

Deliverable D.2.2

Bio-Lexicon DataBase:
Architecture, Concepts and Loading

Software

Project acronym: BOOTStrep
Project full title: Bootstrapping Of Ontologies and
 Terminologies STrategic REsearch Project
Proposal/Contract no.: FP6 - 028099
Duration: April 01, 2006 – March 31, 2009
Project coordinator: FSU Jena
Website: www.bootstrep.eu

Authors: Riccardo Del Gratta, Monica Monachini, Valeria

Quochi, Eva Sassolini
Additional Contributors: Nicoletta Calzolari
Date of preparation: 30/03/2007
Dissemination level: (RE)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37832688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table of Contents
Table of Contents ... 2
Executive Summary.. 3
Introduction... 4
From the BioLexicon Data Model to the BioLexicon Data Base: The XML Interchange
Format (XIF) ... 5

General Structure of the XIF... 5
DTD and XML entries ... 6
Importing Semantic Variants .. 10
Managing Inflected Forms .. 11

BioLexicon DataBase Internal Architecture .. 13
Typical data base concepts .. 13
DataBase Architecture: Three-frame Architecture.. 15
Dictionary Frame .. 16
Staging Frame .. 17
Target Frame.. 21

Software Architecture ... 22
Main flow .. 22
Packages.. 23
How LD works: from the XIF to target tables.. 25

Concepts .. 28
“Deep” concept ... 28
Synchronizing information between Dictionary and Staging Frames 30

A Graphical View of the Environment.. 31
Mapping between BioLexicon entities and BioLexicon tables .. 33

Standard Tables ... 33
User Extended Models ... 37
Mapping BioLexicon model onto standard target tables.. 38
Mapping BioLexicon model onto standard user tables ... 39
A description of the “how-to-access” methods to the BioLexicon database. 40

Appendix A: Complete DTD ... 41
Appendix B XIF Example.. 45
Appendix C: Dictionary Frame Details.. 47

Work Tables ... 47
Rule Tables .. 47

Appendix D: Staging and Target Frame Details ... 49
Staging tables columns .. 49
Data category columns... 50
Target tables columns .. 51

Table of Figures

Table 2-1: A Clustering Example.. 5
Figure 2-2: Lexical entry and some DCs .. 6
Figure 2-3 LexicalEntry and Lemma... 8
Figure 2-4: Lemma and FormRepresentation .. 9
Figure 2-5: Synonymous Entries in the BioLexicon.. 11
Figure 2-6: lemma, wordforms and DCs... 12

0. Executive Summary
The present Deliverable D2.2 describes the steps towards the definition of the
BioLexicon database, which constitutes the physical counterpart of the BioLexicon data
model defined in D2.1.
The two Deliverables, D2.1 and D2.2, are to be seen as a continuum, rather than two
separate documents. While the first presents the conceptual architecture underlying the
BioLexicon, the latter describes the database, i.e. the “container” where the lexical
objects of the model will be implemented and automatically populated with pieces of
information (coming from WP01, WP03 and WP04) to instantiate lexical entries of the
bio domain.
DB implementation has been preceded by both a specification and a design phase,
which go step by step. Specification is meant for collection of requirements and
constraints, whereas design concerns both the model and the database. Requirements
flow from the specifications to the model and architecture chosen to meet the defined
conditions (accounted for in D2.1). In the design of DB architecture, we exploited
expertise accumulated in many years about lexical databases, resorting to the SIMPLE
lexicon database and evaluating its adaptability to the requirements of the BioLexicon. A
first prototype version has been deployed in MS Access, then we migrated to an open-
source DB.
The BioLexicon DB consists of two modules: the actual MySQL database, i.e. the
container of bio-terms and term related information, and a java software component for
the automatic population of the database with data provided by WP01 (EBI) and WP03
(Manchester). External to the DB, but fundamental for its automatic population, is an
XML Interchange Format (XIF) specifically tailored on terminological repositories
organization and the BioLexicon structure to facilitate data providers to structure their
input data and populators to correctly upload them. The design of the DB has gone hand
in hand with the lexical objects conceptualized in the model. Lexical objects have been
implemented as tables, whereas relation between objects as correspondence tables;
the so-called Data Categories have been loaded into special tables. Java procedures for
uploading lexical data have gone hand in hand with the XIF.
This Deliverable is structured as follows:
Section 1. describes the XIF developed, both for encoding terms extracted from already
existing bio databases and for importing them into the BioLexicon database. Fragments
of the XIF are shown together with relevant parts of the BioLexicon model.
Section 2. is devoted to the BioLexicon database architecture. Mapping of the XIF onto
the DB is shown in order to allow an external configuration by users. Choices and
reasons of the proposed architecture are presented to explain how the database may
support a sort of parallel loading.
Section 3. is about the architecture of software. The Java APIs designed to manage
data encoded into the XML interchange format and their loading into the database are
shown: each paragraph is devoted to a particular API with synopsis and returned data.
Section 4. provides some “concepts” used during the software development and
database design.
Section 5. presents a graphical view of the BioLexicon Environment as it will appear at
the end of the Project.
The Deliverable comes with a substantial set of Appendices, which are meant to provide
the reader with the necessary support to exhaustively understand the mapping between
the BioLexicon data model and database.
Appendix 1 is the mapping between the Biolexicon entities and BioLexicon tables
Appendix 2 contains the XML Interchange Format DTD
Appendix 3 shows a sample entry encoded into the XIF
Appendix 4 describes the Dictionary Frame of the database architecture
Appendix 5 contains staging and target tables

1. Introduction
This deliverable describes the steps towards the definition of the BioLexicon database
(T2.3), which is the “container” where the objects conceptualized at the level of the data
model will be implemented to allow automatic population of term entries with data
collected from existing bio terminologies (WP01) and automatic enrichment with pieces
of lexical information extracted from texts (WP03 and WP04).

The requirements identified during the specification phase for the design of the
conceptual model (cfr. D2.1) also constitute the conditions underlying the architecture
of the BioLexicon database presented here. The major emerging issue is that any of the
terminologies readily available in the bio domain is targeted to fulfil special demands for
the biological research community, i.e. access to continuously produced knowledge. The
BOOTStrep project brings together experts from the domains of biology, bioinformatics,
computational linguistics, ontologies to develop new resources for the demands in text
mining for biologists and bio-informaticians. One of these resources is the BioLexicon,
which brings together data from the biomedical data resources and from the scientific
literature.

The BioLexicon database is a comprehensive, continuously growing and integrated
resource. Integration is intended in, at least, two senses:

1) Initially, it integrates data from terminological resources of the biomedical domain
and terms extracted from the scientific literature (e.g. UniProtKb/ Swiss-Prot,
ChEBI, BioThesaurus, NCBI taxonomy and other biomedical resources) into a
commond standard representation that has already on other domains proven its
usefulness.

2) then, it allows for further integration of morphological, syntactic and lexical
semantic features (extracted from the bio literature) which go to enrich terms
(and variants).

The enrichment of term entries with information typically belonging to computational
lexicons is especially designed to target special demands for the biological research
community, i.e. access bio knowledge, and offers the detail information relevant to
information extraction technologies. Other richness of the BioLexicon is that it will
incorporate semantic information that has been gathered from taxonomies and from the
ontological resource of the BOOTStrep project (D5.1).

The BioLexicon DB is a flexible, extensible relational database, articulated into modules:

- the actual MySQL database, i.e. the container for bio-terms and term related
information, which comes equipped with

- automatic population procedures, i.e. a java software which takes in input data
taken from the Integrated Repository (D1.2) to populate the lexical containers.

- External to the DB but fundamental for its automatic population is a BioLexicon
XML Interchange Format (XIF hereafter) specifically tailored on the BioLexicon
DTD (D2.1). The XIF is a dedicated input data structure which allows data
providers to encode in a structured way terms gathered from existing sources
and lexicon managers to pull and appropriately store them in the database.

The database is structured into three logically distinct but strongly interconnected layers:
the first two are operational, i.e. especially designed for interaction with automatic
population procedures; the third one, the so-called Target Frame layer, contains the
actual BioLexicon database. Here the lexical objects conceptualized in the model (and
defined in the corresponding DTD) are implemented as tables, whereas relation
between lexical objects are implemented as correspondence tables in the DB. The

BioLexicon DB ensures total reusability and direct accessibility to all of its content. The
neat separation between target tables (the BioLexicon proper) and operational tables
allows for the optimization of the uploading of data into the BioLexicon DB, and ensures
an easy extendibility both of the database and of the uploading procedures.

2. From the BioLexicon Data Model to the BioLexicon
Data Base: The XML Interchange Format (XIF)

This section provides a description of an exchange XML format (called the BioLexicon
XML Interchange Format or XIF) that has been designed to facilitate the automatic
population of the BioLexicon DB. The form of the XIF is defined in the XIF DTD (in
appendix). This format has been originally designed to facilitate WP01 and WP03
partners as provider of data, and therefore has been primarily conceived to import terms
and variants extracted from already existing databases and resources in the form of
clusters. As the possibility of extracting new types of information emerged, the XIF has
been enhanced to cover also semantic relations and inflected forms. By means of the
XIF, we also allow for a standardization of the data extracted from the different
terminological resources and, in a later stage, from texts; and for an easier efficient
uploading of the final BioLexicon DB. This way, any future system/group wishing to feed
new data into the BioLexicon would only need to encode this in a XIF conformant XML
file.
The XML Interchange Format DTD is to be considered a simplified version of the
BioLexicon DTD, as reported and described in D2.1 (and following updates), and the
two must not be confused. The way information is represented in the XIF is substantially
different from the representation in the BioLexicon DB, and the choice of this specific
structure for the exchange format has been made also for reasons of software
implementation.
The present section will:

• describe the overall structure of the XIF;
• describe the exchange format in more detail with examples and explanations;
• describe how the exchange format maps onto the BioLexicon structure.

