is given by Reeb graphs, even if their definition is

slightly different, as presented in the literature. While the definition and use of contour

trees developed mainly as an answer to computational issues, Reeb graphs have a more

theoretical nature. Their definition and theoretical study date back to 1946, thanks to the

research work of a French mathematician, George Reeb. With respect to the modularity of

Morse theory, Reeb graphs are the first example of a fully modular framework for studying

the shape of a manifold: here the shape exists by itself and the function used to study it

can be arbitrarily chosen. In recent years, Reeb graphs have become popular in Computer

Graphics as a tool for studying shapes through the evolution and arrangement of the level

sets of a real function defined over the shape. Reeb graphs effectively code the shape,

both from a topological and geometrical perspective. While the topology is described by the

connectivity of the graph, the geometry can be coded in a variety of different ways, according

to the type of applications the Reeb graph is devised for.

Contour trees and Reeb graphs are frequently associated, in the literature, with the concept

of skeletal graphs or centerline skeletons. By coding the centroid of each iso-contour, it is

indeed very easy to trace a kind of centerline spanning the volume enclosed by the shape.

Centerline skeletons are very popular in Computer Graphics and Vision, and are, in principle,
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related to the medial axis transformation, in the sense that they represent an effective

way of reducing a complex 3D shape to a simple one-dimensional geometric abstraction

[CSM05, LLS92].

2.2.1 Contour tree

Starting from the consideration that the evolution of contour lines on a surface explicitly rep-

resents hills and dales with their elevation-based adjacency relationships, contour trees were

originally introduced as an efficient data structure to store containment relationships among

contours in contour maps, typically representing terrain elevations or any other continuous

real function of two variables [BR63].

The main target of contour trees was the fast evaluation of elevations at locations other

than the points on the contours [FM67, Mer73]. In the last decade, contour trees have

been extensively used as a more general tool to analyze and understand shapes defined by

n-dimensional scalar fields, as a support to scientific visualization of complex phenomena. In

their general form, contour trees explore the shape of a scalar field Γ = (D, f) by analyzing

the evolution of its level sets as f spans the range of its possible values over D: isocontours

may appear, disappear, join, split, touch the boundary or change genus. The contour tree

stores this evolution and provides a compact description of the properties and structure of

the scalar field.

2.2.1.1 Theoretical aspects

In the literature, several slightly different definitions of contour trees have been introduced.

All of them reflect the intuition that each connected component of the level sets of the scalar

field is contracted to a point and the contour tree represents the events in their evolution,

as the isovalue varies in the range of possible values. These events, which correspond for

example to the creation, union, or disappearance of isocontours, are closely related to the

presence of critical points of the scalar field. In a more general case it has been demonstrated

that, given a smooth 2-manifold M and a Morse function f on M , when the isovalue spans

a range of values containing a critical value of f then the isocontours change (see [Gra71]).

In contrast, a change in the topology of the level sets locates a critical value of f . The same

results can be derived for piecewise linear functions [CLLR05].

The differences in the surveyed definitions of contour trees mainly depend on the type of

evolution, that is on the type of critical point, stored in the structure. The contour tree

typically keeps track of the critical points in which only the number of components of the

level set varies, but not the genus of isocontours. For two-dimensional scalar fields this

situation does not occur, but for three-dimensional scalar fields there are critical values

at which the topological genus of the isosurface changes without modifying the number of
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connected components nor the adjacency of the isocontours, see Figure 2.6.

(a) (b) (c) (d)

Figure 2.6: Isosurfaces around a minimum (a) and a saddle (b-c). At the saddle point in (d), a torus evolves
into a sphere changing the genus of the isosurface without altering the number of components (1) of the level
set.

In this Chapter, we have decided to adopt the term component-critical points to denote

critical points at which only the number of connected components of the level set varies, as

used for example in [CLLR05]. In the literature, the terminology used to distinguish different

types of critical points with respect to changes in the level sets is quite inhomogeneous: for

example, in [Car04] critical points are named Morse-critical points while the component-

critical points are simply called critical points.

In the following, we use a Morse-theoretic definition of contour tree inspired by the one

proposed in [Car04]. Given a scalar field Γ = (D, f), with f Morse, two isocontours C and

C′ are said to be equivalent if there exists some f -monotone path α in D that connects

some point in C with another in C′ such that no point x ∈ α belongs to a contour of

any component-critical points of f [Car04]. The classes induced by this equivalence are

called contour classes. Contours that include critical points are the sole members of their

(finite) contour classes. In contrast, infinite contour classes correspond to open intervals and

represent a set of contours of essentially identical connectivity. Then, the contour tree is a

graph (V,E) such that:

1. V ={vi|vi is a component-critical point of f};

2. for each infinite contour class created at a component-critical point vi and destroyed

in another component-critical point vj, (vi, vj) ∈ E.

Finally, it is assumed that an arc (vi, vj) is directed from the higher to the lower value of f

on it. Figure 2.7 shows the contour tree of a two-dimensional scalar field.

It should be noted that, while the domain D of the scalar function f is supposed to be

any compact subset of R
n, in practice, only simply connected domains are considered, like

rectangles or parallelepipeds [PCM03, CLLR05]. This directly influences the type of con-

nectivity that the contour tree may assume, since cycles cannot appear and therefore the

structure is that of a tree.
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(a) (b) (c) (d)

Figure 2.7: A two-dimensional scalar field (a,b) and its contour tree (c,d). The edge orientation and the
spatial embedding of the contour tree are shown in (d).

The contour tree may be also viewed as the dual graph of the regions bounded by the level

sets and by the boundary of D [Car04]. Contours that intersect the boundary of the domain

D may be thought of as manifolds with boundary. Two main approaches to the analysis

of the boundary have been proposed: a local classification of the boundary vertices, as in

[CLLR05], or the setting of the function f at −∞ (or +∞) outside D [CKF03]. The latter

case is equivalent to closing the boundary with a virtual root of the graph [TIS+95, BFS00],

and making the image of the scalar field homeomorphic to a (hyper)sphere [Gri76]. Since

critical points (and therefore the nodes of the contour tree) depend on the interpretation

chosen, these two approaches generate contour trees that differ along the contours that

intersect the boundary [MM05]. In particular, the virtual closure forces an interpretation of

the scalar field that could be a limit when both positive and negative values of the scalar

field are significant.

Several variations of the contour tree have been proposed in the literature. For example,

when resolving all multiple critical points into simple ones, Takahashi et al. [TNTF04] named

the contour tree of a 3D scalar field as the volume skeleton tree. Moreover, the contour tree

may be enriched with further information on all topological changes of the level sets by

adding nodes that correspond to critical values where not the number but the topology of

the contours changes. This tree was first introduced in [PCM02] with the name of augmented

contour tree, and renamed contour topology tree by [CLLR05] to avoid confusion with the

augmented contour tree described in [CSA00], which denotes the refinement of the contour

tree with the inclusion of all isocontours traced at the vertices of the input mesh. Other

variations of the contour tree are the criticality tree [CKF03], which corresponds to the

subpart of the contour tree that codes only the contour joins, and the topographic change

tree [GHF90]. Finally, in the context of image processing, analogous structures are the

region-based contour tree [MM05], the component tree [CB97, Jon99], the fast level lines

transform [MG00], the max tree [SOG98] and the scale-tree [BHH98].
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2.2.1.2 Computational aspects

Algorithms for the computation of contour trees first appeared in the field of spatial data

handling for coding the evolution of contour lines in topographic data. One of the first papers

on this topic considers the nesting relationships of a set of polygonal contours manually

extracted from a topographic map [BR63]. The whole surface is enclosed by an outside

region, so that each contour has an inside and outside region. Nodes representing contours

are added to the tree one at time.

A more systematic approach to encode geographical data organized in a triangulation was

also proposed in [dBvK97]. After ordering the function values, the authors extract contours

and keep track of their evolution by sweeping the data set twice: first, from the highest to

the lowest isovalue, and then sweeping again in the reverse direction from the lowest to the

highest. This method is specialized for two-dimensional scalar fields and runs in O(n log n)

operations, where n is the number of vertices of the mesh. A simplification of the algo-

rithm and its extension to higher dimensions was proposed in [vKvOB+97]. The complexity

remains O(n log n) for two-dimensional scalar fields and becomes O(N2) for higher dimen-

sions, where N is the number of cell higher-dimensional simplices of the mesh. In this class of

methods, the vertices and the edges of the tree are called super-nodes and super-arcs, while

nodes are introduced along super-arcs to represent regular points. The function f is sup-

posed to be general in order to guarantee that all super-nodes are simple, i.e., the function

f is injective on them. If f is not general, the original data are perturbed. The algorithm in

[vKvOB+97] has been further improved for 3D scalar fields by Tarasov and Vyalyi [TV98]

by showing that the re-labeling process can also be done efficiently in three dimensions (it

requires O(N log N) operations), and by extending the pre-processing of complex saddles.

Carr at al. [CSA00, CSA03, Car04, CS07] propose a generalization of the contour tree

extraction for higher dimensions, which simplifies and extends the method in [TV98]. In

this case, contours are not explicitly maintained and the pre-processing of the multi-saddles

and of the surface boundary is not required. In this approach, the two sweeps are used

explicitly to code the connectivity of the upper and lower level sets, {x : f(x) ≥ h} and

{x : f(x) ≤ h}, in a join tree and a split tree, which represent the connectivity of the two

sets respectively, as shown in Figure 2.8. Finally, the contour tree is assembled by picking

local extrema from the join and split trees and transferring them into a so-called augmented

contour tree that contains all mesh vertices. As an optional step, regular points may be

removed so that the contour tree is explicitly coded. The most efficient implementation of

this method requires O(C log C + Nα(N)) operations [Car04], where C is the number of

nodes of the tree, N is the number of higher-dimensional simplices and α is the inverse of

the Ackermann function [Ack28].

In [PCMS04], the method in [CSA00, CSA03] is modified in order to store the contour tree

in a multi-resolution fashion. The contour tree is hierarchically decomposed into a set of

branches that may identify more nodes and arcs. The decomposition is not unique but, once
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Figure 2.8: The join tree and the split tree (left) of the contour tree (right) of the scalar field in Figure 2.7.

a hierarchy has been extracted, it is possible to generate different approximations of the

original tree by adding branches to a root. To obtain this representation, the merge of the

join and split trees is modified considering as atoms of the operations the branches of the

trees instead of the leaves. In particular, branches to be inserted in the hierarchical contour

tree are selected according to a priority queue that measures the length (i.e. the difference

in function values of its end-points) of each branch. Even if the algorithm requires a multi-

resolution data structure, the procedure for computing the hierarchical contour tree has the

same complexity of [CSA00], that is O(N log N). However, this cost may be improved to

O(N) by using a FIFO queue instead of a priority queue, eventually generating a unbalanced

tree, as discussed in [PCMS04].

An algorithm that computes the contour tree for 2D and 3D scalar fields optimally, both

in space and time, has been proposed in [CLLR05]. Here the sweep algorithm described in

[CSA03] is slightly modified, combined with an analytic approach and changed in the way

the join and the split tree are obtained. Instead of ordering all mesh vertices, Chiang et

al. first characterize the critical points, and then sort and connect them through monotone

paths. The component-critical points are identified through an initial unordered scan of the

vertices that analyses the neighborhood of each vertex. Only the component-critical points

are ordered, and this improves the computational complexity to O(N + c log c), where N is

the number of higher-dimensional simplices and c the number of component-critical points of

the mesh. Therefore the time complexity depends on the output size. In particular, [BS04]

proposed an encoding technique that, beside the contour tree of the whole domain, is able

to return also a representation of the contour tree of its sub-domains.

Another extension of the algorithm in [vKvOB+97] to 3D domains has been proposed in

[PCM02] and further extended in [PCM03]. In this case, the domain D is split into subparts

and the isosurfaces are separately processed using a parallel approach, based on a divide-

and-conquer paradigm. This paradigm is used to compute both the join and the split trees

(it is worth noticing that in these papers the notions of join and split tree are used inversely

from [CSA03]). In addition, a more detailed characterization of the contours is achieved

coding the Betti numbers associated to each arc of the tree. Finally, the different trees are

merged according to adjacency of the subparts of D, eventually revising the Betti numbers of
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each component. The resulting tree is called augmented contour tree because all the critical

points of the scalar field correspond to nodes of the tree and the contours associated with

an arc contain no critical points. The complexity of the algorithm for a 3D regular mesh,

that is a triangle mesh obtained from a regular grid, is O(n + c log n) where n is number of

vertices of the mesh and c is the number of critical points. Even if the method works on

meshes whose vertices do not lie on a grid, the split of the mesh into subparts for the parallel

computation does not improve the complexity of this method, which still is O(n log n), see

discussion in [CLLR05].

The method proposed in [TIS+95, Tak04] is devised to build contour trees of two-dimensional

scalar fields represented by a regular grid, that is converted to a triangulation by splitting

each cell with its diagonal. Note that the authors refer to their contour structure as a

Reeb graph. A surface network, see Section 2.1.2.1, is extracted from the grid and used

as intermediate structure for constructing the contour tree. In fact, the authors prove that

the contour tree of a two-dimensional scalar field may be deduced by its surface network.

This method is mainly analytic because it identifies the critical points on the vertices of

the triangulation by analyzing the star of each vertex and simulates the paths of steepest

descent on the model. A global virtual minimum acts as the root of the tree giving a unique

interpretation of the surface behavior along its boundary. The computational complexity of

this algorithm was not stated by the authors, but its analysis is given in [CLLR05], where it is

claimed that the method requires O(N) operations for reading the data, O(nc) operation for

finding the paths and O(c2) time for constructing the tree, where N , n and c are respectively

the number of triangles, vertices and critical points of the mesh. This approach has been

extended to volumetric gridded data [TTF04] represented by tetrahedral cells, using a voxel

flow network as support during the contour tree extraction instead of a surface network.

Moreover, the method admitted the removal of critical points whose relevance (in the sense

of length of the adjacent arcs) is irrelevant to describe the global topological structure of

the volume. Even if the authors do not provide the computational complexity of their

algorithm, it seems reasonable that the computational cost may be expressed with the same

expression as in the two-dimensional case, considering that the number N of triangles is

related also to tetrahedra. Finally, the method in [TNTF04] combines three approaches: the

extraction of the contour tree in [CSA03] is joined together with the analysis of the genus of

each isosurface component proposed in [PCM02] and simplified according to the procedure

described in [TTF04].

The method proposed in [IK95] automatically detects a graph from a three-dimensional

mesh. The authors remove simplices (i.e. vertices, edges, faces and tetrahedra) while pre-

serving the connection between the mesh critical points. In this case the nodes of the tree

might differ from the critical points and the edges are compound of a generic monotonic

path between two nodes. However, this method is computationally efficient because it is

linear and performs in O(n) operations, where n is the number of mesh vertices.

The approach proposed in [BFS00] extracts a contour tree, called an Extended Reeb Graph



40 Describing shapes using real functions

(ERG), from two-dimensional scalar fields described by a set of isocontours. Starting from

these contours, a Delaunay constrained triangulation is built, forcing the isocontours (in the

sense of both edges and vertices) to belong to the mesh. The function f of the scalar field

(in this case the height of the vertices) is not required to be either Morse or simple and,

therefore, the method can deal with multi-saddles, plateaus and volcano rims. Similarly to

[TIS+95], the surface is virtually closed introducing a global virtual minimum. Since it is

supposed that all vertices in the mesh lie on contours, the authors use a characterization of

the triangles which is based on the number of vertices with the same elevation. Based on

this characterization, critical areas are defined as areas containing critical points. Then, the

tree is built using a region growing process that starts from the critical areas, spreads them

in all directions and completely covers the surface keeping track of the contours crossed.

Unlike the approach in [vKvOB+97], the region growing process is based on a visit of mesh

triangles which is linear in the number of triangles, O(N). Therefore, the computational

complexity of the method depends on the construction of the Delaunay triangulation con-

strained to contours, that requires O(n log n) operations, where n is the number of vertices

of the isocontours in input. An extension of this approach has been proposed in [BFS04]:

here the classification of the critical areas and the graph construction do not require that

the triangle mesh is originally constrained to the level sets. However, the successive inser-

tion of the contours in the mesh increases the computational complexity of the method to

O(max(m + n, n log n)), where n is the number of vertices of the original mesh and m is

the number of vertices added during the insertion of the level sets (in the worst case m

may be O(n2)). The extension of the method to closed surfaces [ABS03] and to generic

two-dimensional surfaces [Bia04b] is discussed in Section 2.2.2.2, which is devoted to Reeb

graphs.

Cox et al. [CKF03] propose a variant of the contour tree called the criticality tree which

is based on the analysis of the isosurfaces without relying on the classical Morse theory. In

particular, the authors develop a discrete theory, called digital Morse theory, in order to

disambiguate the characterization of the isosurface evolution on cubic grids and to include

non-general functions. In practice, the criticality tree proposed in this work is a join tree

augmented by the component-critical points rather than a contour tree. In fact the criticality

tree stores the evolution of the volumes that, starting from maxima, are bounded by the

isosurfaces. These volumes are denoted topological zones and are locally nested. Due to

the need of extracting the topological zones, the computational complexity of this method

is O(kN log(kN)), where N is the number of 3-cells and k is the length of the longest path

traversed in the tree.

In the field of image processing, several variations of the contour tree have been adopted.

The region-based contour tree proposed in [MM05] transposes the classical contour tree

definition to gray-level images. The key idea behind this method is that the changes in the

isosurfaces (i.e. the variations in the number of connected components of pixels at a given

gray-level) are directly encoded in a tree. Therefore, the nodes of the tree correspond to
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regions of pixels. The algorithm adopts an extraction procedure analogous to that proposed

in [CSA03] which runs in O(p log p) operations, where p is the number of pixels of the image.

However, since the pixels assume only integer values, the authors claim that, if the gray-level

values vary between 8 and 16, a bucket-sort algorithm to order the pixels would decrease

the computational cost to be O(p).

The component tree, also known as confinement tree or dendrone [Jon99, CB97, MD00],

displays all image components in a hierarchical sequence. Gray-levels are therefore piled

one on the other in a graph, which is a useful structure for further filtering. This hierarchy

implies that the component tree is a variation of the join tree rather than a contour tree.

This description has been successfully used for image segmentation and has been proved

to achieve better results in comparison with standard connected filters [BJ96]. An efficient

algorithm for the extraction of component trees is proposed in [MD00] where the global

computational complexity performs in O(p log p) operations, where p is the number of pixels

of the image. Closely to the component tree, the Fast Level Lines Transform (FLLT) codes

the evolution of the connected components of the gray levels of an image [MG00]. Notice

that the sorting of the components is obtained checking the geometric inclusion of the level

sets, thus discarding the arc orientation induced by the increase/decrease of the gray-level

intensity.

Another popular structure in image processing is the max-tree introduced by Salembier et

al. [SOG98], and its dual, the min-tree. Similarly to component tree, the max-tree encodes

in a tree the hierarchy of the connected level set of pixels. The main difference between a

component tree and a max-tree does not involve the topology (i.e., the connection among

the nodes), but the construction process and the kind of information stored in each node.

An efficient method for storing and building the max tree has been proposed in [HFS03].

This method performs in linear time in the number of pixels O(p) and combines the dynamic

allocation of the memory in a linked list with the node tree storage provided by a hash table.

The scale-tree in [BHHC98, BHH98] is also based on the level-set image decomposition. In

particular, the scale-tree automatically selects a number of scales and codes the regions with

slightly different attributes, like their amplitude, shape and position so that the coding is

invertible.

More recently, the interest for time-dependent data sets has increased leading to the intro-

duction of methods for extracting the graph for time-varying models [Szy05, SB06]. The

main innovation of these methods is not in the extraction algorithm itself (they refer to

[PCM03] and [CSA03], respectively) but in the way contours of 2D and 3D data sets join

and split during a time interval. These methods also investigate the relationships between

the contour tree over the entire domain D and those restricted to its sub-domains. Contour

trees are computed in a pre-processing phase and the focus is the definition of efficient struc-

tures and algorithms for the query execution. For example, the computational complexity of

the query algorithm in [Szy05] is O(s(1 + log(t1 − t0))), where s denotes the maximum size

of a contour tree and t0, t1 are two time values. In [SB06] the correspondence between the
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nodes of the contour tree is stored in a graph called a topology change graph that supports

visualization of contour evolution. The computational complexity for extracting the topol-

ogy change graph is O(n log n + N + (ct)
2ct+1), where n and N are respectively the number

vertices and tetrahedra of the mesh and ct is the number of critical points of f at time t.

2.2.2 Reeb graph

Similar to contour trees, the main idea behind Reeb graphs is to encode the evolution and the

arrangement of the level sets of a real function defined on a shape. While the definition and

use of contour trees developed mainly as an answer to computational issues, Reeb graphs have

a more theoretical nature. They originated in 1946 in the work of a French mathematician,

George Reeb. In recent years, Reeb graphs have become popular in Computer Graphics as

tools for shape description, analysis and comparison.

Reeb graphs present a framework for studying the shape of a manifold: here the shape

exists by itself and the function used to study its shape can be arbitrarily chosen. Different

functions can be used for extracting a structure that effectively codes the shape from both

a topological and geometrical perspective. Topology here means that the shape can be

described as a configuration of parts that are attached together respecting the topology of

the shape, while geometry means that the different parts correspond to features of the shape,

as embedded into the Euclidean space, that have specific properties and descriptive power

(e.g., protrusions, elongated parts, wells).

2.2.2.1 Theoretical aspects

Reeb graphs were first defined by Georges Reeb in 1946 [Ree46] as topological constructs.

Given a manifold M and a real-valued function f defined on M , the simplicial complex

defined by Reeb, conventionally called the Reeb graph, is the quotient space defined by the

equivalence relation that identifies the points belonging to the same connected component

of level sets of f . Under some hypotheses on M and f , Reeb stated the following theorem,

which actually defines the Reeb graph.

Theorem 2.2.1 Let M be a compact n-dimensional manifold and f a simple2 Morse func-

tion defined on M , and let us define the equivalence relation “∼” as (P, f(P )) ∼ (Q, f(Q))

iff f(P ) = f(Q) and P , Q are in the same connected component of f−1(f(P )).

The quotient space on M ×R induced by “∼” is a finite and connected simplicial complex K

of dimension 1, such that the counter-image of each vertex ∆0
i of K is a singular connected

component of the level sets of f , and the counter-image of the interior of each simplex ∆1
j

2A function is called simple if its critical points have different values
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is homeomorphic to the topological product of one connected component of the level sets by

R [Ree46, ER44].

Reeb also demonstrated the following theorems, which clarify the relations between the

degree, or order, of the vertices of the simplicial complex K associated with the quotient

space and the index of the corresponding critical point.

Theorem 2.2.2 The degree of a vertex ∆0
i of index 0 (or n) is 1 and the index of a vertex

∆0
i of degree 1 is 0 or n.

Theorem 2.2.3 If n ≥ 3 the degree of vertices ∆0
i of index 1 (or n− 1) is 2 or 3. If n = 2

the degree of vertices ∆0
i of index 1 is 2, 3, or 4. The degree of vertices ∆0

i of index different

from 0, 1, n − 1, or n is 2.

In other words, the first theorem states that leaf nodes of K can be either maxima or

minima of f , while from the second theorem we can deduce that, for 2-manifolds that can

be embedded in R
3, the degree of vertices representing saddles is always 3.

To the extent of our knowledge, Reeb graphs were first introduced in Computer Graphics

by Shinagawa et al. [SKK91] and the term Reeb graph is used to identify the simplicial

complex associated with the quotient space. As a consequence of their ability to extract

high-level features from shapes, since their introduction in Computer Graphics Reeb graphs

have been gaining popularity as an effective tool for shape analysis and description tasks,

especially in case of 2-manifolds.

The Reeb graph has been also used for the analysis of 3-manifolds with boundary. In

this case the structure of the 3-manifold is studied either by introducing a virtual closure

of the manifold [EHMP04], or by associating a Reeb graph to each 2-manifold boundary

component of the 3-manifold and keeping track with a supplementary graph of the changes

between interior and void [SKK91, SL01].

For orientable, closed 2-manifolds, the number of cycles in the Reeb graph corresponds to

the genus of the manifold, and this result has been generalized in [CMEH+03], where the

authors demonstrate that the number β1(M) of non-homologous loops of the surface is an

upper bound of the number of loops β1(K) of the Reeb graph. The equality holds in case of

orientable surfaces without boundary [CMEH+03], while, in general, the following relation

holds:

g ≤ β1(K) ≤ 2g + bM − 1,

where bM denotes the number of boundary components of the 2-manifold M having genus

g. Theoretical results are available for non-orientable 2-manifolds. In this case, the number

of loops of the Reeb graph verify the following relations: 0 ≤ β1(K) ≤ g
2 when M is closed,

and 0 ≤ β1(K) ≤ g + bM − 1 for manifolds with boundary.
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As for 3-manifolds, it is not true that the number of the loops of an orientable, closed 3-

manifold is independent of the mapping function f . In addition, it has been proven that for

every 3-manifold M there exists at least one Morse function f such that the Reeb graph of

M with respect to f is a tree [CMEH+03].

The extension of Reeb graphs to shapes defined by piecewise linear approximations has

been studied by several authors. For example, in [Bia04a] the definition of Reeb graph

was extended to triangle meshes representing 2-manifolds embedded in R
3, with or without

boundary, and which admit degenerate critical points. The relationship between the genus of

the mesh and the cycles in the extended Reeb graph is maintained, as discussed in [Bia04a,

Bia04b]. On the basis of this representation, a further extension of the domain of the Reeb

graph to point clouds was proposed in [WXS06], defining a so-called discrete Reeb graph.

Figure 2.9 shows two examples of Reeb graphs of a closed surface. In Figure 2.9(a) some

level sets of the height function are drawn with the corresponding Reeb graph; in Figure

2.9(b) the Reeb graph of the same object is shown using the Euclidean distance from a point.

(a) (b)

Figure 2.9: Reeb graph with respect to the height function (a) and to the distance from a point (b).

2.2.2.2 Computational aspects

Several algorithms have been proposed for the computation of the Reeb graph of closed

surfaces, while only a few algorithms deal with 3-manifolds, higher-dimensional or time-

dependent data.

The first algorithm, proposed by Shinagawa et al. [SK91], automatically constructs the

graph from surface contours generated by the height function. Since the contour ordering

proposed in [BR63] is not suitable for manifolds without boundary, a weight function, which

depends on the average distance between the vertices of two different contours, is defined

for each pair of contours lying on adjacent (consecutive) level sets. First, the algorithm

automatically generates most of the arcs of the Reeb graph where the number of contours

of two consecutive cross sections is one. Then the rest of the graph is determined by using

the weight function and a priori knowledge of the surface genus. Specifically, the graph is

completed by adding edges in decreasing order of the weight between contour pairs, so that

the genus of the graph preserves that of the original surface. The main drawbacks of this
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algorithm are the need for a priori knowledge of the genus of the surface and the fact that

this procedure is limited to contour levels of the height function. In addition, since this

algorithm loses the shape information between two consecutive cross sections, the frequency

of the contours of the surface is critical; therefore, a reasonable computation of the graph

requires a high number of surface slices and it is time and space consuming (O(n2), where n

represents the total number of vertices of the scattered contours). To deal with models with

cavities, Shinagawa et al. encoded the Reeb graphs of both the shape and its complement.

Similar considerations on the evolution of the model and its complement have been proposed

in [SL01] to define a method for the extraction of a topological graph for cortical volume

data.

A general algorithm for the Reeb graph extraction of 2-manifolds with or without boundary

represented by a simplicial complex was proposed in [CMEH+03]. This approach also works

for non-orientable models, like the Klein bottle. The basic assumption here is that the

mapping function is Morse and simple, so that critical points have pairwise different function

values. Then, the Reeb graph is constructed by storing the level sets while sweeping the

domain of the function. To identify the critical points, the star of each vertex is classified

according to the approach in [EHZ03]. Once critical points have been detected, all vertices

of the model are processed according to the increasing value of the function f and the

evolution of level sets is tracked. Since operations are done on the edges, the complexity of

the algorithm is O(n log n), where n is the number of edges of the complex.

Recently, Pascucci et al. [PSBM07] proposed an algorithm able to compute efficiently the

Reeb graph of simplicial complexes of arbitrary dimension. This algorithm is based on the

assumption that the Reeb graph of the simplicial complex is equivalent to the Reeb graph

of its 2-skeleton. This assumption implies that the structure obtained from this algorithm

slightly differs from the original definition given by Reeb [Ree46] because it is not able to

distinguish changes in the topology of the isosurfaces. For instance, the 2-skeleton of a

simplicial complex of dimension 3 is not sensitive to the inner cavities of the model. The

usage of a stream approach eliminates the need of an initial ordering of the mesh vertices,

allows a progressive computation of the graph able to encode very large models and provides

a way to compute a run-time simplification of Reeb graph loops based on their relevance.

To achieve these tasks, two structures are used: one for the input 2-skeleton and the other

for the Reeb graph. These two structures are related to each other and, when a new element

is inserted in the 2-skeleton, the Reeb graph is consequently updated. The basic operations

to update the Reeb graph are the creation of new nodes and arcs and the merge of two

paths. In particular, two paths are merged if, during the progressive visit of the 2-skeleton,

a hole is filled or a loop is removed from the Reeb graph. The computational complexity

of the algorithm is still O(n log n), where n represent the number of vertices, which is the

theoretical lower bound complexity for the Reeb graph extraction. However, the usage of

the stream approach makes this method efficient in practice, allowing a fast computation of

the Reeb graph also on large meshes.
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The method proposed in [HSKK01] provides a multi-resolution Reeb graph (MRG) repre-

sentation of triangle meshes which is independent of the object topology. The construction

of the MRG begins with the extraction of the graph at the finest resolution desired, then

adjacency rules are used to complete the multi-resolution representation in a fine-to-coarse

order. First of all, the domain of the mapping function is divided into a number of intervals

and triangles whose image under f lies in two intervals are subdivided so that the image

of every triangle belongs to only one interval. Second, the triangle sets, that is the sets of

connected components of triangles whose images belong to the same interval, are calculated.

A node of the graph is associated with each triangle set and arcs are detected by checking the

region adjacency of triangle sets. It is worth noticing that this contouring approach induces

a quantization of the interval of f that, although it may locally amend the local topological

noise, does not guarantee that the number of loops of the MRG equals the number of holes

of the surface. Once the function f has been evaluated on the vertices of the mesh and

triangles have been split, the Reeb graph extraction requires O(n + m) operations, where

n represents the number of triangles of the original mesh and m represents the number of

triangles inserted during the subdivision phase. Notice that the evaluation of the function

f may be a computationally expensive step. For example, the exact computation of the

geodesic function proposed in [HSKK01] requires O(n2 log n) operations, while its approxi-

mation runs in O(kn log n), where k is a user-defined constant (usually greater than 150).

In Figure 2.10 an example of the Reeb graph construction method proposed in [HSKK01]

is shown; in this case the domain of f is subdivided in 4 intervals. The contour insertion

in Figure 2.10(b) determines a set of mesh regions that correspond to the graph nodes in

Figure 2.10(c), while their adjacency originates the arcs of the graph (see Figure 2.10(d)).

(a) (b) (c) (d)

Figure 2.10: Pipeline of the multi-resolution Reeb graph extraction in [HSKK01].

The Extended Reeb Graph (ERG) representation proposed in [ABS03, Bia04a] is able to

represent a surface with or without boundary through a finite set of contour levels of a given

mapping function f . In [Bia04b], the ERG was extended to surfaces having an arbitrary

number of boundary components. To obtain a minimal (in the sense of graph loops) repre-

sentation of the ERG, this algorithm virtually closes all boundary components, as detailed

in [Bia05]. An extension of the ERG definition to unorganized point clouds of 3D scan data

that represent a human body has been proposed in [WXS06]. Since a polygonal mesh is not
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available, a surface is implicitly defined by assuming that the Euclidean distance among a

point p and its closest point q is smaller than a given threshold ǫ. Point sets whose sam-

pling is sufficiently fine are connected in a discrete sense. Therefore, level sets are defined

as points that share the same value of a mapping function and are connected in the discrete

sense. The resulting graph is called the Discrete Reeb Graph (DRG). Once a set of level sets

has been detected, the graph is progressively constructed visiting all points that are linked

with respect to the threshold ǫ. The declared complexity of the graph computation mainly

depends on the extraction of the level sets, which requires O(nk2) operations, where n is the

number of points and k is the average of the points contained in the neighborhood of each

point.

The approach proposed in [WHDS04] works on volume data. In this case, the data are

swept with a plane that generates a sequence of slices, which are formed by the sets of grid

elements bounded by two adjacent isosurfaces. Each connected component of a slice is called

a ribbon while the contours are given by the intersection of the isosurfaces with a set of slicing

planes. The graph described in this approach is called an augmented Reeb graph because

it also encodes geometric information for each contour and each ribbon. The traversal is

analyzed at discrete z intervals of the volumetric grid along the boundary of a distance

function and may be done out-of-core on the dataset. Isosurfaces are analyzed one slice at

time and contours are constructed by searching from an arbitrary edge in the plane until

the contour is closed. Similarly, ribbons are constructed through a breadth-first traversal

of the slice elements, starting from the polygons adjacent to a contour until the connected

component is completely detected. Both ribbons and contours correspond to nodes of the

Reeb graph while their adjacency is coded in the edges. To avoid an object handle being

completely contained within a ribbon, the Euler characteristic of each isosurface component

is computed and, possibly, the sweep is locally refined. In this way the topology of the

volume is completely coded and, in each interval, the Reeb graph structure corresponds to

the Euler characteristic of the object ribbons.

