
UFRA: A UIMA-based Approach to Federated Language Resource
Architecture

Riccardo Del Gratta, Roberto Bartolini, Tommaso Caselli, Monica Monachini

Claudia Soria and Nicoletta Calzolari

Istituto Di Linguistica Computazionale
Consiglio Nazionale delle Ricerche

Via Moruzzi 1, Pisa, Italy
{riccardo.delgratta, roberto.bartolini, tommaso.caselli, monica.monachini, claudia.soria, nicoletta.calzolari}@ilc.cnr.it

Abstract
In this paper we address the issue of developing an interoperable infrastructure for language resources and technologies. In our approach,
called UFRA, we extend the Federate Database Architecture System adding typical functionalities coming from UIMA. In this way, we
capitalize the advantages of a federated architecture, such as autonomy, heterogeneity and distribution of components, monitored by a
central authority responsible for checking both the integration of components and user rights on performing differenttasks. We use the
UIMA approach to manage and define one common front-end, enabling users and clients to query, retrieve and use language resources
and technologies.
The purpose of this paper is to show how UIMA leads from a FEDERATED DATABASE ARCHITECTUREto a FEDERATED RESOURCE

ARCHITECTURE, adding to a registry of available components both static resources such aslexiconsandcorporaand dynamic ones such
as tools and general purpose language technologies.
At the end of the paper, we present a case-study that adopts this framework to integrate the SIMPLE lexicon and TIMEML annotation
guidelines to tag natural language texts.

1. Introduction and background work

The huge amount and diversity of language resources and
tools, together with the availability of mature standards for
content interoperability, suggests that the time is ripe for
trying to weave the various resources scattered over differ-
ent sites into a single organism of language services and
repositories.
The integration and exploitation of language resources and
tools into an architecture where users can combine ele-
ments of static language resources and dynamic process-
ing resources is an active research topic being pursued at
our site, both independently and in the framework of Eu-
ropean and international projects. Our research group is
involved in an ESFRI project, CLARIN (see section 3.1.),
for the development of a pan-European integrated and in-
teroperable infrastructure of language resources and tech-
nologies for Humanities and Social Science. Our institute
is also partner of the international project Language Grid
(see section 3.3.), that aims at realizing an infrastructure
for inter-cultural collaboration based on the compositionof
language services. Language Grid defines requirements to
“ontologize” language resources, their communication as
well as their interaction protocols. We have met these re-
quirements in the complete case study about the integration
of the SIMPLE lexicon (Ruimy, 2006) and TIMEML (Puste-
jovsky et al., 2006), as reported in (Del Grattaet al., 2008);
moreover the need of input and/or output format standard-
ization, required by Language Grid, is at the base of the
resource registry definition (see section 3.1.) which is fun-
damental also for the CLARIN project.
Standards are the precondition for content interoperabil-
ity and for providing tools able to process data with stan-
dardized descriptions and return standardized output. Ex-

pectations of the scientific and industrial community about
standards are that, once made operational in an integrated
resource platform, they will be beneficial to the defini-
tion of both standardized access functions and automated
workflows. The challenge for them is to enable a modern
service-oriented infrastructure with a set of stable language
services. It is worth noting that, at least initially, differ-
ent output formats can be mapped onto the ISO standard,
though not being properly standardized (see section 5.2.).
In this paper, we describe an approach to the realization of
an integrated and interoperable infrastructure of language
resources and technologies based on the UIMA architec-
ture. We use the term “language resource” to refer both to
static resources (lexicons, corpora) and dynamic processing
resources (NLP tools, general purpose technologies).
In the following we present a brief description of the UIMA
framework (section 1.1.) and of FEDERATE DATABASE

SYSTEM, (FDBS, section 1.2.).