2.1 General Structure of the XIF

The basics concepts of the organization of the XIF are, on the one hand, drawn from the
work done in WP03 (D.3.1) on term variant clusterization (see and example in Table
2-1), and on the other taken from the basic elements of the BioLexicon DTD.

ClusterID
(SourceID?)

Subclus
ter

Term Isprefer
Red

Q4U313 A Interleukin-2 Y
Q4U313 A IL-2 N
Q4U313 B T-cell-growth-

factor
Y

Q4U313 B TCGF N

Table 2-2: A Clustering Example

In table 2-1 we can see and example of term and variants clustering performed in
WP03. The first field is the ClusterID (i.e. the id in the original DB), the second field is
the sub-cluster indication; the third is the writtenform (i.e. the string) representing the
term. The fourth field is an indication of which string in the cluster has to be considered
the base form. The identification of sub-clusters within a same cluster implicitly gives

information about synonymic relation between terms. The XIF is designed to represent
all this kind of information in a way that is at the same time close to the extraction
techniques and to the BioLexicon Model. That is to say that, from our perspective, sub-
cluser A and subcluster B, in the example reported above, would be two synonymic but
independent Lexical Entries in the Lexicon. The members of the same sub-clusters,
instead, are treated in the Lexicon as othographic variants of the same LexicalEntry.

The XIF is, thus, organized in clusters of terms, i.e. in sets of coherent types of
information. A cluster may contain one or more synonymous entries containing
information about their lemmas, parts-of-speech, inflected forms, semantic relations and
external references. In the future, the XIF may well be extended in order to meet new
population needs, on the basis of the types of information that will be extracted (in
particular sub-categorization frames and bio-events).

The XIF organization allows for a splitting of the input file by clusters for a parallel
uploading. Also, it is easily extendible in order to face the need of adding new types of
information to the lexicon. In such a case, it is only sufficient to add new elements or
new attributes to the XIF DTD and to introduce the appropriate (few) modifications to the
DB.

2.2 DTD and XML entries

The present XIF DTD is designed to represent terms and related information (i.e. term
variants, POS, external resources …) that will fill the Lexical Entry, Lemma,
FormRepresentation, Sense and SenseRelation objects in the DB (plus correspondence
tables).

Relation between Lexical Entry and its Typed Data Categories

Let’s consider the relation between the following classes in the BioLexicon model:
LexicalEntry, SourceDC, and POSDC.
SourceDC and POSDC are typed Data Categories, and therefore have been
represented as separate objects here, but with different colours because they are to be
distinguished by the actual lexical objects of the model. DCs in fact contain the features
that are used to specify real instances of such classes (i.e. the feature
POS:commonNoun, in the figure below, will be actually contained by the POSDC table,
and only referred to in the LexicalEntry instance).

Figure 2-3: Lexical entry and some DCs

Most of these features will be imported into the BioLexicon DB through the proposed
exchange format. The correspondent XIF DTD fragment is the following:

<!ELEMENT Entry (SOURCEDC*, DC*, POSDC, ………)>
<!ATTLIST Entry
ENTRYID ID #REQUIRED
……
 >
<!ELEMENT SOURCEDC EMPTY>
<!ATTLIST SOURCEDC
 SOURCENAME CDATA #REQUIRED
SOURCEID CDATA #REQUIRED
 >

 Here ENTRY should represents the terms in the clusters indicated as “preferred: Y”,
and SOURCEDC is the element that contains the external references of such terms, i.e.
the indication of their IDs in their original resources.1

A similar definition applies to the POSDC data category:

<!ELEMENT POSDC EMPTY>
<!ATTLIST POSDC
POSNAME CDATA #FIXED “POS”
POS CDATA #REQUIRED
>

The following is an example of a valid entry according to the XIF:

……….
<Entry ENTRYID="ENTRY0002" …..>
 <SOURCEDC SOURCENAME=”UNIPROT” SOURCEID="Q4U313"/>
 <SOURCEDC SOURCENAME=”GENEDB” SOURCEID="GNDB123"/>
 <POSDC POSNAME=”POS” POS="N"></POSDC>
………..
</Entry>
……….

In the BioLexicon DB, the such information on the external references and POS will
specify the LexicalEntry object.

Relation between LexicalEntry and Lemma

The figure 2-3 below shows the relation between the LexicalEntry and Lemma objects in
the BioLexicon model.
As briefly mentioned above, in the XIF the preferred form of a cluster will be promoted to
the status of LexicalEntry (and by virtue of the 1:1 relations, of Lemma). Therefore, the
string representing the preferred term will become the value of the “baseform” attribute.

1 Please note that, representing external references in a separate element allows for the
possibility of adding as many external references as needed to entries, without the need to fix a
maximum number.

Figure 2-4 LexicalEntry and Lemma

The relative DTD fragment of the XIF is:

<!ELEMENT ENTRY (SOURCEDC*,DC*,POSDC,…..)>
<!ATTLIST ENTRY
ENTRYID ID #REQUIRED
BASEFORM CDATA #REQUIRED

……
TYPE CDATA #REQUIRED >

An Example of this is the following XML:

<Entry ENTRYID="ENTRY0001" BASEFORM="Interleukin-2"
TYPE="PREFERRED" >
……..
</Entry>

Preferred forms in Clusters will become independent Lemmas (thus, LexicalEntries) in
the BioLexicon). By means of this XIF structure, then, we can fill the Lemma table with
the relevant baseform.

Managing Variant and Variant-Type

Orthographic variants, i.e. acronyms, abbreviations and short forms in general, in the
BioLexicon will be stored in the FormRepresentation object, together with the wordform
of the preferred term, indicated as “fullform”. Therefore the information encoded in the
XIF will be distributed in various lexical objects (i.e. tables in the DB) as described in the
previous sections. The attributes
“fullform”, “shortform”, “acronym” etc. are the values of the VariantType DC that, in the
BioLexicon structure, specifies the FormRepresentation, whereas in the exchange
format, they will specify the Variant element.

Figure 4 below shows the relation between Lemma and FormRepresentation in the
Lexicon:

Figure 2-5: Lemma and FormRepresentation

In summary, through the XIF, as described so far, we can import:

• The wordforms (i.e. text strings) of the preferred terms, their (ortho)graphic
variants, and information on the type of variant2.

• Morpho-syntactic features, like POS.

Given the clustering presented at the beginning, we know which terms are
(ortho)graphic variants and which terms are the lemmas (the preferred terms). This way,
it is possible to implicitly infer the semantic variants (i.e. terms that are synonymous, but
do not share wordforms). From a BioLexicon proper perspective, Lemmas would also be
represented in the FormRepresentation as “fullform”. Other terms in the same sub-
cluster (variant elements) would only be encoded in the FormRepresentation with their
wordform and variantTypeDC, i.e. “non-preferred” members become Variants.

Here below is the DTD fragment that formalize the above description.

<!ELEMENT ENTRY (SOURCEDC*,DC*, POSDC, VARIANT*)>
 <!ATTLIST ENTRY
 ENTRYID ID #REQUIRED
 BASEFORM CDATA #REQUIRED
 ……..
 TYPE CDATA #REQUIRED
 >
<!ELEMENT VARIANT (DC*) >
 <!ATTLIST VARIANT
 WRITTENFORM CDATA #REQUIRED
 TYPE CDATA #REQUIRED >

The following XML is an example of what the Entry in the interchange format (XIF)
would look like:

2 Potentially we can distinguish between acronyms, abbreviations, short forms, morphological
variants… However, for the moment the only automatic distinction provided by WP03 is between
full forms and orthographic variants.

<entry entryid="entry0002" baseform="t-cell-growth-factor" type="preferred" >

<variant writtenform="tcgf" type="acronym">
 </variant>
</entry>

This XML permits to store in the FormRepresentation both term variants and the
preferred term, with their wordform (string) and VariantType.
The Data Categories used in the XIF, especially those related to variant types, will be
reused in the final BioLexicon; that is, they will enrich the DC Selection defined for the
BioLexicon.

2.3 Importing Semantic Variants

As previously mentioned, from our point of view, terms marked as preferred that belong
to the same cluster are to be considered semantic variants (i.e. Synonyms).
Semantic Variants will be represented in the lexicon and as separate LexicalEntries,
linked to one another by a synonymy relation.
From the figure above, we can infer the following information:

Which translates into a tabular representation like the table 2-2 below:

Entry IsSynonymOF
Interleukin-2 T-cell-growth-factor

Tabella 2-1: Synonymy Relation

In fact, the two terms, Interleukin-2 and T-cell-grow-factor, belong to the same cluster
but to two different sub-clusters (that is, entries in the exchange format); and they are
both marked as “preferred”.

Inferring Synonymy in the XIF
Consider the figure below, which represents a part of the BioLexicon Structure.

Interleukin-2 T-cell-growth-factor

IL-2 TCGF

IsSynonym

Figure 2-6: Synonymous Entries in the BioLexicon

In the BioLexicon Model, synonymy is defined at the Sense level, i.e. one Lexical Entry
is a synonym of another Lexical Entry because their Senses are linked to each other by
a sense relation of the type isSynonymof.
At the XIF level, however, synonymy is implicit in the cluster structure (i.e. preferred
terms in the same cluster are synonyms, and terms marked as “non-preferred” or
“orthographic” are variants of the “preferred” one in the same sub-cluster).

2.4 Managing Inflected Forms

Since the need to represent also inflected forms emerged, the BioLexicon DTD and the
XIF have been enhanced accordingly. A Wordform element has been added to the XIF
DTD, which contain the string of the inflected form and its related grammatical feature3.
Let’s consider the part of the BioLexicon model relative to the relation between the
following classes: Lemma, Wordform, and typed data categories (fig. 2-6 below).
INFLECTEDDC is a typed Data Category that stores information about the grammatical
properties of the inflected forms of terms.