In the analogous context of 3D binary images represented by voxel models, a graph similar

to the Reeb graph has been proposed in [SL01]. Since in a volume model configurations with

internal cavities are not fully described by the shape boundary, the 3D image is embedded

in its bounding box and the graphs are extracted for both the object and its complement. A

point is associated with each section. For each direction x, y and z, a foreground connectivity

graph G is extracted. Since cycles are not admitted in the final graph (because cycles denote

inner cavities and handles of the model to be removed as noise), a maximum spanning tree

is computed to select the set of arcs that should be eventually removed from G. Then,

graph tests are performed to simplify the graph until all cycles are removed. Although the

computational cost of this algorithm was not provided by the authors, the computation of

the maximum spanning tree seems to be the most time consuming operation. Therefore,

the complexity of this method is O(v log v), where v represents the number of voxels of the

cortical volume.
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The hyper Reeb graph proposed in [FAT99, FTAT00] deals with 3D volume fields. The main

concept behind this description is the representation of the isosurfaces of a volume in terms of

their Reeb graphs, and the detection of the topology changes of these isosurfaces through the

modifications of their Reeb graphs. Once the volume data set is swept in the height direction

and a Reeb graph has been extracted for each isosurface, this collection of graphs is encoded

in a hyper graph, whose nodes correspond to the Reeb graphs. The Reeb graph of a single

isosurface is extracted from the surface network of the isosurface extending the algorithm

proposed in [TIS+95] for two-dimensional scalar fields. This computation costs O(N) +

O(nc) + O(c2) operations where N and n represent the number of faces and vertices of the

mesh and c is the number of its critical points (see Table 2.2 in Section 2.2.1.2). Therefore,

the computational complexity of the hyper Reeb graph is quite significant and depends on

the number of isosurfaces taken into account.

The spatial embedding of the Reeb graph of a surface is often regarded as a topological

centerline skeleton. In this case, each contour may be visualized through its centroid. Various

methods adopt a centerline encoding that can be related to Reeb graphs, even if they do

not explicitly originate from the Reeb graph definition. These approaches generally do not

require the mapping function to be general nor simple and, differently from the centerlines

based on the distance function, act as topological centerlines. The construction of the

Level Set Diagrams (LSD) from triangulated polyhedra proposed in [LV99] uses Euclidean

distances for wave propagation from a seed point. An heuristic detects a point at the top of a

protrusion on the basis of the geodesic distance. This source point automatically determines

a privileged “slicing direction”. In this approach, a skeleton-like structure, available for

input objects of genus zero, is proposed, which is essentially a tree made of the average

points (in the sense of centroids) associated with the connected components of the level sets

of the geodesic distance from the source. The resulting skeleton is invariant under rotation,

translation and uniform scaling (see Figure 2.11). The method in [Axe99] follows the same

approach replacing Euclidean distance with topological distance.

An extension of the approaches in [Axe99] and [LV99] to non-zero genus surfaces was pre-

sented in [HA03]. In this case, the evaluation of the measuring function, the mesh charac-

terization (based on local criteria) and the construction of the graph are performed at the

same time using Djikstra’s algorithm. A similar approach was introduced in [WDSB00] for

implicit storage of meshes obtained from distance volumes. In this case the graph extraction

is driven by the evolution of the isosurfaces of the geodesic distance from a single point. In

fact, the object topology is reconstructed by considering a wavefront-like propagation from

a seed point by applying Dijkstra’s algorithm. The cost complexity of these methods, all of

which require the vertices to be sorted, is O(n log n), where n is the number of vertices of

the mesh.

Finally, the application of the approach in [LV99] to point clouds was proposed in [VL00].

The algorithm runs in O(e + n log n), where e is the number of edges in the neighborhood

graph and n is the number of points.
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(a) (b) (c)

Figure 2.11: Level sets (a) and the centerline (b,c) of an horse using the geodesic distance from a source
point as proposed in [Lazarus and Verroust 1999].

The method in [MP02] uses the multi-resolution curvature evaluation proposed in [MPS+04]

to locate seed points that are subsequently used during the geodesic expansion. Seed points,

also called representative vertices, are sequentially linked by using a wavefront traversal

defined on the simplicial complex (see Figure 2.12(a,b)). Once a set of representative vertices

is selected, rings made of vertices of increasing neighborhoods are computed in parallel until

the whole surface is covered (see Figure 2.12(c)), in a way similar to the wave-traversal

technique [AE98]. Rings growing from different seed points will collide and join where two

distinct protrusions depart, thus identifying a branching zone; self-intersecting rings can

appear when expanding near handles and through holes. A skeleton is drawn according to

the ring expansion: terminal nodes are identified by the representative vertices, while union

or split of topological rings give branching nodes. It is worth noticing that the terminal

nodes of the graph have degree 1. Arcs are drawn joining the center of mass of all rings (see

Figure 2.12(d)). Therefore, the complexity of the proposed graph, in terms of number of

nodes and branches, depends on the shape of the input object and on the number of seed

points which have been selected using the curvature estimation criterion. The number of

operations needed for extracting the skeleton is O(n) in the number of mesh vertices (each

vertex is visited once) even if an accurate evaluation of the high curvature points may require

O(n2) operations. In addition, this curve-line representation has at least as many cycles as

the number of holes of the surface; however, some unforeseen cycles may appear as a result

of colliding wavefronts.

Time-varying data are not always best dealt with by means of a function defined over

four equivalent dimensions. In practice, most four-dimensional data consist of time-slices

of three-dimensional data that can be treated with a refinement of 3D algorithms. An

algorithm for studying the evolution of the Reeb graph when the mapping function varies

with time is proposed in [EHMP04]. To simplify the topological complexity of the space,

a point at infinity is added. In this way the space becomes topologically equivalent to the

3-sphere and each Reeb graph will be equivalent to a tree. In this framework, the time is

represented by a conventional priority queue that stores birth-death and interchange events,

that are prioritized by the moments in time they occur. Once a Reeb graph is computed,
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(a) (b) (c) (d)

Figure 2.12: (a) Vertex classification based on Gaussian curvature; (b) high curvature regions are depicted
in red; (c) topological rings expanded from centers of high curvature regions; (d) the graph obtained as
proposed in [Mortara and Patané 2002].

the evolution of the graph over time is detected using a Jacobi curve that collects the birth-

death points and maintains the occurrence of a new event. A data structure is used to store

the entire evolution. The computational cost of this algorithm, O(N + En), depends on the

number N of simplices of the triangulation of the space-time data, the upper number n of

simplices at a time t and the amount E of birth-death and interchange events.

2.2.3 Computational complexity

A summary of methods for contour tree and Reeb graph extraction is proposed in Table 2.2.

For every method we report the kind of output structure as named by the authors, in detail:

CT is the contour tree, RG a Reeb graph, ACT an augmented contour tree, MT a max tree,

ST a scale tree, CompT a component tree, CTree a criticality tree, C a centerline, MRG

a multiresolution Reeb graph, AMRG an augmented multiresolution Reeb graph, ERG an

extended Reeb graph and ARG an augmented Reeb graph.

1The complexity is, respectively, O(N log N) for 2D and O(N2) for 3D domains.
2The method is essentially the same in both papers. The cost improvement is due to a more efficient

implementation of the data structures.
3The complexity of this method depends on the use of a FIFO or a priority queue.
4The complexity of this method varies if considering regular or simplicial meshes.
5The complexity of the method may decrease to O(p) if the range of pixel values is between 8 and 16.
6Once a set of seed points has been recognized, the complexity of the skeleton extraction is linear in the

number of mesh vertices but an accurate evaluation of the high curvature points requires O(n2) operations.
7The computational cost of the time varying algorithms reported in the Table refers to the complexity of

the query at a given instant t rather than the complexity of the built of the structure.
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Graph-based shape descriptors

Approach Method Output Domain Costs

2D 3D nD

[BR63] Manual CT X –

[IK95] Erosion CT X X O(n)

[dBvK97] Sweep CT X O(N log N)

[vKvOB+97, vKvOB+04] Sweep1 CT X X O(N log N) / O(N2)

[TV98] Sweep CT X X O(N + n log n)

[CSA00, CSA03] Sweep2 CT X X X O(N log N)
[Car04] O(C log C + NαN)

[PCMS04] Sweep3 CT O(N log N)
O(N)

[CLLR05] Sweep CT X X O(N + c log c)

[PCM02] Sweep4 ACT X X O(n + c log n) /
[PCM03] O(n log n)

[TIS+95] Analytic RG X O(N)+O(nc) + O(c2)
[Tak04] X

[TTF04] Analytic RG X O(N)+O(nc) + O(c2)

[BFS00] Contours ERG X O(n log n)

[BFS04] Contours ERG X O(max(m + n, n log n))

[CKF03] Isosurfaces CTree X O(kn log(kn))

[MM05] Level sets5 CT 2D Images O(p log p)

[MD00] Level sets CompT 2D Images O(p log p)

[BHHC98] Level sets ST 2D Images O(p log p)
[BHH98]

[HFS03] Level sets MT 2D Images O(p)

[Szy05] Level sets CT Time varying data7 O(s(1 + log(t1 − t0)))

[SB06] Analytic CT Time varying data7 O(n log n + N + (ct)
2ct+1)

[SK91] Contours RG X X O(n2)
[SKK91]

[HSKK01] MRG X
[BRS03] Contours MRG O((n + m))
[TS04] AMRG

[ABS03] Contours ERG X O(max(m + n, n log n))
[Bia04b, Bia05]

[CMEH+03] Analytic RG X O(n log n)

[PSBM07] Analytic RG X X X O(n log n)

[Axe99]
[LV99] Contours C X O(n log n)
[HA03] RG

[MP02]1 Contours SG X O(n)

[WDSB00] Contours C X O(n log n)

[WHDS04] Contours ARG X O(n log n)

[SL01] Contours C X O(v log v)

[VL00] Contours C Point clouds O(e + n log n)

[WXS06] Contours RG Point clouds O(n)

[EHMP04] Analytic RG Time varying data7 O(N + En)

Table 2.2: Classification of the methods that extract graph-based descriptors. Symbols: N is the number
of higher-dimensional simplices or cells; n is the number of vertices or points; m is the number of vertices
inserted in the mesh during contouring phases; c is the number of critical points; C is the number of tree
nodes; α is the inverse of the Ackermann function; k is the length of the longest path traversed in the tree,
p is the number of pixels, v is the number of voxels t is time, e is the number of edges in the neighborhood
tree and E is the amount of birth-death and interchange events. Note that, in the 2D case, N = O(n).
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Figure 2.13: Contour tree may be used to support interactive exploration of structures that are hidden in
the conventional view [CSvdP04].

2.2.4 Applications

The original application of contour trees was in topography [BR63], Geographic Application

System (GIS) applications [TIS+95, Tak04] and surface analysis and understanding [BFS00,

BFS04]. Another possible application is shape matching and retrieval [ZBB04].

As far as three-dimensional scalar fields are concerned, the main applications of contour trees

are image processing and analysis of volume data sets [CKF03, TFT05], volume simplification

[CL03, CSvdP04, WDC+07], automatic isosurface propagation [IK94, IK95, IYK01] and

scientific visualization [PCM02, Pas04, CKF03, TTF04]. Recently, Bajaj et al [BGG07] used

the contour tree for molecular data analysis. The scalar field for the contour tree extraction

is defined by the distance function from the surface of the molecule, that is able to detect

the secondary structural motifs of a protein molecule [BG06]. This allows the identification

of tunnels and pockets of the molecule. Finally, contour trees in higher dimensions apply to

X-ray analysis and visualization [CSA03] and to scientific visualization [Pas04].

The contour tree is an effective tool for representing the abstract structure of the scalar

field with an explicit description of the topological changes of the level sets. Beside the

contour spectrum [BPS97], that is a set of geometric measures (like length, area, gradient

integral, etc.) that are computed over the level sets of the scalar field, the contour tree has

been proposed as an element of an user interface able to drive interactive data exploration

sessions [KRS03, CS03, Car04, TFT05], see Figure 2.13.

In practical applications, the fact that most of the algorithms extract a representation that

may be overwhelming in size and that a planar embedding of the tree may generate many self-

intersections has limited the use of the contour tree. To overcome the problem of the size of

the graph, the work in [PCMS04] proposes a method for extracting a multi-resolution contour

tree and visualizing the tree subparts, that are called branches. Since a branch of the tree
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may be drawn as a chain of connected arcs, branches are sorted according to their importance

into the contour tree and progressively rendered. The representation of the tree is embedded

into the 3D space by moving each node to a z value that corresponds to the value of the

scalar field in that node. In addition, 2D self-intersections are avoided using the algorithm

for rooted trees proposed in [dBETT99]. More recently, these branches have been used to

topologically simplify the rendering of complex volumetric data sets [CSvdP04, WDC+07].

In the field of image processing, contour trees [MM05, Tur98] and their variations [Jon99,

MG00, SOG98, BHH98] have been mainly used for optimizing the coding and the manip-

ulation of images and their meaningful components. While the topology of image surfaces

is simple (an image may be easily represented as a scalar field whose scalar function is pro-

vided by the gray-level intensity), the configuration of contour trees provides an interesting

support for many filtering and segmentation operations. In particular, the max tree has

been adopted in a number of Computer Vision problems including stereo matching, image

filtering, segmentation and information retrieval. First introduced in Computer Graphics by

Shinagawa et al. [SKK91], Reeb graphs were initially used only for Morse mapping functions

and their extraction required a priori knowledge of the object genus [SK91].

Application fields related to the use of Reeb graphs include surface analysis and understand-

ing [SKK91, ABS03]; identification of topological quadrangulations [HA03]; data simplifica-

tion [BFS02]; animation [KS00, XSW03]; surface parameterization [SF01, PSF04, ZMT05]

(Figure2.14) and remeshing [WDSB00]; shape [BDP06] and human body [WXS06] segmen-

tation; approximation and modification of the input geometry [SK91]; object reconstruction

[BMS00] and editing where the stored information is exploited for shape recovering. More-

over, the knowledge of the shape topology given by the graph structure improves the surface

reconstruction from contour lines [BMS00], thus solving the correspondence and the branch-

ing problems. Details on this topic may be found in [FKU77, MSS92, OPC96].

The compactness of the one-dimensional structure, the natural link between the function

and the shape, and the possibility of adopting different functions for describing different

aspect of shapes have led to a massive use of Reeb graphs for similarity evaluation, shape

matching and retrieval [HSKK01, BMM+03a]. In [HSKK01] the Reeb graph is used in a

multi-resolution fashion for shape matching. The ratio of the area and the length of the

model sub-part in the whole model are associated with each node, i.e. shape slice, and are

used as attributes during the graph-matching phase. The set of the geometric attributes is

further enriched in [TS05], where, for each slice, the authors consider the volume, a statistic

measure of the extent and the orientation of the triangles, an histogram of the Koenderink

shape index, which provides a representation of the local shape curvatures [Koe90], and a

statistic of the texture. In particular, [TS04] shows how the performance for shape retrieval

improves when these geometric attributes are added to nodes of the multi-resolution graph

structure. Finally, the method in [HSKK01] has been successfully applied also to database

retrieval of CAD models as proposed in [BRS03].
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(a) (b) (c)

Figure 2.14: Surface parameterization using the Extended Reeb Graph. (a,b) A topology based decompo-
sition of the shape derived from the ERG is used to define a chart decomposition of the mesh, and each chart
is parameterized with respect to the cuts shown in (b); (c) the normal-map images.

In the field of regularly sampled 3D grids of scalar values (that is a volume model in which

each grid cube has 8 neighbor grid points), the method proposed in [WHDS04] topologically

simplifies and repairs the topological noise that affects large scattered datasets. Similarly,

the method in [SL01] analyzes, and eventually corrects, the topology of cortical volumes

because it is assumed that cortical volumes are homeomorphic to a sphere and no cycles are

expected in the graph representation.

Similarly, the method proposed in [PSBM07] has been used to find and highlight small

defects, such as small manifold handles and tunnels, in models of arbitrary dimension. Since

these features correspond to loops of the Reeb graph, the model is simplified by removing

parts that correspond to irrelevant loops, where the relevance of a loop is defined as its

persistence (cf. Section 2.3.2), in the sense of a percentage of the function image.

The hyper Reeb graph defined in [FAT99, FTAT00] has been proposed to enhance traditional

volume visualization techniques with a double-layered topological structure. In [FTAT00],

the method is tested on a large-scale, time-varying volume data set. There, the hyper Reeb

graph is used to simulate an ion-atom collision problem between a proton and a hydrogen

atom and to investigate the variation of the electron density distribution during the collision.

In particular, the identification of the Reeb graphs that correspond to the simplest structure

of the isosurfaces permits to approximate the collision time of the atomic structures.
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2.3 Algebraic shape descriptors

Besides the possibility of adopting different functions for describing shapes, at a higher level

of abstraction, the modularity of approaches based on Morse theory can be extended to the

choice of the space used to represent the shape, or phenomenon, under study. The third

group of methods reflects this higher degree of modularity, and it is concerned with methods

allowing one or more real functions to be defined on spaces associated with the shapes under

study. These methods are based on algebraic topology, which is a mathematical tool which

useful to detect the number and type of topological features, such as holes, in a space. Size

theory and persistent homology theory fall in this last group and are characterized by the

possibility of varying the space underlying the shape and the real functions defined on it.

2.3.1 Size theory

Size theory has been developed since the beginning of the 1990s in order to provide a

geometrical-topological approach to the comparison of shapes (cf. [Fro90, Fro91, VUFF93]).

Introductory presentations can be found in [FL99] and [KMM04].

The basic notion behind size theory is the abstraction of the similarity between shapes

in terms of the natural pseudo-distance between the topological spaces that represent the

shapes. Intuitively, two shapes are similar when they exhibit similar properties: this fact

can be conceptualized by considering a shape as a pair defined by a topological space and

a function that measures some properties, which are relevant in a specific context. Then,

the similarity between shapes can be expressed by a small variation in the measure of these

properties when we move from one shape to the other. In this setting, shapes are similar

if there exists a bi-continuous transformation, or, more precisely, a homeomorphism, that

preserves the properties conveyed by the functions.

The idea comes from the observation that many groups of transformations, such as isometries

or affinities, can be expressed in terms of the preservation of the values of some real functions

on topological spaces. For instance, the concept of isometry can be traced back to the

preservation of the distance function, and the concept of affinity to the preservation of the

affine area. Therefore, it seems natural to consider shapes as spaces equipped with real

functions and study the changes of such functions, that is, study how the function values

are modified or preserved under the action of homeomorphisms between the spaces. The

evaluation of such changes yields a measure to compare shapes.

The formalization of this approach provide the definition of the natural pseudo-distance,

intuitively defined as the infimum of the variation of the values of the functions when we

move from one space to the other through homeomorphisms.

Notice that the most common transformation groups, such as those mentioned above, can
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be expressed using the language of the natural pseudo-distance [Fro91]. The natural pseudo-

distance actually defines a concept of similarity between shapes. Indeed, in this theoretical

setting, two objects have the same shape if they share the same shape properties, expressed

by the functions’ values, i.e. their natural pseudo-distance vanishes.

2.3.1.1 Theoretical aspects

The main idea in size theory is to compare shape properties that are described by real

functions defined on topological spaces associated with the “objects” to be studied. This

leads to considering size pairs (S, f), where S is a topological space and f : S → R is a

continuous measuring function.

When two objects X and Y must be compared, the first step is to find the “right” set of cor-

responding properties, i.e. of size pairs (S(X), fX ), (S(Y ), fY ). Depending on the problem,

one can decide to work directly on X, so that S(X) = X, or to compute a derived space

S(X) which is different from X. For example, S(X) can be chosen (whenever applicable) to

be the Cartesian product X(n) = X×X×· · ·×X, or the tangent space of X, or a projection

of X onto a line, or the boundary of X, or the skeleton of X, and so on. The measuring

functions are meant to give a quantitative description of S(X), S(Y ). Their choice is driven

by the set of properties that one wishes to capture.

The next step in the comparison process is to consider the natural pseudo-distance d. The

main idea in the definition of natural pseudo-distance between size pairs is the minimization

of the change in measuring functions due to the application of homeomorphisms between

topological spaces. Formally, d is defined by setting

d((S(X), fX ), (S(Y ), fY )) = inf
h∈HX,Y

sup
P∈S(X)

|fX(P ) − fY (h(P ))|,

where h varies in a subset HX,Y of the set H of all homeomorphisms between S(X) and

S(Y ). The subset HX,Y must satisfy the following axioms: the identity map idX ∈ HX,X ; if

h ∈ HX,Y then the inverse h−1 ∈ HY,X ; if h1 ∈ HX,Y and h2 ∈ HY,Z then the composition

h2 ◦ h1 ∈ HX,Z [Fro91]. Often, HX,Y coincides with H (cf. [DF04b, DF07]). If S(X) and

S(Y ) are not homeomorphic the pseudo-distance is set equal to ∞. It should be noted that

the existence of a homeomorphism is not required for X and Y but for the associated spaces

S(X) and S(Y ). In this way, two objects are considered as having the same shape if and

only if they share the same shape properties, i.e. the natural pseudo-distance between the

associated size pairs vanishes.

Since the set of homeomorphisms between two topological spaces is rarely tractable, simpler

mathematical tools are required to estimate the natural pseudo-distance. To this end, the

main mathematical tool introduced in size theory is given by size functions, which provide

a lower bound for the natural pseudo-distance.
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Figure 2.15: (a) The size pair (S, f), where S is the curve represented by a continuous line and f is the
function “distance from the point P”. (b) The size function of (S, f).

Size functions are shape descriptors that analyze the variations of the number of connected

components of the lower level sets of the studied space with respect to the chosen measuring

function. Given a size pair (S, f), the (reduced) size function

ℓ(S,f) : {(x, y) ∈ R
2 : x < y} → N

can easily be defined when S is a compact and locally connected Hausdorff space: ℓ(S,f)(x, y)

is equal to the number of connected components of the lower level set Sy = {P ∈ S : f(P ) ≤
y}, containing at least one point of the lower level set Sx (see [dFL06]).

An example of size function is illustrated in Figure 2.15. In this example we consider the

size pair (S, f), where S is the curve represented by a continuous line in Figure 2.15(a), and

f is the function “distance from the point P”. The size function associated with (S, f) is

shown in Figure 2.15(b). Here, the domain of the size function is divided by solid lines,

representing the discontinuity points of the size function. These discontinuity points divide

the set {(x, y) ∈ R
2 : x < y} into regions on which the size function is constant. The

value displayed in each region is the value taken by the size function in that region. For

instance, for a ≤ x < b, the set {P ∈ S : f(P ) ≤ x} has two connected components which

are contained in different connected components of {P ∈ S : f(P ) ≤ y} when x < y < b.

Therefore, ℓ(S,f)(x, y) = 2 for a ≤ x < b and x < y < b. When a ≤ x < b and y ≥ b,

all the connected components of {P ∈ S : f(P ) ≤ x} are contained in the same connected

component of {P ∈ S : f(P ) ≤ y}. Therefore, ℓ(S,f)(x, y) = 1 for a ≤ x < b and y ≥ b.

When b ≤ x < c and y ≥ c, all of the three connected components of {P ∈ S : f(P ) ≤ x}
belong to the same connected component of {P ∈ S : f(P ) ≤ y}, implying that in this case

ℓ(S,f)(x, y) = 1.

In [FL97] a new kind of representation of size functions was introduced, based on the fact

that they can always be seen as linear combinations of characteristic functions of triangles

(possibly unbounded triangles with vertices at infinity), with a side lying on the diagonal

{x = y} and the other sides parallel to the coordinate axes. For example, the size function
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Figure 2.16: Two size functions can be described by cornerpoints and cornerlines and compared by the
matching distance.

of Figure 2.16 (left) is the sum of the characteristic functions of the triangles with right

angles at vertices a, b, c plus the characteristic function of the infinite triangle on the right

of line r. This suggests that the size function is completely determined by a, b, c, r. In

fact, the property that size functions can be represented as collections of vertices (called

cornerpoints) and lines (called cornerlines) always holds [FL01]. This provides a simple

and concise representation for size functions in terms of points and lines in R
2, drastically

reducing the required descriptive dimensionality.

As suggested in Figure 2.16, this representation also allows for the comparison of size func-

tions using distances between sets of points and lines [DFL99], e.g. the Hausdorff metric or

the matching distance. In particular, the matching distance between two size functions l1 and

l2, respectively represented by the sequences (ai) and (bi) of cornerpoints and cornerlines,

can be defined as

dmatch(l1, l2) := min
σ

max
i

d(ai, bσ(i))

where i varies in the set of natural numbers N, σ varies among all the bijections from N to

N, and the pseudo-distance d between two points p and p′ is equal to the smaller between

the cost of moving p to p′ and the cost of moving p and p′ onto the diagonal {x = y}, with

costs induced by the max-norm [dFL06]. An example is shown in Figure 2.16 (right), where

an optimal matching between cornerpoints and cornerlines of two size functions is shown.

Here the matching distance is given by the cost of moving the cornerpoint denoted by b onto

the diagonal.

The stability of this representation has been studied in [dFL03, dFL05]. In particular, it has

been proven that the matching distance between size functions is continuous with respect

to the measuring functions, guaranteeing a property of perturbation robustness. Moreover,

it can be shown that the matching distance between size functions produces a sharp lower

bound for the natural pseudo-distance between size pairs [DF04a, dFL05], thus guaranteeing

a link between the comparison of size functions and the comparison of shapes [dFL06].

Size functions are not the sole tool introduced in size theory. Indeed, algebraic topology has
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been used to obtain generalizations of size functions that give a more complete description of

a pair (S, f), since they take into account not only the number of connected components but

also the presence of other features such as holes, tunnels and voids. The first development

in this sense can be found in [FM99] where size homotopy groups are introduced, inspired by

the classical mathematical notion of homotopy group. They are shown to provide a lower

bound for the natural pseudo-distance, much in the same way as size functions do.

The study of size functions in the algebraic topology setting was also developed in [CFP01] by

observing that ℓ(S,f)(x, y) can be seen as the rank of the image of H0(jxy) : H0(Sx) → H0(Sy)

where jxy is the inclusion of Sx into Sy. This observation has led to the definition of the size

functor, which studies the maps Hk(jxy) : Hk(Sx) → Hk(Sy) for every k. In other words, it

studies the process of the birth and death of homology classes as the lower level set changes.

When M is smooth and compact and f is a Morse function, the functor can be described

by oriented trees, called Hk − trees [CLG01].

2.3.1.2 Computational aspects

From the computational point of view, the main efforts have been devoted to the development

of techniques for the computation of size functions [Fro92], while no algorithms are available

to compute the size homotopy groups or the size functor.

From the application side, using size functions for shape analysis requires two steps: (i) the

choice of the size pair (S, f) and (ii) the computation of ℓ(S,f).

In the following we discuss each of these steps.

2.3.1.3 Choosing the size pair

One needs to choose both the space S = S(X), associated with the object X under study,

and the measuring function f . Since each pair (S, f) conveys information about X from a

different viewpoint, the choice is driven by the set of shape properties that the user wants

to capture.

In the applications, X can be a binary, a gray-scale or a full-color image, a continuous curve,

a closed surface or a simplicial complex (in particular a graph). In [UV97] the concept of

auxiliary manifold S(X) is introduced, i.e. an object of fixed and known topological structure

that can be linked to the shape X under study. The definition of the measuring functions on

the auxiliary manifold permits the solution of problems related to small topological changes

in the original shape due to noise and perturbations. The idea of an auxiliary space as a

domain for the measuring functions has also been proposed in the case of binary images in

[CFG06] and of surface meshes in [BGSF06].

In [VU96] the authors discuss the need for heuristic criteria to select adequate measuring
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(a) (b) (c)

Figure 2.17: The discretization of a space described in [Fro92]. (a) The original space. (b) The process of
δ-covering. (c) The approximating graph.

functions, and propose using parameterized families of measuring functions. The key problem

of the invariance requirements in Pattern Recognition tasks is explored in [LF02], [VU94]

and [DFP04], where the ability of size functions to deal with Euclidean, affine and projective

invariance is discussed.

2.3.1.4 Computing ℓ(S,f)

In recent years three algorithms have been proposed to compute the size functions, once the

size pair (S, f) has been chosen.

The first two algorithms [Fro92, Fro96] involve the definition of two labeled graphs designed

to discretize the size pair under study. The third algorithm [d’A00] starts with a given

labeled graph and directly computes the cornerpoints and cornerlines, which completely

describe the size function.

The algorithm in [Fro92] (see also [Fro91]) requires S to be a compact and arcwise connected

subset of R
m, and the measuring function f to be the restriction to S of a continuous function

f̄ : R
m → R. The first step of this algorithm consists of the discretization of the space S.

For this purpose, the concept of δ-covering is introduced, i.e. a collection of open balls

{B(Pi, δ)}i of radius δ and centered at Pi, whose union contains S, and such that the

intersection between each ball and S is a non-empty arcwise connected set. We can define

the size graph approximating (S, f) as the labeled graph (G, f |G), where the set of vertices

of G is equal to {Pi}i, and two vertices, Pi and Pj , are adjacent if the intersection between

S and the union of the balls B(Pi, δ) and B(Pj , δ) is an arcwise connected set (see Figure

2.17). Once the approximating size graph has been obtained, the size function of (G, f |G) is

computed.
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The algorithm proposed in [Fro96] assumes S to be a compact and smooth manifold without

boundary, and the measuring function f to be Morse. This method is based on the con-

struction of a Morse graph, whose vertices correspond to the critical points of f , and where

an arc exists between two vertices if and only if they are connected by at least a gradient

flow line. It has been shown that the size function of the Morse graph is identical to the size

function of the original space.

Both the preceding algorithms reduce the computation of the size function of the chosen

size pair (S, f) to that of a labeled graph. The approximating size graph and the Morse

graph are examples of size graphs. In general, a size graph is a size pair (G, f), where

G = (V (G), E(G)) is a finite graph, with V (G) and E(G) the set of vertices and edges

respectively, and f : V (G) → R is any function labeling the nodes of the graph. Denoting by

Gy the subgraph of G obtained by erasing all vertices of G at which f takes a value strictly

greater than y, and all edges that connect those vertices to other vertices, the size function

ℓ(G,f)(x, y) of (G, f) is equal to the number of connected components of Gy, containing at

least one vertex of Gx.

Since the number of vertices and edges of size graphs can be very large, procedures to

reduce them are needed. In [FP99] the instruments of L-reduction and ∆-reduction have

been introduced. Their main feature is that they permit a simplification of the graph without

changing the corresponding size function.

The L-reduction is a global reduction method, since it requires knowledge of the entire

size graph. Basically, the vertices of the L-reduced graph are of two types: vertices corre-

sponding to local minimum values of the measuring function, and vertices corresponding to

saddles of lowest elevation between two minima. The edges connect the minima with their

corresponding saddles.

The ∆-reduction is a local method, in the sense that only the knowledge of the local structure

of the size graph is needed. Moreover, ∆-reduction has been extended in [d’A00] to ∆∗-
reduction, a procedure defined by recursively applying three different editing moves. It has

been proven that a total ∆∗-reduction exists, i.e. that the editing process cannot proceed

infinitely, and that the totally ∆∗-reduced graph has the simple structure of a tree (or a

forest, i.e. a disjoint union of trees, when G has several connected components). A possible

implementation for this algorithm is based on the union-find structure [TvL84], so that its

computational cost is O(n + m · α(2m + n, n)), where m and n are the number of vertices

and edges in the graph, respectively, and α is the inverse of Ackermann’s function. Note

that m is O(n2) in the worst case.

The value of the ∆∗-reduction relies not only on reducing the numbers of vertices and

edges in the graph, but also on permitting faster computation of size functions [d’A00]. In

fact, the ∆∗-reduction permits direct computation of the cornerpoints and cornerlines, that

completely describe the size functions (see Section 2.3.1.1). To achieve this, one has to orient

the reduced graph obtained through the process of ∆∗-reduction by orienting each edge from
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the vertex with higher value to the other one. The resulting configuration is an arborescence,

i.e. an oriented tree in which no two edges are directed to the same vertex. Finally, the

cornerpoints and cornerlines are computed from this arborescence by applying a recursive

procedure. The cost of computing the size function of the reduced graph is O(n′ log n′), with

n′ the number of vertices in the reduced graph; usually n′ is considerably smaller than n.

2.3.2 Persistent homology

Persistent homology provides a tool to study topological features of spaces endowed with

possibly varying real functions, completely based on algebraic topology. Among the various

tools offered by algebraic topology to detect shape features, homology groups have the

advantage of being computable. However, standard homology is not able to decide to what

extent a topological attribute of a space is relevant for the shape description.

Morse Theory explores the topological attributes of an object in an evolutionary context.

In [ELZ00] and [ELZ02] this evolutionary approach has been revisited. The authors intro-

duce a technique, called persistence, which grows a space incrementally and analyzes the

topological changes that occur during this growth. In particular, they produce a tool, called

persistent homology, for controlling the placement of topological events (such as the merging

of connected components ofr the filling of holes) within the history of this growth. The aim

is to furnish a scale to assess the relevance of topological attributes. The main assumption

of persistence is that longevity is equivalent to significance. In other words, a significant

topological attribute must have a long life-time in a growing complex. In this way, one is

able to distinguish the essential features from the fine details.