1.1. The UIMA framework

This section briefly describes the UIMA platform and phi-
losophy. The interested reader can find more details in
the following articles: (Ferrucci and Lally, 2004; Götz and
Suhre, 2004).
UIMA deals at language resources as software “hooks” that
can be “handled” by a common framework; the UIMA
platform provides facilities for embedding tools and re-
sources into an Integrated Development Environment, such
as Eclipse1 and defines an object, the Common Analysis
Structure, CAS, which contains both the input physical data
(document(s)), meta data and any annotation level added by
linguistic tools. It provides cooperating UIMA components

1http://www.eclipse.org

2634

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37832667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

with a common representation and mechanism for shared
access to the document(s) being analyzed.
In a standard workflow, the CAS object runs from the input
to the output steps and is accessed, manipulated and up-
dated by each resource. This behavior of the CAS object
allows developers to consider the UIMA workflow as an
assembly-line. Developers, therefore, can choose the step
as well as the conditions for a tool to be executed within the
assembly-line. The UIMA framework manages resource
integration by defining specific “descriptors”, i.e. XML
files. One of these files contains annotations performed on
the content of the documents, while another contains the
framework-provided infrastructure (primitive analysis en-
gines) that allows them to be easily combined in a workflow
(aggregate analysis engines).

1.2. A Federate approach to integrated resources

One approach to standardized and integrated resources
management is made by the Federate Database Architec-
ture System, FDBS (Heimbigner and McLeod, 1985; Sheth
and Larson, 1990). This approach is preferred to a standard
resource-sharing architecture, since the FDBS approach
manages resource-sharing issues as well as users and roles
definition. The FDBS clearly defines a central authority re-
sponsible for all the interoperability outcomes among com-
ponents and for standardization of input/output formats as
well as resource structure. This central authority oversees
to the federation policies. Internal rules, groups and user
rights, components cooperation are pillars for the FDBS ar-
chitecture.
We point out three main characteristics an architecture
should have to be considered “federable”:

Heterogeneity: heterogeneity in resources is due to sev-
eral factors. Among them, differences in structures
and semantics of data;

Autonomy: in a few words, autonomy stands for the qual-
ity, for a resource, to function independently from oth-
ers;

Distribution: resources exist before the federation is built.
The federation aims at the interactions of each single
resource with others, defining interoperability rules,
access rights and a common access language.

2. UIMA approach to FDBS

The administration of a FDBS is a challenging task and the
administration of a federation of resources is more than a
challenging task. In this architecture, the central authority
has to manage both user rights and resource interoperabil-
ity. User rights join interoperability rules and define a com-
plex scenario in which the ‘motto’ “who can do what and
how” is the key question.
In our approach, called UFRA, we combine functionalities
offered by the UIMA platform with FDBS features to define
a cleancentral authoritycapable of addressing interoper-
ability and user privileges issues.
In the following subsection, we list steps needed to set-up
the architecture: the basic idea is the introduction of spe-
cialized repositories to manage language resources, Natu-

ral Language Processing (NLP) pipelines and user require-
ments defined in and for the federation.

2.1. Resources survey

The resource survey is the first step to be executed before
the architecture is made up. We have defined six different
repositories and pulled apart resources from workflow and
user information. Resource types as well as their capabili-
ties are stored in differentiated repositories. Bycapability
we mean a specific functionality of one given resource and,
by generalization, the piece of information added to the in-
put document by that capability.

meta-repository: this repository contains information on
each single resource. Each resource is assigned a
unique persistent identifier. This repository keeps
track of eachresource instance: a resource instance
is a physical copy of the resource identified by the
unique persistent identifier;

resource type repository: this repository classifies the re-
sources in different resource types in agreement with
resource capability;2

resource-schema:this schema describes which kind of
data is managed by a resource. Other elements of
this schema manage input/output and standard com-
pliance;

meta workflow schema: this schema represents possible
workflows within the UFRA environment. One sin-
gle workflow schema assembles a list of resource
types ordered according to execution priorities. The
meta workflow schema provides a skeleton for NLP
pipeline. The advantage of this schema is that we
can define workflows using resource type as building
block. Sometimes, a workflow can be specified upon
peculiar resources;

user rights repository: this repository contains privileges
assigned to users and/or groups. User privileges are
defined both at resource type and resource level. User
rights (or privileges) have to be placed within anIden-
tity Managementscenario and addressed with specific
technologies (Foundation, 2007; Erdos and Cantor,
2001);

federal dictionary: this is a specialized component, which
regulates the UFRA topology. The federal dictionary
is built upon other repositories described above and
manages the resource taxonomy and interaction.