3 The shape and label of this element is not to be considered stable at this stage.

Figure 2-7: lemma, wordforms and DCs

These features will be imported into the BioLexicon DB through the proposed exchange
format. The correspondent DTD fragment is the following:

<!ELEMENT Entry (….., POSDC,…….,WordForm*,………)>
 <!ATTLIST Entry
 entryid ID #REQUIRED
 BASEFORM CDATA #REQUIRED
 issynonym IDREF #IMPLIED
 type CDATA #REQUIRED
 >
……..
<!ELEMENT WordForm (DC*) >
 <!ATTLIST WordForm
 INFLECTEDFORM CDATA #REQUIRED
 GRAMDATA CDATA #REQUIRED
 >

The following is an example of a valid entry according to the above portion of the XIF
DTD:

<Cluster CLSID="V1SP12">
 <Entry entryid="V1SP12_1" baseform="carbamylate"
type="PREFERRED">
 <SOURCEDC sourceName="SwissProt" sourceid=""/>
 <POSDC posname="POS" pos="V"></POSDC>
 <WordForm INFLECTEDFORM="carbamylate"
 GRAMDATA="VVP"></WordForm>
 <WordForm INFLECTEDFORM="carbamylated"
 GRAMDATA="VVD"></WordForm>
 <WordForm INFLECTEDFORM="carbamylated"
 GRAMDATA="VVN"></WordForm>
 <WordForm INFLECTEDFORM="carbamylates"
 GRAMDATA="VVZ"></WordForm>
 <WordForm INFLECTEDFORM="carbamylating"

 GRAMDATA="VVG"></WordForm>
 </Entry>
 </Cluster>

3. BioLexicon DataBase Internal Architecture

This section describes the BioLexicon data base (from now BioLexicon) architecture, in
particular the data dictionary frame, staging frame and target frame.

Also we’ll see how a XIF file (described in the previous section) maps data onto tables.

At the moment, we have developed methods to insert data into tables: the initial loading
will be performed using the “load” feature.4 Possibly, these methods could be useful in
the future for updating the tables and incremental loading.
First of all, we present a list of database concepts both standard, i.e. typical concepts
used in databases environments, and specific, that’s to say concepts characteristic of
data Ware-House.
Also notations used within the project are shown.
Then we explain the database architecture.

3.1 Typical Data Base Concepts

This paragraph lists some typical data base concepts used in this document.

Standard Concepts

Concept Explanation
Primary Key (PK) The unique identifier of a record within a

table or a whole data base.
Foreign Key (FK) A particular column in a table (child)

pointing to a particular row in another table
(father).

Index A constraint on a table, usually defined on
a PK. It may be unique or not.

Commit Commit means making a change definitive
in one table.

Rollback Rollback means undoing a change.
Unit of Work (UoW) The UoW takes care of data consistency

managing rollback and commit.

Specific Concepts

Concept Explanation
Star-Table Star table is a typical data warehouse

concept: simply speaking a star-table is a
table whose fact columns are identifiers
pointing to external feature-table.

Feature-table This concept stands for tables of the form
identifier-attribute-name-attribute-value.

4The LOAD instruction is typical of various databases.

Concept Explanation
Staging Tables Staging tables are tables in which data are

initially loaded: they have no PK. They may
have some indexes to speed up join
instruction.

Target Tables Target tables are the last tables to be
loaded.
Usually they are similar to staging tables,
but are normalized and starred.

Initial Loading In a loading process it represents the first
time that the data are loaded into tables.
The target tables are empty and the
number of rows to load is large.

Incremental Loading In a loading process it represents any
insert/update operation into data base
tables.
The loading is incremental because some
data are present into the tables, and new
data only update existent data or simply
are added.
The target tables are not empty and the
number of rows to load is small.

Data Consistency In a loading process, it is important to care
about the consistency of data, i.e. all
records must be loaded and all relations
must be implemented.

Annotation for the Project

Annotation Explanation
Dictionary Tables Dictionary tables are tables containing

information about the mapping between
the xml and the staging tables.
Also, they contain information about
identifier generation and the mapping with
real entities.

Standard Tables These are the tables of the BioLexicon
model; actually they are a realization of the
BioLexicon model.

User Tables These are tables external to BioLexicon
model, but useful to record relation
between Standard Tables.

Rules tables Rules tables store information about the
mapping of the staging tables and the
target tables.

Audit Tables Audit tables store information about the
flux of the loading process.5

Exception Tables These tables store data that are not well-
formed to be loaded into a given table.6

5 These tables are for future use only.
6 Exception tables are automatically managed (for a lot of data base engines) by load instruction,
but must be manually managed in insert/update operations.

3.2 DataBase Architecture: Three-frame Architecture

This paragraph describes the architecture chosen to implement the BioLex.
Possible Enhancements of this architecture for future uses and for parallelizing features
are also shown.
Figure 2-1 below shows the BioLex architecture

Figure 3-1: Architecture

The 3-frames Structure
The database is structured into three logically distinct but strongly interconnected layers
(see fig. 2.1 above):
It has been chosen to logically separate the BioLexicon into three conceptual frames:

• Dictionary tables
• Staging tables
• Target tables

The DICTIONARY FRAME is a middle layer between staging and target frames. Tables
belonging to this layer are dedicated to the mapping of the XML Interchange Format
elements and attributes onto the staging tables, and it contains the rules used to
automatically build SQL instructions that populate target tables with data contained into
staging tables.
The STAGING FRAME level is an intermediate set of hybrid tables for volatile data:
staging table columns consists of attributes of the XIF and attributes of target tables. In
addiction staging frame is the level dedicated to data-cleaning and normalization.
The TARGET FRAME layer contains the actual BioLexicon tables, i.e. tables that
directly instantiate the lexical objects and the relations between objects in the
BioLexicon meta model.

We separated the whole database into three different levels both because of the
peculiar format of the xml exchange format. Besides, target tables are not in a one-to-
one relation with the staging tables.

• Dictionary tables contain information about “how-to-fill” staging and target tables,
their joins, input files, and so on.

• Dictionary Frame is a middleware between the XIF and the BioLexicon database.
The loading software parses the XIF applying rules defined in the Dictionary
Frame. These rules drive the software to load data into the right tables.

3.3 Dictionary Frame

This frame contains functional tables such as:

• tables mapping between xml elements (and attributes) and BioLexicon tables
(and columns);

• tables with rules to populate target tables;
• tables with messages;
• tables for user interfaces for the end user7

The dictionary frame is thought to be manually updated, with respect to the mapping and
rules information: the format of the xml exchange format may vary, adding or deleting
elements or attributes.
Face to the need to add a new table (i.e. a new lexical object), or a new attribute to an
existing table, it is sufficient to add only the properties of the new tables or attributes and
to modify accordingly only the relevant portion of the Dictionary Frame layer to handle
the novelties.

Work Tables

Work tables store information and instructions that allows for reasoning on the xml file.
In particular, their function is to drive the software to build a given output from a given
input. These tables also manage both standard tables and user tables.
Work tables map XIF elements onto the staging tables and XIF attributes into tables’
columns.
In addiction these tables rule whether an element has an identifier or it does not; map
prefixes to define table identifiers and so on.
An exhaustive list of defined Work Tables and their use is provided in appendix C.

Rule Tables
Rule tables lead the loading process from the staging tables to target tables.
As said before, there is no one-to-one relationship between staging and target tables, so
we need, for loading purposes, a map between sources and targets to automatically
know whether a record is already in the BioLexicon or not.
In addiction , this set of tables drive the software to build SQL instructions automatically.
An exhaustive list of defined Rule Tables and their use is provided in appendix C.

Example

This example shows how one single target table (i.e. LexicalEntry) is related to many
staging tables.

7 These tables will serve to the GUI to display the user labels, comments and data in a more
human-readable way.

Figure 3-2: Lexical Entry Loading Example

Messages Tables
Message tables are designed from which to retrieve text messages from error identifiers.
Message tables are useful also to manage multilingual text messages.

GUI tables
In the next release of the software we’ll provide a GUI.
The GUI will help users search for information. It will rest on configuration tables.

Graphical User Interface tables record labels and comments linked to target tables.
We decided to separate typical lexical information (such part of speech, data category,
lemmas, used basically by an application) from end user information such as labels and
comments.
These labels and comment may be written in native languages. TO BE BETTER
SPECIFIED.

3.4 Staging Frame

Staging Frame is a middle tier between the input xml file and the final target tables; it is
a layer that maps the input data onto the target tables; also, the staging frame takes
care of cleaning tables and of data consistency.
The structure of staging tables is quite similar to the structure of target tables, both for
standard and for user tables. Obviously the differences (TO BE DETAILED) are due to
the fact that not all the information needed for target tables are easily retrieved from the
input file (As fig 2.2 explains). So, it is easier to load an intermediate level.
Each staging table has its corresponding exception table that records not well-formed
data.
These exception tables, at this level, allow the loading process to check for data error
and for rubbish entries.

Since the column type for staging and target tables are the same, data loaded from
staging to target tables will be, surely, correct and clean.

Staging Frame and initial loading

Many data bases use the “load” method to load data into tables.
This method has a parameter [INSERT|REPLACE] that tells the data base engine to
clear table before loading new data [REPLACE] or to append new data to existent
ones[INSERT].
Staging tables must be cleaned out before loading new data, so we’ll use the load
method with [REPLACE] option. 8

Staging Frame and incremental loading

During incremental loading, staging tables must be cleaned to allow new data be
checked before loading them into target tables.
Moreover, at this time we’ll use the load method with [REPLACE] option in order to
record only new data.9
The staging frame is useful to manage quasi-volatile tables, i.e. tables that exist only for
a purpose in the process but that can be truncated (cleared) after data they contain are
read.