Much of the material about persistent homology has been incorporated in [Zom05]. Recently,

persistent homology was surveyed in [EH07].

2.3.2.1 Theoretical aspects

The first concept related to persistent homology theory is that of a filtered complex, that

is, a complex equipped with a filtration. A filtration of a complex is a nested sequence

of subcomplexes that ends with the complex itself. Formally, a complex K is filtered by a

filtration {Ki}i=0,...,n if Kn = K and Ki is a subcomplex of Ki+1 for each i = 0, . . . , n−1. An

example of filtered complex is given in Figure 2.18 (Top). Since the sequence of subcomplexes

Ki is nested, one can think of K as a complex that grows from an initial state K0 to a final

state Kn = K. Therefore it is often referred to as a growing complex.

Filtered complexes arise naturally in many situations. The simplest example of filtration is

the age filtration [ELZ02]: The complex K is filtered by giving an ordering ∆0,∆1, . . . ,∆m

to its simplices and by defining the sequence of its subcomplexes Ki as Ki = {∆j ∈ K :

0 ≤ j ≤ i}. In other words the complex grows from K0 = {∆0} adding each simplex one by
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one according to the given order. It is assumed that if ∆i is a face of ∆j then ∆i enters the

filtration before ∆j.

A filtered complex also arises when some space (e.g. a curve or a surface) is known only

through a finite sample X of its points. Since the knowledge of the original space is nec-

essarily imprecise, a multi-scale approach may be suited to describe the topology of the

underlying space (see also the approach in [NSW06] to compute the homology of submani-

folds from random samples). The idea is to construct, for a real number ǫ > 0, an abstract

simplicial complex Rǫ(X), called the Rips complex, whose abstract k-simplices are exactly

the subsets {x0, x1, . . . , xk} of X such that d(xi, xj) ≤ ǫ for all pairs xi, xj with 0 ≤ i, j ≤ k.

Whenever ǫ < ǫ′, there is an inclusion Rǫ(X) → Rǫ′(X) that reveals a growing complex (cf.

[CZCG04b], [CZCG04c]).

Another example of filtration is provided by a complex filtered by the increasing values of a

real piece-wise linear function defined on it. In other words, suppose we are given a complex

K and a piece-wise linear real function f on K (that is, a function defined by its values on

the vertices of K). Denoting by A0, A1, . . . , An the vertices of K, it is possible to filter K by

the subcomplexes Ki of K, consisting of the vertices where the function f takes values not

greater than f(Ai), together with all the simplices (edges, triangles, etc.) connecting them

(cf. [EHZ01], [EHNP03]).

In general, given a filtered complex, its topological attributes change through the filtration,

since new components appear or connect to the old ones, tunnels are created and closed off,

voids are enclosed and filled in, etc.

In particular, as for 0-homology, each homology class corresponds to a connected component,

and a homology class is born when a point is added, forming a new connected component,

thus being a 0-cycle. A homology class dies when two points belonging to different connected

components, thus belonging to two different 0-cycles, are connected by a 1-chain, thus be-

coming a boundary. As an example, consider the filtered complex of Figure 2.18 (top): One

0-homology class is born at K0, two other homology classes are born at K1; at K2, a new

homology class is born while one of the classes born at K1 dies, since it is merged to the

class born at K0; at K3 another class dies, and the same happens at K4, where we are left

with just one class that survives forever.

As for 1-homology, a homology class is born when a 1-chain is added, forming a 1-cycle (for

instance, a 1-simplex is added, completing a circle), while it dies when a 2-chain is added so

that the 1-cycle becomes a boundary (for instance, a 2-simplex fills a circle). In the example

of Figure 2.18 (top), a homology class is born at K3, another one at K4, then at K5 the

homology class born at K3 dies and at K6 also the homology class born at K4 dies, so that

no 1-cycle survives any longer.

The argument goes on similarly for higher degree homology. Persistent homology alge-

braically captures this process of the birth and death of homology classes.
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Figure 2.18: The persistent homology of a filtered complex can be represented by P-intervals.

Given a filtered simplicial complex {Ki}i=0,...,n, the j- persistent k-th homology group of Ki

can be defined as a group isomorphic to the image of the homomorphism ηi,jk : Hk(K
i) →

Hk(K
i+j) induced by the inclusion of Ki into Ki+j. In other words, the j-persistent homology

group of Ki counts how many homology classes of Ki still survive in Ki+j. Persistence

represents the life-time of cycles in the growing filtration (much in the same way as in

the definition of the size functor described in Section 2.3.1.1). Note that, in more recent

papers, the notation for persistent homology groups has changed: the variables i, j have

been replaced by i, i + j.

The persistent homology of a filtered complex can be represented by a set of intervals, called

persistence intervals (briefly P-intervals), as in Figure 2.18 (bottom). More precisely, a P-

interval is a pair (i, j), with i, j ∈ Z ∪ {+∞} and 0 ≤ i < j, such that there exists a cycle

that is completed at level i of the filtration and becomes a boundary at level j.

More recently [CSEH05], P-intervals have been described as sets of points in the extended

plane. These sets of points are called persistence diagrams. In the case of the 0-degree

homology of complexes filtered by the lower level sets of a function f they substantially

coincide with the representation of size functions by cornerpoints and cornerlines (cf. Sec-

tion 2.3.1.1). The difference lies in the assumptions about the space and function allowing

for their definition, that in size theory are more general. In the same way that the rep-

resentation of size functions through cornerpoints and cornerlines satisfies the property of

stability under perturbations of the data, so this remains true for persistence diagrams, as

proven in [CSEH05, CSEH07b] with respect to Hausdorff and bottleneck distances.

Considering persistence for complexes filtered by the values of a Morse function f , the process

of capturing births and deaths of homology classes naturally establishes a pairing for critical

points of f . For example, when f is defined on a curve, passing a local minimum creates
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a component, while passing a local maximum merges two components represented by two

local minima: the maximum is paired with the higher of the two local minima. Clearly, some

critical points will not be paired in this process. They correspond to essential features of the

shape under study, not depending on the function f . In [CSEH07a], the persistence pairing

is extended to include the homology classes that cannot be paired by ordinary persistent

homology since their lifetime is infinite. Another way to pair essential homology classes has

been proposed in [DW07], where interval persistence is introduced focusing on the stability

of critical points rather than critical values. In the case of a function defined on a 2-manifold,

the pairing of essential classes can be dealt with also using the Reeb graph [AEHW04] (see

also Section 2.3.5).

A recent advance in persistent homology theory is the use of a family of real functions

continuously varying in time [CSEM06]. The structures obtained, referred to as vines and

vineyards, seem to be suitable tools for studying continuous processes. Roughly speaking, a

vineyard is a bunch of possibly intersecting curves (the vines) generated by the continuous

evolution of persistence diagrams over time.

Generalizing persistent homology to the case of a multi-variate situation in which two or

more functions are used to characterize the shape leads to the definition of multi-filtration

[ZC07]. However, it is not possible to extract from this structure a complete and concise

representation generalizing the concept of persistence intervals. An alternative solution to

this problem is given in [CDF07].

We refer the reader to [Gra03], [Rob99], [Rob02] for different developments of the multi-scale

approach to describe the topology of a space, which we do not describe here in more detail,

since the filtration of the complex does not vary according to the choice of a real function

defined on the space.

2.3.2.2 Computational aspects

Applying persistent homology requires the user to model the shape under study with a

filtered complex. In each application, the choice of the most suitable filtration is left to the

user, much in the same way as the choice of the size pair in size theory.

Once a filtered complex has been obtained, two different algorithms are available to compute

persistent homology. Both take as input a filtered complex. However, they greatly differ

both in the techniques used and in the scope of applications. The first algorithm reported

([ELZ00]) required the complex to be embedded in R
3 and filtered by the age filter. Moreover,

it worked only with homology coefficients in the field Z2 of integers modulo 2. An advantage

of this algorithm is that its rationale is rather intuitive. The second algorithm, presented in

[ZC04], is much more general since it allows us to compute the persistent homology of any

filtered complex with coefficients over an arbitrary field in any dimension. The drawback

is that the algebraic machinery needed to obtain this algorithm is rather sophisticated,
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although the final procedure is based on Gaussian elimination. Both the algorithms take at

most O(m3) in time, where m is the number of simplices in the filtration.

We now describe the first algorithm ([ELZ00, ELZ02]). The idea is to pair the creation of a

cycle with its conversion to a boundary. Such a pairing algorithm takes as input a complex

K = {∆0,∆1, . . . ,∆m} embedded in R
3 and filtered with the age filtration, and returns a list

of simplex pairs (∆i,∆j), where ∆i is a k-simplex and ∆j is a (k + 1)-simplex (0 ≤ k ≤ 2).

Each pair represents a k-cycle created by ∆i and turned into a k-boundary by ∆j. The

algorithm initially needs to decide whether the addition of a k-simplex creates a k-cycle (the

cycle question). This question can be answered using the incremental algorithm presented

in [DE95]. Here the assumption that K is embedded in R
3 plays an important role. Indeed,

this implies that the only interesting case is k = 1, because any 0-simplex belongs to a

cycle, no 3-simplex belongs to a cycle and the case k = 2 can be reduced to the case k = 1

using a dual graph (that is, the graph whose vertices correspond to the 3-simplices of K and

where there is an edge connecting two vertices if and only if the corresponding 3-simplices

share a common face). The algorithm is called incremental because it consists of adding

one simplex of K at a time. A 1-simplex creates a cycle if and only if its two endpoints

belong to the same component. This can be decided by implementing a union-find structure

[TvL84]. Once the cycle question is decided for each simplex, the idea is to pair simplices

as follows: if a (k + 1)-simplex ∆j does not belong to a (k + 1)-cycle, consider its boundary

d = ∂k+1(∆j). Since d is a k-cycle, we can consider all the k-simplices in d that have been

previously marked as creating a k-cycle. The youngest one, that is, the one with the largest

index is the simplex ∆i that must be paired with ∆j.

The second algorithm that computes persistent homology ([ZC04], [ZC05]) works on any

filtered d-dimensional simplicial complex {Ki}i=0,...,n and over any field F. Taking the ho-

mology coefficients in a field, the homology groups are actually vector spaces. The key

observation is that the computation of persistence requires compatible bases for Hk(K
i) and

Hk(K
i+p). The idea underlying the algorithm is to represent the lifetime of a simplex by

utilizing multiplication by a formal parameter u: if a simplex ∆ enters the filtration at time

i, at time i + 1 it becomes u · ∆, at time i + 2 it becomes u2 · ∆, and so on. We underline

that the letter u is only a formal parameter, while the actual information about the lifetime

is given by the power of u. With this representation, the boundary operator has coefficients

in the ring F[u] of polynomials over F in the letter u. It follows that the boundary operator

can be represented by a matrix with polynomial entries. A standard reduction algorithm on

this matrix, more precisely Gaussian elimination by elementary operations on the columns,

reduces the matrix to column-echelon form. By non-trivial algebraic arguments, the P-

intervals for the (k − 1)-th persistent homology can be directly read from the pivots of the

boundary operator ∂k, reduced into column-echelon form.

Finally, the computation of vineyards is carried out in [CSEM06] through an algorithm that

maintains an ordering of the simplices in the filtration as time varies. This can be achieved

in time O(n) per transposition of two simplices in the filtration, where n is the number of
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simplices used to represent the topological space.

2.3.3 Morse descriptor

The Morse descriptor is an algebraic descriptor for objects modeled as smooth manifolds en-

dowed with a Morse function that measures some metric properties of the given objects. The

main difference with respect to persistent homology is the use of relative homology groups

instead of ordinary homology. Similarly to other descriptors based on algebraic topology, this

descriptor provides information that can remain constant, despite the variability in appear-

ance of objects due to noise, deformation and other distortions. At the same time, it allows

for a significant reduction in the amount of data, while providing sufficient information to

characterize and represent objects.

2.3.3.1 Theoretical aspects

This descriptor is based on the use of relative homology groups. Roughly speaking, the

relative homology groups of a pair of spaces (X,A), with A ⊆ X, count the number of cycles

in X, while ignoring all the chains of X contained in A. For the precise definition of relative

homology groups we refer the reader to [Spa66].

In [ACZ04], a descriptor is introduced, defined as the function Rf : R
2 × N → N defined by

setting Rf (x, y, k) equal to the Betti number of the relative homology group Hk(My,Mx),

when x ≤ y and y belongs to the range of f , and equal to 0, otherwise. Here M is assumed to

be a connected compact manifold without boundary and f : M → R a Morse function. The

connectedness assumption guarantees that f ranges over an interval and its compactness

ensures that this interval is finite and closed. Moreover, the absence of boundary guarantees

that the homology generators are directly related to the critical points of the function. In

fact, if the manifold has non-empty boundary, some of the homology generators can be

related to the boundary components. The idea under this definition is that the relative

homology groups give information about a change in the topology of the lower level set

when going through a critical value. Indeed, if a single critical point of index λ is present

between two levels, x and y, then the relative homology group Hk(My,Mx) has rank equal

to 1 if k = λ, and 0 otherwise.

We point out that the intimate connection between the relative homology groups of the lower

level sets and critical levels has been known for a long time in mathematics. For example, it

was used in [KP47] to define critical levels for any bounded real function f , defined on any

topological space X, without restricting f any further.

The idea, sketched in [ACZ04], is more thoroughly developed in [AC07], where the authors

distinguish between a Morse Descriptor (MD) that corresponds to the function Rf above,

and a Morse Shape Descriptor (MSD), that is a Morse Descriptor defined only for Morse
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Algebraic shape descriptors

Approach Descriptor Costs

[d’A00]8 size graph O(n + mα(2m + n, n))

[d’A00]9 size function O(n′ log n′)
[ZC04, ZC05] persistent homology O(N3)

[AC07] Morse shape descriptor O(N2)

Table 2.3: Computational costs of descriptors based on algebraic theory. Symbols: n represents the number
of vertices or points or pixels (voxels); m corresponds to the number of edges; n′ is the number of vertices of
the size graph; N is the number of simplices or complexes.

functions invariant under rigid motions and scale transformations.

The Morse Descriptor allows for multi-scale analysis of shape, since, as shown in [AC07], the

larger the number of the lower level sets studied, the more topological information can be

obtained: MDf (x, y, k) ≤ MDf (x, z, k) + MDf (z, y, k), for every x ≤ y ≤ z in R and every

k ∈ N.

2.3.3.2 Computational aspects

In its discrete form, the Morse shape descriptor is encoded in a collection of matrix structures,

one matrix for each homology degree. For a manifold of dimension n, there are exactly n+1

significant homology degrees k, 0 ≤ k ≤ n. The element in the i-th row and j-th column

of the k-matrix is precisely the number Rf (xi, yj , k). Therefore, the comparison of shapes

reduces to a distance measure between matrices. The integer indexes i, j vary in the set of the

first N natural numbers. The value N represents the number of samples in the discretization

of the range of f normalized between the absolute minimum and maximum value.

The algorithm presented in [AC07] involves the computation of the relative homology of

N(N − 1)/2 pairs of complexes.

In view of applications to images, the algorithm used in [AC07] to compute the homology

groups is based on cubical complexes, which are complexes whose basic building-blocks are

intervals, squares, cubes and their generalizations to higher dimensions [AMT01], [AZ03],

[KMM04], [ZA02].

2.3.4 Computational complexity

The computational costs of the extraction of algebraic-based descriptors are summarized in

Table 2.3.
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2.3.5 Applications

The most explored field of application concerning size theory is the field of Pattern Recog-

nition, where size functions have been used as a tool for shape comparison, retrieval and

classification, especially in the case of natural or articulated objects. The relationship be-

tween the comparison of shapes and the comparison of size functions is studied in [DF04a].

In [VU96] and [UV94] the authors proposed a recognition scheme for the signs in the Inter-

national Alphabet Sign Language (ISL). A one-parameter family of 72 measuring functions

is introduced, together with 72 corresponding feature vectors, to describe the signs belonging

to the ISL, represented by the curves defining their outline. The problem of recognizing the

sign language by means of size functions has also been addressed in [HZW99], where a pair

of moment-based size functions is used as an input to a neural network classifier.

Size functions are also useful in the biomedical field. In [FLP94] a system for the automatic

classification of white blood cells, represented by gray-level images, is presented. In this

particular case, the choice of a set of adequate and effective measuring functions is driven

by the need to take into account the specific morphological features of the leukocyte classes.

Similar principles guided the choice of the features in the ADAM (Automatic Data Analysis

for Melanoma early detection) project. In [dFS04], [SBC+05] size functions and Support

Vector Machines are combined to implement an automatic classifier of melanocytic lesions;

the system is mainly based on a qualitative assessment of asymmetry, as a parameter to

distinguish between nevi and melanomas.

Recently a strategy to address the problem of figurative images was proposed. In [CFG06] a

complete system for automatic trademark retrieval based on size functions was implemented,

in order to deal with the actual problem of preserving product identity and avoiding copyright

infringement. Experiments were performed on a database to retrieve binary trademark

images provided by the UK Patent Office.

The problem of image retrieval on the Internet is dealt with in [CFG05]. Ferri and Frosini

[FF05] suggest equipping each image on a Web site with a simplified drawing called keypic

(in alternative to keyword). Cerri et al. [CFG05] carry out an experimentation on a set of

keypics, thus proposing size functions as a possible ingredient in the solution to the problem

of image searching and retrieval on the Internet.

One of the first applications of persistent homology reported in the literature [EHZ01] ad-

dresses the problem of topological simplification viewed as a process that decreases Betti

numbers. We have seen that a by-product of the computation of persistent homology is a

set of pairs of simplexes (∆i,∆j), where ∆i is the simplex that, on entering the filtration,

creates a cycle, and ∆j is the simplex that, entering the filtration, adds the cycle to the

group of boundaries. In other words, attaching ∆i corresponds to the birth of a new ho-

8The number of edges of the size graph may be O(n2) in the worst case.
9In general the relation n′ << n.holds.
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mology class, while attaching ∆j leads to its death. Thus, topological simplification can

be achieved by removing simplexes in pairs, in the order of increasing importance: cycles

whose persistence is below some threshold can be removed, since they correspond to noise or

non-relevant features; only cycles with a longer life-time are considered important. However,

the meaning of the simplification changes according to the context. Topological simplifica-

tion of a complex filtered by a Morse function corresponds to geometric smoothing of the

Morse function. The application of this topological simplification to complexes generated

by sample points provides a method for noise reduction in sample data. An example of

this simplification process can be found in [ELZ02], carried out on a molecular structure

represented as a complex endowed with an age filtration (see Figure 2.19). A further appli-

cation is the simplification of Morse-Smale complexes for 2-manifolds proposed in [EHZ01],

where the sequence of cancellation of pairs of critical points is driven by the persistence

of the pairs. This approach is also followed in [BEHP04], where an algorithm is proposed

which allows the simultaneous application of independent cancellations (see also the formal-

ization in [DFPV06]). Applications are shown for terrain models. The extension of the idea

of the persistence-driven simplification of Morse-Smale complexes to functions defined on

3-manifolds is performed in [GNP+05].

The problem of simplifying the function itself, rather than the underlying space, has recently

been addressed in [EMP06]. The notion of ǫ-simplification of a function f is introduced,

that is, a function g such that ||f − g||∞ ≤ ǫ and whose persistence diagrams are the same

as those of f , except that all points within L1-distance less than ǫ from the diagonal of R
2

are removed. It is also shown, through a constructive proof, that ǫ-simplifications exist for

2-manifolds. Beside the problem statement, the main novelty in [EMP06] is that, in previous

works on simplification, all points of the persistence diagrams could be moved towards the

diagonal, regardless of their distance from it, while this approach ensures that points with

persistence higher than ǫ are not moved. The order of removal of pairs of critical points no

longer follows the order of increasing persistence, but the increasing value of the function on

the second point of the pair.

A study of shape description and classification via the application of persistent homology is

carried out in [CZCG04b, CZCG04c] for curve point cloud data, and in [CZCG04a, CZCG05],

where examples are shown for geometric surfaces and surfaces of revolution. The general idea

is to describe the shape of a complex K, filtered by the increasing values of a real function

f , defined on K: the topological changes occurring through the filtration, that, according

to Morse theory, are due to the presence of critical points of f , are captured by persistent

homology. In particular, in these works the shape of X is studied by constructing a new

complex strictly related to X: the tangent complex of X, that is the closure of the space of

all tangents to all points in X. The tangent complex contains a large amount of information

about the geometry of X. So far, the authors have confined themselves to considering only

one function, that is, the curvature at a given point along a specified tangent direction. The

choice of this function is directed at capturing those features of a shape that are connected
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Figure 2.19: (a) Top view of the molecular surface for Gramicidin A, presenting a channel as primary
topological feature. (b) Filtration of a complex representing the molecular data. (c) Graph of β

l,p
1 showing

that eliminating 1-cycles with low between the feature of the representation. (Provided Zomorodian.)
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with curvature. From this setup the authors derive the notion of the barcode of a shape,

that is, the set of P-intervals for this filtered tangent complex. A pseudo-metric between

barcodes allows for a measure of the similarity between shapes: being a pseudo-metric and

not a metric, the distance between two different shapes can be vanishing. It is interesting

to note that, analogous to what happens in size theory, in this research the shape of X

is studied by constructing a new complex, strictly related to X, which in this case is the

filtered tangent complex. Barcodes as descriptors for shape classification have been tested

on a small database (80 items) of hand-drawn copies of letters.

The recently introduced concept of vineyards is applied in [CSEM06] to the study of protein

folding trajectories. The analysis of the behaviour of proteins also motivates the work

in [AEHW04]. The notion of elevation is introduced for points on 2-manifolds smoothly

embedded in R
3, in order to identify cavities and protrusions in the protein structure, since

they play an important role in protein interaction. The definition of elevation is derived

from an extension of the classical notion of persistence pairing, which takes into account the

pairings between all critical points of the function defined on a genus g embedded 2-manifold.

In particular, the 2g saddles starting the 2g cycles, which remain unpaired once the manifold

sweep is complete, are paired making use of the Reeb graph of the manifold. Pairing all

critical points allows the elevation of each point to be determined by its persistence, that is,

the absolute difference in function values to its paired point. Results of the application of

extended persistence pairing to protein docking are presented in [WAB+05].

Addressing the problem of localizing topological attributes, in [ZC07] localized homology is

proposed as a method to find the most local basis of the homology of a given space. The

main tool is the Mayer-Vietoris blowup complex associated with an open covering of the

simplicial complex under study. The blowup complex and the original complex have the

same homology but the former can be filtered according to the number of open sets that

cover each simplex. The persistent homology of this filtered complex gives insights into the

relationship between the local and global homology of the space.

Finally, we point out that the idea of considering the topology of a space at various resolutions

by means of persistent homology is inspiring research in new directions, such as the coverage

problem in sensor networks [dSG07] and the analysis of the structure of natural images

[dSC04].

The performance of the Morse Shape Descriptor has been evaluated in [AC07] on a 2D

image retrieval problem. The experimental dataset contains 1100 2D images clustered in 10

classes. In order to model the shapes as connected compact manifolds without boundary,

only the shape contours are considered. For each contour, four Morse Shape Descriptors are

produced, associated with four different measuring functions, invariant with respect to rigid

motions and scale transformations. The measure of similarity between two shapes is given

by a weighted sum of distances between the collection of Morse Shape Descriptors associated

with the contours. The effectiveness of the system is evaluated by measuring its precision
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and recall.

2.4 Shape descriptors based on distance transform

Methods based on Morse theory does not cover the whole spectrum of shape analysis meth-

ods. Also, there are a number of shape descriptors that are not directly defined using Morse

theory, but closely related to it, at least from the point of view of the extraction procedure.

A notable example is the class of methods that use the distance function for shape analysis

[JBS06]. In this case, the function is actually not applied to the shape itself, but used to

define a scalar field of distances between points in space and the shape itself. Similarly,

the critical points of the distance field [BDGJ07] are related to the main shape features

and define the so-called medial axis, probably among the best-known shape descriptors. A

recent survey of techniques based on the distance field appeared in [JBS06], and the theo-

retical properties of the medial axis have been the topic of several papers in the literature

[Aur91, Wol92, GK04]. Distance functions are not parametric with respect to the mapping

function f and, differently from the other approaches discussed in the Chapter, methods

that use the distance functions provide one single type of description, where the features are

those characterized by the distance field.

2.4.1 Medial axis

The medial axis transform (MAT) has been introduced by Blum [Blu67] as a tool in image

analysis. To get an intuitive feeling for this concept, consider starting a grass fire along a

curve in the plane. The fire starts at the same time, everywhere along the curve, and it

grows at constant speed in every direction. The medial axis is the set of locations where the

front of the fire meets itself. Formally, let X be a bounded open subset of the Euclidean

k-dimensional space, R
k. The medial axis, M[X], is the set of points that have at least two

closest points in the complement of X [Lie03], see Figure 2.20.

2.4.1.1 Theoretical aspects

The medial axis of a shape captures its connectivity, ignoring local dimensionality. More

precisely, a shape and its medial axis are homotopy equivalent [Lie03, SPW96, Wol92]. In

R
k, the medial axis has generically dimension k − 1, one less than the dimension of the

space. In the plane, the medial axis is a (one-dimensional) graph whose branches correspond

to regions of the shape it represents. The MAT of planar polygons consists of straight lines

and parabolic arcs; each convex vertex of the polygon has an edge of the MAT terminating

in it. The MAT structure is very sensitive to noise: the insertion of a new vertex in the

boundary of the shape will cause new edges to appear in the skeleton. In R
3, it is composed
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Figure 2.20: Medial axis of two planar shapes. In the second example the medial axis is shown also for the
external part of the shape.

of pieces of surfaces, and is sometimes called a medial surface. When each point x of the

medial axis is weighted with the radius ρ(x) of the maximal ball centered at x, then we have

enough information to reconstruct the shape. In other words, the medial axis together with

the map ρ provides a reversible coding of shapes. This coding is not necessarily minimal

and some shapes, such as finite union of balls, can be reconstructed from proper subsets of

their weighted medial axes.

2.4.1.2 Computational aspects

The exact computation of the medial axis is extremely complex in the domain of freeform

shapes. In fact, the exact MAT computation was considered for long time affordable only

for polygons [Lee82, For87], and more recently for polyhedra [SPB96, CKM04]. Recently,

a few researchers have tackled the problem in the context of freeform (piecewise) rational

entities.

Today’ accepted approach for computing the planar arrangements of freeform geometry

approximates the geometry using piecewise lines and arcs, but this method has noteworthy

disadvantages. First, the approach is only an approximation. Second, it is also erroneous.

The MAT of a planar shape enclosed by two concentric circles is another mean circle in

between them. Yet, by tessellating the two input circles into lines, one introduces numerous

C1 discontinuities along these circles. The resulting MAT will consist of numerous and

erroneous edges from the mean circle toward all the C1 discontinuities in the two boundary

circles.

As noted above, the construction of the Voronoi diagram and MAT for freeform curves in

the plane is more difficult because of the complexity of the bisectors. Ramamurthy and

Farouki [FR99a, FR99b] implemented an incremental algorithm in which the bisectors are

inserted one by one and the Voronoi diagram of the curves is updated after each insertion;

the MAT is derived from the Voronoi diagram and is represented as a piecewise linear

approximation of the actual bisector, computed as the envelope of the point-curve rational



2.4 Shape descriptors based on distance transform 75

bisectors. Ramanathan and Gurumoorthy [RG02] implemented a different tracing algorithm

for the construction of the MAT of a freeform shape. This implementation also approximates

the edges of the MAT by computing samples of bisector points on the edges and interpolating

these sample points. Piecewise linear curves involve the comparison of expressions with two

nested square roots [Bur96]. Efficient and fully robust implementations are few [Hel01]. An

exact algorithm for not-necessarily convex polyhedra in R
3 can be found in [Cul00].

A fairly general class of shapes for which it is possible, in principle, to compute the medial

axis exactly are the semi-algebraic sets. These sets are the solutions of a finite system of

algebraic equations and inequalities. The medial axis of such a set is itself semi-algebraic

and can be computed with tools from computer algebra.

Conversely, many approaches have been adopted to implement Blum’s original definition

in the discrete case. Basically, we can distinguish them into four categories, depending on

the adopted skeletonisation method: skeleton extraction from Voronoi diagrams; simulation

of the grassfire; topological thinning; skeleton extraction from distance maps. The medial

axis of a planar curve can be thought of as the Voronoi diagram generalized to an infinite

set of points (the boundary points) [ACK01, Ogn94a, OK95]. It has been formally shown

[BA92] that the Voronoi diagram becomes an increasingly precise approximation of the

continuous medial axis as the density of boundary samples increases. Algorithms which

actually try to implement the grassfire process are quite rare; examples are the straight

skeleton, first introduced by [AAAG95], and the linear axis [TV04a]. Thinning and distance

map computation can be directly applied to volumetric discrete representations that are

widely used especially in medical applications: most acquisition techniques produce in fact

voxel grids, like the Computed Tomography or the Magnetic Resonance Imaging.

A more detailed analysis of medial axis extraction and skeleton computation can be found in

[AdB96] for objects in the two-dimensional space and in [dBN05] for the three-dimensional

case. Other recent contributions on this topic are provided in [CSM05, BAB+07, SP07].

2.4.2 Shock graph

Another medial structure is the shock graph, [KTZ95], which is obtained by viewing the

medial axis as the locus of singularities (shocks) generated during the fire front propagation

from the shape boundary.

2.4.2.1 Theoretical aspects

The shock graph represents a dynamic view of the medial axis associates a direction and an

instantaneous speed of flow to each shock point, [GK03]. In particular, shock points may be

classified according to the number of contact points and to the flow direction, as described

in [GK00]: source and sink points determine the nodes of the graph while the links connect
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source points to sink ones and define the arcs of the graph. In addition, attributes are

associated to the shock graph to store both the intrinsic geometry of the portion of shape

corresponding to a link and the radius and the flow direction of each node. Analogously

to the MAT, the shock graph structure and the corresponding point classification have

been extended to 3D shapes [GK03]. Also, inthis case the shock graph structure contains

dimensionally heterogeneous components and it is not a planar graph.

The medial axis and the shock graph differ for the interpretation of the structure entities

rather than for the geometric abstraction they provide. For example, the shock graph and

the MAT of a curve have the same arcs and nodes, but the shock graph associates also to

each arc the growing direction of the radius of the bi-tangent spheres, see Figure 2.21(b). In

general, we may consider that the shock graph is a finer partition of the medial axis.

(a) (b)

Figure 2.21: The medial axis (a) and the shock graph (b) of two simple curves.

2.4.2.2 Computational aspects

Shock graphs are inspired to the original idea of Blum [Blu73]. In particular, a shock graph

is an abstraction of the skeleton of a shape onto a directed acyclic graph [KTZ95]. Therefore,

a quite standard strategy for constructing the shock graph is to extract the skeleton of the

shape and then to label and group skeleton points. The skeletonization may be accomplished

in several ways; standard approaches are based on Voronoi techniques [Ogn94a, ACK01], Eu-

clidean distance transform [Bor96], topological thinning [Ros98, DPS00] and mathematical

morphology [dR03]. For example, in [DPS00] a dynamic programming algorithm is proposed

to find the locations of skeleton points in defined by singular values of the divergence equa-

tion that also defines shocks. In the definition of shock graphs, shock labels are determined

by the radius function in a local neighbourhood of each point [SSDZ98]. Unfortunately, in

the case of discrete skeletons, the location of shock points is very sensitive to the accuracy

with which both the radii and centers of the locus of the maximal inscribed circles can be

computed. Clearly, perturbations to the shape boundary will affect the exact pixel location

of the shock, regardless the algorithm used to compute the skeleton. Furthermore, due to

the discrete nature of images, the skeletonization algorithms may suffer from instabilities.

The method for the construction of the shock graph proposed in [Mac03] considers as starting

point of the algorithm the set of points of the medial axis. In particular, it is supposed such
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a set is continuous and connected, where two points are said to be connected if they can be

joined by a continuous path of points also in the shock graph. Then the points lying on the

skeleton are grouped according to their shock label (i.e. source, sink, branch points, etc.). To

obtain a labeling robust to small perturbations of the boundary and to noise in the location

of points, it is proposed of finding a small number of line segments to approximate the radius

function for each skeleton branch. When shock points have been grouped, the orientation

of the skeleton segments is determined according to the value of the radius function. In

particular, the nodes of the graph are ordered so that they preserve their adjacency and

satisfy the shock graph grammar, while edges are directed from nodes with greater radii to

those with smaller radii. Such operations are guaranteed by the results in [KTZ95] where it

has been proven that such a ordering exists and it is unique for any closed curve. Finally,

a root node is added and edges are inserted to connect the root node with all graph nodes

with in-degree equal to zero.

2.4.3 Centrelines and Curve skeleton

Centerline skeletons play a relevant role in Computer Graphics and Vision, because they

represent a manner to reduce a complex 3D shape to a simple one-dimensional geometric

abstraction [LLS92, CSM05].