Figure 1 describes the interactions defined among the
repositories.

3. Connection with other similar projects
This section lists two straightforward connections settled
for the UFRA platform at our institute.

2Resource types can further be sub-typed: for example, if a
Tagger-type-A resource has three annotation levels, Lemma,Pos
and Morphological information and a Tagger-type-B has onlytwo
of the above levels, then the latter is a sub-type of the former.

2635

Figure 1: Interactions and relations at repository level.

3.1. Relevant CLARIN Experiences

As mentioned in section 1., our institute is member of an
ESFRI project within the FP7, CLARIN (The Clarin Project,
2008), which aims at the definition of an architecture of in-
teroperable language resources as well as the setting up of a
network of repositories and service centers that keeps track
of registered resources and user privileges. One of the pil-
lars of CLARIN is, consequently, the setting-up of aregistry
of available resources. These resources are described using
a set of metadata already defined and registered in special-
ized repositories. For details, see, among others, (Broeder
and Wittenburg, 2006; Schäfer, 2007). A persistent unique
identifier is assigned to each resource.
Users can query this registry to find out relevant resources
for their researches. These resources are accessed by web
services and/or organized in virtual collection to be reused.

3.2. UFRA: Resource Registry and Service Providing

In UFRA, we adopted the CLARIN strategy with respect to
theresource registrysetting up. Every repository described
in section 2.1. is defined accordingly with metadata direc-
tives. As in CLARIN , this registry is the backbone for the
UFRA architecture: it is used for both resource querying
and services providing. Repositories defined above are in-
ternally accessed by the UIMA framework and, externally,
by users who want to build their own resource collection
relevant for their research.
It is straightforward to identify one single resource with a
primitive analysis engine. These analysis engines can be
deployed as web services, since this is one of the deploy-
ment options supported by the UIMA framework.

3.3. Connection with Language Grid

As mentioned in section 1., our institute cooperates with
the National Institute of Information and Communications
Technology (NICT) within the Language Grid project
(Ishida, 2007). This project aims at the definition of a new
infrastructure both to improve the use of existing language
services and to encourage users to create new ones relevant
for their needs. Web services, modelled on language

resources, are the backbone of the Language Grid project:
this technology makes it possible to combine already avail-
able resources over the Internet; moreover, information and
data sharing is also managed and implemented by a strong
use of web service technology.

3.4. Remarks

An infrastructure like UFRA is a challenging task from both
a linguistic perspective and a technological point of view.
Nevertheless, the strong connections settled with CLARIN

and Language Grid encourage to persist in such an infras-
tructure. UFRA mixes identity management with access to
distributed language resources via web services.

4. UIMA Role
This section describes the UIMA role within the UFRA plat-
form.
UIMA is a framework designed to manage resource inter-
operability and integration in a corporate research environ-
ment. As explained in section 2., it is the obvious candidate
to carry out therole of the central authorityin a resource
federation.
We can simply use the UIMA framework to access and ma-
nipulate documents. In this basic scenario, the CAS object
is instantiated upon the document3 and it is accessed, ma-
nipulated and updated by analysis engines.
In order to define the role of UIMA within the UFRA plat-
form, we decided to addoperational annotationsto the
whole document. In such a case, the CAS contains the doc-
ument to be analyzedand the linguistic annotation a user
wants, expressed asoperational annotationsdefined at doc-
ument level. Eachoperational annotationrecords linguistic
annotations and/or language resources pertinent for these
annotations.
UIMA is, then, a software interface between users and the
Fdbs. It is responsible for accessing the federal dictionary,
selecting the right resources to perform linguistic annota-
tions.