Data consistency

The staging frame, together with the WORK_LIST_TABLES10, manages data
consistency. The WORK_LIST_TABLES records information on the insert order of the
tables: the inserting order is the order in which tables are loaded. The lower the insert
order the greater the priority.
If a table with a given priority is successfully loaded then the following table may be
loaded, and, conversely, if a table of a given priority is unsuccessfully loaded then the
previous tables must be roll-backed.11
Following the record in the (simplified) WORK_LIST_TABLES:

WORK_LIST_TABLES
XMLNAME TABNAME INSERTORDER DEEP FLAG
CLUSTER STG_USER_SYNCLUSTER 1 2 1
ENTRY STG_LEMMA 1 4 1
POSDC STG_LEXICALENTRY 1 8 1
VARIANT STG_FORMREPRESENTATION 2 8 1

Work list tables

it may be decided, for example, not to load the STG_LEXICALENTRY table if the
STG_LEMMA has not been successfully loaded.

Staging tables list

This paragraph lists all staging tables designed for the loading process.

8 In mySQL data bases these two terms assume different meaning: the replace keyword means.
for example: “replace the old record with this one only if the have the same PK” .
9 in mySQL data base tables must be “truncated” before loading new data.
10 See appendix A
11 The roll-back depends on which table is loaded.

The description of the columns is provided in Appendix D

Staging Table Type Explanation
STG_CLSDC User This table contains relationships between

clusters and their data categories. This table is
filled only if a given cluster has data categories.

STG_FORMREPREENTATION Standard This table contains all variants for a given
lemma.

STG_LE_SOURCEDC User This table contains relationships between lexical
entries and their source data category. This table
is filled only if a given lexical entry has source
data categories.

STG_LEDC User This table contains relationships between lexical
or lemmas d their data categories. This table is
filled only if a given lexical entry has data
categories.

STG_LEMMA Standard This table contains lemmas and their attributes.

STG_LEXICALENTRY Standard This table contains the lexical entries and their
part of speech.

STG_REL_TYPE User This table contains the type of the (semantic)
relations that a given entry has with other
entries.

STG_SENSE Standard This table contains the senses of the lemma.

STG_SENSERELATION Standard This table contains the sense relationships
between lemmas: typical relations are
synonymy, ISA….

STG_USER_SYNCLUSTER User This table contains cluster attributes.
STG_VARIANTDC User This table contains relationships between

variants and their data categories. This table is
filled only if a given variant has data categories.

USER_CLS_LM User This table contains links between cluster and
lemmas belonging to the cluster.

USER_FR_LM User This table contains links between lemma and its
variants.

USER_LE_LM User This table contains links between lemma and
lexical entry. The relation is one to one.

Data categories

This paragraph explains which data categories have been typed, that is specialized and
why.
In addiction, one description of table is provided.
A Data Category is a linguistic constant, representing the basic linguistic notions: it is
either an attribute name like e.g. /partOfSpeech/ or a value dedicated to populate the
attribute, e.g. /noun/. Data categories represent the main building blocks which, in
combination with the structures of the lexicon data-model, make it possible to design
different possible lexical entries as instances of the abstract schema.
For software perspective, we found appropriate to provide a set of “typed”-data
categories. During these concrete exercises, for the sake of consistency and
correctness, we start defining sets of attribute-value pairs specific for different lexical
layers and/or objects.

Typed Data categories
The BioLex contains many relations between entities (tables) and their attribute-name-
value features. To simply the loading process we defined some typed data categories.

The table below shows these typed DC.

Type Data Category Type Explanation
POSDC Typed This data category contains all possible value of the part-of-

speech attribute.
VARIANTDC Typed This data category contains all possible value of the variant

types attribute: some values are acronym, orthographic…
RELDC Typed This data category contains all the relationships defined in

the model, or provided by the input file12.
SEMDC Typed This data category contains semantic classes so far defined.

SOURCEDC Typed This data category contains all the sources provided by the
input file.

An exhaustive list of typed data categories is provided in Appendix D.

12 The data categories have been loaded retrieving data from input.

3.5 Target Frame

This frame is the ctual BioLexicon; even if many tables have the same structure as the
corresponding staging tables, some of target tables have a more enriched structure,
since there is a many to many relationship between staging and target tables.
Exception tables have the same structure as the corresponding target tables and should
contain only records violating the PK constraints, since any rubbish entries have been
skipped at the staging frame level.

Target Frame and initial loading

Even target tables will be loaded using the “load” method; the target tables must not be
cleared before inserting new data, so the loading option is [INSERT].

Target Frame and incremental loading
To be provided for next release.

Data consistency

Data consistency is also present in the target frame: flow and process are similar to
those presented for staging tables.

Target tables list

This paragraph lists all target tables designed for BioLex.
The table below explains these tables:

Staging Table Type Explanation
TGT_USER_CLS_DC User This table contains relationships between clusters

and their data categories. This table is filled only if a
given cluster has data categories.

TGT_FORMREPREENTATION Standard This table contains all variants for a given lemma.
The table contains also the preferred
(basename) of the lemma as variant.

TGT_LE_SOURCEDC User This table contains relationships between lexical
entries and their source data category. This table is
filled only if a given lexical entry has source data
categories.

TGT_LEMMA Standard This table contains lemmas and their attributes.

TGT_LEXICALENTRY Standard This table contains the lexical entries and identifiers
of their part of speech.

TGT_SENSE Standard This table contains the senses of the lemma and their
semantic types.

TGT_SENSERELATION Standard This table contains the sense relationships between
lemmas: typical relations are synonymy, ISA…\\\.

TGT_USER_FR_DC User This table contains relationships between variants
and their data categories. This table is filled only if a
given variant has data categories.

TGT_USER_LE_DC User This table contains links between lemmas and their
data categories.

TGT_USER_FR_LM User This table contains links between lemma and its
variants.

Staging Table Type Explanation
TGT_USER_LE_LM User This table contains links between lemma and lexical

entry. The relation is one to one.
TGT_USER_S_LE User This table contains relations between senses and

lexical entries.

Target Tables columns are provided in Appendix D.

4. Software Architecture
This section describes the methods designed in the Software. This SW is responsible for
transforming and loading data from an xml format in the DB.
For the prototype we used MySql™ as DBRMS.on Microsoft™
The software (since now we refer to the software as LD13) LD has been developed in
Java, using the JDOM technology to manipulate the xml document.
Please, refer to section 1 to get more information on the xml format.

4.1 Main flow

The figure below shows the main flow of the loading process.

Figure 4-1: Main Flow

The loading process may be divided into three sub processes:

• Read xml file
• Load staging tables
• Load target tables14

Reading xml file

13 LD stands for Load Data
14 The Load Target sub process involved some peculiar methods.

This sub process reads the input file, and, retrieving information from dictionary tables,
prepares input flat files to load staging tables.
Additionally, the sub process writes some log files.

Loading staging tables

This sub process reads the input flat files, and, retrieving information from dictionary
tables loads data into staging tables.
Additionally, the sub process fills some exception tables15 with data not well formed.

 Loading target tables

This sub process loads data from staging tables into target tables; the mapping between
staging and target tables are stored into rules tables, defined into the dictionary tables.
Additionally, the sub process fills some exception tables with data violating the primary
keys constraints.
Target tables contain:

• standard tables, i.e. tables connected to the BioLexicon model;
• user tables to map relationships between standard tables;
• special tables, i.e. target table (standard or not) that need a particular loading

process;
• final tables, i.e. tables that must be re-filled with new data after the loading

process is terminated.

4.2 Packages
This section describes packages defined within the LD software.
Five packages has been shaped to accomplish to the project prerequisites.

Packages Classes Defined within
org.bootstrep.BioLex LoadXml2DB

ManageTables
org.bootstrep. JdomMethods AccessDataDictionary

manageJDomDoc
org.bootstrep.Logger Logger

org.bootstrep.manageTables LoadStagingTables
LoadTargetTables

org.bootstrep.Variables ListOfVariables

Variables
This package contain only a class; this class contains no methods, but only variables
and constants.

Class Name Explanation
ListOfVariables A simple set of public variables and constants.

15 This operation is not yet outlined, even if potentially not well formed input lines have been
trapped by exception in java methods.

Please refer to the javaDoc section under the web site
http://www.ilc.cnr.it/BootStrepD22

For software purposes we defined the following Java List objects, in order to store, step
by step, into them, information about data base records and their relations with files and
tables.

List Notes
mainDeep Contains the deep of the element
mainVariables Contains the attribute name – attribute value relation for an

element
insertStrings Contains strings as “Insert into table (column-1….column-n)
insertTables Contains the name of the table corresponding to the element
insertRelStrings Contains strings as “Insert into table (column-1….column-n)

for user tables only
insertRelTables Contains the user relational tables
insertRelValues Contains identifier’s values of related entity
fileNames Contains data files of standard tables
fileRelNames Contains data files of relational tables
stgExceptionFiles Contains the name of the exception file for a given staging

table
tgtTables Contains the list of target tables
tgtInsert Contains strings as “Insert into table (column-1….column-n)

for target tables
tgtFiles Contains the list of input files for target tables
tgtExceptionFiles Contains the name of the exception file for a given target

table

JdomMethods
This package contains two classes:

Class Name Explanation

AccessDataDictionary A complete set of methods to access the
Data Dictionary Frame

manageJDomDoc

A complete set of methods and
procedures to allow the user to access a
given XML document, to load its content
and to map its data into a data base
format.

For more details about methods defined for these two classes, please refer to the
javadoc in the web site: http://www.ilc.cnr.it/BootStrepD22

BioLex

This package contains two classes:

Class Name Explanation

LoadXml2DB

A complete set of methods and procedures
to allow the user to manipulate a given
XML document to load its content into an
external data base.

ManageTables

http://www.ilc.cnr.it/BootStrepD22
http://www.ilc.cnr.it/BootStrepD22

Class Name Explanation
This class initializes "LoadStagingTables" ,
manageJDomDoc and LoadTargetTables
classes

For more details about methods defined for these two classes, please refer to the
javadoc in the web site http://www.ilc.cnr.it/BootStrepD22

Logger
This package contains only one class:

Class Name Explanation

Logger
A complete set of methods to manage log
files. This class declares a ListOfVariables
instance to manage global variables.