In general, centerline skeletons are related to the medial axis in the sense that they yield

a shape description that always falls inside the shape and aims to be in the middle of

the volume enclosed by a surface. In the two-dimensional space, the medial skeleton is a

union of arcs and curves and reversibility is almost completely guaranteed, starting from

the centreline. In turn, in the three-dimensional space, reversibility is possible only if the so

called surface-skeleton, consisting of surfaces and curves, is computed. For solid objects, i.e.,

objects having no cavities, the surface-skeleton can be furthermore compressed to obtain

a linear shape representation. In this case, reversibility is no longer possible. In fact, a

large number of centers of maximal balls is unavoidably removed from the surface-skeleton

to reduce it to the curves keleton.

Traditional techniques to extract a curve skeleton are based on discrete methods that use

distance maps and thinning: in these cases the object is stored as a collection of pixels/voxels

and the resulting skeleton is a connected subset of these pixels/voxels [CSM05, BAB+07].

Recently, Dey et al. [DS06] provided a formal definition of curve-skeletons, which is valid for

surfaces without boundary, on the basis of the distance function from a volume boundary.

2.4.3.1 Theoretical aspects

The curve-skeleton [DS06] is defined as the set of points of the medial axis that are singular

with respect to a medial geodesic function. More formally, given a space O ⊂ R
3 bounded by
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a connected manifold surface M , let MA, MA ⊂ O, be the medial axis of O. Two subsets of

MA are defined, namely MA2 and MA3. MA2 is the set of points whose maximal inscribed

balls touch the surface M at exactly two distinct points. MA3 is constituted by curves lying

at the intersection of the closure of three sheets in MA2. The maximum balls lying on points

of MA3 touch the surface M at three points. A Medial Geodesic Function (MGF) is defined

on MA2 and MA3. At a point x ∈ MA2, MGF is the length of the geodesic path between

two points at the intersection of the surface M with the maximum ball centered in x. The

definition of MGF is extended to each point of MA3 on the basis of the values that MGF

assumes in the three half-disks of MA2 around the point. The medial geodesic function is

used to define the curve-skeletons of the two subsets MA2 and MA3. The curve skeleton

Sk2 of MA2 is the set of singular points of MGF on MA2. The curve skeleton Sk3 of MA3

is the set of points where the gradient flow of MGF sink into from the three local neighbors.

Finally, the curve-skeleton of the space O is defined as the closure of Sk2 ∪ Sk3. Since the

exact computation of the curve-skeleton is extremely hard, it is approximated by adopting

a rough evaluation of the function MGF on the centers of the medial axis facets and a

polygonal approximation of the medial axis.

The curve-skeleton and, in general, centerlines related to the concept of medial axis provide

a shape description which is unique and independent of other functions defined on the

shape. Therefore, these descriptions yield a geometric centerline of the shape rather than a

topological one.

2.4.3.2 Computational aspects

The curve-skeleton in [DS06] is obtained by eroding the medial axis. In fact, this implemen-

tation of the curve skeleton is based on the approximation of the medial axis based Voronoi

diagram filtration proposed in [DZ03]. This approach filters the Voronoi diagram of a set of

vertices on the surface and retains a set of Voronoi facets to approximate the medial axis.

The main problem with this medial axis computation is that the filtration, often guided by

some input parameters, leave some unwanted spikes or holes in the approximate medial axis.

To avoid these shortcomings all the Voronoi facets inside the space bounded by the object

are kept as a preliminary approximation of the medial axis. Then the shortest geodesic dis-

tance on the shape boundary is computed using the algorithm proposed in [SSK+05]. The

gradient of MGF for any point inside a Voronoi facet is approximated by computing the

tangent directions of the shortest geodesic paths and projecting these vectors in the Voronoi

facets. A user parameter θ is used to mark the vertices having high negative divergence of

the gradient field of MGF that must be preserved in the curve skeleton. An erosion process

guided by the MGF gradually erodes and collapses edges and vertices of the Voronoi diagram

until only significant points, i.e. those with negativ divergence, are prserved in the curve

skeleton. As the user parameter θ descreases the arcs of the curve skeleton corresponding to

the less priminent features are removed; if theta < 1 the curve skeleton reaches the simplest
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Skeleton extraction methods

Approach Description Costs

[Cga] Voronoi graph O(n[ k
2
]) + n log n

[CSY97] Voronoi graph O((n + F ) log2 F )9

[Lee82] Medial axis of a polygon O(n log n)

[CKM04] Medial axis of a polyhedron O(n3+ǫ)10

Discrete skeleton 2D images O(n2)

Discrete skeleton 3D images O(n3)

[AAAG95] Straight skeleton O(nr log n)

[EE99] Straight skeleton O(n1+ǫ + n8/11+ǫr9/11+ǫ)

[CV02] Straight skeleton O(n log2 n + r
√

r log r)

[TV04a] Linear Axis O(n)

[DS06] Curve skeleton O(n2)

Table 2.4: Classification of the methods for skeleton extraction. Symbols: n represent the number of vertices
or points or pixels (voxels); m the number of vertices inserted in the mesh during an eventual contouring
phase; e the number of edges in the neighborhood tree, r is the number of reflex vertices.

from consisting of loops only [DLS07].

On the contrary the extraction of curve skeleton proposed in [CSYB05] is based on potential

field, adopting a threshold parameter that stops the thinning process of a voxelization of the

original triangle mesh.

2.4.4 Computational complexity

As far as computational issues are concerned, in table 2.4 we briefly summarize the com-

plexity of the algorithms for skeleton extraction.

.

2.4.5 Applications

Being the MAT unfortunately hard to be computed in the general case and unstable to small

perturbations of the shape, a large number of variations of the MAT were introduced: some

of them are just approximations of the MAT for facilitating the skeleton computation (e.g.

MAT computation through Voronoi diagrams), while others come from different definitions

9For point sets with provable small Voronoi graph, F is reasonably small: F = O(n log n) [ABL03] or
F = O(n) [AB04].

10This cost is the best upper bound of the computation of the medial axis and holds for any ǫ positive
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and present different properties. A few descriptors are able to represent the exact medial

axis for a small category of input shapes, like the bisectors of parametric curves and surfaces.

Medial axis and skeleton approaximations based on distance transform have been widely

used in several application tasks including mesh generation [SERB99], shape representation

and description [SAR96], animation [GHK99], image processing [Ogn94b, PGJA03], surface

reconstruction [AK00] and solid modeling [STG+97]. In particular, the utility of the medial

structure has been demonstrate for addressing issues such as: the generation of hierarchical

representations that remove local features without loosing the global shape appearance; the

generation of regular meshes suitable for the finite element analysis; the object metamorpho-

sis generating a sequence of shapes that transform a shape into another and the generation

of a shape from a number of constraints [STG+97]. Finally, skeleton-like structures are es-

sential for implicit model animation; in fact, during animation, its attributes may change,

varying, for instance, radius, blending and other surface details.

Shock graphs are widely used for image matching (see Figure 2.22(a)), recognition and curve

alignment, therefore methods proposed in literature mainly address the problem in the bi-

dimensional case and the shape is supposed to be a closed curve.

In the 3D case the distinction between the MAT and others skeletal structures becomes more

evident: in fact, while the MAT in 3D is essentially a medial surface, in many applications a

linear skeleton may be preferable. This is the case of path planning for medical applications

in which a linear skeleton, as far as possible from the shape boundary, is needed, maybe

to plan the inspection of a human organ [WLK+02], see also Figure 2.22(b). Similarly

approximate skeleton find application for motion planning in virtual envinronment contexts,

see Figure 2.22(c,d). The definitions and properties of these linear 3D skeletons depend

mostly on the input data type: for discrete representations like collection of voxels, distance

maps and thinning techniques are used; wave-front propagation and level set approaches are

preferred in the continuum case.

Distance transforms are especially suitable for image processing and pattern recognition,

and in general for the analysis of discrete objects represented by grids of pixels or voxels.

For instance, thinning and distance field computation can be directly applied to volumet-

ric discrete representations that are widely used especially in medical applications: most

acquisition techniques produce in fact voxel grids, like the Computed Tomography or the

Magnetic Resonance Imaging.

The input to the distance map computation is indeed a grid of discrete points, with each

point labeled as being either a feature point or a background point. In this context, feature

points correspond to boundary points, and background points to interior ones. The output

is the distance transform, i.e. a corresponding grid where each interior point is marked with

its relative distance to the nearest boundary point. Note that relative distance may or may

be not the Euclidean distance between the points. Some faster and more easily implemented

approximations use non Euclidean metrics such as Manhattan distance, chessboard distance,
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(a)

(b)

(c) (d)

Figure 2.22: (a) Image matching using shock graphs. (b) House path planning using approximated skeleton.
Cruve skeleton used as central path for virtual bronchoscopy (c) and colonscopy (d).
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and so on.

Distance field based methods works nicely and efficiently for the tubular objects [DS06].

Since the points with the same distances from the boundary of some shapes may form surface

patches, the distance field based methods may face difficulty in extracting curve-skeletons for

those shapes. Additional applications of the curve skeleton are shape matching, animation

and mesh decomposition [CSM05, CSM07].

2.5 Discussions and comparative remarks

In this Chapter we have focused on methods for shape analysis in which the object to be

studied is described by a pair (S, f), where S is a space, often coinciding with the shape

itself, and f is a real function defined on S. The shared aim of the methods surveyed is to

identify points of interest on a shape, and to capture the shape’s connectivity in expressive

structures. The approach common to all the methods described finds its roots in classical

Morse theory, which combines the topological exploration of S with quantitative measure-

ment of geometrical properties provided by f . This means that both global and local analysis

concur to obtain the final shape description.

Due to the possibility of adopting different functions for describing shapes, methods based

on Morse theory provide a general framework for shape characterization. Changing the

properties that one wishes to analyze simply means changing the function, without any

other modification in the mathematical model. Moreover, the modularity of the approach

can be extended to the choice of the space S used to represent the shape under study.

We have shown how computational topology enables the solution of questions arising from

mathematics and computational geometry. The importance of topology is strenghtned to

tackle fundamental issues of Computer Graphics such as recognition, deformation, decom-

position and homeomorphism. Topology can thus be viewed as a characteristic being more

or less in any problem of computational geometry. From this point of view there is an in-

creasing demand of studying the topological questions arising in computer graphics from an

algorithmic viewpoint and, among all representation techniques appeared during last years,

shape descriptors that organize the shape features in a topological consistent framework are

becoming very popular.

In this context we have proposed a brief overview of the main existing topological approaches

to shape analysis in the discrete context. In particular, we have focused on those descriptors

that provide a high abstraction level representation of the shape structure. We observe

that, at the moment, no existing shape descriptor satisfies all “ideal” requirements but, we

underline that at the moment all shape descriptors, we have previously discussed, provide a

concise representation of the shape that strongly reduces the amount of information stored

in the models.
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In this Section we propose a global comparison among the techniques described, which

highlights the differences in terms of properties of the descriptors (Section 2.5.1), effectiveness

of the description and loss of information with respect to the representation (Section 2.5.2),

usefulness and context of applicability (Section 2.5.3).

2.5.1 Overall comparison and general remarks

The distinguishing feature of Morse and Morse-Smale complexes is that they express geo-

metric information related to the gradient flow of the measuring function f , while the other

descriptors encode features captured by f itself. Contour trees and Reeb graphs compactly

represent topological information related to the level sets of f , expressing the way they are

connected. Size theory, persistent homology theory and the Morse shape descriptor explore

in a homological setting the growth of a space, according to the placement of topological

events in the evolution of the lower level sets.

We can also observe how the methods surveyed adopt mathematical structures of different

level of abstraction to convey geometrical-topological information. On one hand, Morse

and Morse-Smale complexes, contour trees and Reeb graphs are essentially combinatoric

structures. On the other hand, methods in size theory, persistent homology theory and the

Morse shape descriptor mainly rely on the use of algebraic structures.

As for the combinatoric descriptors, the different kind of information they encode is reflected

by the differences in the combinatoric structures they produce. While contour trees and Reeb

graphs always code the shape in terms of one-dimensional structures (i.e. trees or more

general graphs, respectively) disregarding the dimension of the underlying manifold, the

decomposition provided by Morse or Morse-Smale complexes is expressed in terms of a cell

complex, where the dimension of the complex coincides with the dimension of the manifold.

Moreover, Morse and Morse-Smale complexes explicitly induce a shape segmentation. A

shape segmentation could also be derived naturally from a Reeb graph, by observing that

the counterimages of the simplexes in the graph actually define a decomposition of the shapes

into critical level sets and ribbons. The dimension of medial structures may vary, depending

on the dimension of the shape domain and the type of description chosen, curve skeleton or

medial axis. In the case of skeletons, the domain of the shape coincides with the shape by

itself and the distance transform is a tool used to reduce the dimension of the representation.

However, it has been shown that a relation exists between the Morse complex of the distance

transform and the medial axis of a shape [DS06].

The connectivity of the different complexes is also worth consideration. Ascending and

descending Morse complexes are dual to each other. For instance, in a 2-manifold the 0-cells

in one complex correspond to the 2-cells in the other complex and vice versa, and there is

a one-to-one correspondence between the edges in the two complexes. Thus, by using just

one representation for a cell complex, such as the winged edge [Bau75], the half-edge [M8̈8]
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or the quad-edge representation [GS85], it is possible to encode the combinatorial structure

of both the ascending and descending complexes for a given Morse function f into a single

representation. In this representation, the minima will be associated with the vertices and

the maxima with the 2-cells, while the saddle points will be attached to the edges. Two

geometric descriptions will be further associated with each edge e, namely the geometry of

e in the descending and ascending complex, respectively.

In the Morse-Smale complex each vertex corresponds to a critical point and has valence less

or equal to four. In particular, in the 2D case, a saddle is always connected with at most

two minima and at most two maxima, and a maximum or a minimum is connected with

at most four saddles. The 2-cells have four edges and vertices, the latter corresponding to

alternating critical points, namely a minimum, a saddle, a maximum and another saddle.

These properties allows a description of the critical net of a Morse-Smale complex, called

surface network in the 2D case, as a tripartite graph whose nodes are the critical points.

With regard to Reeb graphs, the degree of a vertex, which corresponds to a 0-cell of a Morse-

Smale complex, depends on the index of the corresponding critical points. Leaf nodes always

represent maxima and minima, and intermediate nodes (i.e., nodes with degree ≥ 2) corre-

spond to saddles of different index (cf. Section 2.2.2.1). In the case of 2-manifolds embedded

in R
3, the degree of vertices representing saddles is always three. Similar properties could be

stated for contour trees, which are a special case of Reeb graphs. We recall, however, that

contour trees are more application-oriented than Reeb graphs, although they are rooted in

the same theory.

There are also important differences in the way the shape is coded in the combinatorial

representations defined by contour trees and Reeb graphs. Contour trees are defined for

scalar fields f : D ⊆ R
n → R where D is a simply-connected sub-domain of R

n. This implies

that the connected components of the level sets can be ordered with a nesting criteria, and

therefore contour trees do not admit cycles. Reeb graphs are defined for a more general class

of shapes, n-dimensional manifolds, and therefore they can have a general connectivity which

reflects the topology of the manifold. Moreover, Reeb graphs take into account not only the

number but also the changes in the topology of connected components of the level sets,

while contour trees do not always (see Section 2.2.2.1). To give an example, let us consider

a scalar field in R
3 whose iso-surface changes genus across a critical value of the scalar field.

In this case, the classical contour tree would always count one connected component while

the Reeb graph would identify one critical point and therefore reflect its presence in the

related graph structure. In other words, the contour tree does not necessarily encode all the

saddles that might be identified by analyzing the level set evolution. For all these reasons,

Reeb graphs can be thought of as a generalization of contour trees, which allows for a more

flexible framework for studying shape properties.

Size theory, persistent homology theory and Morse shape descriptors share a different ap-

proach to shape analysis, based on the use of algebraic structures. We remark that an
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increase of abstraction level and richness of topological information about the shape corre-

sponds to the increase of mathematical structure – from size functions to persistent homol-

ogy groups to the size functor – but at the price of diminishing the manageability of the

descriptors. In particular, persistent homology groups and size homotopy groups rely on the

algebraic notion of group. Since these algebraic structures are difficult to handle, the more

manageable tools of persistence diagrams and size functions have been introduced.

The unifying key among size functions, persistent Betti numbers (i.e., the rank of the persis-

tent homology groups) and the Morse shape descriptor is the observation that all these tools

basically count some homology classes determined by the inclusion of lower level sets of a

space S with respect to a function f . Recalling that for x < y the size function ℓ(S,f)(x, y)

counts the number of connected components of the lower level set Sx which remain discon-

nected in Sy, we may notice that this is precisely the rank of the corresponding 0th persistent

homology group. This means that size functions actually coincide with the 0th persistent

Betti numbers. It also follows that, in the case of 0-degree homology, the formal series de-

scribing size function substantially coincide with the set of points of persistence diagrams.

The connection between size functions and the Morse shape descriptor is stated in [ACZ04].

An analogous relationship can be stated between the Morse shape descriptor and the rank

of the persistent homology group, i.e. the persistent Betti numbers.

It also makes sense to compare persistent homology groups with size homotopy groups since

they share the same algebraic structure. In much the same way as the classical result that

the first homology group is the abelianization of the fundamental group [Spa66], it can

be proved that the first persistent homology group is the abelianization of the first size

homotopy group.

Moreover, we observe that the size functor furnishes a shape description by a still more

general structure, that is that of functor. In particular, persistent homology groups can be

seen as the images of the morphisms of the size functor.

Finally, we highlight that skeletons may consist of a set of geometric primitives such as

points, curves, polygons, etc. On the contrary, curve skeletons provides a linear structure,

which has the combinatoric structure of a graph. However, the the curve-skeleton extracted

using potential eld may not be connected or may not be centered.

2.5.2 Expressiveness of shape descriptors

The techniques surveyed can be discussed also from the point of view of their potential for

describing as well as for discriminating shapes.

According to the adopted tool, we obtain descriptions which store a different amount of

information about the pair (S, f). In general, we can observe that the descriptors retaining

a larger amount of information are those which allow better discrimination among shapes.
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Depending on the application, this can be in turn an advantage or a drawback. The advan-

tage of forgetting descriptors is their concise and manageable nature, while their drawback

generally is the lack of completeness. Completeness here is meant as the property of retaining

sufficient data about the shape so that it can be uniquely identified by the descriptor. Con-

versely, incomplete descriptions might bring up ambiguity in the sense that different shapes

may have the same associated representation. These two properties are obviously comple-

mentary and the descriptor and abstract representation of the shape has to be devised as

a compromise between the two aspects, according to the requirements of the application

context.

From a theoretical point of view, the Morse and Morse-Smale complex are complete descrip-

tors among the methods surveyed, since they are naturally associated with a decomposition

of the original shape. Notice however that, in applied contexts, it is often better to compute

and store the 1-skeleton of the Morse-Smale complex, i.e. the critical net, which is more man-

ageable and computationally less costly. In contrast, in several applications contour trees

and Reeb graphs are not treated as purely combinatoric structures, but instead enriched with

geometric information related to the underlying model, such as the arc length [WHDS04],

some contour levels [SKK91, Bia04a], scalar values related to surface [HSKK01, TS05] or

volume [CSvdP04, ZBB04] segments, or the associated subpart decomposition [BMSF06].

From a general perspective, we can observe that there is a decreasing amount of data retained

as we progress from combinatoric to algebraic descriptors. For example, consider the 2-

manifolds in Figure 2.23. The study of their shape, with respect to the height function f in

the horizontal direction, can be performed using the persistence intervals or the Reeb graph.

However, while the Reeb graph is able to discriminate between the two surfaces, neither the

0th nor the 1st homology persistence intervals are able to discriminate between them.

Notice that the triviality of the 0th homology persistence interval is not intrinsic to the

manifold, but depends on the particular choice of function. For instance, the opposite of the

chosen height function would generate a non-trivial description.

Since the Reeb graph is a one-dimensional simplicial complex with the ability to capture

salient shape features, it makes sense to apply other shape descriptors directly to the Reeb

graph representation. Since the Reeb graph codes the variation of the connected components

of the level sets, it follows that the size functions, the 0th persistent homology group and

the 0th homology Morse shape descriptor can be computed on either the original shape or

on its Reeb graph. In contrast, this is not true for the size homotopy groups, the higher

degree persistent homology groups and the higher degree Morse shape descriptors, since

the reduction of the original shape to a one-dimensional structure causes the loss of higher-

dimensional features. In particular, the 1st persistent Betti number of the Reeb graph is a

lower bound of the 1st persistent Betti number of the original shape, while the subsequent

persistent Betti numbers are always zero if computed on the Reeb graph. Notice also that,

for the special case of 2-manifolds embedded in R
3, the results on the number of cycles in
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Figure 2.23: (a,b) Two surfaces studied with respect to the height function f in the horizontal direction;
the values of f are depicted on the arrows. (c,d) Their corresponding Reeb graphs are not isomorphic, and
therefore allow to distinguish the original shapes. (e,f) The 0th and the 1st persistent homology groups of
the two surfaces coincide, and therefore are not sufficient to discriminate between these objects.

the Reeb graphs reported by [CMEH+03] enabled the extension by [AEHW04] of the notion

of persistence to form a pairing between all the critical points of a function defined on the

manifold.

Skeletons are defined on the basis of the distance function; therefore they are not parametric

with respect to the any function f . Moreover, even if not always linear, they guarantee a

dimensionality reduction of the shape domain. However, the exact medial axis guarantees

the invertibility and the equivalence of the shape descriptor with respect the original shape.

On the contrary, the linearity assumption behind the curve skeleton forces the conciseness

and the simplicity of the structure discarding the invertibility of the descriptor.
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2.5.3 Suitability for applications

From the point of view of applications, Morse and Morse-Smale complexes have proven to

be useful tools in analyzing the morphology of terrains. Moreover they naturally provide a

shape segmentation, which is suitable both for cutting a surface into a single flattenable piece

and for simplifying the model representation through the extraction of a combinatorial base

domain. This is fundamental for several geometry processing tasks, such as parameterization,

remeshing, surface texturing and deformation. In this context, structural problems like over-

segmentation are caused by the presence of noise, and efficiency issues arise because of the

very large size of existing data sets; these problems have been faced and solved by using

generalization techniques and hierarchical representations. Beside the purpose of visual

inspection, in recent works the Morse-Smale complex is computed using the eigenfunctions

of the discrete Laplacian operator and used to extract surface quadrangulations, that are

stable and intrinsic to the model [DBG+06].

Contour trees are mainly exploited in the visualization context. They have become popular

in image processing and topography for their properties that allow a real time navigation

of the data. In particular, the recent developments on this topic have highlighted their

potential for analyzing high-dimensional and time dependent data, like the visualization of

the hemoglobin dynamic and the simulation of galaxy formation in the universe, see for

example [SB06].

Since Reeb graphs generalize to n-dimensional manifolds the concepts behind the contour

tree, their application domains partially overlap, for instance in scientific visualization. De-

spite the more general definition, the existing algorithms for Reeb graph extraction mainly

work on 2− and 3−manifolds, and only recently on 3D time-dependent data [EHMP04] and

n-dimensional simplicial complexes [PSBM07]. Nevertheless, the definition of Reeb graphs

on a domain topologically more “complex” than a scalar field (e.g., with holes, or concav-

ities) emphasizes the compactness of this representation. This fact has stimulated the use

of this descriptor in a large number of applications related to surface understanding, simpli-

fication, parameterization, segmentation and reconstruction. In addition, the simplicity of

the structure (an one-dimensional simplicial complex in every dimension) and the natural

link between the properties of the function f and the shape S have lead to a massive use

of this descriptor for shape comparison and to development of several shape matching and

retrieval tools.

Since the beginning, the declared aim of size theory has been the development of a geometrical-

topological framework for comparing shapes. Each shape is viewed as a topological space

equipped with a real function describing the shape properties relevant to the comparison

problem at hand. Measuring dissimilarity in size theory amounts to minimize the change in

the functions due to the application of homeomorphisms between topological spaces, with

respect to the L∞ norm. Size functions are a practical and manageable class of descriptors

which allow to provide a lower bound for the dissimilarity measure between shapes. With
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this theoretical premise, size functions have been extensively used in the field of Pattern

Recognition, mainly for image retrieval and classification in the Computer Vision domain.

The idea of persistent homology was originally introduced to assess the relevance of topolog-

ical attributes in a growing complex. Persistence furnishes a scale to separate out topological

features, that is attributes with a long life-time in the growing complex, from topological

noise. The application of this relevance scale to topological simplification is straightforward,

leading for example to methods for reducing noise in sample data. At the same time, consid-

ering the life-time of topological attributes also induces a powerful description of the shape

under study, that is an invariant reflecting geometrical-topological properties of shapes. This

approach to shape comparison has a clear potential which has been demonstrated in a series

of examples, although it seems still lacking for an extensive experimentation in comparison

with existing techniques. A few years after its introduction, the theory of persistent homol-

ogy is also becoming one of the basic instruments for solving different application problems,

such as protein docking or hole detection in sensor networks.

The MAT is the most popular skeleton representation because it is available both for re-

construction and animation purposes. However, its dependence on small perturbations and

noise makes it not very suitable for recognition and matching contexts. Moreover, due to the

large computational cost of 3D algorithms (see Table 2.4), it is more used in image contexts

than in the polyhedral ones. Unlike other medial axis based algorithms, the curve-skeletons

are stable against the noise even though the medial axis may not. Distance eld based meth-

ods works nicely and efciently for the tubular objects, see [HF05] for recent results. Since

the points with the same distances from the boundary of some shapes may form surface

patches, the distance eld based methods may face difculty in extracting curve-skeletons for

those shapes. For instance, the approach in [CSYB05] xes the problem by taking into ac-

count the surface area. However, in practice, the potential eld based method still may fail

for the shapes containing thin at parts [DS06].

Moreover, depending on the kind of the manipulation task (animation, metamorphosis,

growth, etc.), skeletal elements may rotate, stretch, appear or disappear. However, the

skeletal elements of the intermediate shapes obtained during the animation evolution remain

simply to define, articulate and display and the skeletal hierarchy.
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Chapter 3

Contribution

Combining the topological exploration of a shape with quantitative measurement of geomet-

rical properties provided by a real function defined on the shape is crucial for a number of

applications, like shape comparison, retrieval and classification.

The added value of approaches rooted on Mathematics in general, and Morse theory in

particular, is in the possibility of adopting different functions as shape descriptors according

to the properties and invariants that one wishes to analyze. In this sense, it is possible to

construct a general framework for shape characterization, parameterized with respect to the

function f used, and possibly the space associated with the shape. The function f plays the

role of a lens through which we look at the properties of the shape, and different functions

provide different insights.

These considerations motivate this work and the definition of a flexible shape description

framework that combines mathematical theories with computational constraints. In partic-

ular, this general framework may easily be adapted to different contexts by simply modyfing

or replacing one or more of the ingredients that compose it.

In the general flow that starts from the choice of the shape property (i.e. a function)

to analyze and arrives to the definition one or more shape descriptors, in this Chapter we

describe two approaches, namely the Shape Graph and the multi-dimensional size descriptor,

that code both topological and geometric information. Finally, we introduce also a technique

to distinguish among different shape properties and measure how much two functions defined

on the same shape differ.

In the reminder of this Chapter, we first introduce the notion of Shape Graph and then

discuss two methods to associate geometrical information to the topological graph. Then,

the Shape Graph representation is extended to sets of objects and used to extend the size

descriptor to three-dimensional data. Moreover, an extension of the computation of the size

descriptor to data of any dimension and possibly with respect to an arbitrary number of real

91
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(a) (b) (c) (d)

Figure 3.1: The distance from the barycenter is highlighted on the hand model (a). The SG nodes correspond
to the regions generated from the contours (b). In (c), the SG is superimposed to the model, while the
representation in (d) shows all the SG nodes.

functions is proposed. Finally, we introduce a functional that measures the local difference

between two functions and, on the basis of this operator, we provide an algorithm to create

a function which is almost everywhere orthogonal to a given one.

3.1 The Shape Graph

Our Shape Graph (SG) generalizes the definition of Reeb graph (proposed in Section 2.2.2.1)

to a surface on which a finite set of iso-contours (for simplicity contours) C(S) of a real

function f is defined.

Since contours are supposed to be non degenerate (i.e. points or open lines), they subdivide

S into a set of regions bordered by elements of C(S). Then, we define two points P,Q ∈ S as

equivalent if they belong to the same region or the same contour, see [Bia04a] for details. The

quotient space obtained from this relation is a discrete space. In Figure 3.1, an example of the

quotient space with respect to the distance from the barycenter is shown for a hand model.

Figure 3.1(a) highlights how the function f varies on the model: blue regions correspond to

minima while red ones represent maxima.

This quotient space is coded in a Shape Graph Gf = (V,E) as follows: first of all, each region

R is represented by a node vR ∈ V located in the barycenter of the region R, (xR, yR, zR);

then, if two regions share a contour, the nodes corresponding to these regions are connected

by an edge eR ∈ E. In general, a node will be linked to as many nodes as the number of

components of the border of the associated region. In Figure 3.1(d) it is highlighted how

the sequence of points of the quotient space represents the arcs and nodes of the SG.

The underlying slicing mechanisms has to be handled with care: for example, if only a too

small number of contours is considered, holes completely contained in the interior of a single

region are missed. This problem is related to the slicing frequency, and allows the user to
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get rid of little features that are considered irrelevant. Nevertheless, if topological accuracy

is required, the problems can be easily overcome with the insertion of an additional number

of contours into regions having holes (these regions can be always detected locally in each

slice using the Euler Characteristics, see [ABS03] for details). Therefore, even if the contours

may be non uniformly distributed on the domain of f , the SG will correctly represent the

topology of the surface.

The computational complexity of the SG extraction is O(max(n log n,m), where n is the

number of vertices in the original mesh, and m are the vertices in the mesh after partitioning

(see [BGSF06, BGSF08a]). In the worst case m could become O(n2).

Finally, we notice that, since the description properties of SG derive from the general def-

inition of Reeb graph (see Section 2.2.2.1), when it is necessary that the shape description

is invariant under some transformation, like rigid motions or affine transformations, it is

sufficient to choose a function which is invariant under those transformations. Therefore,

the dependence of the graph on the function provides a flexible shape characterization that

can easily be tuned according to the user needs.

3.1.1 Coupling the graph representation with geometric attributes

When dealing with applications, the definition of the Shape Graph introduced above, which

is mainly topological, may be not sufficient to code the salient shape information. In this

case, a set of attributes may be associated both to nodes and edges of the graph. In this

Section we will discuss two approaches, the first mainly based on a set of measures of the

contours along the graph edges and the second based on the description of the shape region

associated to the sub-graph originated by the nodes.

3.1.1.1 Contour-based attributes

We define a set of local geometric attributes to each shape slice that correspond to the SG

nodes.

For each node vR ∈ V (Gf ) corresponding to a region R, an attribute of R, ϕ(vR), is defined

as a property characterizing the region R or its boundary, as depicted in Figure 3.2. Besides

the average of the values that the function f assumes on the region R, we store in each

node of the SG a vector of measures associated to the geometric attributes of R. The set of

proposed attributes is detailed in the following.

For each node vR ∈ Gf associated to a region R, a first attribute ϕ(vR) can be defined as:

• the area of the region R,
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Figure 3.2: Some segments associated to the size graph nodes (graph obtained by segmenting the mesh
with the insertion of seven level sets).

that is to say the sum of the areas of the faces in the triangulation which belong to R.

Three other geometric attributes are given by:

• the minimum (rmin), the maximum (rmax) and the average (rav) radius of R, i.e., the

minimum, maximum and average distance of the barycenter C = (xR, yR, zR) of the

triangles in R from the vertices of the region, see Figure 3.3 (a).

Since the boundary BM (R) of a region R is made of closed contours, the interior of R is

well defined and it is possible to associate to each boundary component a so-called outgoing

direction. An outgoing direction is classified as ascending or descending, according to the

behavior of the function f across the corresponding boundary component: the direction

is ascending (resp. descending) if the value of f increases (resp. decreases) walking from

the inside to the outside of the region. Let us now denote B+
M (R) (resp. B−

M (R)) the set

of connected components of BM (R) such that the outgoing directions for f are ascending

(resp. descending), see Figure 3.3 (c). For each node vR corresponding to a region R, two

attributes can now be defined as:

• the length of B+
M (R) (resp.B−

M (R)).

If B+
M (R) (resp. B−

M (R)) is made up of multiple components {B+
i } (resp. {B−

i }), then

ϕ(vR) is the sum of the length of each of the B+
i s (resp. B−

i s). If all outgoing directions of
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f for BM (R) are ascending (resp. descending), we label the region R as a minimum (resp.

maximum) for the function f and assume the length of the border B+
M (R) (resp. B−

M (R))

to be zero, that is ϕ(vR) = 0.

The next attributes evaluate the lateral area of the pseudo-cone whose basis is the boundary

component B+
i (resp. B−

i ) and whose vertex is the barycenter of B+
i (resp. B−

i ). Two

attributes are indeed defined as

• the sum of the pseudo-cone areas computed for each B+
i in B+

M (R), (resp. B−
i in

B−
M (R)), see Figure 3.3 (b).

When all outgoing directions of f for BM (R) are ascending (resp. descending) we set ϕ(vR) =

0.

(a) (b) (c)

Figure 3.3: Details about the geometric meaning of some attributes. (a) Minimum, maximum and average
radius of a region. (b) A1 and A2 represent two pseudo-conic areas. (c) Lenght of upper and lower (with
respect to a chosen f) boundary components.

3.1.1.2 Region-based attributes

The attributes detailed in Section 3.1.1.1 mainly store a list of border properties of the slices

associated to the nodes of the Shape Graph. On the contrary in this Section we deal with

attributes related to the shape of the SG regions.