5. UIMA Type System for document
annotation

This section introduces the UIMA type system for docu-
ment annotation. Briefly, a type system is a schema or a
model for the CAS object. It defines the types of objects
and their features (capabilities) that may be used by a CAS.
Analysis engines conform to a type system.
The UIMA out-of-the-box framework provides a sim-
ple Document Type System (DTS). We enriched this
DTS adding two features:typeOfOperationandpreferre-
dResource. We have introduced these two features to de-
fine NLP operations and available resources. These fea-
tures are directly linked to two type systems, OPERATION

and RESOURCE, that include range types which can restrict
the value of possible operation and/or resources a user can
select.

3If a document belongs to a collection, the UIMA framework
iterates on the collection and instantiates a CAS for each single
document.

2636

Language: a string identifying the language of the input
text;

Operation: a type system used to model CAS objects
built upon a typical NLP operation;

Resource: a type system used to model CAS objects built
upon language resources;

typeOfOperation: a feature array linked to the OPERA-
TION type system. It is used to pick-up from a list of
available NLP operations;

preferredResource: a feature array linked to the RE-
SOURCEtype system. It is used to choose a particular
resource.

Figure 2 describes the DTS scheme implemented as UIMA
Type System.

DocumentAnnotation
+ language : uima.cas.String
+ typeOfOperation : uima.cas.FSArray = operation
+ preferredResource : uima.cas.FSArray = resource
+ :

operation
+ operationType : uima.cas.String

resource
+ resourceType : uima.cas.String
+ resourceName : uima.cas.String

Figure 2: Document annotation scheme

5.1. From Data to Pipeline Driven Architecture

The document level annotation (DTS), defined in section
5., moves the architecture of interoperable language re-
sources from (typically) data-driven architecture to a (NLP)
pipeline-driven one. UIMA, by its very nature, is a data-
driven architecture, but the DTS, contained in thestarting
CAS object4, tells the UIMA framework which NLP op-
erations perform rather than which annotation add to the
input document. This reversal of perspective moves the an-
notation process from a standard inline/outline process to
an NLP resource execution one. Users choose annotation
levels and preferred language resources to carry out these
annotations. These requirements set the values oftypeOf-
OperationandpreferredResourceDTS features.
The workflow implemented in UFRA is, however, standard.
The UIMA platform accesses thestarting CASand com-
pares its information with the federal dictionary. At this
point UIMA behaves just like acentral authority: it checks
whether selected NLP operations and preferred language
resources are consistent with each other and tries to build
an NLP pipeline according to user requests. The pipeline
is concretely assembled by aggregating primitive analysis
engine into an aggregate analysis engine. The aggregate
analysis engine is made on meta workflow schema.

4By starting CASwe mean the CAS built on input document.

In this scenario we can reasonably talk of an NLP pipeline-
driven architecture. The following section, 5.3., describes
further this architecture, introducing the concepts of NLP
atomic operations.

5.2. Input/output standardization

The federal dictionary as well as the other repositories de-
fine a resource classification and standardization. We con-
sider another kind of standardization that plays a crucial
role in resource interoperability. We refer to input/output
standardization. UIMA components declare their input and
output with respect to a type system, therefore we need a
standard format to address data transfer from one resource
to another. The UIMA platform provides an out-of-the-
box solution of this standardization: the inline annotation
is performed at the CAS level. This annotation is saved
in feature-like format, indexed and managed by the UIMA
platform. However, the content of the CAS can be seri-
alized and accessed by external tools as well as stored in
databases. In this way we can access, on demand, standoff
annotation. From a linguistic perspective, the standardiza-
tion is achieved by using the data category registry (DCR)
(Wright, 2004). This DCR behaves as agraphcentral point
other format are mapped onto (Nancy and Keith, 2007).