For more details about methods defined for this class , please refer to the javadoc in the
web site: http://www.ilc.cnr.it/BootStrepD22

Package: manageTables
This package contains only one class:

Class Name Explanation

LoadStagingTables This class manages loading data into
staging tables.

LoadTargetTables This class manges loading data into target
tables.

For more details about methods defined for this class , please refer to the javadoc in the
web site: http://www.ilc.cnr.it/BootStrepD22

4.3 How LD works: from the XIF to target tables

This paragraph describes how LD loads data into target and special tables.
In the web site http://www.ilc.cnr.it/BootStrepD22 you may find a complete log about
“Enzyme Loading Process”
In what follows we presents a simplified version of loading process. The three sub-
processes defined above mark each sub-section.

Let’s consider the following XML:

<Cluster CLSID="CLS0001" SEMTYPE=”Protein Name” >

<Entry ENTRYID="ENTRY0001" BASEFORM="Interleukin-2"
TYPE="PREFERRED" >

<POSDC POSNAME=”POS” POS="N"></POSDC>
<Variant WRITTENFORM="IL-2" TYPE="ACRONIM"></Variant>
<Variant WRITTENFORM="IL2" TYPE="ACRONIM"></Variant>

</Entry>
</Cluster>

http://www.ilc.cnr.it/BootStrepD22
http://www.ilc.cnr.it/BootStrepD22
http://www.ilc.cnr.it/BootStrepD22
http://www.ilc.cnr.it/BootStrepD22

This fragment will load the following tables:

Table Type
TGT_LEMMA Target
TGT_FORMREPRESENTATION Target
TGT_FORMREPRESENTATION Special
TGT_USER_FR_LM Special
TGT_SENSE Special
TGT_SENSE_RELATION Special

From XIF to input Files

Methods involved is this sub process create some flat files, each files contain strings like
below:

File Record
LEMMA ’LM_Interleukin-2','Interleukin-2','PREFERRED'
LEXICALENTRY 'LM_Interleukin-2','POS','N'
FORMREPRESENTATION ‘FR_IL_2’,’IL-2’,’ACRONIM’
FORMREPRESENTATION ‘FR_IL2’,’IL2’,’ACRONIM’
USER_LE_LM ‘LM_Interleukin-2', 'LE_Interleukin-2'
USER_FR_LM ‘LM_Interleukin-2’,’FR_IL-2’
USER_FR_LM ‘LM_Interleukin-2’,’FR_IL2’

Steps
• LD software initializes the platform getting the values of some properties (the data

source and the xml file name);
• LD software tests the connection and checks the file existence;
• LD software instantiates the JDOM document and retrieves the root element;
• LD software begins to parse the document’s nodes;

The first node analyzed is the <Cluster>, from its attributes LD retrieves the
CLUSTERID and the SEMTYPE values; the former is important being the postfix of the
flat files, the latter is the semantic category entries belong to. From dictionary frame the
LD retrieves table structure of <Cluster> element. The second node corresponds to
<Entry> element. Other nodes are <POSDC> and <Variants>.

For each node:

• LD software creates the “insert into” strings from dictionary information and fills
insertStrings and insertTables lists;

• LD software decides (from dictionary) if a node has an identifier or inherits an ID
from the parent;

• LD software creates files;

When standard table list is totally read the LD starts analyzing user table:

• LD software creates the “insert into” strings from dictionary information and fills
insertRelStrings and insertRelTables lists;

• LD software creates “insert into” strings for user relational tables:
• LD software creates files;

From input files to Staging tables
Methods involved in this sub process load data into some staging tables from input flat
files:

Table From XML entity Type
STG_LEMMA ENTRY Standard
STG_LEXICALENTRY POSDC Standard
STG_FORMREPRESENTATION VARIANT Standard
USER_LE_LM POSDC Relational
USER_FR_LM VARIANT Relational
USER_CLS_LM ENTRY Relational

Steps

From dictionary frame LD retrieves the list of staging table to load and their insertion
order.
From lists, LD retrieves the stack Insert-Into, table, file to manage.

• LD software starts loading relational tables;
• LD software clears staging tables;
• LD software manages exception tables for bad-formed entries16;
• LD software manages standard tables;

From Staging to Target tables
Methods involved in this sub process load data from staging tables into target tables:

Table Type
TGT_LEMMA Target
TGT_FORMREPRESENTATION Target
TGT_FORMREPRESENTATION Special
TGT_USER_FR_LM Special
TGT_SENSE Special
TGT_SENSE_RELATION Special

From Dictionary Frame (Rule tables) LD retrieves the mapping between staging and
target tables, for example, about the TGT_LEXICALENTRY:

RULE_MAP_STG_TO_TGT
TGT_TABLE STG_TABLE STGORDER
TGT_LEXICALENTRY USER_LE_LM 1
TGT_LEXICALENTRY STG_LEXICALENTRY 2
TGT_LEXICALENTRY POSDC 3

Steps

• LD software gets information on some properties and retrieves table list;
• LD creates the stack for tables;
• LD software inserts into table;

16 Only if a specific parameter is set to true in the property file.

• LD software manages variants;
• LD software manages special tables: TGT_SENSE, TGT_USER_FR_LM.
• LD software manages final table: TGT_SENSERELATION
• LD software stops processing.

5. Concepts

In this document we have used many times the “deep” concept, information lining-up,
that is the stacks and information retrieval form dictionary frame.
This section provides a description of these concepts.

5.1 “Deep” concept

This paragraph describes the deep concept and how it is used in parsing xml document.
Deep is a number that simulates the graphical indentation of elements in xml file:
<level1>
 <level2/>
 <level4>
</level1>

Deep, as number, is 2 exp {the child level of the element}; in the example above: 2 exp
{0} (that is 1) for level1 element, 2 exp {1} (that is 2) for level2 and 2 exp {2} (that is 4)
for level3.

The DTD and the XML fragment

The following dtd provides some guidelines to validate XIF.
For example this dtd states that the root element has at least one child; and that that
child has at least one child, that has at least one child:

• inputData has at least one Cluster;
• Cluster has at least one Entry;
• Entry has at least one POSDC;

<!ELEMENT INPUTDATA (CLUSTER+)>
<!ATTLIST INPUTDATA
 DTDVERSION CDATA #FIXED "1.1">
<!ELEMENT CLUSTER (ENTRY+,DC*)>
<!ATTLIST CLUSTER
CLSID ID #REQUIRED
SEMTYPE CDATA #REQUIRED >
 <!ELEMENT ENTRY (SOURCEDC*,DC*,POSDC,GRAMMATICALDC*,VARIANT*)>
 <!ATTLIST ENTRY
 ENTRYID ID #REQUIRED
 BASEFORM CDATA #REQUIRED
 ISSYNONIM IDREF #IMPLIED
 TYPE CDATA #REQUIRED
 >
 <!ELEMENT VARIANT (DC*) >

 <!ATTLIST VARIANT
 WRITTENFORM CDATA #REQUIRED
 TYPE CDATA #REQUIRED
 >
…..

Since we’ll encounter some problems when managing the element DC, that may belong
to various elements, with, of course, different meaning, we have to manage these
element carefully.
These problems have been resolved by using the deep concept.

To introduce the deep concept, let’s look at the xml fragment below: This fragment is a
valid xml file for the above dtd:

<!DOCTYPE InputData SYSTEM "BioLex_DataExchange.dtd" >
<InputData>
 <Cluster CLSID="CLS0001" SEMTYPE="Protein name" >
 <Entry ENTRYID="ENTRY0001" BASEFORM="Interleukin-2" TYPE="PREFERRED"
>
 <POSDC POSNAME="POS" POS="N"></POSDC>
 <Variant WRITTENFORM="IL-2" TYPE="ACRONIM">
 <DC att="DCATT1" val="DCVAL1"></DC>
 </Variant>
 <Variant WRITTENFORM="IL2" TYPE="ACRONIM"></Variant>
 </Entry>
 <DC att="CLSDC1" val="CLSDC1"></DC>
 </Cluster>
</InputData>

From the above xml fragment we retrieve the following information:

• This xml fragment has five levels;
• More than one element may belong to the same level
• Elements at the same level have the same father;

One way to identify elements with same name but different father is to look at the parent
element of the child element.
If the child element is DC, for example in this fragment, to get the parent element may
return two different fathers, depending on the level of the DC element within the xml
fragment, i.e. depending on which node of the xml tree the software is analyzing.
To get the parent we need a “string equalizing” evaluation between the father’s name
retrieved and the father’s name encoded in the code, to know which operation to
perform on the element itself.
One different way to manage this ambiguity is introducing the deep concept.
Deep behaves like graphical indentation, that is the more an element is far from left side
the greater is its deep.
Obviously, deep must be chosen in a clever way: we choose the “2 power”, exponential
of base 2, to manage the deep values.

We set the initial deep as one (1) (1 is 2^0), and if n=number_of_level, the maximum
deep is 2^ {n-1}.

In the xml fragment, the tree has five levels, so the maximum deep is sixteen (16).

The uniqueness of the element is guaranteed by the deep value:
hasDeep(DC) =4 ↔ isChildOf(DC, Cluster).

In other words the deep of DC is 4 (iff) if and only if DC is a child of element Cluster.

Deep value is doubled every time a child node is parsed, and set to initial value when all
children of a node have been parsed.
The information about deep is explicitly stored in the data dictionary data base, and
basically is used to reason about an element and its attributes:
the element, deep 2-plet is a “trigger” that teaches the software what to do.

An example

As stated before the uniqueness of an element is guaranteed by the 2-plet constituted
by an element and its deep:

[<Element_name>, <Element_deep>].