To reduce the number of Shape Graph elements, we have adopted of simplification strategy

of the nodes V and edges E of Gf . First, we observe that each edge eR of Gf may be

oriented according to the monotonicity of the function f , which implies that Gf is directed

and acyclic. Furthermore, each node of Gf identifies a sub-graph which is empty only in

case of leaf nodes, that are nodes with out-degree zero.

Then, the SG may be simplified by collapsing all nodes whose number of incoming and

outgoing edges is 1, without altering the topological correctness of the coding. After this
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merging step, the SG simply consists of nodes representing the regions where the topology

of the contours varies and the associated connecting edges, see Figure 3.4(c).

Also in this case, the SG provides a graph representation of the shape that, similarly, to

the Reeb graph is able to correctly code the topology of a closed surface [CMEH+03] as

discussed in [BMSF06].

(a) (b) (c)

Figure 3.4: SG nodes are associated to model regions (a). The SG in (b) is simplified and edges are oriented
according to the increasing values of the distance from the barycenter (c).

In this approach we move from a local description of the surface slice to a more general

representation of the model sub-parts, based on the assumption that the larger the model

portion associated to a node is, the more relevant the node should be. Since the SG is

directed, each node is associated to a sub-graph, and this sub-graph defines a sub-part

of the shape. The value of f and a geometric descriptor are associated to each node in

the simplified SG. For the nodes whose out-degree is zero (leaf nodes), whose sub-graph is

empty, we consider only the slice of the shape that correspond to them. Once sub-parts

have been associated to each node, we use the spherical harmonic analysis of the sub-part

to describe its geometry. Spherical harmonic analysis has been defined in [KFR03], and this

descriptor is rotation and scale invariant and stores the shape distribution of each shape sub-

part. Therefore, each node is indexed using a matrix, whose values depend on the spherical

harmonic values of the related sub-part. Analogously to the coding of the SG proposed in

Section 3.1.1.1, we associate to each node of SG the Cartesian coordinates of the centroid of

the corresponding region R and, mainly for visualization purposes, the node is labelled with

type of R (i.e. maximum, minimum or saddle).

In Figure 3.5, we show the sub-parts associated to the SGs of two models. The SG structure

is represented by the graph, and each node is depicted with the sub-part it generates. Figure

3.5(a) corresponds to the SG with respect to the distance from the barycenter of the linkage

model in Figure 3.4. Since the holes in the model are not symmetric with respect to the

barycenter, the sub-parts associated to the two leaf nodes slightly differ. Figure 3.5(b),

depicts the SG associated to a human body model. In both cases, the arrows indicate the
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(a) (b)

Figure 3.5: (a) The SG representation of the model in Figure 3.4 and some of the model sub-parts associated
to graph nodes. (b) The structural descriptor of a human body model

edge orientation and shape parts are associated to the SG nodes. Note that there is a

node, representing a minimum of f , whose in-degree is zero: in this case the shape sub-part

associated to that node corresponds to the whole model.

Finally, the number of regions crossed during the edge construction is also associated to each

edge of the SG, and this value reflects the length of the edge before the simplification step.

As far as the storage space is concerned, the shape descriptor is stored in an ascii VRML

file that codes both the graph and the node attributes provided by the spherical harmonics.

Table 3.1 provides the time and the storage space needed by our pre-processing step for

coding the models depicted in Figure 3.6. Results highlight that the time for coding our

structural descriptor depends both on the size of the original model and the shape features

with respect to the function chosen. In Table 3.1 the function f chosen is the distance from

the barycenter and graphs are obtained inserting either 16 or 64 contour levels. Comparing

the descriptors at two different resolutions, it is reasonable that the number of graph nodes

(and the storage size of the descriptor) increases augmenting the number of contour levels

used for extracting the SG. In particular, the “hand” models show the stability of the

structural descriptor when both the model resolution and the number of contours vary. As

pointed out in [GCO06], the partial matching problem requires a large number of comparison

operations. Regarding this skill our method is able to evaluate the 176400 comparisons on a

database of 420 items (McGill University) in about 7 minutes, which is a rather good time,

see the results provided in [ZSM+05]. All our experiments were conducted on a PC-3.4Ghz

with 2Gb of RAM.
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vase12 vase-lion12 gearbox12 blade12 chair2013 cimplex14

screwdriver12 fork14 hand-273k15 hand-10k15 hand-3k15 star12

Figure 3.6: Models having different size and resolution.

Nodes Time Storage size

Models #vertices #faces Size 16 64 16 64 16 64

vase 896.338 1.792.672 73MB 6 18 30s 1m31s 79KB 214KB

vase-lion 200.002 400.000 29MB 10 46 11s 45s 123KB 525KB

gearbox 64.147 128.606 8.9MB 32 145 20s 1m18s 375KB 1.7MB

blade 24.998 49992 2.2MB 6 12 2s 5.4s 78KB 145KB

star 14 24 2.1KB 6 6 0.14s 0.36s 79KB 79KB

hand-3k 1.515 3.026 119KB 11 11 0.24s 1s 134KB 134KB

hand-10k 5.023 10.040 438KB 10 13 0.5s 1.7s 123KB 156KB

hand-273k 136.663 273.060 13MB 9 11 10.45s 14.69s 112KB 134KB

chair20 8.456 16.950 689KB 12 19 0.6s 0.9s 145KB 223KB

fork 10.974 21.956 947KB 9 24 1s 6.6s 112KB 279KB

cimplex 8787 17.594 715K 17 23 2.3s 3.8s 190KB 257KB

screwdriver 27.152 54.300 2.1MB 3 9 1s 3.1s 34KB 112KB

Table 3.1: Statistics for the models in Figure 3.6.

The structural representation provided by the SG equipped with attributes related to re-

gions may differ from the intuitive notion of shape structure but, since it is related to the

mathematical properties of the function f , it objectively reflects the properties and acts as

a filter for matching operations.

The flexibility of the structural descriptor with respect to the choice of the function f is

12These models come from the AIM@SHAPE repository.
13This model is a remeshed version of a model in the McGill benchmark.
14This model is a remeshed version of a model at Drexel Univ.
15These models come from the AIM@SHAPE repository and are provided at three different resolutions.
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a characteristic quality that, in this sense, differs from the skeletal decomposition obtained

from flow discretization [DGG03] or thinning methods [CSM05, ZSM+05] and may become

an advantage when the sub-parts to be recognized through the matching have well defined

mathematical properties. Another distinctive feature of our descriptor is the use of a de-

scriptor for each node sub-graph (the spherical harmonic transform, [KFR03]) more complex

that the usual ones, see Section 4.1.2.

3.1.2 Extension to sets of objects

Often in real applications it is important to compare simultaneously sets of elements present

in different scenes. For example, this is relevant when a global view of the elements in a

scene database is required, maybe for indexing or filtering purposes, before handling a fine

recognition analysis. In fact, when massive volumes of data are provided, a fast and high-

level analysis of the single scenes could significantly increase the number of computations.

The same problem holds when comparing objects made of sets of single parts. In this last

case it is necessary to overcome the limitation, typical when using structural descriptors, of

comparing objects made of a single connected component. In our approach, we translate the

problem of comparing sets of objects that are represented by a SG to the comparison of set

of Shape graphs. To extend the Shape Graph representation to set of objects (3D scenes)

we have been inspired by the representation proposed in [WHL05].

Wilson et al. [WHL05] showed how graphs can be converted into pattern vectors by using

the spectral decomposition of the Laplacian matrix and basis sets of symmetric polynomi-

als. More formally, denoting L the Laplacian matrix associated to a graph G, ei and λi
respectively the i−th eigenvector and eigenvalue of L, the matrix L may be expressed bu

the formula: L = ΦΦt, where Φ = (Φi,j)i,j=1,...,n = (
√

λ1e1, . . . ,
√

λnen). Then, a symmetric

polynomial in the components of eigenvectors ei is expressed as:

λj =

n∑

i=1

Φ2
ij . (3.1)

In order to extend this representation to sets of graphs, a virtual node X, without attributes,

is introduced in every set of Shape Graphs (this operation works in analogy to VRML files17),

and it is joined to one of the vertices of minimum degree for each Shape Graph Gf
i (see Figure

3.7). Since the Laplacian spectrum is invariant for node label permutations, the choice of

the vertex to which X is joined is not relevant for the extraction of the eigenvalues of L.

Then, a single and connected graph is obtained, whose Laplacian matrix has the form rep-

resented in Equation (3.2), [PBF07b]. If the set is composed by m SGs Gf
i = (Vi, Ei),

17A definition of grouping nodes in the VRML format is described at
http://www.agocg.ac.uk/brief/vrml.htm
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Figure 3.7: Two possible connections between a virtual node X and a scene made by two graphs. Provided
that, for each graph, X is connected to a node of minimum degree, the representation of the scene graph is
independent of the choice of X (unless of graph isomorphisms).

|Vi| = ni, with i = 1, . . . ,m, we define the Laplacian matrix of the scene as:

L =
















m −1 0 . . . −1 0
−1 l11,1 + 1 . . . l11,n1

. . . . . . . . .
0 l1n1,1 . . . l1n1,n1

...
. . .

−1 lm1,1 + 1 . . . lm1,nm
. . . . . . . . .

0 lmnm,1 . . . lmnm,nm
















. (3.2)

where L(Gf
h) = Lh = (lhi,j)i,j=1,...,nh is the Laplacian matrix of the h-th graph, and the

element added to lh1,1 ∀h stresses the existence of the virtual node joined with a component

vertex (we suppose that, after a node label permutation, X is joined to the first node of the

component), whose degree increases of 1.

When dealing with a Shape Graph Gf having as attributes the values ϕ described in Sec-

tion 3.1.1.1, the same procedure described in (3.2) is used to modify the expression of the

attributed Laplacian matrix [WHL05] and take into account both node and edge attributes.

In this Section we analyse the relation between the scene graph we have defined and the

descriptors of the single scene components. In fact, from successive inequalities, we can

find both an upper and a lower bound for the spectrum of L in (3.2) which depend on

the eigenvalues of the Laplacian matrices of the single scene components. Because these

graphs are described also by Laplacian eigenvalues, the property we are going to describe

guarantees that the scene graph is comparable with those of singular components. Therefore

these results justify the addition of a virtual node, instead of separately considering each

scene components.

The introduction of X makes the set of SGs Gf connected, and it adds a non-zero eigenvalue

to its Laplacian matrix L: this change keeps L symmetric and diagonally dominant, so

positive definite. We have, therefore, analyzed how this operation affects the spectrum of L.

Let us consider a set with just two graphs Gf
1 and Gf

2 , whose Laplacian matrices are re-
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spectively L1 and L2. Denoting λ1(L
1), . . . , λn1(L

1), λ1(L
2), . . . , λn2(L

2) their eigenvalues,

let L̃1 = (l̃1i,j)i,j=1,...,n be such that l̃1i,j =

{
l1,1 + 1 i = j = 1
li,j otherwise

and similarly L̃2; it follows

that
∑

i λi(L̃
j) =

∑

i λi(L
j) + 1, because the sum of the eigenvalues is equal to the matrix

trace. Moreover, we can factor the Laplacian matrix of the scene L in (3.2) as L = A1 + A2,

such that

A1 =









1 −1
−1 l11,1 + 1 . . . l11,n1

. . . . . . . . .
l1n1,1 . . . l1n1,n1

0n2









, A2 =









1 −1
0n1

−1 l21,1 + 1 . . . l21,n2

. . . . . . . . .
l2n2,1 . . . l2n2,n2









;

here 0ni means a square matrix ni × ni with all 0 entries.

Now let Gf
3 be the graph Gf

1 with a node v and an edge e added (E3 = E1 + e, V3 = V1 + v,

v /∈ V1, e = (v,w), w ∈ V1), from the interlace theorem [Moh91] it follows:

0 = λ1(L
3) = λ1(L

1) ≤ λ2(L
3) ≤ λ2(L

1) ≤ · · · ≤ λn1(L
3) ≤ λn1(L

1) ≤ λn1+1(L
3) ,

where L3 denotes the Laplacian matrix of Gf
3 . As a consequence, the non-zero eigenvalues

of A1 interlace those of L̃1, and the same is valid for A2 and L̃2.

Denoting λN (L), N = n1 + n2 + 1, the maximum eigenvalue of L, Weyl’s inequality (see for

example [Fra93]) implies the following relation: λN (Ai) ≤ λN (L) ≤ λN (A1) + λN (A2), for

i = 1, 2, since both A1 and A2 are positive semi-definite. Therefore it follows:

max{λN (A1), λN (A2)} ≤ λN (L) ≤ λN (A1) + λN (A2) . (3.3)

In addition we observe that, even if the eigenvalues of L are always non-zero (L posi-

tive definite), the eigenvalues of the matrices Ai=1,2 factorizing L verify λ1(Ai) = · · · =

λN−1−ni(Ai) = 0, i = 1, 2. Moreover, Weyl’s inequality gives a meaningful result when the

index i is max{n1 + 1, n2 + 1}; if n1 > n2 then

λn1+1(L) ≥ max{λn1+1(A1), λn1+1(A2)} .

Analogous results hold for scenes with m elements, that is L = A1 + · · · + Am, and for at-

tributed graphs. The relation 3.3, in particular, implies that the eigenvalues of the Laplacian

matrix of a scene graph Gf are bounded by the eigenvalues of their componenents and their

sum.

3.2 Higher-dimensional size functions

The second shape descriptor we are considering in this thesis are the size functions; in

particular we have tackled the problem of extending their computation to 3D shapes.
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While in principle the space dimension can be arbitrarily large, in practice the performance

of size functions may be weaker if they are directly applied to the given space. As an

example, let us consider the two different representations of the cactus shape shown in

Figure 3.8 (a): a planar 1D contour sketching the profile (left) and a 2D surface (right). If

we describe the 1D contour by means of the height function, we obtain a size function which

is sufficiently informative about the shape (see Figure 3.8 (b-left)). The same description for

the 2D surface produces a trivial size function (see Figure 3.8 (b-right)), since the number

of connected components for the lower level set {P : ϕ(P ) ≤ y} is always 1, for any value

of y, y ≥ minP ϕ(P ). The solution comes from the identification of the “right” set of shape

properties, i.e. the “right” size pairs, that are suitable for the problem at hand.
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Figure 3.8: (a) Two different representations of a cactus shape and (b) their corresponding size functions.

3.2.1 Size functions of 3D objects from topological graphs

To overcome the limits of a straightforward application of size functions to 3D shapes, our

idea is to associate with a 3D object a size graph (Gf , ϕ), where Gf is a shape graph

representing the 3D object, f is a real function driving the Shape Graph extraction and

called the mapping function, and ϕ is a measuring function labelling each node of the

graph with local geometrical properties of the original model [BGSF06, BGSF08a]. The

replacement of a 3D shape with this auxiliary space (Gf , ϕ), which couples the structural

information computed by the function f with the different information provided by the

measuring function ϕ, produces non-trivial size functions. The use of (Gf , ϕ) reduces the

dimensionality of the problem, meanwhile storing a rich set of information about the original

object.

Two ingredients contribute to the definition of size graphs (Gf , ϕ): the procedure to build

the Shape Graph Gf starting from the level sets of an appropriate mapping function f

and the definition of a set of measuring functions ϕ to associate the most appropriate and

effective geometric descriptors with Gf .
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In our approach, the Shape Graph is built using the technique described in Section 3.1.1.1.

Then, as measuring functions we have adopted the ϕ attributes of the contour-based SG

representation described in Section 3.1.1.1. Besides the geometric attributes of the model,

a further measuring function is given by the location in space of the object.

As previously discussed, each node vR of the SG is located in the barycenter (xR, yR, zR) of

the corresponding region R. In addition, for each model, we compute its minimal bounding

box following the algorithm in [BH01], which provides a bounding box oriented towards the

principal direction of the object (as shown in Figure 3.9). The faces Fi, i = 1, . . . , 6, of the

bounding box are ordered according to their increasing areas, thus obtaining the ordered set

of pairs {(F1, F2), (F3, F4), (F5, F6)}, where each pair corresponds to a pair of opposite faces,

having the same area. Then, the center Pi is evaluated for each face Fi, i = 1, . . . , 6, see

Figure 3.9 (b), and a set of measuring functions {ϕPi} can be constructed by computing the

Euclidean distance ϕPi(vR) =| vR − Pi |E . The invariance with respect to axial simmetry is

obtained replacing the set {ϕPi} by the set of measuring functions {ϕPi,Pi+1}, with i = 1, 3, 5,

and such that:

ϕPi,Pi+1(vR) = min{| vR − Pi |E , | vR − Pi+1 |E},
where the minimum distance is considered between the node vR and the centers of two

opposite faces.

(a) (b)

Figure 3.9: (a,b) Minimal bounding boxes of two models.

After a size graph (Gf , ϕ) has been obtained, with Gf the shape graph and ϕ the measuring

function labeling its nodes, the definition of the size function of the size graph follows the

classical one. Denoting by Gf
y the subgraph of Gf obtained by erasing all vertices of Gf

at which the measuring function ϕ takes a value strictly greater than y, and all edges that

connect those vertices to other vertices, the size function of the size graph (Gf , ϕ) is defined
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by setting ℓ(Gf ,ϕ)(x, y) equal to the number of connected components of Gf
y , containing at

least a vertex of Gf
x.

In order to compute size functions, we follow the algorithm based on the so-called ∆∗-
reduction technique introduced in [d’A00] and described in Section 2.3.1.2. The process

works in a finite number of operations, and its output is a graph that has the simple structure

of a tree. ∆∗-reduction permits direct computation of the cornerpoints and cornerlines, that

completely describe the size functions (see Section 2.3.1.1). To achieve this, one has to

orient the reduced graph obtained through the process of ∆∗-reduction by orienting each

edge from the vertex with higher value to the other one. The resulting configuration is an

arborescence, i.e. an oriented tree in which no two edges are directed to the same vertex.

Finally, the cornerpoints and cornerlines are computed from this arborescence by applying

the following recursive procedure: (i) choose the highest leaf v and erase it together with

the corresponding edge wv; (ii) put a cornerpoint at (ϕ(v), ϕ(w)); (iii) if just one vertex u

is left, then draw the cornerline x = ϕ(u) and stop, otherwise repeat from (i).

A possible implementation for this algorithm is based on the union-find structure [TvL84], so

that tshe computational complexity for the whole procedure is O(n log n+m ·α(2m+n, n)),

where n and m are the number of vertices and edges in the size graph, respectively, and α

is the inverse of the Ackermann function [Ack28].

Figure 3.10 (a) shows a model and its simplified version (having 10% of the vertices of the

original model). The difference in the models neither significantly alters the attribute Shape

Graph (Figure 3.10 (b)) nor affect the corresponding size function (Figure 3.10 (c)), and the

resulting matching distance is consistent. In practice, the method reveals to be robust from

different perspectives:

1. size graphs: the attributed Shape Graph representation is stable under small variations

of the mapping function f (Figure 3.10 (b)). In fact, it is possible to adopt a refinement

of the slicing strategy, that guarantees that all features having size (in terms of the

variation of the mapping function f) greater than a given threshold are detected,

discarding the features whose size is smaller, see discussions in [BFS04];

2. size functions: small changes of the size graph do not significantly alter the size func-

tions (that can almost be superimposed in Figure 3.10 (c));

3. matching : the stability of matching distance between size functions under small per-

turbations of the data is confirmed by the example shown, where the matching distance

between the size functions computed for the two models is very small.

The results of a second check for robustness are shown in Table 3.2, where the distances

between six different objects in our database (four humans and two manufactured models)

are reported. In particular, two of the human models are simplified versions of the other
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Figure 3.10: Changes due to a simplification of a model do not significantly alter the Shape Graph and its
size function. (a) A model and its simplified version; (b) their size graphs with some attributes highlighted,
using the integral geodesic distance f3 and the measuring function area; (c) the corresponding size functions,
which show very small variations.

two ones, while the manufactured models differ for some small features. As expected, the

comparison framework satisfies the identity property, guaranteeing that a model has a null

distance from itself. In addition, the distance between a model and its slightly modified

version is smaller than the distance between two different objects in the same class (see

for example the woman and the man models) and significantly smaller than the distance

between objects belonging to different classes (e.g. a human and a manufactured model).

We remark here that these distances are used to rank the results of database queries and

aggregate the models that share analogous properties, although they cannot be interpreted

as “absolute” values, due to their dependence on the values of the measuring function.

In conclusion, the proposed Shape Graph presents many desirable properties. Indeed it is:

1. quick to compute: the computation of 120 size functions for the 120 models in the

database requires 1.53 second on a 1.73GHz laptop PC-M; the off-line step of computing

the size graphs requires 1 minute and 12 seconds;

2. concise to store, requiring less than 1k storage per model (see details in Table 3.3);
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Table 3.2: Values for the matching distances between six different models in our database. The size graphs
have been obtained using the integral geodesic distance f3 and the region area.

3. easy and quick to compare: evaluating 120 × 120 matching distances between size

functions requires 8.55 seconds;

4. invariant under similarity transformations: imposing the desired invariance simply

means requiring the invariance for the mapping and measuring functions, without any

change in the mathematical model;

5. robust against noise and small extra features as shown in Figure 3.10 and Figure 3.2.

6. able to discriminate among shapes at many scales, conveying information about global

and local properties of the shape, as shown by the experimental results.

The added value of our approach relies in the fact that we provide a modular framework

based on the idea of describing shapes by geometrical-topological properties of real functions.

A suite of descriptors is thus available, which can be fit to the problem at hand. We also

that believe that, far from being exhaustive, the set of proposed shape properties (that is,

the set of chosen real functions) produces a promising set of descriptors, which helps the

user to tune the retrieval system to be on his/her wavelength.

As for the limitations of our approach, currently the method can process only manifold

meshes; therefore, polygon soups and point cloud models are not admissible. However,
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Models #vertices #faces Size #N #CP SF

vase [aim] 896.338 1.792.672 73MB 45 9 1k

Happy Buddha [sta] 543.652 1.087.716 45MB 27 12 1k

armadillo [aim] 165.951 331.898 15MB 41 12 1k

hand [aim] 136.663 273.060 13MB 56 13 1k

Bunny [sta] 32.872 65.740 3.1MB 18 4 1k

dancer [aim] 24.998 49.996 2.2MB 22 6 1k

dancer2 [aim] 26.358 52.716 2.6MB 20 6 1k

Table 3.3: Statistics for some models, relating the dimension of the original model with the number of nodes
(#N) of the size graph Gf , the number of cornerpoints (#CP) of the corresponding size function SF and the
storage size of the final descriptor.

methods able to analyze these classes of representations must necessarily rest on rough

approximations of the shape that could discard local shape characteristics. Indeed, the

power of this approach is to exploit a number of topological and geometric insights and to

keep them during the comparison process, without depending on the uniqueness and the

connectivity of the mesh elements. In this sense our framework furnishes an abstract shape

description, which is not in contrast with the existing methods but may be fruitfully coupled

with them.

3.2.2 Multidimensional size functions

More in general, an important problem is given by the possibility of working in a k-

dimensional setting, that is, using multivariate functions with values in R
k. Multi-dimensional

functions and, consequently, multi-dimensional size theory and natural pseudo-distance were

introduced in [FM99]. However, a direct approach to the multi-dimensional case implies

working in subsets of R
k × R

k, and it is unclear how to combinatorially represent multi-

dimensional size functions.

A solution is proposed in [CBG07, BCF+07], where it is proven that the computation and

comparison of multi-dimensional size functions can be reduced to the usual (one-dimensional)

case by a suitable change of variables. The idea is that the domain of k-dimensional size func-

tions can be suitably partitioned into half-planes, such that the restriction of a k-dimensional

size function to each half-plane is a classical one-dimensional size function. This implies that,

on each half-plane of the domain partition, the size functions can be represented by corner-

points and cornerlines. A multi-dimensional matching distance can also be defined, based on

the one-dimensional matching distance on each half-plane, which is stable for small changes

in the measuring functions.

Since every one-dimensional size function (1SF) may be seen as a linear combination of
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triangles (formal series of function characteristics), the comparison of two 1SF’s is simple

and computationally efficient [dFL05] (see also Section 2.3.1.2). Unfortunately, the same

properties does not hold for kSF’s. Moreover, a direct approach to the multidimensional case

implies working in subsets of R
k×R

k: In this case, the absence of a compact representation

for k-dimensional size functions involves great efforts from a computational point of view. All

these problems have been overcome from the theoretical point of view in [BCF+07] by means

of a suitable change of variables that allows us to reduce k-dimensional size functions to the

1-dimensional case. Indeed, it has been demonstrated that there exists a parameterized

family of half-planes in R
k × R

k such that the restriction of ℓ(D,~ϕ) to each of these planes

can be seen as a particular 1-dimensional size function.

Let (D, ~ϕ) be a size pair, with ~ϕ = (ϕ1, . . . , ϕk) : D → R
k. We shall call admissible pair any

pair (~l,~b) ∈ R
k × R

k with ~l unit vector such that li > 0, i = 1, . . . , k, and
∑k

i=1 bi = 0. The

set of all admissible pairs will be denoted by Admk. In this setting, consider the foliation

of the open set ∆+ = {(~x, ~y) ∈ R
k × R

k : ~x ≺ ~y} given by the parameterized family of

half-planes {π
(~l,~b)

}
(~l,~b)∈Admk defined by the parametric equations:

{

~x = s~l +~b

~y = t~l +~b

with s, t ∈ R, s < t. The restriction on the choice of ~l and ~b guarantees a unique parametric

representation for each half-plane π
(~l,~b)

. Under these assumptions, in [BCF+07] the following

result has been proved:

Theorem 3.2.1 Let (~l,~b) be an admissible pair, and F ~ϕ

(~l,~b)
: D → R be defined by setting

F ~ϕ

(~l,~b)
(P ) = max

i=1,...,k

{
ϕi(P ) − bi

li

}

.

Then, for every (~x, ~y) = (s~l + ~b, t~l + ~b) ∈ π(~l,~b) the following equality holds: ℓ(D,~ϕ)(~x, ~y) =

ℓ
(D,F ~ϕ

(~l,~b)
)
(s, t) .

In other words, Theorem 3.2.1 states that a foliation of ∆+ in half-planes can be given, such

that the restriction of a k-dimensional size function to these half-planes turns out to be a

classical size function in two scalar variables. This result implies that each size function, with

respect to a k-dimensional measuring function, can be completely and compactly described

by a parameterized family of discrete 1SF’s.

An example of the computation of multi-dimensional size functions is shown in Figure 3.11.

Two surface models are analyzed using a two-dimensional measuring function ~f = (f1, f2),

and the domain of the two-dimensional size function is partitioned into half-planes. Details

on the definition of ~f and the partition can be found in [BCF+07]. In Figure 3.11, we show
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Figure 3.11: Example of the computation of a two-dimensional size function on two surface models, on five
half-planes of the domain partition defined in [BCF+07].

the behavior of the corresponding two-dimensional size function on five half-planes of the

partition, depicted from left to right. On each half-plane, the two-dimensional size function

coincides with a classical one-dimensional size function. The underlying one-dimensional

measuring functions, derived from the components of ~f , are depicted on top of the cor-

responding size functions (red corresponds to high values of the measuring function, blue

corresponds to low values). Then, the two-dimensional matching distance can be computed,

based on the classical one-dimensional matching distances between the size functions on each

of the half-planes.

The results proposed in Table 3.4 describe the dimension of some digital models, the average

time taken by our algorithm to extract the 1-dimensional size function on a half-plane of

the foliation, the total time required to compute the size function on 9 half-planes, and the

average and the total number of cornerpoints of the size function on 9 half-planes. These

results are obtained using a AMD Athlon 3500, with 2 GB RAM.

3.3 Comparison of real functions

In Section 1.3 we have seen that a large number of real functions is available for shape

description purposes and, in general, there is not the best choice but it depends on the user’s

needs. What is interesting is to analyze if two functions, even if not numerically identical,

have the same global properties and if it is possible, starting from a real function f , to create
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Model |V | |E| Avg. time Total time Avg. |C| Total |C|

19538 187005 0.035s 0.315s 180 1623

18779 193181 0.041s 0.369 84 756

11504 97757 0.015s 0.135 16 142

29061 289461 0.056s 0.504 15 133

114277 1233063 0.212s 1.908 28 254

5472 45689 0.006 0.054 14 122

Table 3.4: Time requirements for the computation of the size function of some 3D images of different
dimensions. |V | and |E| represent the number of vertices and edges of the size graphs of the models. Avg.
time is the average time required to compute the size function on a single half-plane of the foliation, while
Total time refers to the computation of the size functions on 9 half-planes. Analogously, Avg. |C| is the
average number of cornerpoints of the size function on a single half-plane of the foliation, and Total |C| is
the sum of the number of cornerpoints of the size functions on 9 half-planes.

a new one g that measures shape features completely different from those measured by f .

In our approach, we judge that two functions defined on the same shape S are similar if

they have a similar behavior on the same regions of S and we estimate this similarity by

studying the differences of the level sets associated to both f and g. Our assumption is that

a big difference of the level sets of the measuring functions indicates a significant difference

of their behavior on S [BPSF07].

More precisely, to evaluate the similarity of the functions (S, f) and (S, g), we define a new

functional I(f, g) : S → R that measures the angle variation of their gradient fields, Section

3.3.1. As original contributions with respect to the previous work, we provide a direct

relation between the critical points of f , g, and I(f, g). Then, we generalize this problem to

an arbitrary number of functions defined on S. Furthermore, we extend the functional I(f, g)

to discrete domain; given a scalar field Γ = (D, f), we also use the similarity functional to
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(a) (b)

Figure 3.12: (a) Iso-contours of two functions f and g that intersect at p. (b) Discretization of the gradient
field of f at pi with respect to its 1−star.

calculate a new function g : D → R that is “orthogonal” to (D, f) (i.e., the most dissimilar)

with respect to I and we provide an efficient algorithm for its computation. In this way,

we also provide a locally orthogonal coordinate system on the surface, a property vital for

various applications, like a consistent computation of geodesic distances on the surface.

3.3.1 Continuous case

Let S ⊂ R
3 be a 2-manifold equipped with and two real functions f, g : S → R of class Ck,

k ≥ 1. The gradient of f is defined as ∇f := (∂x1f, ∂x2f, ∂x3f) and its magnitude gives the

slope of f when moving along the normal vector to S.

We compare the functions f and g by studying the bilinear functional (see Figure 3.12(a))

I(f, g) :=< ∇f,∇g > .

From the previous definition, it follows that I(f, g) is null at those points of D where ∇f is

orthogonal to ∇g and at the critical points of f or g. We now characterize I by analyzing

its critical points and establishing their relations with those ones of f and g. In matrix form,

the gradient of I(f, g) may be expressed as:

∇I = H(f)∇g + H(g)∇f, (3.4)

where H represents the Hessian matrix ((∂xixj · · · )ij) of a function.

From (3.4), it follows that:

• p ∈ S is critical for I if and only if H(f)∇g + H(g)∇f = 0 at p. Therefore, there

might exist critical points of I that are not critical of f and g;

• if p ∈ S is a critical point of f and g, then p is critical for I;



112 Contribution

• if p ∈ S is a critical point of f and I but not of g, then p is a degenerate critical point

of f .

We define as averaged dissimilarity measure between f and g on S, the real number:

I⋆(f, g) :=
1

area(S)

∫

S
< ∇f,∇g >
︸ ︷︷ ︸

I(f,g)

dp. (3.5)

Since div(f∇g) =< ∇f,∇g > +f∆g, we get that if g is harmonic (i.e., ∆g = 0) then

div(f∇g) =< ∇f,∇g >; by integrating the previous identity on S, we have

I⋆(f, g) =
1

area(S)

∫

S
div(f∇g)dp.

Finally, we introduce the normalized dissimilarity measure as

I(f, g) :=
1

area(S)

∫

S
<

∇f

‖∇f‖ ,
∇g

‖∇g‖ > dp,

and the similarity measure is defined as 1 − I(f, g).

3.3.2 Discrete case

This Section presents the discrete counterpart of the concepts and descriptors defined in

Section 3.3.1.

To define the functional (3.5) on a triangle mesh D, we approximate the gradient of f at pi
as [Hir03]

∇f(pi) :=
∑

j∈N(i)

[f(pj) − f(pi)]wj, wj :=
1

3
N1 +

1

3
N2 (3.6)

where N1, N2 (resp., A1, A2) are the normal vectors (resp., the area of the Voronoi regions)

of the two triangles which share the edge (i, j), and N(i) := {j : (i, j) is an edge} is the

1-star of the vertex i (see Figure 3.12(b)). We explicitly note that the vectors wj, j ∈ N(i),

do not depend on f and (3.6) fulfills the main properties that apply to the gradient in the

continuous case, that is, linearity and nullity (i.e., f = const implies ∇f = 0).

We now generalize the comparison to an arbitrary number of functions on D. Given n

mapping functions f1, . . . , fn on D, we introduce the symmetric n × n matrix A := (aij),

where aij := |I(fi, fj)|, and we define as correlation factor of {fi, i = 1, . . . , n} the standard

deviation of the set {aij : i = 1, . . . , n, j ≥ i}, that is,

σ(f1, . . . , fn) :=

√
∑n

i=1

∑

j≥i [aij − a]2

n
, with a :=

1

n(n + 1)

n∑

i=1

∑

j≥i
aij.
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Figure 3.13: Color image of the matrix A related to the first 50 eigenfunctions of D; on the left (resp.,
right) pairs of Laplacian eigenfunctions (f1, f2) (resp., (f2, f6)) with the lowest (resp., highest) dissimilarity
measure I.