5.3. NLP atomic operations and pipelines

This section defines NLP atomic operations and (abstract)
NLP pipelines. In previous sections we have shown the
conditions to build an NLP pipeline from user requested
annotations. On the other hand, UIMA provides primitive
analysis engines and aggregate ones. It is straightforwardto
identify a primitive engine with an NLP atomic operation,
while aggregate engines are identified as NLP pipeline.
The federal dictionary allows for a generalization of an
NLP pipeline from one built upon single resources to one
built on resource types . In such a case the NLP pipeline
is abstract, since used resources are not physical ones, but
only generic resources of a specific type. The meta work-
flow schema is responsible to record typical NLP pipeline.
UIMA renders this schema and pipes each single resource
to another. Figure 3 shows single modules or atomic NLP
operations piped one to another to define the final NLP
pipeline.

Figure 3: Abstract NLP Pipeline and atomic operations

2637

The meta workflow schema assembles each module in an
NLP pipeline, accordingly tooperationsand/orresources
selected by a user. This pipeline is capable to provide dif-
ferent annotation levels:words (tokens), theirmorphology,
how they behave from asyntactic perspectiveand, finally,
when available, theirsemantics.
Each annotation level is carried out by specific modules:
Tokenizers, Morphological Analyzers, Syntactic Analyzers
andSemantic Analyzers, respectively.
Linguistic annotations flow from module to module fol-
lowing UIMA component specifications summarized in the
UIMA type systems and CAS object.
Each annotation is maintained in the CAS object. This
guarantees that NLP modules work on the same token
and/or the same span of text.

5.4. Linguistic Issues

The UFRA framework supports the ability to define spans
of text that can be analyzed is a single “spot”. This is use-
ful when two different spans of texts, e.g. two sentences,
overlap one another, partly overlap and so on, and anno-
tation tags carried out for tokens in a sentence depend on
tags carried out on other tokens in the same sentence and/or
on tokens in the other sentence. This typical linguistic is-
sue is addressed UFRA in different ways: a standoff an-
notation and other more complex situations, such as span
texts analyzed in a single spot. The standoff annotation is
managed by using the CAS consumer techniques (Götz and
Suhre, 2004) that allows for saving texts and their annota-
tions in a storage repository such as databases, files. On
the other hand, the single spot annotation is managed di-
rectly in memory by using the features-like techniques im-
plemented both in CAS and in type systems.

6. Case Study

A first case-study in the perspective of the work described
so far is represented by the mapping (Del Grattaet al.,
2008) between the TIMEML event classes and the SIMPLE

lexicon. In this case-study an input text is analyzed by a
Temporal Annotatorwhich searches the TIMEML category
by integrating the SIMPLE lexicon with a set of heuristic-
based rules to tag a given word sense with the correct
TIMEML category.
As reported in (Del Grattaet al., 2008), in this case study
we adopted the inline annotation techniques. We defined
a sentence annotatorcapable for managing each token in
the sentence, in order to use annotations defined for pre-
vious or next tokens with respect to the current token an-
alyzed. This strategy allows the heuristics to access each
annotation level in the sentence. Some annotations can be
used while others can not. This case study shows how the
pipeline-drive architecture actually works:

Document level annotation schemeThe user selects the
language (Italian), the annotation levels (temporal an-
notation) and the lexicon (SIMPLE) to start the tempo-
ral annotation. The UFRA framework matches these
requirements against the rule-based repositories to
verify their compatibility;

NLP Pipeline Setup Information retrieved from the
repositories lead the platform to built the NLP
pipeline which better meets the user requirements.
Resulted NLP pipeline is capable to add the temporal
annotation levels to the input document(s) integrating
information from SIMPLE and a heuristics tableau.