The xml fragment mapped on this 2-plet is the following:

Figure 5-1: Indentation and Deep

Here, different colours mean different levels within the xml fragment, and, at the end,
different meanings of the elements.

5.2 Synchronizing information between Dictionary and Staging
Frames

The Dictionary and Staging Frames build a synchronized framework that aligns the
stack:

• Input file-corresponding staging table-insert into statement

This framework is built using Java List Objects and manages correspondences between
a single xml fragment, the corresponding input file and staging table to load. In other
words the xml exchange format is fragmented at cluster level, and, since each cluster
contains coherent data (such lemmas, sources variants), each fragment defines
aligned stacks between tables and input files.
The Work tables set in responsible of this alignment.
Once stacks are aligned staging tables may be loaded, since we are sure to read data
from the right input file. See figure 4.2 below,

Figure 5-2: Aligned stacks

 A similar alignment is used also to manage loading into target frame.

6. A Graphical View of the Environment

The figure below shows the final “status” of the BioLex within the BootStrep propject.
The DICT_TABLE simplifies the dictionary frame, an user accesses the BioLex via a
GUI that shows him the information in human readable fashion.
In addiction an application may access the same frame to read and write information
into BioLex.
Having a complete separation between typical linguistic information and human
readable (the DICT_TABLE maps entities identifier information with their attributes)
permit to manage entries in a more direct way.

Figure 6-1: Graphical View

 Mapping between BioLexicon Entities and BioLexicon
Tables

This section explains the differences between the standard and the user tables.
We may say that in one BioLex there are two BioLexes:

• tables belonging to the BioLexicon model (standard)
• tables that implement relations between the objects of the model (user)

6.1 Standard Tables

This paragraph shows the model and the corresponding database architecture designed
so far.
Two figures are provided: one shows conceptual model in UML and the other one is a
view on the physical database tables.

BioLex: Morphological Layer

The model is the following:

Figure 0-1: BioLexicon: Morphological Layer

Data Base: Morphological Layer
The above model is implemented in the database as follows:

Figure 0-2: Data Base Morphological Layer

Mapping between Properties and Relational Tables

Tables like TGT_USER_* map relation between two standard tables. Below we can find
which relational tables map which relation.

Table Relation Note
TGT_USER_LE_LM hasLemma Relation between lemma

and lexical entry
TGT_LE_SOURCEDC hasSourceDC Relation between lexical

entry and type sourceDC
TGT_USER_LE_DC hasDC Relation between lexical

entry and general DC
 hasPOSDC Relation implemented

within lexical entry
TGT_USER_FR_LM hasFormRepresentation Relation between lemma

and form representation
TGT_USER_FR_DC hasDC Relation between form

representation and
general DC

BioLex: Semantic and Syntactic Layer

The model is the following:

Figure 0-3: BioLex: Syntactic Layer

Data Base: Semantic Layer
The above model is realised in the following data base:

Figure 0-4: Data Base Semantic layer

Mapping between Properties and Relational tables
Tables like TGT_USER_* map relation between two standard tables. Below we can find
which relational tables map which relation.

Table Relation Note
TGT_USER_S_LE hasSense Relation between lexical

entry and sense
 hasSenseRelation Relation implemented

within senses. A given
sense may be both source
and target of sense
relations.

Notes on Data Base Implementation

So far not all the tables shaped in figure 7.2 have been realized; in addiction no DC
have been provided for sense and sense relation.

6.2 User Extended Models
This paragraph shows the extended models including all the user relational tables.
We can see that the user tables complete the standard model.17

BioLex: Morphologic Layer User Extension

Figure 0-5: BioLex Morphologic User Extension

17 The term user extension may be misleading: for user extension we mean any relational table
realising properties defined in the BioLex Model, plus any other useful table needed for GUI or
software reasons.
In the next release we’ll change the name of the user tables.

Figure 0-6: BioLex semantic User Extension

6.3 Mapping BioLexicon Model onto Standard Target Tables

The table below shows how the BioLexicon objects have been mapped onto the
standard target tables in the BioLex.

BioLexicon Object Target Table Note
Lemma TGT_LEMMA Morphologic layer
LexicalEntry TGT_LEXICALENTRY Morphologic

layer/Semantic layer
FormRepresentation TGT_FORMREPRESENTATION Morphologic layer
Sense TGT_SENSE Semantic layer
SenseRelation TGT_SENSERELATION Semantic layer
SyntacticBehaviour Not Mapped Not yet treated.
SubcategorizationFrame Not Mapped Not yet treated.

6.4 Mapping BioLexicon Model onto Standard User Tables

The table below shows how the BioLexicon objects have been mapped onto the
standard target tables in the BioLex.

BioLexicon Extended
User Object

Target Table Note

User_Le_SourceDc TGT_LE_SOURCEDC Morphologic user extended
layer

User_LE_DC TGT_USER_LE_DC Morphologic user extended
layer

User_LE_LM TGT_USER_LE_LM Morphologic user extended
layer

User_RepresentationFra
me

TGT_USER_FR_LM Morphologic user extended
layer

User_FR_DC TGT_USER_FR_DC Morphologic user extended
layer

User_SynCluster TGT_USER_SYNCLUST
ER

Semantic user extended layer

User_S_LE TGT_USER_S_LE Semantic user extended layer
User_Le_PosDc Not Mapped Morphologic user extended

layer: the Pos identifier is a
column of the
TGT_LEXICALENTRY

User_FR_VariantDC Not Mapped Morphologic user extended
layer: the variant type is a
column of the
TGT_FORMREPRESENTATI
ON.

User_LM_DC Not Mapped Morphologic user extended
layer: not yet mapped: lack of
information.

User_SB_DC Not Mapped lack of information.18

User_S_DC Not Mapped Semantic user extended layer:
lack of information.

User_LE_SB Not mapped lack of information.19

User_SubCatFrame_DC Not mapped lack of information.20

User_SR_DC Not mapped lack of information.21

18 So far syntactic layer has not yet been treated.
19 So far syntactic layer has not yet been treated.
20 So far syntactic layer has not yet been treated.
21 So far syntactic layer has not yet been treated.

Notes on TGT_USER_SYNCLUSTER
The TGT_USER_SYNCLUSTER table is realised to manage in “one-shot” which
lemmas are synonyms within a given cluster.

TGT_USER_SYNCLUSTER
SC_ID LM_ID LE_ID POS_ID CLS_NAME SEM_ID

SC_CLS0001 LM_Interleukin-2 LE_Interleukin-2 1 CLS0001 6
SC_CLS0001 LM_T-Cell-Growth LE_T-Cell-Growth 1 CLS0001 6
SC_CLS0002 LM_Alcohol

dehydrogenase
LE_Alcohol
dehydrogenase

1 CLS0002 6

SC_CLS0002 LM_Aldehyde
Reductase 2

LE_Aldehyde
Reductase 2

2 CLS0002 6

SC_CLS10 LM_fluoride LE_fluoride 1 CLS10 2
SC_CLS10794 LM_fluoride salts LE_fluoride salts 1 CLS10794 2
SC_CLS13474 LM_Alcohol

dehydrogenase
LE_Alcohol
dehydrogenase

1 CLS13474 4

SC_CLS13475 LM_Alcohol
dehydrogenase
(NADP(+))

LE_Alcohol
dehydrogenase
(NADP(+))

1 CLS13475 4

In addiction this table is useful to create synonymy in a second step: that is given a new
entry belonging to a cluster already loaded, we can implement the synonymycal relation
between the new entry and any other entries belonging to the same cluster.

6.5 A Description of the “How-to-Access” Methods to the
BioLexicon Database.

The BioLexicon data base defines unique identifiers that let any object within the data
base to be independently accessible from queries or software procedures.
The policy of id-building is the following:
We prefix any entry with a set of characters representing the table, entries belong to. For
example the same entry Kynureninase will become LM_ Kynureninase for lemma; FR_
Kynureninase for form representation and so on.

The following list shows some of the access methods to the data base:

• BioLexicon may be accessed by variants, i.e. querying FormRepresentation
table; the id build policy immediately returns the lemma of the variants. From the
lemma we can retrieve information on part of speech, relations, senses.

• Biolexicon may be accessed by sense relations, i.e. querying senseRelation
table; the id-build policy immediately returns relation, the given entry belongs to.

• BioLexicon may be accessed by lemma or lexical entries, to retrieve information
on syntactic properties.

7. Conclusions
The BioLexicon constitutes the expected lexical resource of the BOOTStrep project, a
resource that integrates features of both terminologies and lexicons, meets the bio
domain needs, complies with the most recent standards for lexical representation, the
ISO Lexical Markup Framework (Francopoulo et al. 2006a), and is built according to the
design principles of state-of-the-art NLP computational lexicons. It constitutes one of the
major outcomes and novelties of the BOOTStrep Consortium, with respect to related
works, e.g. Termino (Harkema et al. 2004).

It also is a tangible proof that the state-of-the-art in these fields is mature enough for us
to create a terminological-lexical resource which is candidate to become the standard for
the Bio domain. Although specifically designed for a given domain, thanks to conformity
to most accredited international standards, the BioLexicon allows for interoperability with
other lexicons and extendibility to other terminological areas.

8. Availability
The BioLexicon and related documentation are available for download22 at the following
URL:

http://www.ilc.cnr.it/BootStrepD22_files/BioLexDataBase.zip

This is a MySQL dump zip file which includes data and DDL. Loaded data are relevant
to enzymes.

22 Because of the restricted nature of this first delivery, the files are password protected. The
password will be given to authorised people by the ILC partner.

http://www.ilc.cnr.it/BootStrepD22_files/BioLexDataBase.zip

9. References

[1] Francopulo G., et al. 2006a. Lexical Markup Framework (LMF). Proceedings of
the LREC 2006, Genova, Italy.

[2] Francopoulo G., Declerck T., Monachini M., Romary L. 2006b. The relevance of
standards for research infrastructure. Proceeding of the LREC 2006, Genoa, Italy.