Since the vectors wj, j = 1, . . . , n, do not depend on the input function, the entries of A can

be efficiently calculated by storing the coefficients {< wi,wj >: i = 1, . . . , n, j ∈ N(i), j >

i} and using matrix multiplications. We note that through the matrix A (see Figure 3.13)

we can identify the function fj which mostly differs from fi (i.e., j = argmink{aik}), as well

as the pairs of functions with a similar (resp., dissimilar) behavior, i.e. (fi, fj) such that

ai,j = maxp<q{apq} (resp., ai,j = minp<q{apq}).

3.3.2.1 Almost-everywhere orthogonal function

Given an arbitrary function f , we consider the following problem: find g : D → R such that

∇g is orthogonal to ∇f on D and we prove that it always has the trivial solution g = const.

By imposing the conditions:

< ∇f(pi),∇g(pi) >= 0, i = 1, . . . , n, (3.7)

where {∇f(pi)}i=1,...,n are constant vectors and {g(pi)}i=1,...,n are the unknowns, we get n

linear equations

∑

j∈N(i)

< ∇f(pi),wj > g(pj) −
∑

j∈N(i)

< ∇f(pi),wj > g(pi) = 0

with i = 1, . . . , n. These relations can be written in matrix form as:

Ag = 0 (3.8)
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(a) (b) (c) (d)

Figure 3.14: (a-b) Variation of I on D for the pairs of functions in Figure 3.13; moving from white to
pink the dissimilarity of the functions increases. (c) Iso-contours of the function orthogonal to f1; (d) critical
points of f1 and visualization of I.

where the entries of the n × n coefficient matrix A := (aij) are

aij :=

{
< ∇f(pi),wj > (i, j) is an edge,
∑

j∈N(i) < ∇f(pi),wj > i = j.

We note that the structure of A resembles the adjacency matrix of the triangle mesh; how-

ever, in our case A is not symmetric and some entries might be negative. If we neglect

degenerate cases where rank(A) < n − 1, the unique solution of (3.8) is the vector x̃ = 1̃;

therefore, the only function orthogonal to f everywhere on D are the constant ones (see

Figure 3.14).

To require that the orthogonality conditions (3.7) hold on the whole set of vertices has

unique solution the constant functions. This result implies that two functions are everywhere

orthogonal if only if one of them is constant. From the practical point of view, this result is

quite unsatisfactory. Our idea is to relax the orthogonality constraints by requiring g(pi) 6=
g(pj), for at least two distinct indices i, j. More generally, we consider the problem: given

I ⊆ {1, . . . , n}, find g : D → R such that

{
< ∇f(pi),∇g(pi) >= 0 i ∈ IC ,
g(pi) = αi i ∈ I

(3.9)
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Figure 3.15: The picture shows the co-domain and iso-contours of the function g orthogonal to a given f

everywhere on D with the exception of the critical points of f .

where IC is the complement of I. For i ∈ IC , we rewrite (3.7) as

∑

j∈N(i)∩IC
< ∇f(pi),wj >g(pj) − g(pi)

∑

j∈N(i)

< ∇f(pi),wj >=

= −
∑

j∈N(i)∩I
< ∇f(pi),wj > g(pj).

(3.10)

If we assume that ♯I = n − k, (3.10) is equivalent to the (n − k) × (n − k) sparse linear

system Ag = b where:

A := (aij), aij :=

{
< ∇f(pi),wj > i ∈ IC , j ∈ N(I) ∩ IC
∑

j∈N(i) < ∇f(pi),wj > i = j

and

b := (bi)i, bi := −
∑

j∈N(i)∩I
< ∇f(pi),wj > f(pj), i = 1, . . . , n − k.

The sparse linear system (3.10) is efficiently solved by applying the conjugate gradient

method [GV89]. Then, the hypothesis g(pi) 6= g(pj), i, j ∈ I, is enough to guarantee

that g is not constant; clearly, if we set g(pi) = α, ∀i ∈ I, we achieve the solution g = α.

Once g has been calculated, the error on the orthogonality between f and g depends on

the points of D where we did not impose the orthogonality condition and it is equal to

I(f, g) =
∑

i∈I < ∇f(pi),∇g(pi) >. Therefore, the angle between ∇f(pi) and ∇g(pi) will

affect the orthogonality error measured by I. Figure 3.15 shows the construction of its

almost everywhere orthogonal function.
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Setting up the initial values. A natural choice of I is the set of the critical points of

f where the orthogonality conditions (3.9) is trivially satisfied. For each i ∈ I, let N(i) be

its 1−star and ni be a user-defined vector (e.g., the vector orthogonal to the normal at pi),

then g(pi) is chosen as the minimum of the functional

G((pj)j∈N(i),pi) :=
∑

j∈N(i)

|g(pj) − g(pi)|2

subject to the (discrete) linear constraints ∇g(pi) = ni. If ♯N(i) = k, the previous problem

has (k + 1) unknowns and is efficiently solved by standard optimization techniques [GV89].

3.4 Discussions

The shape description framework we have introduced admits a flexible usage of real functions

and computational techniques.

The Shape Graph we have defined in Section 3.1 may be tuned according to different user’s

needs and combines topological information with geometric one. In particular, it has been

used to extend the computation of the size functions to surfaces and we have shown how the

Shape Graph description can be used to code 3D scenes. Multi-dimensional size functions

provide an innovative framework able to combine more properties in the same descriptor.

Moreover, we have proposed a method able to merge several descriptions induced by a family

of functions defined on a surface D into a single representation, which is capable to make

explicit the differences of the local properties measured by these mapping functions. We

provided a direct relation between the critical points of two functions f , g through the

study of the functional I(f, g). We have also demonstrated that, given a non constant real

function f , the only functions that are orthogonal to f are constant unless the orthogonality

condition is relaxed. Given Γ, we also showed how to calculate a new function g : D → R

that is independent to Γ with respect to I and we provided an efficient algorithm for its

computation. As future work, we plan to use the proposed approach to study the evolution

of time-depending functions defined on the same or several surfaces.
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Chapter 4

Applications and Results

The description framework introduced in Chapter 3 yields a high-level description of the

surface shape that acts as investigation tool in several application fields. This framework

guarantees both the computational efficiency and the topological coding of the object, which

allows a qualitative and quick comparison of the object shapes. With respect to the pre-

vious works in this field, the proposed representations are able to faithfully represent the

surface shape without distorting the semantic meaning of the theoretical descriptions while

additional geometric attributes are added to yield the surface morphology.

In this Chapter we overview the application fields for which our representation framework has

been successfully adopted. These concepts have been translated into the discrete domain and

adopted shape matching [BMSF06, CBG07, BGSF06], scene comparison [PBF07b], shape

classification [BGM+06, BGM+07] purposes and for best view selection [PPG+05]. For every

task, prototypes based on libraries developed in C language have been implemented. A user

interface of the functionalities of the descriptors has been built using the Open Inventor

library [Wer94].

This chapter is organized as follows. In section 4.1, the effectiveness of using the SG structure

for shape matching purposes is discussed. Results on shape retrieval using size functions

(both 3D and multi dimension) are proposed. Then we shift to the partial matching problem,

showing the effectiveness of the Shape Graph both for free-form and CAD models. The

results of the application of the SG to scene comparison end Section 4.1. Section 4.2 shows

how creatives prototypes based on the Shape Graph may assist shape classification. Finally,

in section 4.3 we propose the results obtained using our shape characterization to select a

significant view of a 3D object.
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4.1 Shape Matching and Retrieval

The problem of comparing shapes through their topological descriptors has been approached

in a great number of ways. For example, several descriptors are based on the statistical

distribution of the shape points in the space [VT03], spherical harmonic representations

[KFR03], high-curvature regions [HK03], shape decomposition [DGG03], while others try to

organize and interpret the shape features through a graph representation [ZTS02, HSKK01].

In particular, in this Section, we will focus on the efficacy of considering the shape descriptors,

namely Shape Graph and high dimensional size functions, discussed in Chapter 3 to approach

shape matching problems.

Depending on the choice the mapping function, the Shape Graph and size functions can guar-

antee a shape description suitable for shape comparison purposes. For instance, a suitable

mapping function f has to be independent of rotation, translation, uniform scaling of the

object and distribution of points on the surface. In addition, it is not admissible that there

are vertices privileged a priori. These requirements prevent the use both of the height func-

tion [ABS03] and the centerline representation [LV99, HA03] for matching purposes, which

respectively depend on the orientation and on the selection of a seed point. To be suitable

for shape matching and retrieval issues any function f could be used, provided that it is

invariant with respect to object rotation, translation and scaling [BMMP03, BMM+03b].

So, possible choices of the mapping functions are the distance from the barycenter, the

average of the geodesic function [HSKK01], the geodesic distance from high curvature ex-

trema [MP02], the shape elevation [AEHW06] and also families of functions, for instance the

functions independent of the principal symmetry axis proposed in a [BCF+07].

As mentioned in Section 1.3, the most important aspect to evaluate when choosing the

mapping function is the kind of features that we want to highlight in the description and the

type of matching we would like to get. In our shape matching examples, the distance from the

barycenter naturally highlights the distribution of the object with respect to its barycenter,

like shown in figure 3.4. Therefore this function is rotation invariant, but sensitive to pose

variations. On the contrary, the function in [HSKK01] is pose invariant because it depends

on the shape distribution with respect to the geodesic center of the surface. In both cases, the

shape will be described as a configuration of protrusions and hollows, but the geodesic will

not discriminate between objects in different poses while the distance from the barycenter

will do. Therefore, the geodesic is best suited for retrieving articulated objects disregarding

the pose, while the distance from the barycenter will allow to distinguish among articulated

models in different poses.

Also computational aspects have to be taken into account when choosing a mapping function.

For example, the barycenter may be computed in linear time (O(n)) with respect to the

number of vertices and, since it depends on all surface vertices, it is robust to noise. On the

contrary, the exact computation of the integral geodesic function may be performed only with
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O(n2 log(n)) operations, where n is the number of vertices of S; however, its approximation

[HSKK01] runs in O(kn log(n)) operations, where k is a constant that represent a number

of basis for the function evaluation. The approximation of the geodesic distance using the

Dijkstra algorithm makes this function sensitive to the vertex distribution. To minimize

the dependence of the geodesic function evaluation on mesh irregularity an uniform remesh

operation is done on the models [AF06].

The tests on shape retrieval are performed mainly on the 280 triangle meshes classified in 14

classes of 20 models used in [BGM+06] and the benckmark of 400 triangle meshes used for

the Watertight Track of SHREC (SHape REtrieval Contest) 2007 [GBP07]. In addition we

have collected on the web and eventually remeshed 190 CAD models and created 160 object

scenes.

The original models of our database were collected from several web repositories. Several

models belong to the AIM@SHAPE repository [aim], the Princeton Shape Benchmark [pri],

the 3D Cafe [3dc] web repository of 3D media, while several human models in different

poses come from the CAESAR Data Samples [cae]. Most of the CAD models come from

the National Design Repository at Drexel University [dre]. Moreover, we have downloaded

the McGill 3D Shape Benchmark [mcg] that offers about 420 surface and volume models,

classified in 19 classes.

4.1.1 Shape retrieval using high dimensional size functions

In this Section we use our database to compare the retrieval performance of the approach

proposed, with respect to three popular shape descriptors, namely the spherical harmonic

descriptor1 [KFR03], the view-based approach2 [COTS03] and the Multiresolution Reeb

graph [HSKK01].

The results about size functions reported in this Section are obtained selecting, during a

training phase, the most performing combination of features (mapping functions f and

measuring functions ϕ) to compute the size graph (Gf , ϕ). The training phase has been

performed using a smaller (20 items) database, containing a fraction of the models currently

used as well as some additional models. The performance of different combinations has been

evaluated in terms of the area of the region below the precision–recall curve, considering that

larger areas indicate better results. In particular, the most performing pair (Gf , ϕ) is ob-

tained when f is the integral geodesic distance, and ϕ the minimum radius rmin (see Section

3.2.1). Some comparative results are summarized in Figure 4.1. An intuitive explanation

for these results is that the integral geodesic distance is suitable to deal with articulated

objects, while the minimum radius of the surface regions provides an informative description

of the local object shape, which is also stable to small perturbations.

1http://www.cs.jhu.edu/ misha/
2http://3d.csie.ntu.edu.tw/ dynamic/3DRetrieval/index.html
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Figure 4.1: Precision-recall diagrams on the training dataset, involving different SG representations and
attributes. (a) The mapping function to extract the centerline is the normalized integral geodesic distance
[HSKK01]; the measuring function varies in a set of four attributes. (b) The mapping functions varies, while
the measuring function is always the minimum radius of a region.

In what follows, we show some results on both the whole database and the single classes.

As a first performance parameter, we consider percentage recall. For a given number N ,

this parameter corresponds to the percentage of models in the same class of the query

retrieved within the first N items. In particular, the recall histogram in Figure 4.2 are

obtained computing percentage recall for the rank thresholds N = 10, 20, . . . , 120. Results

are averaged over the whole database, and indicate that almost 80% of relevant items are

retrieved within top 25% of the database (that is, within the first 30 models; remember that

each class contains 20 elements). Moreover, in many cases the values obtained using size

functions appears shifted up in the histogram, in comparison with respect to competitors,

meaning a better performance.

Figure 4.3 (a) compares the average rank for the whole database obtained using size functions

with the values obtained by the other techniques. The average rank is obtained by running

each model of the database as a query and computing the retrieval rank of all members in

the class of the query. The value obtained with size functions is the lowest one; notice that

for this indicator lower values indicate better performance.

Another measure we use to assess the retrieval performance is the last place ranking, defined

in [EBG98] as

Ln = 1 − Rankl − n

N − n
,

where Rankl indicates the rank at which the last relevant object is found, n is the number of

relevant items and N is the size of the whole collection. The values computed are reported
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Figure 4.2: Comparison with existing retrieval methods. Recall histograms: the values are averaged on the
whole database.

in Figure 4.3 (b). This measure gives an estimate of the number of items retrieved a user has

to search in order to have a reasonable expectation of finding all relevant items. The higher

this measure within the interval [0, 1], the lower the number of items to check, meaning

better results.

Finally, Figure 4.4 shows the standard precision–recall diagrams computed over the 5 classes

in the database. The curves with different colors correspond to the different techniques we

have tested. Remember that curves shifted upwards and to the right indicate a superior

retrieval performance. For example, it is worth noticing the good performance realized by

size functions for the classes of humans and glasses. These articulated models are well

suited to enhance the features of our method, since the object in these classes share a

common structure both for connectivity (e.g. a head, two arms and two legs for humans)

and attributes (large sections near the barycenter, smaller ones for protrusions). The worst

performance is realized when dealing with the class of animals with four limbs. The reason

is that the models in this class are very heterogeneous. Our method takes into account,

besides the structural properties – having four limbs – also the geometrical properties of

the shape, which show too strong variations. In this particular case, better results could be

obtained by considering a finer level of classification, rather than a basic one.

4.1.1.1 Multi-dimensional size functions

Multi-dimensional size functions have been effectively applied to 2D and 3D triangulations

and binary images. Given a model Γ represented by the geometric realization of a simplicial
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(a) (b)

Figure 4.3: Comparison with existing retrieval methods. (a) average rank and (c) last place ranking.

complex D of arbitrary dimension n, and a piecewise linear map ~ϕ : Γ → R
k, we consider

the size pair (Γ, ~ϕ). Similarly, we consider also the size pair of a binary image with respect

to a piecewise linear function.

Once the size pair has been identified, the proposed reduction of k-dimensional size func-

tions to the 1-dimensional case allows us to use the existing framework for computing 1-

dimensional size functions, see discussion in Section 3.2.2. In the application of the multi-

dimensional size function framework to surfaces and volumes the size graph is

To effectively compute k-dimensional size functions, we have adapted the algorithm in

[d’A00] to the half-planes of the foliation. In particular, for each half-plane we extract

a size graph, i.e. an attributed graph, where each vertex is labelled by a real number.

For the simplicial case, our input is given by the 1-skeleton of the complex X, with the

nodes labelled by the values of the restriction of ~ϕ on the vertices of the complex; notice

that, due to the piecewise linear nature of ~ϕ, the size function of the geometric realization

of the 1-skeleton coincides with the size function of the original size pair (|X|, ~ϕ).

In case of digital spaces, the size graph corresponds to the graph used to encode the binary

image. Similarly to the simplicial case, the node labels given in input correspond to the

restriction function ~ϕ over the vertices of the graph. Depending on the number of neighbors

that may be adjacent to a point, the connectivity (i.e. the number of edges) of the size graph

depends on the number of neighbors that are admitted to be adjacent to a point in a 2D

image (i.e., 8-, 6- or 4- neighborhoods) or 3D image (e.g., 6-, 18- or 26-neighborhoods).
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Figure 4.4: Precision-recall diagrams for the different classes in our database.
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Evaluating the k-dimensional size function over a subset A ⊆ Admk of half-planes whose

cardinality is λ means that we extract λ 1-dimensional size functions, i.e., one for each

half-plane of the foliation. Therefore, the computational complexity for evaluating the k-

dimensional size function over λ half-planes is O(λ · (n log n + m · α(2m + n, n)))3, where

n and m are the number of vertices and edges in the size graph, respectively, and α is the

inverse of the Ackermann function [Ack28].

Denoting d(ℓ
(Γ,F ~ϕ

(~l,~b)
)
, ℓ

(Γ′,F
~ψ

(~l,~b)
)
) the (matching) distance [dFL05] between the 1SF’s ℓ

(Γ,F ~ϕ
(~l,~b)

)

and ℓ
(Γ′,F

~ψ

(~l,~b)
)

induced by the related representations by formal series, the distance between

two kSF’s ℓ(Γ,~ϕ), ℓ(Γ′, ~ψ) can be defined as:

D(ℓ(Γ,~ϕ), ℓ(Γ′, ~ψ)
) = sup

(~l,~b)∈Admk
min

i=1,...,k
li · d(ℓ

(Γ,F ~ϕ
(~l,~b)

)
, ℓ

(Γ′,F
~ψ

(~l,~b)
)
).

Similarly to the approach adopted to compute k-dimensional size functions, the computa-

tion of the multi-dimensional matching distance easily follows from the computation of the

1-dimensional matching distance over the set A of half-planes. Since the computational com-

plexity for computing the 1-dimensional matching distance in a single half-plane is O(p2.5),

with p the number of cornerpoints taken into account for the comparison, it follows that

computing the k-dimensional matching distance between two k-dimensional size functions

requires O(λ · (p2.5 + k)) operations.

Two types of 2-dimensional measuring functions have been considered in our experiments.

First we have defined a 2-dimensional measuring function extending to triangle meshes and

to the multi-dimensional case the reasonings in [LF02], where complete families of invariant

1-dimensional measuring functions are introduced. For a given triangle mesh of vertices

{P1, . . . , Pn} we compute the barycenter B = 1
n

∑n
i=1 Pi, and normalize the model so that

it is contained in a unit sphere. We then define a vector

~v =

∑n
i=1(Pi − B)||Pi − B||2

∑n
i=1 ||Pi − B||3 .

A parametric family of real-valued functions can be defined by setting, for each point Pi and

for each α ∈ R

ϕα(Pi) = 1 − ||Pi − (B + α~v)||
maxj ||Pj − (B + α~v)|| .

We can now set:

~ϕ(α1,α2)(Pi) = (ϕα1(Pi), ϕα2(Pi))

with α1, α2 ∈ R, i = 1 . . . n. The 2-dimensional measuring function we used in the experi-

ments shown in Table 4.1 is ~ϕ = ~ϕ(1,−1).

3We recall from Section 2.3.1.2 that the computational complexity of the size function computation is
O(n log n + m · α(2m + n, n))
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It is worth noticing that the 2-dimensional measuring functions ~ϕ(α1,α2) are invariant with

respect to translation and rotation. Moreover, ~ϕ(α1,α2) is well defined also if, for simmetry

reasons, ~v is the null vector. In this case the function ϕα coincides with the distance from

the baricenter for each value of the parameter α ∈ R. The invariance with respect to scale

comes from the a priori normalization of the model.

We choose the foliation of R
2×R

2 in half-planes π
(~l,~b)

, where ~l = (cos θ, sin θ) with θ ∈ (0, π2 ),

and~b = (a,−a) with a ∈ R. In the examples, we consider the set A = {(~li,~b), i = 1, . . . , 17}
of admissible pairs, where li = (cos θi, sin θi) with θi = π

36 i, i = 1, . . . , 17, and ~b = (0, 0). For

each half-plane πi identified by (~li,~b) ∈ A, we compute the 1-dimensional measuring function

F ~ϕ

(~li,~b)
defined in Theorem 3.2.1.

The values reported in Table 4.1 confirm the higher discriminatory power of 2-dimensional

size functions with respect to the 1-dimensional case. Each cell of the table provides two

values. The first one is the value of the 2-dimensional matching distance between the cor-

responding models. The second one is obtained computing the 1-dimensional matching dis-

tance between the 1-dimensional size functions associated to the 1-dimensional measuring

functions ϕ1 and ϕ−1, and taking the maximum value. For all the models in the dataset, the

2-dimensional matching distance produces a better lower bound for the 2-dimensional natu-

ral pseudo-distance (cfr. Theorem ). In other words, this example confirms that comparing

2-dimensional size functions furnishes a better approximation of the 2-dimensional natural

pseudo-distance, with respect to comparing the single 1-dimensional measuring functions cor-

responding to the components of ϕ. Notice also that the values related to the 1-dimensional

matching distance are each other very close, up to the considered number of digits, thus

revealing a lower discriminatory power with respect to their concurrent use.

To perform shape retrieval experiments, we have selected a bi-dimensional measuring func-

tion ~ϕ = (ϕ1, ϕ2) that does not belong to the family previously discussed. Here ϕ1 is a

normalized Euclidean distance from the barycenter of the model, and ϕ2 is a normalization

of the the averaged geodesic distance proposed in [HSKK01]. More formally,

ϕ1(v) = 1 − | v − B |E
ϕ1M

,

where B denotes the barycenter of the mesh and ϕ1M = maxvi∈V | vi − B |E ; and

ϕ2(v) = 1 −
∑

i g(v, bi) · area(bi)

ϕ2M
,

where g represents the geodesic distance, {bi} = {b0, . . . , bk} is an almost uniform sampling

of the vertices of the mesh, area(bi) is the area of the neighborhood of bi and ϕ2M =

maxvj∈V
∑

i g(vj , bi) · area(bi).

In Figure 4.6 we depict the 2-dimensional size functions obtained combining ϕ1 and ϕ2,

restricted to three different half-planes of the foliation A. From left to right, for each model,
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Table 4.1: Distances between models: the 2-dimensional matching distance between the 2-dimensional size
functions associated to ~ϕ(1,−1) (top value) and the maximum between the 1-dimensional matching distances
associated to the 1-dimensional measuring functions ϕ1 and ϕ−1 (bottom).

we represent the 1SF’s that correspond to ~b = 0 and values of the angle θ of π
12 , π

4 , and 5π
12

respectively. Each row in the Figure 4.6 depicts, from left to right, a model and its 1SF asso-

ciated to the three half-planes defined above. Observing the first two rows, we can notice how

the same structure in size functions corresponds to the similarity between shapes. Indeed,

the size functions of the two human models are each other very similar, while those of the

third object are quite different. Moreover, these size functions homogeneously evolve over

the half-planes of the foliation. Indeed the shape information conveyed by the multivalued

measuring functions is distributed over the different half-planes. This means that the simi-

larity (or dissimilarity) between objects can be evaluated by concurrently analyzing different

shape properties. In other words, what we expect is that the k-dimensional size functions

of similar objects are close one to the other over the whole foliation, thus guaranteeing also

robustness with respect to small changes and perturbations of the model. Finally, Figure

4.5 shows that the retrieval performance of the bi-dimensional size function is comparable

with other well known techniques [HSKK01, KFR03].

To analyze 3D binary images, we choose as set A of admissible pairs, the foliation of R
3×R

3
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Figure 4.5: Retrieval performance of our method over a database of 280 models, the MRG [HSKK01] and
the Spherical Harmonics [KFR03].

given by ~li = (cos θ sin φ, sin θ sin φ, cos φ), 0 < θ, φ < π
2 and ~b = (0, 0, 0). In our experiments,

we consider the half-planes identified by a = b = 0 and the following pairs of angles (θ, φ):

{( π12 , π4 ), (π6 , π4 ), (π4 , π12), (π4 , π6 ), (π4 , π4 ), (π4 , π3 ), ( π12 , 5π
12 ), (π3 , π4 ), (5π

12 , π4 )}.

As measuring function we have chosen a 3-dimensional measuring function that respect the

grid orientation of the voxels. In other words, we discriminate the models with respect to

their spatial extent. Thus, denoting B = (Bx, By, Bz) the coordinates of the barycenter of

the model, for each voxel v = (vx, vy, vz) we have considered the 3D measuring function

~ϕ = (ϕx, ϕy, ϕz), where:






ϕx = − | vx − Bx |E
ϕy = − | vy − By |E
ϕz = − | vz − Bz |E .

Table 4.2 highlights how also for 3D images the matching distance obtained over the half-

planes of the foliations using more than one function improves the lower bound approxima-

tion of the natural pseudo-distance. We notice that the results contained in the fifth row of

Table 4.2 provide the best approximation, over 9 half-planes selected in the foliation, of the

k-dimensional matching distance.

in Sect. 3.2.2. The distances between six different objects in our database (two spiders,

two cups and two manufactured models) are reported. These results are obtained using
~l = (

√
3

3 ,
√

3
3 ,

√
3

3 ) and ~b = (0, 0, 0) as naive parameters to define an half-plane of R
3 × R

3.

As expected, the comparison framework satisfies the identity property, guaranteeing that a

model has a null distance from itself. In addition, the distance between two models in the



130 Applications and Results

θ = π
4 , φ = π

4 0.1337 0.7593

θ = π
4 , φ = π

12 0.1336 0.7592

θ = π
12 , φ = π

4 0.2198 0.4741

average over 9 half-planes 0.1359 0.5449

maximum over 9 half-planes 0.2198 0.7593

ϕx 0.0782 0.2543

ϕy 0.1151 0.3481

ϕz 0.0712 0.0963

Table 4.2: Multidimensional and 1-dimensional matching distance between an airplane and another airplane
(first column) or a chair model (second column). The first three rows refer to the multidimensional matching
distance using 3 different singular half-planes of the foliation, the fourth and fifth row yield the average
and the maximum value of the multidimensional matching distance using 9 planes, and the last three rows
represent the 1-dimensional matching distance using the single components of ~f .

same class is significantly smaller than the distance between objects belonging to different

classes (e.g. a spider and a manufactured model). We remark here that these distances

may be used to rank the results of database queries and aggregate the models that share

analogous properties, although they cannot be interpreted as ”absolute” values, due to their

dependence from the values of the measuring function and the foliation plane.

Finally, we show how the synergy of more shape properties, analyzed by means of multidi-

mensional measuring functions, improves the recognition of the elements of a class. Figure

4.7 exhibits what happens when ϕx, ϕy, ϕz and ~ϕ = ϕxyz are considered, either ϕx, ϕy,

ϕz alone as 1-dimensional measuring functions (first three columns), or combined in a 3-

dimensional measuring function ~ϕ (last column). In addition, we compare the performance

of ~ϕ with respect to a 1-dimensional measuring function which is independent of the spatial

embedding, namely the distance from the barycenter (ϕ1). In the columns of Figure 4.7 we

rank the firstly retrieved items in the 3D image database [mcg], when the query is the model

on the top row. It can be seen that the performance of ~ϕ improves the retrieval results,

diminishing the number of false positives. These results show that the k-dimensional size

functions are promising, and we foresee their usage for retrieval of multidimensional digital

shapes.

One of the attractive features of our approach is its flexibility, due to its geometric-topological

nature and its capability to produce results which reflect human perception, by choosing the

shape descriptors in a suitable way. In fact, the core idea of our method is the analysis of

properties of real functions describing the shape under study. Real functions are involved

for both the extraction of the Shape Graphs and the definition of the set of measuring

functions, which serve for the computation of size functions. The role of the real functions
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0.00 1.59 7.77 7.77 23.54 23.99

1.59 0.00 7.77 7.77 24.71 25.15

7.77 7.77 0.00 3.42 22.63 23.08

7.77 7.77 3.42 0.00 20.07 20.51

23.54 24.71 22.63 20.07 0.00 1.25

23.99 25.15 23.08 20.51 1.25 0.00

Table 4.3: Matching distances between six different models in our database over a single plane of a foliation.
Computing 420 × 420 comparisons between the models in the database requires 9.68s.

θ = π
12 θ = π

4 θ = 11π
12
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) and ~b = (0, 0).
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Figure 4.7: Top retrieval results when four single measuring functions and the 3-dimensional size function
that combines ϕx , ϕy and ϕz are used. Results are depicted in every column in increasing order of distance
from the first model.

is to take into account only the shape properties of the object which are relevant to the

problem at hand, while disregarding the irrelevant ones, as well as to impose the desired

invariance properties. Indeed, imposing invariance with respect to a transformation group

simply means requiring the mapping and measuring functions to be invariant with respect

to that group. Therefore, the added value of this approach to shape analysis relies on the

possibility of adopting different functions as shape descriptors, according to the properties

and invariants that one wishes to capture. When changing the functions, the resulting

configurations can give insights on the shape from different perspectives. As a first example,

if we aim to distinguish different positions in space, we should use mapping and measuring

functions which emphasize the spatial distribution of the object shape, for example the

distance from the barycenter, and the distances from the points on the bounding boxes.

In Figure 4.8 (a) we see that, when searching for a standing-up human among the human

models, their use produces a query response consisting of standing-up humans sharing a

similar pose. Otherwise, if our idea is to put more emphasis, for example, on the “fatness”

of the model rather than on its spatial pose, we can run the system selecting the region area

as the measuring function. The results can be seen in Figure 4.8 (b), where the same query

as before, a fat man, returns a fat man as the closer model, followed by a series of males.

On the contrary, if we are interested in retrieving models showing a variety of poses, the

integral geodesic distance reveals to be the best choice for the mapping function, since the

centerline representation based on the integral geodesic distance does not distinguish, e.g.,

straight legs from legs with bent knees (see Figure 4.8 (c) where the measuring function is
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rav). Finally, in Figure 4.8 (d) the search for a pig in the class of animals with respect to the

topological distance from curvature extrema and rmax produces a response that reflects both

topological and geometric properties, according to perceptual similarity among the animals.

Query 1st match 2nd match 3rd match 4th match 5th match

(a)

(b)

(c)

(d)

Figure 4.8: Query results according to different choices of the mapping and the measuring functions. (a)
Emphasis on the spatial position, using f1 and ϕP5,P6

; (b) emphasis on the fatness, with f1 and the area

of the regions; (c) humans in different poses are recognized, using f3 and rav; (d) results on the class of
four-limbs reflecting perceptual similarity, obtained by f4 and rmax.

These results suggest that our approach could also be used as either a finer tool, after a rough

filter has been used, or an instrument to refine queries in a retrieval pipeline, according to

the user needs. The idea is that the interaction between the user and the system would allow

tailoring the system response to the precise shape domain a user has in mind. This may

be particularly true when considering our approach. While, in general, it may be difficult

for the user to select the best combination of features to reach his goal, using our technique

allows him to readily indicate the shape idea he has in mind, through the selection of a

set of a features (i.e., mapping and measuring functions), which have a clear and intuitive

geometric (and perceptual) significance.
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4.1.2 Sub-part correspondence

The application of the shape graph to database retrieval has been discussed in the context

of CAD models in [BM05]. The decomposition into significant regions induced by the SG

defines a structural description of the shape, which is coupled with an error-correcting sub-

graph isomorphism to build up a shape retrieval system. In particular, the proposed graph

matching framework makes it possible to plug in heuristics for tuning the algorithm to the

specific application and for achieving different approximations to the optimal solution. In

[BMSF06] we discuss a method for measuring the similarity and recognizing sub-part cor-

respondences of 3D shapes, based on the coupling of a structural descriptor, like the SG,

with a geometric descriptor, like spherical harmonics. In the same paper it is discussed how

a structure-based matching can improve the retrieval performance in terms of both func-

tionalities supported (i.e., partial and sub-part correspondences) and the variety of shape

descriptions that can be used to tune the retrieval with respect to the context of application.

As described in Section 3.1.1.2, the structural descriptor captures the relevant parts of the

models and encodes them as nodes and edges of a graph. A uniform subdivision of the

function image, [fmin, fmax], is considered and the contour levels are inserted in correspon-

dence of these function values. In particular the number of intervals in [fmin, fmax] is named

resolution of the graph. The graphs associated to two objects are compared through the

algorithm described in [BMSF06] and the correspondence between the nodes and edges that

represent the common sub-graph is found. The common sub-graph (may be not connected)

identifies the sub-parts of the objects that are similar, while the parts of the graphs that do

not belong to the common sub-graph highlight the dissimilarities between the two models.

The following convention is adopted to show the results: the sub-part correspondence be-

tween two models is represented by coloring the matched sub-part of each model with the

same color, and different colors represent different connected components of the common

sub-graph. When the common sub-graph corresponds to the whole graph of both the com-

pared graphs, the color associated to each node reproduces the matched sub-parts of the

two models as shown in figure 4.9.