NLP Execution The NLP pipeline built by UFRA is, fi-
nally, executed in the UIMA platform by means of
specific software methods: the CAS process meth-
ods, defined for the selected aggregate analysis en-
gines, are responsible to call appropriate resource(s)
for the resulted NLP pipeline as well as to manage
data structures previously created on documents. In
the case-study, UIMA temporal annotator is an Aggre-
gate Analysis Engine which requires a Sentence anno-
tator and a Tokenizer. The CAS process method exe-
cutes these tools to annotate the input text with results
retrieved from the heuristics tableau.

7. Conclusion

We have presented UFRA, a UIMA approach to FDBS. The
UIMA platform is responsible for the definition of a set of
Type Systems modeled on resource types instead of on spe-
cific resource instance, e.g: the genericTaggerinstead of
that specific tagger. The rules to integrate and to merge
language resources have been stored in a central rule-based
repository which is responsible to verify the user’s require-
ments against these rules and to build the NLP pipeline that
better meets the requirements.
The CAS objects, defined by these Type Systems, index, ac-
cess, manage and annotate the input document(s) according
to the capabilities of the original resource types and behave
as if they wereinstancesof the selected language resources.
The resulting architecture is a pipeline-driven one, since
language resources are assembled and merged according to
NLP pipeline defined upon user requirements and resources
structure.

8. Acknowledgements

Part of this work is carried out as part of the CLARIN

project, an EU STREP project funded under the FP7.
We would also like to thank the three anonymous reviewers
for their precious comments and suggestions.

9. References
R. Del Gratta, T. Caselli, I. Prodanof, N. Ruimy, and

N. Calzolari. 2008. TimeML: An ontological mapping
onto UIMA type systems. InICGL2008: First Inter-
national Conference on Global Interoperability for Lan-
guage Resources., Hong Kong.

The Clarin Project. 2008. Common language resources
and technology infrastructure. http://www.clarin.eu/.

D. Broeder and P. Wittenburg. 2006. The IMDI metadata
framework, its current application and future direction.
IJMSO.

M. Erdos and S. Cantor. 2001. The Shibboleth architec-
ture. http://shibboleth.internet2.edu/.

2638

D. Ferrucci and A. Lally. 2004. UIMA: an architectural
approach to unstructured information processing in the
corporate research environment.Nat. Lang. Eng., 10(3-
4):327–348.

OpenLdap Foundation. 2007. Open ldap.
http://www.openldap.com/.

T. Götz and O. Suhre. 2004. Design and implementation of
the uima common analysis system.IBM Systems Jour-
nal, 43(3):476–489.

D. Heimbigner and D. McLeod. 1985. A federated archi-
tecture for information management.ACM Trans. Inf.
Syst., 3(3):253–278.

T. Ishida. 2007. Nict, language grid & department of social
informatics, kyoto university. http://langrid.nict.go.jp/.

I. Nancy and S. Keith. 2007. Graf: A graph-based for-
mat for linguistic annotations. InLinguistic Annotation
Workshop, ACL 2007, Prague.

J. Pustejovsky, J. Littman, B. Knippen,
R. Gaizauskas, A. Setzer, and R. Saurı́.
2006. TimeML annotation guidelines.
http://www.timeml.org/site/publications/specs.html.

N. Ruimy. 2006. Computational multi-layered italian
lexicon for hlt applications. InProceedings XII EU-
RALEX International Congress, Atti del Congresso In-
ternazionale di Lessicografia.

U. Schäfer. 2007.Integrating Deep and Shallow Natural
Language Processing Components - Representations and
Hybrid Architectures.

A. P. Sheth and J. A. Larson. 1990. Federated database
systems for managing distributed, heterogeneous, and
autonomous databases.ACM Comput. Surv., 22(3):183–
236.

S. E. Wright. 2004. A global data category registry for in-
teroperable language resources. InProceedings of LREC
2004, ELRA, Lisbon.

2639