[3] Hahn U., Markó K. 2001. Joint Knowledge Capture for Grammars and
Ontologies. Proceedings of the 1st international conference on Knowledge capture
Victoria, British Columbia, Canada.

[4] Harkema H., Gaizauskas R., Hepple M., Angus R., Roberts I., Davis N., Guo Y.
et al. 2004. A Large Scale Teminology Resource for Biomedical Text Processing. HLT-
NAACL 2004 Workshop: BioLINK 2004, Linking Biological Literature, Ontologies and
Database, Boston, Massachusetts, USA.

[5] Kors J. A., Schuemie M. J., Schijvenaars B. J. A., Weeber M., Mons B. et al.
2005. Combination of Genetic Databases for Improving Identification of Gens and
Proteins in Text, Rotterdam, Netherlands.

[6] ISO-12620. 2006. Terminology and other content language resources – Data
Categories – Specifications of data categories and management of a Data Category
Registry for language resources. ISO/TC37/SC3/WG4.

[7] Nenadic, G., Ananiadou, S. & McNaught, J. 2004. Enhancing Automatic Term
Recognition through Term Variation, in Proceedings of 20 th Int. Conference on
Computational Linguistics, Coling 2004, Geneva, Switzerland.

[8] Ruimy N., Monachini M., Gola E., Calzolari N., Del Fiorentino M. C., Ulivieri M.,
Rossi Sergio. 2002. In Linguistica Computazionale, Vol.XVIII-XIX, I.L.C. and
Computational Linguistics, special issue, A. Zampolli, N. Calzolari, L. Cignoni, (Eds.),
I.E.P.I., Pisa-Roma.

[9] Wright S.E. 2004. A global data category registry for interoperable language
resources. Proceedings of the LREC 2002, Lisbon, Portugal.

Appendix A: Complete DTD

<?xml version='1.0' encoding="UTF-8"?>
<!ELEMENT InputData (Cluster+)>
<!ATTLIST InputData
 dtdVersion CDATA #FIXED "1.1">
<!ELEMENT Cluster (Entry+,DC*)>
<!ATTLIST Cluster
CLSID ID #REQUIRED
SEMTYPE CDATA #IMPLIED
>

 <!ELEMENT Entry
(SOURCEDC*,POSDC,GRAMMATICALDC*,Variant*,WordForm*,RELATION*,DC*)>
 <!ATTLIST Entry
 entryid ID #REQUIRED
 BASEFORM CDATA #REQUIRED
 issynonym IDREF #IMPLIED
 type CDATA #REQUIRED
 >
 <!ELEMENT Variant (DC*) >
 <!ATTLIST Variant
 WRITTENFORM CDATA #REQUIRED
 type CDATA #REQUIRED
 >
 <!ELEMENT GRAMMATICALDC EMPTY>
 <!-- att=constant to be taken from the DCR -->
 <!-- val=free string or constant to be taken from the DCR-->
<!ATTLIST GRAMMATICALDC
 Gender CDATA #REQUIRED
 Number CDATA #REQUIRED>

 <!ELEMENT DC EMPTY>
 <!-- att=constant to be taken from the DCR -->
 <!-- val=free string or constant to be taken from the DCR-->
<!ATTLIST DC
 att CDATA #REQUIRED
 val CDATA #REQUIRED>

 <!ELEMENT SOURCEDC EMPTY>
 <!-- att=constant to be taken from the DCR -->
 <!-- val=free string or constant to be taken from the DCR-->
<!ATTLIST SOURCEDC
 sourceName CDATA #REQUIRED
 sourceid CDATA #REQUIRED
 >

 <!ELEMENT POSDC EMPTY>
 <!-- att=constant to be taken from the DCR -->
 <!-- val=free string or constant to be taken from the DCR-->
<!ATTLIST POSDC
 posname CDATA #FIXED "POS"
 pos CDATA #REQUIRED
 >
 <!ELEMENT RELATION (DC*) >

 <!ATTLIST RELATION
 TYPE CDATA #REQUIRED
 TARGET CDATA #REQUIRED
 >

 <!ELEMENT WordForm (DC*) >
 <!ATTLIST WordForm
 INFLECTEDFORM CDATA #REQUIRED
 GRAMDATA CDATA #REQUIRED
 >

Appendix B XIF Example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE InputData SYSTEM "BioLex_DataExchange.dtd" >
<InputData>
 <Cluster CLSID="CLS0001" SEMTYPE="Protein name" >
 <Entry ENTRYID="ENTRY0001" BASEFORM="Interleukin-2"
TYPE="PREFERRED" >
 <POSDC POSNAME="POS" POS="N"></POSDC>
 <Variant WRITTENFORM="IL-2" TYPE="ACRONIM"></Variant>
 </Entry>
 <Entry ENTRYID="ENTRY0002" BASEFORM="T-Cell-Grow-Factor"
TYPE="PREFERRED" >
 <POSDC POSNAME="POS" POS="N"></POSDC>
 <Variant WRITTENFORM="TCGF"
TYPE="ACRONIM"></Variant>
 </Entry>
 <Entry ENTRYID="ENTRY0003" BASEFORM="Aldehide
Reductase" TYPE="PREFERRED" >
 <POSDC POSNAME="POS" POS="N"></POSDC>
 <Variant WRITTENFORM="ALDRED"
TYPE="ACRONIM"></Variant>
 </Entry>
 </Cluster>
<Cluster CLSID="CLS10794" SEMTYPE="ChebiChem">
 <Entry entryid="CLS10794_ENTRY1" BASEFORM="fluoride salts"
type="PREFERRED">
 <SOURCEDC sourceName="CHEBI" sourceid="CHEBI:24060"/>
 <POSDC posname="POS" pos="N"></POSDC>
 <Variant WRITTENFORM="fluorides" type="orthographic"/>
 </Entry>
 </Cluster>
 <Cluster CLSID="CLS10" SEMTYPE="ChebiChem">
 <Entry entryid="CLS10_ENTRY1" BASEFORM="fluoride"
type="PREFERRED">
 <SOURCEDC sourceName="CHEBI" sourceid="CHEBI:17051"/>
 <POSDC posname="POS" pos="N"></POSDC>
 <Variant WRITTENFORM="F(-)" type="orthographic"/>
 <RELATION TYPE="CHEBI_is_part_of"
TARGET="CHEBI:24060"></RELATION>
 <RELATION TYPE="CHEBI_is_a"
TARGET="CHEBI:24060"></RELATION>
 </Entry>
 </Cluster>
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE InputData SYSTEM "Inflected.dtd">
<InputData>
<Cluster CLSID="CLSID" SEMTYPE="CLSSEMTYPE">
 <Entry entryid="ENTRY1" BASEFORM="accelerate"
type="PREFERRED">
 <SOURCEDC sourceName="SOURCE" sourceid="SOURCEID"/>
 <POSDC posname="POS" pos="V"></POSDC>
 <WordForm INFLECTEDFORM="acceletates" GRAMDATA
="VVZ">
 </WordForm>

 <WordForm INFLECTEDFORM="Acceletate" GRAMDATA
="VVP">
 </WordForm>
 <WordForm INFLECTEDFORM="acceletating" GRAMDATA
="VVG">
 </WordForm>
 </Entry>
 <Entry entryid="ENTRY02" BASEFORM="speed-up"
type="PREFERRED">
 <POSDC posname="POS" pos="V"></POSDC>
 <WordForm INFLECTEDFORM="speeds-up" GRAMDATA
="VVZ">
 </WordForm>
 </Entry>
 </Cluster>
</InputData>

Appendix C: Dictionary Frame Details
This annex shows data dictionary tables used in the loading process.

Work Tables
The table below show the work tables currently used.

Work Table Explanation
WORK_LIST_TABLE Contains all the staging and user tables. If a

new table is added to the BioLex it must be
recorded in this table.

WORK_MAP_TABLE Maps the xml element with the corresponding
BioLex table, and maps each element attribute
with columns of corresponding table. Only
used attributes are mapped.

WORK_MAP_COLUMNS This table contains information about standard
staging biolexicon tables only. It contains the
table structure and the link to the xml
elements.

WORK_HASID_TABLE This table contains only the xml elements that
hold an identifier. This identifier will be the
PK(FK) for target tables(s).
The table provides also information on the
position of the identifier within the list of
attributes of a given element.

WORK_ID_TABLE The table contains information on the prefix of
the identifier. The identifier is strictly linked to
the table it refers to23.

WORK_REL_TABLE This table is similar to the
WORK_MAP_COLUMNS table, and contains
information on user table structures.

WORK_REL_ FILES The table contains a mapping between the xml
elements and their (eventual) related user
files.
This tables also stores information on the
prefixes of the identifier of tables composing
the relational files.

WORK_PREFERRED This table contains identifier-to-identifier
mapping to manage variants and sense
relations.

Rule Tables
The table below show some rule tables sketched.

Rule Table Explanation
RULE_LIST_TGT_TABLE This table contains the list of target tables

and the order followed by software to load
them.

RULE_MAP_TGT_TABLE This table contains mapping between

23 For example: the lemma table will be prefixed by LM_

Rule Table Explanation
staging tables and target tables.

RULE_JOIN_TGT_TABLE This table contains join between staging
table(s) for a given target table.

RULE_MAP_STG_TO_TGT This table contains the list of staging
table(s) for a given target table; also it
contains the order of the staging table(s).
The order is used to automatically build sql
instruction.

RULE_LIST_SPECIAL_TABLE This table contains the list of special tables
and the order followed by software to load
them.

RULE_MAP_SPECIAL_TABLE This table contains mapping between input
tables and special tables.

RULE_JOIN_SPECIAL_TABLE This table contains join between input
table(s) for a given special table.

RULE_MAP_SOURCE_TO_SPECIAL This table contains the list of input table(s)
for a given special table; also it contains the
order of the input table(s). The order is used
to automatically build sql instruction.