We now provide and discuss some experimental results. Even if the partial matching frame-

work we have proposed applies to generic 3D shapes, the experiments here proposed are

mainly focused on the behavior of the descriptor and the comparison method on manu-

factered models. The experiments have been performed on about 250 models, collected

into several web repositories. About 190 models, which comes from the National Design

Repository at Drexel University [dre], have been uniformly remeshed to perform an accurate

evaluation of the geodesic function. Other manufactured models have been considered from

the AIMSHAPE repository [aim], from the Image-based 3D Models Archive [tsi] and the

Princeton Shape Benchmark [pri]. Moreover, we have selected four classes: glasses, chairs,

cups and tables of the database at the McGill 3D Shape Benchmark [mcg]. Since the orig-

inal models were “voxelized” and seemed too rough, we smoothed them using a Laplacian
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(a) (b) (c)

Figure 4.9: The two models and their graphs (a). The node correspondence is represented by nodes with
the same color (b), and by regions of the same color.

smoothing. Finally, to uniform the size of the models and make the results independent of

scale operations, we uniformly scaled every model in a cube, centered in the origin of the

Cartesian coordinates, whose edge length is two.

The experiments proposed in the following are performed and discussed for both sub-part

correspondence and partial matching. The coupling of geometry and structure used by our

descriptor naturally focuses on the partial matching problem; nevertheless the same method

may be used for global matching proposed, like mentioned at the end of this Section. We

emphasizes that our matching framework performs most of the operations in a off-line pre-

processing step and only search queries are computed on-line.

When discussing on partial matching, an important issue is how to evaluate the performance

of the method. In fact, similar parts may belong to totally different models that belong to

different families and also these cases must be recognized. These considerations highlight

that precision-recall diagrams are not as significant as for the global matching problem.

In figure 4.10 the performance of the method for detecting the sub-part correspondence is

tested. Although the overall shape of the models 4.10(a) and 4.10(b) (resp. 4.10(c) and

4.10(d)) is similar, the models differ for some small geometric details: the tips of 4.10(a)

are rounded, while in 4.10(b) are squared; and the slots in the upper part of 4.10(c) differ

from that of 4.10(d). In both cases, the partial matching process correctly recognizes the

correspondence among similar sub-parts (light blue), while if some shape features have no

correspondence in the other models, they are not mapped at all, as shown by the grey parts

of the figure 4.10.

In figure 4.9 other two models with the same overall shape are shown. The models and

their structural descriptors are shown in figure 4.9(a). The correspondence between the two

graphs and the relative node mapping are shown in figure 4.9(b). Similar sub-parts of the
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(a) (b) (c) (d)

Figure 4.10: The sub-part correspondence between the models (a) and (b) is shown associating the same
color to regions that are matched. Regions in grey are not matched. Similar results for (c) and (d).

two models are in figure 4.9(c). The differences between the two models are minimal but

the two graphs describing them have an isomorphic structure. In this case the sub-parts

corresponding to the nodes c and c1 as well as d and d1 are mapped even if they have

small differences, but these differences can be recognized looking at the dissimilarity values,

provided by the algorithm:

a −→ a1 : 0.0308798
b −→ b1 : 0.0131474
c −→ c1 : 0.0559334
d −→ d1 : 0.0988876
e −→ e1 : 0.146666

(4.1)

From (4.1) it is easy to perceive that the most dissimilar sub-parts correspond to the node

pairs e −→ e1 and d −→ d1.

Even though the global characteristic are analogous, the main difference between the two

models shown in the figures 4.11 concern the two small holes in the rear part of 4.11(b) that

are not present in 4.11(a). The comparison process recognizes the presence of the two holes

and highlights the difference between the two models (figure 4.11(c)). The grey part (not

colored) in the right part of figure 4.11(c) identifies the sub-part of 4.11(b) that is not mapped

with any sub-part of 4.11(a). The comparison process between the two structural descriptors

produces a non connected common sub-graph made of two connected components separated

by the non matched sub-part (in grey). In figure 4.11(c), the two connected components are

shown with different colors (blue and green).

Other examples are shown in figure 4.12. In 4.12(a) it is highlighted how the front and

the back parts of two chairs correspond, while colors in figure 4.12(b) show the sub-part

correspondence of two articulated models whose descriptors have the same structure. In
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(a) (b) (c)

Figure 4.11: The model (b) has two small holes on its rear part that do not have any counterpart in the
model (a). A detail of the correspondence between sub-parts the two models is shown in (c): the grey region
identifies the difference between the two models.

figure 4.12(c) two hands (hand-273k and hand-3k) are compared. The different number

of triangles in the two models (see table 3.1) is the cause of the lack of correspondence

between the palm and the rest of the hand. Finally, figure 4.12(d) represents the subpart

correspondence of model representing a woman in three different poses.

An example of partial correspondence among models having different overall appearance is

given in figure 4.13. In this case the models differ both in structure and geometry but they

have similar sub-parts: even if the two big protrusions are not similar from a geometric

point of view they have similar structure. The coupling of geometry and structure pursued

by our algorithm correctly map these sub-parts. On the contrary, the central parts of the

models are different both in structure and geometry, thus they are not recognized as similar

sub-parts.

Once the similar sub-parts have been recognized, the node mapping between the two struc-

tural descriptors automatically provides a way for mapping the model sub-parts associated

to the graph nodes. In figure 4.14(a) the two models of figure 4.13 are shown along with their

graphs, while in figure 4.14(b) the two graphs has been matched and the node and edge cor-

respondence is represented. According with such a correspondence, the figure 4.14(c) shows

the more detailed sub-part correspondence.

Figure 4.15 shows two examples where a whole model is a sub-part of another one. Even

if the two shapes of 4.15(a) and 4.15(b) are dissimilar, the elongated part shown in 4.15(b)

is correctly recognized as sub-part of the model 4.15(a), because the structural descriptor

of 4.15(a) correctly characterizes both the geometry and the structure of the sub-part that

identifies the long part of the screwdriver. The same happens for the models 4.15(c) and

4.15(d). In this case, the sub-part containing the four holes of the model 4.15(c) is not

mapped to any part of the model 4.15(d). The detail highlighted in the square (figure

4.15(c)), shows that the topology is preserved and the holes do not belong to the shape

correspondence.

Other examples concerning the sub-part correspondence between 3D models are shown in
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(a) (b)

(c) (d)

Figure 4.12: Correspondence between the sub-parts of two chairs (a), two glasses (b), two hands (c) and a
human model in three different poses (d).

Figure 4.13: The correspondence between the sub-parts of the two models is highlighted by the color.

figure 4.16. The cubes in figure 4.16(a) have two blind-holes with different shape and the

structural descriptor encodes these differences and the comparing algorithm highlights them;

the left model in 4.16(b) has a deep squared pocket on one of its faces, while the blend

region in the two models in 4.16(c) significantly differ. In both the cases the similar and the

dissimilar sub-parts are correctly recognized. The two springs of figure 4.16(d) have different

spatial distribution but the structure is the same, as well as models in 4.16(e), 4.16(f) and

4.16(g). The models in 4.16(h) have the same structure but the sub-parts have different

proportion. This produces a difference both in structure and in geometry.
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(a) (b) (c)

Figure 4.14: Two models are shown together with their graphs (a). The correspondence between the two
graphs is represented by nodes with the same colors (b). The node correspondence between the two graphs
is reproduced on the two models, respecting the colors associated to the nodes (c).

(a) (b) (c) (d)

Figure 4.15: The models (b) and (d) are recognzed as sub-parts of the models (a) and (c) respectively.

Finally, we report the results of our Shape Graph on the Partial Matching Track over Wa-

tertight Models of the SHape REtrieval Context 2007 [MBP07]. The dataset used in the

experiments consists of 400 closed, manifold triangle meshes grouped into 20 classes made

of 20 objects, see Figure 4.17.

A set of 30 query models has been built combining subparts of models belonging to the

dataset.The whole set of queries is shown in Figure 4.18. To evaluate the performance of a

method, a set of highly relevant, marginally relevant and non-relevant models belonging to

the dataset has been associated to each query model.

As performance indicator we adopt the Normalized Discounted Cumulated Gain vector

(NDCG), [JK02]. The computation of the NDCG is based on a gain vector, which is ob-

tained by the ranked list where the model’s identifiers are substituted with their ‘’relevance

scores’‘ and where the relevance scores depend on the definition of the ground-truth. In our

implementation, the weights of highly relevant, marginally relevant and non-relevant models

are 2, 1 and 0 respectively. Then, a Discounted Cumulated Gain, (DCG) vector is recursively

defined as:
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.16: Some examples of partial correspondences.

DCG[i] =

{
G[i] if i = 1,
DCG[i − 1] + (G[i]/ log i) otherwise,

where G[i] represents the value of the gain vector at the position i. The normalized dis-



4.1 Shape Matching and Retrieval 141

Figure 4.17: (a) SHREC database, containing 400 models divided into 20 classes. Each row represents a
class of objects.
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

Figure 4.18: The set of queries . Each query is obtained by composing sub-parts of objects belonging to
the dataset.

counted cumulated gain vector NDCG is obtained by dividing DCG by the ideal cumulated

gain vector, see [JK02] for details.

Figure 4.19 shows the overall performance of our method against the partial matching ap-

proach proposed by Cornea et al. in [CSM07].

Each algorithm has been executed with two different setting of parameters: Cornea 1 and

Cornea 2 for the algorithm described in [CSM07] and SG 1 and SG 2 for the algorithm

described in [BMSF06]. In Figure 4.19(a) only the highly relevant models are considered,

while in Figure 4.19(b) both highly relevant and marginally relevant models are considered.

The diagrams are obtained by averaging the NDCG obtained for each query.

4.1.3 Scene comparison

The SG has been adopted to compare also sets of 3D objects and results have been shown in

two databases of 80 3D scenes, respectively made of 2 and 3 objects [PBF07b]. As described

in Section 3.1.2, the SGs of the objects in a scene are grouped in a scene graph obtained by

connecting each SG to a virtual node and the distance between two scene graphs is defined as

a measure on the graph spectrum. The models are taken from the AIM@SHAPE repository

[aim], the CAESAR Data Samples [cae], and the McGill 3D Shape Benchmark [mcg] .

To measure the invariant features of the graphs, Wilson et at. [WHL05] consider the set of

elementary symmetric polynomials: Sj(v1, . . . , vn) =
∑

i1<···<ij vi1vi2 · · · vij , j = 1, . . . , n.
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(a) (b)

Figure 4.19: Normalized Discount Cumulated Gain considering only highly relevant models (a) and both
highly relevant and marginally relevant models (b).

A feature vector of G is defined as the matrix B such that:

B = (f1,1, . . . , f1,n, . . . , fn,1, . . . , fn,n)
t

where fi,j = sign(Sj(Φ1,i, . . . ,Φn,i)) ln(1 + |Sj(Φ1,i, . . . ,Φn,i)|) are elements of a matrix

F = (fi,j)i,j=1,...,n.

Then, the distance between two graphs G1, G2 whose feature vectors Bi, i = 1, 2, are known,

is defined by:

d(G1, G2) = ‖B1 −B2‖ . (4.2)

We have modified the distance 4.2 to deal with the Laplacian matrix that represents a set

of SGs built according to the rules explained in Section 3.1.2. In particular to compare two

scene graphs (for simplicity we still denotes the graph as Gf
1 and Gf

2), we introduce a new

distance:

D(G1, G2) :=
∣
∣‖B1‖2 − ‖B2‖2

∣
∣ . (4.3)

D is a pseudo-metric: it satisfies positivity, symmetry and triangle inequality; identity is

not verified (D(G1, G2) = 0 ; G1 ≃ G2). Between D in (4.3) and d in (4.2) the following

relation holds:

D(G1, G2) =
∣
∣‖B1‖2 − ‖B2‖2

∣
∣ ≤ ‖B1 − B2‖2 = d(G1, G2) .
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In our experiments we use a normalized version of (4.3), which is useful to arrange a database

with m sets; let it be ‖Bī‖2 = maxi=1,...,m ‖Bi‖2; then

Dm(G1, G2) =

∣
∣‖B1‖2 − ‖B2‖2

∣
∣

‖Bī‖2
. (4.4)

(4.4) has the same properties of D, that is, it is a pseudo-metric.

Finally, we propose also another normalization of D (see [PBF07a]):

DN (G1, G2) =

∣
∣‖B1‖2 − ‖B2‖2

∣
∣

max(‖B1‖2, ‖B2‖2)
;

DN is a pseudo-semi-metric, that is, it satisfies neither identity nor the triangle inequality,

and it is suitable to compare just two scene graphs. Moreover, if we define dN (G1, G2) =
‖B1−B2‖2

2 max(‖B1‖2,‖B2‖2) as a normalization of (4.2), it follows that DN (G1, G2) ≤ 2dN (G1, G2), and

therefore our measure is a lower bound of the distance proposed in [WHL05].

We discuss now the stability and the robustness of the measures we have introduces. ‖B‖2,

and consequently Dm, is well-conditioned. In fact, it is stable with respect to graph pertur-

bations. For example, if a class of the database used is chosen and each model attribute is

slightly perturbed (1% or 2%), the retrieval performance of the method is unaltered. More-

over, if the distance between a graph and its perturbed one is considered, it happens that

Dm is lower than 0.08 in the 90% of cases.

As far as robustness is concerned, an inherent numerical error appears in computing sym-

metric polynomials, that is Sj(Φ1,i, . . . ,Φn,i) = λ
j
2
i

∑

k1<···<kj Vk1,iVk2,i · · ·Vkj ,i. Actually it

is typical when working with Laplacian matrices that the most significant information on

graphs is related to the first eigenvalues, and a common practice is to eliminate some of

the last ones. In our context, to guarantee coherent results, it is necessary discarding some

eigenvalues: since the last ones are significantly bigger than the previous, a numerical error

appears and distorts results. Since the growth of the matrix spectrum has been shown to be

almost linear ([DBG+06]), the biggest eigenvalues can be automatically removed analysing

the increase of the spectrum and discarding the values that diverge from linearity.

Four different mapping functions f are considered in the scene comparison framework,

namely the distance from the barycenter, the height function (with respect to z axis), the

integral geodesic distance, originally proposed by Hilaga et al. [HSKK01], and the minimum

distance from a source point ([LV99]).

For every node v ∈ V associated to a region R, we use the geometric attributes ϕ(R), namely

the minimum, maximum and average distance of the barycenter of R from the region vertices,

the sum of the lateral areas for each component of R, the sum of BR lengths and the value

of f in every vertex in V . Details on this representation can be found in of Section 3.1.1.1

and [BGSF08a].
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Let us consider two scenes with a human and an animal model (Figure 4.20): they look really

similar, in particular the human model stands up in both scenes. In this case the height

function could be a good compromise between representation and computational efficency.

Scene 1 Scene 2

DN Attributes

0.0122 minimum distance
0.0053 maximum distance
0.0226 average distance
0.0091 sum of the pseudo-cone areas
0.0267 sum of BR lenghts
0.0462 value of f
0.0204 average distance

Figure 4.20: Scenes with a man and a teddy bear: distance values when using height function

The results in Figure 4.20 are consistent with our perception: in fact the biggest distance

is 4.6%, which is a low value for DN . On the contrary, if we chose the height function

with respect to another direction (for example, the x axis), we would not observe similarity

between the two scenes. Similarly, comparing some chairs analysed again through the height

function we obtain the average distances in Figure 4.21. The underlined values refer to the

fallen chair: as we can imagine, these distances are bigger than the others, because the used

function is sensitive to the position of the object in the reference space.

0 0.1959 0.1217 0.1016 0.1293 0.2392

0.1959 0 0.2536 0.1057 0.0763 0.0526

0.1217 0.2536 0 0.1854 0.1969 0.2699

0.1016 0.1057 0.1854 0 0.0344 0.1536

0.1293 0.0763 0.1969 0.0344 0 0.1261

0.2392 0.0526 0.2699 0.1536 0.1261 0

Figure 4.21: Scenes with one chair

We show a simple example to explain how the distance DN behaves when comparing two
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sets of objects ([PBF07a]). The two scenes, and their subscenes, in Figure 4.22 (a) and (b),

are analysed comparing the scene graphs provided by the barycenter distance function. In

the first scene, there is a woman sitting on a chair in front of a table, on which there is a cup,

while in the second one there are a table and a pair of spectacles on it, and next a woman

and a horse. When the sum of the pseudo-cone lateral areas is considered as node attribute,

the distance is DN = 0.2276, which is a quite high result. On the contrary, if we focus on the

woman and the table in both scenes, the distance DN = 0.0074 indicates a possible, maybe

strong similarity. Again, when the table and the cup in (a) are compared with the table and

the spectacles in (b), DN = 0.1617 refers to less similar subscenes. Finally, if we analyze

together the table and the woman in (a) with the table and the horse in (b), DN = 0.0894:

this result is an example of false positive (that is, a false result of similarity), and is probably

due to the fact that the Shape Graph of the chair is structurally similar to that of the horse.

(a) (b)

Figure 4.22: The values of the distance DN between these two scenes is generally high; this means that the
two scenes are not globally similar.

As a further example, we show a retrieval result (Figure 4.23), where the family of scenes with

a chair and a table is re-ordered with respect to the query Q (attribute: average distance of

the barycenter from the region vertices). Since the distances we obtain are those in Figure

4.23(b), then ordering the database with respect to DN we get Figure 4.23(c). This is a

consistent result, because, for example, in the third and fourth scene there is the same table,

which is quite different, being thicker than the other ones.

Let us now observe the four scenes in Figure 4.24: again, they are composed by the same

kind of models, however we can expect a bigger similarity between the third and the fourth,

in which the man has open arms. For every function we report the average distances :

height (h), barycenter distance (b), the minimum distance from a source point (mds) and

the integral geodetic distance (igd).

With respect to every function, the biggest similarity is between the third and the fourth

scene (double-marked square); moreover, leaving igd results out, each distance remains below

13%. As established a posteriori, it seems to be a result of similarity. This example shows us

that the integral geodetic distance cannot guarantee a reliable result, and it is not so suited

for our purpose.
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0.1133 0.0865 0.0308 0.0495

(a) (b)

(c)

Figure 4.23: (a) Query, (b) the database and the distances from Q, and (c) the database ordered according
to the distance

0

0.1028(h)
0.0478(b)

0.0571(mds)
0.2026(igd)

0.0232(h)
0.0817(b)

0.0774(mds)
0.3662(igd)

0.0177(h)
0.0977(b)

0.0903(mds)
0.4292(igd)

0

0.1236(h)
0.0355(b)

0.0715(mds)
0.2120(igd)

0.1187(h)
0.0523(b)

0.0531(mds)
0.2894(igd)

0

0.0111(h)
0.0175(b)

0.0413(mds)
0.1448(igd)

0

Figure 4.24: Scenes with a man and a table

Finally, in Figure 4.25 we show the distances between a chair and a horse whose graphs are

obtained through barycenter distance with respect to every attribute and then the average

distance. This last value is 0.094, which could indicate similarity. Obviously a chair is not

similar to a horse, while their graphs are comparable: it is an example of a so called “false

positive”.

We arrange the experiments in a scene repository as follows: first of all we extract the

descriptors of the scene components, and then estimate the distance between two scenes

using (4.4): the smaller Dm is, the more the two scenes, or better, their structures, are

similar. We have generated and preclassified two databases considering in the same class

two scenes if they have the same number of objects and also the same kind of components

(for example, in a class there are scenes with a human and an animal, in another one a
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0.0987 1st attribute
0.0982 2nd attribute
0.0907 3rd attribute
0.1516 4th attribute
0.0963 5th attribute
0.0282 6th attribute
0.0940 global average

Figure 4.25: A false positive result

human next to a chair). According to these assumptions, Data1 consists of 4 scene classes

each of them with 20 scenes: in the first class there are a table and a chair, in the second a

chair and a human, in the third a table and a human, and in the last a table and a cup. In

Figure 4.26 we present the best precision-recall diagram for each class. This choice is due

to the extremely large possibilities that we have when comparing graphs. In this sense, let

us remember that, in our context, each object graph is described by 3 measuring functions,

and again for each function 10 different attributes are associated to them. Totally, we can

choose among 30 different diagrams, and we show here just the best result, which is the

diagram with the biggest bounded area.

The second database (Data2) is composed by 80 scenes divided in 4 classes, where, respec-

tively, there are a chair, a table and a cup in the first, a chair, a table and a human in the

second, a chair, a table and a teddy bear in the third, and, in the last, a table, a human and

a cup. Again, the best precision-recall diagrams are presented in Figure 4.27.

The diagrams show that the method performs similarly on the two datasets. Moreover,

we can observe that in most of the cases the height function used for extracting graphs is

the most performing, because all the models are oriented (in the Euclidean space) in the

same way; in fact in our experiments we try to deal with scenes from the real world, and

consequently with the same orientation. Finally, it is worth noticing that, in Data2, the

method performs better on the class of scenes with a chair, a table and a human (see Figure

4.27(b)) than the ones with a chair, a table and a cup (see Figure 4.27(d)): this is due to the

fact that human graphs are richer of features (articulations) than cup ones, and consequently

the shape graph of the whole scene is more characteristic, simplifying their identification.

4.2 Shape Classification

We formalize a set of classification rules relying on a dissimilarity-based approach [PDP06],

that is, we build classifiers defined in the dissimilarity measurement space, rather than in
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Figure 4.26: Precision-recall diagrams on the four classes of Data1

the space of feature descriptors. We consider the 1-NN rule and the use of both selective

and creative prototypes.

The framework presented in this Section is general and can be applied to every kind of

descriptor, and the proposed rules are very simple and intuitive. More powerful state-of-

the-art classifiers (SVM, AdaBoost, ...) could have been taken into account, but they are

not included in our study, since our focus is on the evaluation of the shape prototypes

effectiveness. Indeed, the use of simple rules allows to better separate out the influence of

the type of classifier from the actual properties of prototypes, that we want to investigate

on.

Suppose we are given a database D containing n models, which are grouped into m classes of

similar objects. More formally, given a database D = {Mi}, i = 1, . . . , n, the n models are

grouped into m classes Ck, k = 1, . . . ,m, so that Ck 6= φ ∀k,
⋃

k Ck = D and Ck
⋂

Cl = φ

for 1 ≤ k, l ≤ m,k 6= l.
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Figure 4.27: Precision-recall diagrams on the four classes of Data2

We compute for each model Mi its descriptor Si and consider a dissimilarity measure d

between descriptors. The distance d is used to derive a query-to-class membership measure

d̃, so that we classify a query Q by selecting the class Ck which minimizes the membership

measure d̃ between the query and the class. In symbols:

Q 7→ Ck ⇐⇒ Ck = arg min
Ck∈D

d̃(Q,Ck).

We consider a dissimilarity representation of the database D, that is an n × n dissimilarity

matrix ∆D, where each entry ∆D(i, j) = d(Si, Sj) corresponds to the dissimilarity measure

between the shape signatures of the objects Mi and Mj . In addition, we represent a query

model Q by a vector δD(Q) = (q1, . . . , qn), qi = d(SQ, Si), where the vector components

are defined by the dissimilarity measurement between the query and the other objects in

the database. The classification of Q is then performed by invoking classifiers living in the

dissimilarity space, and operating on the dissimilarity vector δD(Q).

We analyze two classification schemes. The first classifier we consider is based on the Nearest
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Neighbor rule. Let N be the set of indices N = {1, . . . , n}, and let Nk, Nk ⊂ N , be the set

of indices corresponding to the models in the class Ck, k = 1, . . . ,m. The distance d̃(Q,Ck)

is defined as the minimum distance between the query descriptor SQ and the descriptors

belonging to Ck:

d̃(Q,Ck) = min
i∈Nk

d(SQ, Si) = min
i∈Nk

qi. (4.5)

The second classification rule we consider takes advantage of the use of shape prototypes,

to be used as representatives of the entire database. In other words, we define a set R of t

shape prototypes {Pi}, i = 1, . . . , t. The cardinality of R satisfies t << n, with n the size

of the entire database. Considering that the prototype extraction can be performed off-line,

this allows to reduce the number of dissimilarity measures to be computed at run-time.

When considering a single prototype Pk for each class Ck, the query Q is classified by

selecting the class Ck which minimizes the membership measure d̃ between the query and

the class, where d̃(Q,Ck) is defined as the distance between the query descriptor SQ and the

prototype representing Ck. In symbols:

d̃(Q,Ck) = d(SQ, Pk). (4.6)

If t > 1 prototypes are considered, we can apply a formula similar to Equation 4.5:

d̃(Q,Ck) = min
i∈Tk

d(SQ, Pi) (4.7)

with Tk, |Tk| = t, the set of indices corresponding to the t prototypes representing the class

Ck.

Prototypes, also known as representatives or templates, can be easily embedded in the

classification framework. We distinguish between selective and creative ones: in the first

case, one or a set of few members of the class are chosen as the best representatives of the

whole class; in the second case, new models, that may not correspond to any member of the

class, are generated as prototypes of the class.

Selective representatives are somewhat linked to the classification rules adopted. For ex-

ample, a criterion is to choose as selective prototype the model Pk for a class Ck whose

dissimilarities values are closer to the average ones.

Informally speaking, we consider a model as a class representative if it is not too distant from

the other objects in the same class, or, in other words, if it is a sufficiently inner model with

respect to its class. More formally, for each descriptor S ∈ Ck, we compute the following

value, that we name eccentricity :

avgCk(M) =

∑

R∈Ck d(S, SR)

|Nk|
(4.8)

with |Nk| the number of elements in the class Ck. Then, we may want to choose as selective

prototypes of a class Ck those maximizing avgCk(.), that is to say inner models. Also,
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(a)

(b)

Figure 4.28: Overview of the classification process when class prototypes are considered.

so-called boundary representatives, that is those maximizing the eccentricity, are interesting

representatives of the class and they can be used with the average ones in order to provide

a more complete summarization of the shape variability within the class (see Section 4.2.2).

Finally, note that selective prototypes can be obtained directly from the dissimilarity matrix

without any interaction with the shape descriptor. One possible methodology for defining

creative prototypes will be presented in the next Section.

The flow of 3D shape classification using shape prototypes is illustrated in Figure 4.28. For

each class, a small set of prototypes is defined: in the example, these are prototypes based on

structural descriptors (Figure 4.28(a)). This phase works off-line and consists of a training

over a pre-classified dataset.

The classification of an unknown object is then done by reasoning only on these subset

of models, thus reducing largely the computational complexity of the classification. The

classification of a new query is done at runtime matching the shape descriptor of the query

against the class prototypes, see Figure 4.28(b). Once the shape prototypes, either selective

or creative, have been extracted for each class Ck, the on-line phase of the classification

pipeline is done using the rules in Equations 4.6 or 4.7.

4.2.1 Creative prototypes using structural descriptors

The adoption of creative prototypes allows for more flexibility in the selection of the features

to be included in the templates. The aim of creative prototypes is indeed to summarize in

a new descriptor the relevant shape features of the members belonging to the same class.

The goal is to identify the underlying information shared by the descriptors representing the

objects in a class, and to be able to code at some extent the semantics needed for classification
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purposes. Structural descriptors are particularly useful to reach this goal, as they provide

a homogeneous and explicit representation of relevant shape features and their adjacency-

based configuration. Structural descriptors are frequently coded using graphs, where nodes

store information about the main parts of the shape and the arcs store the adjacency, or

configuration, of these features. Attributes are also used to augment the description with

more geometric information. Several examples of such descriptors can be found in the

literature, some of which presented in applications to 3D retrieval [TS05, HSKK01] and some

for different applications [KT03, LV99, BMMP03], but in principle usable for classification

as well.

Given two structural descriptors coded as graphs, it is possible use graph matching techniques

to effectively measure their similarity. More precisely, the identification of both common

and different sub-parts, or sub-graphs, can be effectively used to somehow quantify and

specify the reasons for the computed similarities. An example of graph-editing distance was

presented in [BMSF06], which can be applied to directed a-cyclic and attributed graphs and

is based on the identification of the common sub-graphs.

Structural descriptors and graph-editing distances can be coupled to provide a flexible strat-

egy for defining creative prototypes. In the following, we briefly outline the specific method

discussed in the evaluation Section, while we refer to [MSF07] for a detailed description of

the method and a comparison with related methods [JA98, NB05]. The methodology for

creating shape prototypes, extracted by structural descriptions of the shape, is made of two

steps. First, a seed prototype is selected among the shape descriptors of a given class, and

it is matched against the remaining descriptors in the class, using the common sub-graph

method presented in [BMSF06]. For each comparison, the editing operations - i.e., node

or arc deletion and addition, and attribute modification - that characterize the matching

procedure are stored, and they will play a key role in the class prototype extraction. In

the second step, indeed, a subset of these editing operations are selected and applied to

the seed prototype to transform it into a new graph-based descriptor, which captures the

relevant features shared by the members of the class. Notice that the resulting prototype

are still directed a-cyclic and attributed graphs, with possibly many connected components.

Concerning the selection of the seed prototype, different heuristics can be used, like the one

with minimal average distance or the one with maximal eccentricity.

Obviously, the expressiveness of the shape prototype depends also on the expressiveness of

the structural descriptor. In our case, this is the Shape graph (SG) enriched with region-

based geometric attributes described in Section 3.1.1.2 and [BMSF06]. As function f to

drive the SG extraction we adopt the geodesic function [HSKK01] that detects protrusions

and performs well for matching articulated objects in a pose-independent manner.

In Figure 4.29 we show a set of chair models (upper row) with the corresponding SG de-

scriptors (lower row). The prototype generated from the sequence of editing operations is

shown on the right hand side of the Figure. Note that the prototype is still a directed,
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Figure 4.29: A set of models (upper row) and their SG descriptor (lower row) and the class prototype
(rigth).

Figure 4.30: Details on the geometric attributes of the prototype obtained in figure 4.29.

acyclic attributed graph, that summarizes at an abstract level the main characteristics of

the models in the class.

Figure 4.30 shows the attributes, that is the shape parts, associated to the nodes of the

structural prototype. This highlights that the new descriptor is a composition of the elements

that are the most characteristic of the class; indeed, we can notice for instance the rear part

of a chair and its legs.

4.2.2 Evaluation

3D shape classification has been run on the benchmark of 400 models used for the Watertight

Track of SHREC (SHape REtrieval Contest) 2007 [GBP07] shown in Figure 4.17. To the

benchmark of 400 models, we have added a set of 80 models (Figure 4.31) to be used as
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Figure 4.31: 80 models used as queries when evaluting the classification framework.

external queries against the 400 elements of the benchmark. Notice that the 400 objects also

serve to compute the representative models, both selective and creative.

The first performance indicator we compute is the classification rate, that is to say the

percentage of query models which are correctly classified. Secondly, since a membership

measure d̃ provides a ranking for the set of classes, we evaluate the rank at which the right

class of a query is recognized: the smaller the score, out of 20 (i.e. the number of classes

in the database), the better the performance. The results are reported in Table 4.4, that

includes the classification rules formalized in Section 4.2. Position is the average position

of the correct class with respect to the ranking identified by the classifier; for the sake of

completeness, its floating point value is reported, although it should obviously be transformed

into an integer value. A selective prototype is chosen according to the eccentricity parameter

defined in Equation 4.8, and a creative prototype is built following the approach in Section

4.2.1. The results are averaged over the 80 external queries matched against the 400 models

of the database.

1-NN Selective Prototype Creative Prototype

Classification Rate 85% 61% 66%

Position 1.4 2.5 2.2

Table 4.4: Classification rate indicates the percentage of query models which are correctly classified.

The highest values for the classification rate are reached by using the Nearest Neighbor

Rule. This classification scheme allows to obtain a perfect score by considering only the first

2 classes in the system response.

The classification schemes based on the selection or creation of a prototype model show

lower performances, but still convincing, if we consider that the added value of these classi-

fication approaches is that they allow a strong reduction of the number of comparisons to be

performed at run time. An alternative solution to the problem of dimensionality reduction

could be the use of indexing techniques.

The fact that the creative prototype improves the results of the selective members (of about
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8%) indicates that creative prototypes are more suitable than selective ones to exploit the

information contained in a class, encoding a number of distinctive properties shared by the

class they represent. It is possible, indeed, that the information characterizing a class of

models is not entirely collected in a single model or a small subset of models; on the other

side, prototypes are built taking into account all the objects in the class, and are able to

code in a compact way this amount of information.

In order to increase our confidence in this result, we decided to compare the performance

of selective and creative prototypes by varying the size of the training database and the

number of queries. This is indeed an important issue in the evaluation of the classification

performance. In particular, the ratio between the size of the training set and the number of

queries evaluated was put to 380 queries over 100 training elements, 280 over 200, 180 over

300 and 80 over 400. We also evaluated the use of a number grater than one of prototypes

for each class.

Figure 4.32 compares the classification rate obtained by using creative prototypes with the

results obtained by selective prototypes, and also by a set of randomly chosen class proto-

types. The abscissa in the three plots represents the ratio between the size of the training

set and the number of queries evaluated; the starting value corresponds to the experiment

with 380 queries and 100 training elements, while the final value corresponds to the sit-

uation with 80 queries and a training set of 400 models. The plots in Figure 4.32, from

top to bottom, refer to the performance obtained using 1, 2 or 3 representatives per class,

respectively. In particular, in the first and the second case both the selective and creative

prototypes are built selecting the models showing lower eccentricity values (1 model in the

first case, 2 models in the second one). When 3 representatives are selected, we consider the

less, the more and the average eccentrical models. The latter choice is the result of a series

of experiments, not included for space reasons.