RULE_LIST_FINAL_TABLE This table contains the list of final tables
and the order followed by software to load
them.

RULE_MAP_FINAL_TABLE This table contains mapping between input
tables and final tables.

RULE_JOIN_FINAL_TABLE This table contains join between input
table(s) for a given final table.

RULE_MAP_SOURCE_TO_FINAL This table contains the list of input table(s)
for a given final table; also it contains the
order of the input table(s). The order is used
to automatically build sql instruction.

Appendix D: Staging and Target Frame Details
This annex describes staging and target tables, in terms of columns.
It also provides a list of typed data category.

Staging tables columns
This paragraph lists all staging tables’ columns:

Staging Table Column Explanation

STG_CLSDC SC_ID The identifier of the cluster.

STG_CLSDC ATT The attribute of data
category

STG_CLSDC VAL The value of data category.

STG_FORMREPREENTATION FR_ID The identifier of the variant.

STG_FORMREPREENTATION WRITTENFORM The form of the variant.

STG_FORMREPREENTATION VARIANTTYPE The type of the writtenform
of the variant.

STG_LE_SOURCEDC LM_ID The identifier of the lemma
of the lexical entry.

STG_LE_SOURCEDC SOURCENAME The name of the source.
It is a fixed value:
SOURCENAME

STG_LE_SOURCEDC SOURCEVAL The value of the source.

STG_LEDC LM_ID The identifier of the lemma
of the lexical entry.

STG_LEDC ATT The attribute of data
category

STG_LEDC VAL The value of data category.

STG_LEMMA LM_ID The identifier of the lemma.

STG_LEMMA ENTRYID The identifier of the lemma
in the xml file.

STG_LEMMA BASENAME The preferred form for the
lemma.

STG_LEMMA VARIANTTYPE The type of the form. It is a
fixed value: PREFERRED.

STG_LEXICALENTRY LE_ID The identifier of the lemma
for a given lexical entry.

STG_LEXICALENTRY POS A fixed value: POS, the part
of speech.

STG_LEXICALENTRY POSVAL The value of the part of
speech.

STG_REL_TYPE LM_ID The identifier of the lemma.

Staging Table Column Explanation

STG_REL_TYPE REL_TYPE The type of the relation.

STG_REL_TYPE TARGET The partner of the relation,
usually a target entry in the
xml input file.

STG_SENSE LM_ID The identifier of the lemma.

STG_SENSE BASENAME The preferred form for the
lemma.

STG_SENSE SEMTYPE The semantic class of the
lemma.

STG_SENSERELATION LM_ID The identifier of the lemma.

STG_SENSERELATION LE_ID The identifier of the lexical
entry for a given lemma.

STG_SENSERELATION S_ID The identifier of sense for a
given lemma.

STG_SENSERELATION BASENAME The preferred form for the
lemma.

STG_USER_SYNCLUSTER SC_ID The identifier of the cluster.

STG_USER_SYNCLUSTER CLS_NAME The name of the cluster.

STG_USER_SYNCLUSTER SC_SEMTYPE The semantic type of the
cluster.

STG_VARIANTDC FR_ID The identifier of the variant
for a given entry.

STG_VARIANTDC ATT The attribute of data
category

STG_VARIANTDC VAL The value of data category.

USER_CLS_LM SC_ID The identifier of the cluster.

USER_CLS_LM LM_ID The identifier of the lemma.

USER_FR_LM LM_ID The identifier of the lemma.

USER_FR_LM FR_ID The identifier of the variant
for a given lemma.

USER_LE_LM LM_ID The identifier of the lemma.

USER_LE_LM LE_ID The identifier of the lexical
entry for a given lemma.

Data category columns
This paragraph data category columns:

Data category Column Explanation
POSDC POS_ID The identifier of the part of

speech.
POSDC POSATT A fixed value: POS

Data category Column Explanation
POSDC POSVAL The domain of the part of

speech: N,V,A.
VARIANTDC VT_ID The identifier of the variant

type.
VARIANTDC VARIANTATT A fixed value:

VARIANTTYPE
VARIANTDC VARIANTVAL The domain of the variant

type.
RELDC REL_ID The identifier of the relation

type.
RELDC ATT A fixed value: RELATION

RELDC VAL The domain of the relation
types.

SEMDC SEM_ID The identifier of the
semantic type.

SEMDC SEMATT A fixed value: SEMTYPE

SEMDC SEMVAL The domain of the semantic
types.

SOURCEDC SOURCE_ID The identifier of the source.

SOURCEDC SOURCEATT A fixed value:
SOURCENAME

SOURCEDC SOURCEATT The domain of the sources.

Target tables columns
This paragraph lists all target tables’ columns:

Target Table Column Explanation
TGT_USER_CLS_DC SC_ID The identifier of the cluster.

TGT_USER_CLS_DC DC_ID The identifier of the attribute-
name-value feature, as
generated in the DC table.

TGT_FORMREPRESENTATION LM_ID The identifier of the lemma.
TGT_FORMREPRESENTATION FR_ID The identifier of the variant.
TGT_FORMREPRESENTATION WRITTENFORM The form of the variant.
TGT_FORMREPRESENTATION VT_ID The identifier of the variant

type, as generated in the
VARIANTDC table.

TGT_SENSE S_ID The identifier of the senses.
TGT_SENSE SEMTYPE The identifier of the semantic

type as generated by the
SEMDC.

TGT_LE_SOURCEDC LE_ID The identifier of the lexical
entry.

TGT_LE_SOURCEDC SOURCE_ID The value of the sourceid
attribute in the input file for a
given lexical entry.

TGT_LE_SOURCEDC SOURCE_REF The identifier of the source,
as generated in the

Target Table Column Explanation
SOURCEDC table.

TGT_USER_LE_DC LE_ID The identifier of the lexical
entry.

TGT_USER_LE_DC DC_ID The identifier of the attribute-
name-value feature, as
generated in the DC table.

TGT_LEMMA LM_ID The identifier of the lemma.
TGT_LEMMA ENTRYID The identifier of the lemma in

the xml file.
TGT_LEMMA BASENAME The preferred form for the

lemma.
TGT_LEMMA VT_ID The identifier of the

“PREFERRED” variant type ,
as generated in the
VARIANTDC table.

TGT_LEXICALENTRY LE_ID The identifier of the lemma
for a given lexical entry.

TGT_LEXICALENTRY POS_ID The identifier of the part of
speech, as generated in the
POSDC table.

TGT_SENSERELATION SR_ID The identifier of the
relationship.

TGT_SENSERELATION S_SOURCE_ID The identifier of the source
sense for a given lexical
entry.

TGT_SENSERELATION S_TARGET_ID The identifier of the target
sense for a given lexical
entry..

TGT_SENSERELATION REL_TYPE_ID The identifier of the relation
type, as generated in the
RELDC table.

TGT_USER_SYNCLUSTER SC_ID The identifier of the cluster.
TGT_USER_SYNCLUSTER LM_ID The identifier of the lemma.
TGT_USER_SYNCLUSTER LE_ID The identifier of the lexical

entry.
TGT_USER_SYNCLUSTER POS_ID The identifier of the part of

speech, as generated in the
POSDC table.

TGT_USER_SYNCLUSTER CLS_NAME The name of the cluster
TGT_USER_SYNCLUSTER SEM_ID The identifier of the semantic

type as generated by the
SEMDC.

TGT_USER_FR_DC FR_ID The identifier of the variant.
TGT_USER_FR_DC DC_ID The identifier of the attribute-

name-value feature, as
generated in the DC table.

TGT_USER_FR_LM LM_ID The identifier of the lemma.
TGT_USER_FR_LM FR_ID The identifier of the variant

for a given lemma.
TGT_USER_LE_LM LM_ID The identifier of the lemma.
TGT_USER_LE_LM LE_ID The identifier of the lexical

entry for a given lemma.

Target Table Column Explanation
TGT_USER_S_LE S_ID The identifier of the sense.
TGT_USER_S_LE LE_ID The identifier of the lexical

entry.

	Table of Contents
	Table of Figures
	0. Executive Summary
	1. Introduction
	2. From the BioLexicon Data Model to the BioLexicon Data Base: The XML Interchange Format (XIF)
	Relation between Lexical Entry and its Typed Data Categories
	Relation between LexicalEntry and Lemma
	Managing Variant and Variant-Type
	Inferring Synonymy in the XIF

	3. BioLexicon DataBase Internal Architecture
	Standard Concepts
	Specific Concepts
	Annotation for the Project
	The 3-frames Structure
	Work Tables
	Rule Tables
	Example

	Messages Tables
	GUI tables
	Staging Frame and initial loading
	Staging Frame and incremental loading
	Data consistency
	Staging tables list
	Data categories
	Typed Data categories

	Target Frame and initial loading
	Target Frame and incremental loading
	Data consistency
	Target tables list

	4. Software Architecture
	Reading xml file
	Loading staging tables
	 Loading target tables
	Variables
	JdomMethods
	BioLex
	Logger
	Package: manageTables
	From XIF to input Files
	Steps

	From input files to Staging tables
	Steps

	From Staging to Target tables
	Steps

	5. Concepts
	The DTD and the XML fragment
	An example

	6. A Graphical View of the Environment
	 Mapping between BioLexicon Entities and BioLexicon Tables
	BioLex: Morphological Layer
	 Data Base: Morphological Layer
	Mapping between Properties and Relational Tables

	BioLex: Semantic and Syntactic Layer
	Data Base: Semantic Layer
	Mapping between Properties and Relational tables
	Notes on Data Base Implementation

	BioLex: Morphologic Layer User Extension
	Notes on TGT_USER_SYNCLUSTER

	7. Conclusions
	8. Availability
	9. References
	Appendix A: Complete DTD
	Appendix B XIF Example
	Appendix C: Dictionary Frame Details
	Appendix D: Staging and Target Frame Details
	Staging tables columns
	Target tables columns