The first three graphs show that, when a small number of representatives per class is used,

the performance using the set of creative prototypes significantly improves the classification

performance with respect to selective and random prototypes, confirming the conclusion

derived from Table 4.4. It makes sense to compare the performance of the sets of selective

and creative ones, since their members are selected according to the same criterion related

to eccentricity. The fact that the set of randomly chosen selective models provides the

worst performance is a confirm that the eccentricity is a reasonable parameter to select class

representatives.

According to our results, a small number of prototypes is able to encode class information,

better than selective prototypes do. We consider this result really promising in the direction

of dimensionality reduction and efficiency improvement. The experiments in the following

Section will show the capability of shape prototypes to support fast and reliable shape

retrieval.

We discuss how a good classification scheme is able to improve a shape retrieval system:
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Figure 4.32: Comparison among the classification rates using one element (top), two and three elements
(resp. middle and bottom) per class from selectively and ramdomly chosen representants and our Creative
prototypes. The abscissa is the ratio between the size of the training set and the number of queries.

indeed, if classification is involved as a preliminary step in the retrieval pipeline, it reveals

to be useful to minimize both the number of internal comparisons and the number of false

positive answers.

The retrieval pipeline based on prior classification can be easily illustrated through the exam-

ple in Figure 4.33. Performing retrieval in the classical way yields the results in 4.33(top),

where the top 8 retrieval results for a wolf model are shown with respect to the whole

database. If the query is beforehand classified, the search can be restricted to the top classes

in the classification rank: in this example, we select the first 2 classes returned by the system

(Figure 4.33(middle)), thus considering 40 models instead of 400, i.e. 10% of the original

data. Moreover, Figure 4.33(bottom) shows that prior classification of the query improves

the results of the retrieval process in terms of precision, by discarding some of false positives.

We recall that by false positives we mean items which are judged to be similar to a given



158 Applications and Results

Figure 4.33: Improvement of a query answer when pre-classification is involved in the retrieval pipeline.

query (i,e., that are retrieved within the first items) although they do not represent correct

matches.

The diagram in Figure 4.34 analyzes the improvement of the precision when pre-classification

is involved in the retrieval process. The plotted lines represent the average percentage of

false positives within the first 20 ranked items, plotted against the number of classes taken

into account. More precisely, when a query model is submitted for retrieval, the classes of

the database are ranked according to a given membership measure. An integer p is chosen,

1 ≤ p ≤ 20, and only the models belonging to classes up to the pth-ranked one are allowed

as possible answers to the query. The percentage of false positives over the first 20 retrieved

members is computed and plotted versus the varying number p. The three curves refer to

the different classification methods proposed, namely the 1-NN rule and classifiers based on

selective and creative prototyping.

Figure 4.34 clearly shows how the number of false positives is strongly reduced when pre-

classification is applied and a small number p of classes is considered. Without pre-classifi-

cation, the computed percentage of false positives using SG is 58%. Performing 3D shape

classification allows to obtain a strong reduction of wrong results: in our experiments, the

percentage of false positives is reduced to be 15%, 38.75% and 33.75%, respectively using

the 1-NN rule or choosing a single selective or creative prototype per class. Once again, we

observe that creative prototypes perform better than selective ones, while it is not surprising

the overall good performance of the 1-NN.

It is also interesting to observe the non-linearity of the growth of the plotted curves. Even

if the low values at the very beginning of the plot confirm that a few classes are enough
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Figure 4.34: False positive retrieval results, averaged over 80 queries against 400 models. Value 0.y

means y% percentage of false positives, and is plotted vs the number of classes taken into account after
pre-classification.

to obtain good retrieval results, the behavior of the curve shows that the precision of the

retrieval improves if only the top ranked classes with respect to the query are considered.

Considering a larger number of classes – i.e. enlarging the search to consider up to a 30%

of data models – no longer improves results.

4.3 Best view selection

In this Section, we focus on the quantification and measurement of the visual information

present in an image image of a 3D object with the aim of finding optimal, or nearly-optimal,

views. It should be emphasized that the notion of the goodness of a view may depend on

the particular visual task or application. For example, in an illustrated manual of work

tools, people may prefer views where the tool is drawn in the typical position, as used by

the machine operator. Object recognition tasks performed by a robot may require a totally

different view to achieve best performance. Nonetheless, we believe that there exists some

common basis for all these visual problems.

Answering these questions presents a significant challenge in the field of visualization and

shape understanding. A solution would be useful in several applications such as automatic
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camera positioning in CAD, thumbnail generation for large 3D databases, automatic scene

composition, technical illustration, and object recognition.

In this Section we propose the following methodology: define a view descriptor which attaches

a score to a view of the object, taking into account its visible geometry (Section 4.3.1). Then,

compute the value of this descriptor for a small number of candidate views (Section 4.3.2).

We consider the view with the highest score to be the most informative. We describe a

number of such descriptors, and show how to optimize them efficiently over the viewing

sphere. We compare the views generated by these descriptors and discuss their performance

(Section 4.3.3).

4.3.1 View descriptors

In this section, we describe a number of ways to measure the goodness of a view of an object.

The objective function that measures this is called a view descriptor, and the best view is

that which maximizes this function. Our descriptors are based on the following principles.

The first principle is to exploit an accepted measure of geometric complexity for a 3D shape.

This could be based on various features in the shape, its surface area, its curvature distri-

bution, etc, and is obviously view-independent. The view descriptor would then assign to a

view a score which is the contribution to the complexity from the portion of the shape which

is visible in that view (see Sections on Surface area entropy, Section 4.3.1.1, Visibility ratio

(Section 4.3.1.2) and Curvature entropy, Section 4.3.1.3). In our understanding, we define

as the best view the one that exposes as much of the geometric complexity of the object as

possible.

The second principle is to define descriptors which are based on inherently view-dependent

features [ABM+06]. Examples are object silhouettes and critical points (see Sections Sil-

houette entropy (Section 4.3.1.5) and Topological complexity, Section 4.3.1.6). Here again

we would like to expose as much of these features as possible.

A third principle is to build a descriptor which, instead of assigning values to the primitive

elements of the 3D model (e.g., vertices, faces, and edges), assigns values to larger portions of

the model which have some semantic meaning. Such portions of the model may be obtained

from segmentation algorithms (see Section 4.3.1.7 Surface entropy of semantic parts). This

affords a higher level visual appreciation of the model.

4.3.1.1 Surface area entropy

The first descriptor that we examined measures geometric complexity of an object as its

surface area. Each face is assigned a “probability” — the fraction of its visible projected

area relative to the total visible projected area and the descriptor value is the entropy of this
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Figure 4.35: Four top-ranking (left to right) views among candidate views according to the surface area
entropy descriptor. Black dots indicate a three-quarter view (otherwise it is a normal clustered view).

distribution. We computed these probabilities at image precision by rendering each face with

a distinct colour, and counting the number of pixels of each colour. This is essentially the

“viewpoint entropy” method proposed by Vázquez et al. [VFSH01]. The ranking of some

views by this descriptor are shown in Figure 4.37. In this figure, and those related to the

other descriptors, we restrict our attention to a small number of candidate views generated

by a filtering procedure, as described in Section 4.35.

4.3.1.2 Visibility ratio

A shape descriptor based on surface entropy did not take into account the behavior of the

invisible portions of the surface, so it might prefer a view of the object in which most of its

surface area is occluded. A descriptor which does take this into account is the ratio between

the 3D surface area that is visible in the image, and the total 3D surface area. This seeks to

expose as much of the surface area as possible. The ranking of some views by this descriptor

are shown in Figure 4.36

.
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Figure 4.36: Four top-ranking (left to right) views among candidate views according to the visibility ratio
descriptor.

4.3.1.3 Curvature entropy.

Surface area is a very simple measure of shape complexity. A more sophisticated one, as

proposed by Page et al [PKS+03], is the entropy of the Gaussian curvature distribution

over the entire surface of the object. We define the curvature entropy descriptor to be the

entropy of the curvature distribution over the visible portion of the surface. The curvature

at a vertex v is estimated by the standard angle-deficit approximation, as in [PKS+03]. The

ranking of some views by this descriptor are shown in Figure 4.37.

The previous descriptors were based on view independent measures of shape complexity. We

now define descriptors which are inherently view-dependent.

4.3.1.4 Silhouette length

Silhouettes (sometime called “occluding contours”) seem to provide an accurate and compact

depiction of the shape of a 3D model, and, for this reason, are often used in non-photorealistic

rendering. Silhouettes are also view-dependent. A simple version of this descriptor measures

the total length of all silhouette edges in the image plane. Since this cannot be done reliably

in image space, we computed the visible silhouette edges in object space analytically and
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Figure 4.37: Four top-ranking (left to right) views among candidate views according to the curvature
entropy descriptor. Black dots indicate a three-quarter view (otherwise it is a normal-clustered view).

calculated the length of their projected versions. The ranking of some views by this descriptor

are shown in Figure 4.38.

4.3.1.5 Silhouette entropy

A more sophisticated silhouette-based descriptor uses silhouette entropy instead of total

length, where the entropy of a curve is defined as the entropy of its curvature distribution,

as proposed by Page et al [PKS+03]. In the discrete version, we compute the entropy of all

turning angles between adjacent silhouette edges. In some cases, spurious silhouette edge

crossings can make the result quite unstable. The ranking of some views by this descriptor

are shown in Figure 4.39.

4.3.1.6 Topological complexity

Another approach has been originated by the shape characterization approach adopted to

build the Shape Graph, see Section 3.1. It relevance is due to the fact that the critical

points of a 3D surface are highly informative. So critical points, and more in general the

critical regions that correspond to the SG nodes, may be considered as salient features of

the surface. From the theoretical point of view, if the surface is a smooth, closed surface D
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Figure 4.38: Four top-ranking (left to right) views among candidate views according to the silhouette length
descriptor. Black dots indicate a three-quarter view (otherwise it is a normal-clustered view).

embedded in R
3, we may use the height function hn along any direction n and compute the

number of its critical points (i.e., minima, maxima, and saddles) on D. A classical theorem

from differential topology [Mil63] states that the alternate sum of the number of minima,

maxima, and saddles is constant, and is related to the Euler characteristic χ of D, namely:

maxima − saddles + minima = 2(1 − g) = χ, (4.9)

where g is the genus of D. In particular, the result (4.9) is valid not only for Morse functions

on the surface, but also for piecewise-linear functions [Ban70]. In the computational settings

of our implementation, critical points are replaced by critical areas. As shown in Section 3.1,

under the hypothesis that the contouring approach described in [Bia05] is sufficiently dense,

also critical areas verify an extended version of Equation 4.9. However the total number of

critical points (maxima+saddles+minima) depends on the direction n, this quantity could

be useful for discriminating among different view directions (when used as n). The direction

that maximizes this number seems to be the most informative. Therefore, it can be applied

even if the height function has degenerate critical points. The ranking of some views by this

descriptor are shown in Figure 4.40.
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Figure 4.39: Four top-ranking (left to right) views among candidate views according to the silhouette
entropy descriptor. Black dots indicate a three-quarter view (otherwise it is a normal-clustered view).

4.3.1.7 Surface entropy of semantic parts

It is possible to apply the surface area entropy method to geometric elements larger than

the primitive elements (e.g. vertices, faces) of a 3D mesh. One way to achieve this is

to use semantically important segments of the model. The probability of each segment is

defined to be the visible projected area of this segment relative to the visible projected area

of the entire model. There exist many mesh segmentation algorithms and the descriptor

will depend critically on the segmentation method. In our experiments, we used the method

proposed by Dey et al. [DGG03], which seems to be able to identify parts of the model which

are semantically meaningful (e.g. nose, ears, neck, etc for a head model). The ranking of

some views by this descriptor are shown in Figure 4.41.

4.3.2 Sampling the view space

Given a view descriptor measuring the “goodness” of a view as a function of viewing direc-

tion, the problem is then to find the global, or even local, maximum of this function over

the viewing sphere. Since the search space is a continuum containing an infinite number of

points, we have used two different strategies to reduce the search to an exhaustive search on

a small but reasonable set of candidate views. In this section, we describe two methods to
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Figure 4.40: Four top-ranking (left to right) views among candidate views according to the topological
complexity descriptor. Black dots indicate a three-quarter view (otherwise it is a normal-clustered view).

generate these candidate views.

For many inputs, nature dictates an “up” direction, which should be respected in any view,

certainly in the best one. So, for example, an animal should not be rendered upside down,

rather standing on its feet. Noticing that the best view has a degree of freedom of 2D

rotation in the image plane (since this will not change the value of any of the descriptors),

it is possible to exploit this degree of freedom to cause all views to have the correct 2D

orientation after the optimal view has been computed.

4.3.2.1 Three-quarter views

Palmer et al. [PRC81] experimentally observed the existence of what they call “canonical

views” of an object. These are views that most humans prefer to look at the object from,

and they seem to be quite well defined in practice. Inspired by the structural description

theories, Blanz et al. [BTB99] state that these canonical views are typically “three-quarter

views” of the objects. Gestalt psychologists explain that this is a view where the front, top,

and side of the object are simultaneously visible. This also explains why these views are

preferred by humans: we simply prefer to see simultaneously all three dimensions of the

shape. In particular, Marr [Mar82] states that the object’s “primary axis of elongation”

should be clearly visible.
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Figure 4.41: Four top-ranking (left to right) views among candidate views according to the surface entropy
of semantic parts descriptor. Black dots indicate a three-quarter view (otherwise it is a normal-clustered
view).

We use three-quarter views as candidate views. We start by approximating the shape by

an oriented box, thus establishing a local Cartesian frame defined by the three axes of the

box. Three-quarter views then correspond to the vectors whose components are the eight

combinations of (±1,±1,±1) in this coordinate system. As pointed out by Weinshall and

Werman [WW97], these views are the most stable views of the box approximating the object,

thus hopefully a good approximation for stable views of the object itself.

To compute an approximating box for the object, we use the three principle directions gen-

erated by PCA of the object geometry, relative to the centroid of the point cloud. The PCA

method has some nice properties, such as robustness and stability; furthermore, it has been

successfully used in computer graphics for object matching and aligning and normalization

purposes (e.g., see [ETA00, ETA01]). Finally, we note that the eight vectors are computed

ignoring occlusion, which will be taken into account later by the descriptors.
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4.3.2.2 Normal clustering

Another way to compute candidate views of an object is to detect clusters in the set of vertex

normals. Again we ignore occlusions. This effectively defines the “sides” of the object to

be those directions that a large number of normals point towards. This is motivated by the

assumption that the more the normals point in some direction, the more the object’s surface

is visible from that direction. More precisely, for each vertex v we approximate its unit

normal by averaging the normal vectors of the triangles incident on v; each normal vector

defines a point on the unit sphere (i.e., the Gauss map). Then, we cluster the points on the

unit sphere using an iterative version of PCA [Jol86], thus achieving a set of clusters. An

interesting view is defined as the barycenter of these points (or equivalently, normal vectors)

of each cluster. The resulting view directions seem to be quite stable.

4.3.3 Experimental Results and discussions

To compare the performance of the various descriptors, we applied them to a set of 3D

objects which seem to be representative. For each object we computed a relatively small

number of candidate views based on the two methods described in Section 4.3.2 and for each

such view, computed the value of the various descriptors described in Section 4.3.1, and

ranked them in decreasing order (from left to right), as depicted in Figures 4.35 – 4.41. The

objective was to see whether those views which ranked highest according to some descriptors

were indeed those which are most informative to a human observer.

The three-quarter view and normal clustering sample the view space by considering the

geometry and normals respectively. The main difference between these two methods is the

number of candidates generated. This is constant (i.e., eight) for the first method and

essentially unbounded for the second method. In practice, we choose the 15 to 30 most

significant clusters to emerge from the PCA. Three-quarter views are marked by a black

dot in Figures 4.35 – 4.41. It seems that all the view descriptors prefer mostly the normal

clustered views over the three-quarter views.

The problem of finding a good view for an object seems to be quite difficult. It is becoming

painfully obvious that there is no panacea. No one descriptor does a perfect job. It is

probably possible to improve the descriptors described here and fine-tune them a little more,

but we do not believe that this will be significant. However, since each descriptor does a

reasonably good job on a majority of inputs, we are confident that it is possible to combine

them to amplify the advantage that each has. Possible combinations are linear, where the

optimal weights will have to be determined by some learning process, or non- linear, e.g. by

a voting process.

Once the descriptors have been decided on, an efficient algorithm must compute the view

on the unit sphere which optimizes this measure. At first glance, this seems to be a difficult
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problem, since there exists a continuum of possible viewpoints. A gradient-descent opti-

mization over the viewing sphere could work, but it would be very slow and not guarantee

a global maximum. Hence we reduce the problem to a search over a (possibly large but)

finite set of candidate viewpoints but, consequently, we might miss the best view. It would

be useful to be able to prove that the particular measure we use can be maximal only at the

candidate views. As we have shown, possible candidates are three-quarter views or normals,

but it is not obvious that the optimal view must indeed be one of these.

4.4 Discussions

The description framework discussed in Chapter 3 offers an effective solution to the problem

of searching and retrieval. In particular, the shape descriptor detailed in Section 3.1.1.2 is

suitable for sub-part correspondence. As shown in figures 4.16 and 4.15, this coupling is

advantageous for comparing models having similar overall shape and structure, as well as

only common sub-parts.

We have experimentally proven that structure-based matching can improve the retrieval

performance in terms of both functionalities supported (i.e., partial and sub-part corre-

spondences) and the variety of shape descriptions that can be used to tune the retrieval

with respect to the context of application. From our experiments we have seen that the

characteristics detected by the mapping functions contribute to localize important shape

features as well. In fact, depending on the choice of f , the shape descriptors detect relevant

morphological characteristics like protrusions, concavities, pockets, branchings, slots, nar-

rowings and involutions, that users may combine with other information and vary according

to their desiderata. Having selected the most appropriate mapping function, the associated

descriptors are fully automatic and do not require any user interaction.

As future contribution in the direction of best view object selection, the work of Lee et al.

[LVJ05] suggests to adopt a gradient-descent algorithm to optimize the visible saliency over

the viewing sphere. In this way, it would be possible to define a multiscale curvature measure

that could enhance the descriptors proposed in Section 4.3.1 to accommodate this type of

information as well.
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Chapter 5

Conclusions

The main theme of this dissertation is the study of a shape description framework suitable

for shape recognition and matching purposes. The descriptors we have discussed move from

a geometric model to a conceptual one, encoding the original shape in a concise description.

The main challenge we have faced is to achieve a good balance between space storage and

efficacy of the shape descriptor. In our approach, these skills have been addressed adopting

descriptors that are flexible and may be tuned according to the user’s needs. We have

identified the shape descriptors based both on topology and geometry as the tools the most

suitable for shape comparison and retrieval.

To this end, we have defined the Shape Graph representation and we have extended the

effective computation of the size descriptor to surfaces and higher dimensional data, and we

have shown their efficacy on a number of application domains.

In the following Sections, we sum up each of our contributions and we sketch future research

directions.

5.1 Summary of results

The main contribution of this thesis is related to the computational aspects that support

the definition of a conceptual model for 3D object representation based on abstract coding,

and its effectiveness for shape recognition, matching and retrieval applications. The core of

our technology is based on the development of algorithms that can robustly handle shapes

while maintaining a formal framework.

The originality of this work is both theoretical, having defined a shape description framework

able to deal with shape topology and geometry in discrete settings, and technological, having

proposed methods for shape coding and retrieval. In particular, the formal framework behind

the topics discussed in this thesis has been recognized as relevant from the CNR and founded

171
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by a CNR grant: Topology and Homology for analysing digital shapes, DG.RSTL.050.004.

As a first contribution of the thesis, we have provided an original classification of the shape

descriptors at the light of the properties of the real functions chosen for their definition and

their flexibility with respect to this choice.

Furthermore, starting from a geometric model, mainly a triangle or a volume mesh, we have

derived two descriptors, the Shape Graph and the size descriptor, which sketch the overall

appearance of a surface shape and its topological type, being able to discard irrelevant de-

tails. Moreover, the structure of the Shape Graph is combined and enriched with geometric

information, such as the position in the space of the points of the contour levels that bound

the critical areas and the length of a protrusion, which may be used to better satisfy the

application needs. In particular, we have suggested two ways to explicitly couple topology

and geometry in a unique description and how to extend the Shape Graph representation

to set of objects of models made of multiple parts. The relevance of the Shape Graph rep-

resentation is in the independence of the computational framework on the choice of the real

functions and the capability to capture both topological and geometrical shape information.

For more than ten years, size functions have being adopted as shape descriptor for binary

image retrieval (1-dimensional data) because of their complex computation in case of higher

dimensions. The approaches described in the dissertation extend their computation to any

dimension, showing the effectiveness of this descriptor for surfaces (2-dimensional data) and

volumes (3-dimensional data).

The flexibility of the choice of the real function imply that the same description framework

may apply to different application contexts. Besides the application domains (i.e., shape

analysis, matching, classification and retrieval) discussed in Chapter 4, our shape descriptors

have been effectively used in several research projects. For instance, the shape segmentation

associated to a Shape Graph has been used, together with other segmentation approaches, for

semantic shape annotation. Figure 5.1 shows an example of the Shape Annotator [ARSF07]

developed within the AIMSHAPE Network of Excellence [IST].

Moreover, within the SHALOM FIRB project, we are currently investigating on shape sim-

plification and restoration driven by our Shape Graph. Figure 5.2 shows some preliminary

results obtained with our tools. Once the Shape Graph has been extracted (Figure 5.2(a)),

it is used to cut the shape across the arcs using isocontours of the function f . Moreover,

additional lines are inserted in the mesh follwing the flow direction of the gradient of f in

order to guarantee that all regions have only one or two boundary components, see Figure

5.2(b). Then, every boundary component of a region is sampled in order to approximate the

contour (Figure 5.2(c)). Finally, the graph connectivity drives the triangle reconstruction

on the basis of the points previously sampled. The mesh obtained with this process roughly

approximate the original one; however, this process may be repeated until the mesh recon-

structed is arbitrarily near of the original model. Therefore, this process defines a progressive

mesh compression procedure.
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Figure 5.1: The Shape Annotator is able to annotate a shape adopting different segmentations [ARSF07].

(a) (b) (c) (d)

Figure 5.2: The Shape Graph in (a) drives the shape segmentation with iso-contours and flow lines (b). (c)
The region boundaries are sampled. (d) The rough triangle mesh that approximates the original model on
the basis of the point sampling.
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5.2 Directions for future work

A number of open problems were discussed in the body of the thesis as they arose. These

ranged from easy extensions of the work presented in this thesis, to potential applications,

to general questions about whether we can use similar techniques to deduce other descrip-

tors from finite data. Therefore, in the following, we will point out a number of possible

developments we believe are really promising.

The techniques developed in this thesis face the definition and the development of tools

able to monitorate and integrate different aspects related to shape analysis and reasoning.

For instance, a concise but expressive shape description would ease the interaction with the

shape resulting from the optimization process that arises in a shape design process affected

by engineering constraints applied to a design space. The expert, indeed, might decide to

modify the structure of the shape, according to the relevance that the various subparts have.

These modifications can affect the topology of the shape. A syntetic shape description like

the SG could support an interactive simplification or modification of the shape, by offering

friendly tools (e.g. graph editing operations) to modify the geometry and topology of the

original shape. Therefore, the required structure could be able to retain sufficient information

on the original shape, keep track of the changes made, and permit a final re-check of the

original conditions on the new shape.

With reference to the application of the SG to shape retrieval, we are planning to consider a

multi-step approach where a set of different filters, for example coarse filters, shape harmonics

and structural descriptors, are used to progressively refine the set of geometrically similar

candidates. In this way we will obtain a multi-modal query mechanism that could provide

a combination of various measures of shape similarity, corresponding to function, form and

structure analysis of 3D shapes.

We are currently researching into the development of new real functions, in order to analyze

different kind of shape features of three-dimensional models. We believe that capturing

a larger amount of information would increase the retrieval performance, allowing for a

better discrimination of objects, and the rejection of some of the false matchings which can

be observed. Moreover, we are also investigating how the choice of the functions for the

graph extraction determines the characteristics of the resulting graph configuration. The

experimental results have shown that this approach is promising, and goes in the direction

of developing tools to automatically annotate the shape semantic, and to encapsulate it in

a digital shape representation.

We finally remark that the definition of a classification system is crucial in the field of

semantic annotation. In fact, recognizing that an object belongs to a class means that its

shape is expected to present a set of pre-determined features. For instance, if an object

is classified as a human model, it is expected to have two arms, two legs, the body and

the head. This fact suggests that a classification scheme is able to generate new knowledge
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that can be further exploited with tools specialized in the characterization of shape sub-

parts. In this sense we foresee the development of semi-automatic tools that, on the basis

of knowledge techniques, like ontologies or machine learning methods, are able to simulate

intelligent environments. In this context we are planning to formalize the application domain

through a specific ontology which provides the rules for associating semantics to shape or

shape parts [IST].

Moreover, this work can be extended and improved in several directions. The methods

we have developed may apply to contexts that are more general than those presented in

Chapter 4; thus, we believe that our approach to shape description could be a useful tool

for analyzing data from different domains. Therefore, it would be interesting to test our

method in other application fields with respect to those proposed in Chapter 4, such as

bio-medicine and bio-informatics, with a particular attention to protein docking and drug

design problems. In fact, owing tools able to analyse multiple aspects of the same entity

promises a solution to face these problems from a multi-facet point of view, able to take into

account the different levels of protein structure, the interaction between different molecules

and their potential fields. In particular, this research can also impact on the visualization

and simulation of human organs, where complex and huge models whose data values depend

on multiple factors must be realized to predict diseases and support early diagnosis.

Other application areas can be identified in the field of physical, geo-physical and material

science. Scientific data coming from physical studies typically consist of a large number of

measurements taken within a domain of interest. For instance, climate scientists must couple

many different simulation methods into a single ”meta-simulation” that combine ocean,

atmospheric, land use, vegetation, biochemistry, ecosystem dynamics, and other models.

Physics simulation data sets produce hundreds of different models that require an enormous

effort in terms of data management and comparative analysis. Some of these functions may

be redundant, which motivates the development of comparative measures or multi-functional

analysis that may be used to construct bases of functions sufficient to study the phenomena.

A related application is the study of time-varying functions that model the event evolution

As further evolution of the work carried out in this dissertation, we plan to effectively

contribute to the EU PROJECT FOCUS K3D (2008-2010) that is devoted to foster the

comprehension, adoption and use of knowledge intensive technologies for coding and sharing

3D media content in consolidate and emerging application communities.
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[MP02] M. Mortara and G. Patané. Shape-covering for skeleton extraction. Interna-

tional Journal of Shape Modelling, 8(2):245–252, 2002.

[MPS+04] M. Mortara, G. Patané, M. Spagnuolo, B. Falcidieno, and J. Rossignac. Blow-

ing bubbles for multi-scale analysis and decomposition of triangle meshes. Al-

gorithmica, 38(1):227–248, 2004.

[MR96] A. Meijster and J. Roerdink. Computation of watersheds based on parallel

graph algorithms. In P. Maragos, R. W. Shafer, and M. A. Butt, editors,

Mathematical Morphology and its Application to Image Segmentation, pages

305–312. Kluwer, 1996.

[MSF07] S. Marini, M. Spagnuolo, and B. Falcidieno. Structural shape prototypes for

the automatic classification of 3d objects. IEEE Computer Graphics and Ap-

plications, 27(4), 2007.

[MSS92] D. Meyers, S. Skinner, and K. Sloan. Surfaces from contours. ACM Transac-

tions on Graphics, 11:228–258, 1992.

[Mun00] J. Munkres. Topology. Prentice Hall, 2000.

[MW99] A. Mangan and R. Whitaker. Partitioning 3D surface meshes using watershed

segmentation. IEEE Transaction on Visualization and Computer Graphics,

5(4):308–321, 1999.

[Nac84] L.R. Nackman. Two-dimensional Critical Point Configuration Graphs. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 6(4):442–450,

1984.

[NB05] M. Neuhaus and H. Bunke. Graph-based multiple classifier systems a data

level fusion approach. In ICIAP 2005, LNCS, 3617, pages 479–486, 2005.

[NC03] L. Najman and M. Couprie. Watershed algorithms and contrast preservation.

In Ingela Nyström, Gabriella Sanniti di Baja, and Stina Svensson, editors,

DGCI 2003: Proceedings of the 11th Discrete geometry for computer imagery,

volume 2886 of Lecture Notes in Computer Science, pages 62–71, Naples, 2003.

Springer.



198 Bibliography

[NGH04] X. Ni, M. Garland, and J. C. Hart. Fair Morse functions for extracting

the topological structure of a surface mesh. ACM Transaction on Graphics,

23(3):613–622, 2004.

[NP85] L. R. Nackman and S. Pizer. Three-dimensional shape description using the

Symmetric Axis Transform I: Theory. IEEE Transactions on Pattern Analysis

and Machine Intelligence, PAMI-7:187–201, March 1985.

[NP05] V. J. Natarajan and V. Pascucci. Volumetric data analysis using Morse-Smale

complexes. In SMI ’05: Proceedings of the International Conference on Shape

Modeling and Applications 2005, pages 320–325, June 2005.

[NS96] L. Najman and M. Schmitt. Geodesic Saliency of Watershed Contours and Hi-

erarchical Segmentation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 18(12):1163–1173, 1996.

[NSW06] P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submani-

folds with high confidence from random samples. Discrete and Computational

Geometry, 2006.

[NWB+06] V. Natarajan, Y. Wang, P.-T. Bremer, V. Pascucci, and B. Hamann. Segment-

ing molecular surfaces. Computer Aided Geometric Design, 23(6):495–509,

2006.

[Ogn94a] R. L. Ogniewicz. Skeleton-space: A multi-scale shape description combining

region and boundary information. In CVPR ’94: Proc. of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition 1994, pages

746–751, Los Alamitos, 1994. IEEE Computer Society.

[Ogn94b] R. L. Ogniewicz. Skeleton-space: A multi-scale shape description combining

region and boundary information. In Proceedings of Comput. Vision Pattern

Recogn., pages 746–751, 1994.

[OK95] R. L. Ogniewicz and O. Kubler. Hierarchic Voronoi skeletons. Pattern Recog-

nition, 28:343–359, 1995.

[OPC96] J. M. Oliva, M. Perrin, and S. Coquillart. 3D reconstruction of complex poly-

hedral shapes from contours using a simplified generalised Voronoi diagram.

Computer Graphics Forum, 15:307–318, 1996.

[Pag03] D. L. Page. Part Decomposition of 3D Surfaces. PhD thesis, University of

Tennessee, Knoxville, May 2003.

[Pas04] V. Pascucci. Topology diagrams of scalar fields in scientific visualization. In

S. Rana, editor, Topological Data Structures for Surfaces, pages 121–129. John

Wiley & Sons Ltd, 2004.

[Pav95] T. Pavlidis. A review of algorithms for shape analysis. Document image

analysis table of contents, pages 145–160, 1995.



Bibliography 199

[PBF07a] L. Paraboschi, S. Biasotti, and B. Falcidieno. 3D scene comparison using topo-

logical graphs. In Proceedings 5th Eurographics Italian Chapter Conference,

pages 87–93, Trento, 2007. The Eurographics Association.

[PBF07b] L. Paraboschi, S. Biasotti, and B. Falcidieno. Comparing sets of 3D digital

shapes through topological structures. In F. Escolano and M. Vento, editors,

GbR2007: Proceedings of Graph-based Representations in Pattern Recognition,

volume 4538 of Lecture Notes in Computer Science, pages 114–125, Alicante,

2007. Springer Verlag.

[PCM02] V. Pascucci and K. Cole-McLaughin. Efficient computation of the topology of

the level sets. In VIS ’02: Proceedings of the IEEE Visualization 2002, pages

187–194. IEEE Press, 2002.

[PCM03] V. Pascucci and K. Cole-McLaughlin. Parallel computation of the topology of

level sets. Algorithmica, 38(1):249–268, 2003.

[PCMS04] V. Pascucci, K. Cole-McLaughin, and G. Scorzelli. Multi-resolution compu-

tation and presentation of contour trees. Technical report, LLNL Techincal

Report number UCRL-PROC-208680, 2004.

[PDP06] E. Pekalska, R. P. W. Duin, and P. Paclik. Prototype selection for dissimilarity-

based classifiers. Pattern Recognition, 39(2):189–208, 2006.

[Pfa76] J. L. Pfaltz. Surface networks. Geographical Analysis, 8:77–93, 1976.

[PGJA03] S. Pizer, G. Geric, S. Joshi, and S. R. Aylward. Multiscale medial shape-

based analysis of image objects. In Proceedings of the IEEE, volume 91, pages

1670–1679, 2003.

[PKS+03] D. L. Page, A. Koschan, S. R. Sukumar, B. Roui-Abidi, and M. A. Abidi.

Shape analysis algorithm based on information theory. In Proceedings of the

IEEE International Conference on Image Processing, volume I, pages 229–232,

2003.

[PM82] J. Palis and W. De Melo. Geometric Theory of Dynamical Systems: An In-

troduction. Springer-Verlag, 1982.

[PP93] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their

conjugates. Experimental Mathematics, pages 15–36, 1993.
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