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Abstract. We describe the tagger present in the Tanl toolkit, which is a flexible 

and customizable tool for use in various tagging tasks, including POS tagging 

and SuperSense tagging. The tagger uses a variety of features, both local and 

global, which can be specified in a configuration file. The tagger is based on a 

Maximum Entropy classifier and uses dynamic programming to select accurate 

sequences of tags. We applied it to the NER tagging task in Evalita 2009, 

customizing the set of features to use and generating a set of dictionaries from 

the training corpus, that also provide additional features. The final accuracy is 

further improved by applying simple symbolic rules.   
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1   Architecture 

The Tanl [1] tagger is a generic, customizable text chunker, which can be applied to 

tasks such as POS tagging, Super Sense tagging and Named Entity recognition. The 

chunker uses a Maximum Entropy classifier for learning how to chunk texts. 

Maximum Entropy is a more efficient technique than SVM, and by complementing it 

with dynamic programming it can achieve similar levels of accuracy. 

The tagger has an option to transforms the IOB annotations into a more refined set 

of tags: the B tag is replaced by U when an entity consisting of a single token; the last 

I tag of an entity of more than one token is replaced by E. Experiments have shown 

that for NER the refinement is effective, helping the classifier to better separate the 

data. 

The tagger scans the input from left to right and extracts features, representing the 

current state, that are fed to a Maximum Entropy classifier to learn a model for 

tagging. Feature extraction is accomplished by an object of class 

FeatureExtractor that can be specialized for the purposes of different chinking 

tasks. During tagging, the same feature extractor is applied and the classifier 

computes a probability distribution for the tags to assign to the current token. 

Since the Maximum Entropy classifiers assigns tags to each token independently, it 

may produce inadmissible sequences of tags. Hence a dynamic programming 

technique is applied to select correct sequences. A probability is assigned to a 

sequence of tags t1, t2, …, tn for sentence s, based on the probability of transition 

between two consecutive tags P(ti+1 | ti), and  the probability of a tag P(ti | s), obtained 

from the probability distribution computed by Maximum Entropy: 
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In principle the algorithm should compute the sequence with maximum probability. 

We use instead a dynamic programming solution which operates on a window of size 

w = 5, long enough for most NEs. 

For each position n, we compute the best probability PB(tn) considering the n-

grams of length k < w preceding tn: 

 

 PB(tn) = maxk PB(tn-k-1) ... PB(tn-1) 

A baseline is computed first, assuming that the k-gram is made all of „O‟ tags: 

 PBO(tn) = maxk PB(tn-k-1) P(tn-k = O) ... P(tn-1 = O) 

Similarly for each class C we compute: 

 PBC(tn) = maxk PB(tn-k-1) P(tn-k = C) ... P(tn-1 = C) 

and finally 

 PB(tn) = max(PBO(tn), maxC PBC(tn) 

2   Feature Extractor 

The modular architecture of the chunker involves the use of an abstract class called 

FeatureExtractor for extracting features during training and analysis. The class 

NerFeatureExtractor is a specialization of the abstract class designed for Named 

Entity tagging. It extracts a basic set of features from the current and surrounding 

tokens. More specific features, to extract for a given task or for a given language, can 

be specified through a configuration file. 

2.1   Feature Specification 

There are two mechanisms to specify the additional features to extract: as attributes of 

the tokens or as token features expressed by a regular expression. 

An example of an attribute feature is the following: 
 

POSTAG -1 0 

 

which requests to use as features the POS tag of the previous (-1) and current (0) 

token. 

Token features can be expressed with regular expressions, for instance, in: 
 

MorphFeature    FORM    ^\p{Lu}         -1 +1 



MorphFeature    FORM    ^\p{Lu}*$       0 

 

The first line indicates to use as features the property of starting with an uppercase 

letter (Unicode property Lu) for the previous (-1) and next token (+1); the second line 

indicates the feature representing that the current token consists of all upper case 

letters. 

2.2   Dictionaries 

Dictionaries are used to group tokens with specific properties. They associate an 

entity type to tokens. For NER, several dictionaries were created automatically by 

preprocessing the training data, according to the following criteria: 

 

Dictionary. Consists in all words annotated as entities that appear more than 5 times 

in the training corpus. 

Prefix. Three letter prefixes of entity words whose frequency is > 9 and whose 2 > 

3.84. 

Suffix. Similarly for suffixes. 

LastWords. Words occurring as last in a complex entity more than 9 times and whose 

2 > 3.84. 

FirstWords. Similarly for words appearing as first. 

LowerIn. Lowercase words occurring inside an entity. 

Bigrams. All bigrams that precede an entity and occur more than 5 times, whose 

probability is > 0.5 and also > the probability of its first word. 

Frequent Words. Words that occur more than 5 times in the training corpus. 

Designators. Words that precede an entity.  

2.3   Standard Features 

The standard NerFeatureExtractor extracts two types of features: local and 

global. Local features represent properties of tokens close to the current token. 

Global features are properties valid at the document level. For instance, if a word 

in a document had been previously annotated with a certain tag, then it is likely that 

other occurrences of the same word should be tagged similarly. Global features 

represent these properties. They are particularly useful in cases where the word 

context is ambiguous but the word appeared previously in a simpler context. 

2.4   Morphological Features 

Local features are extracted from the analysis of the current word and the context in 

which the word appears. There are two kinds of local features, those extracted from 

the current word and those extracted from its surrounding words.  



2.4.1   Features of Current Word 

The following features of the current word are extracted by the 

NerFeatureExtractor: 

first word of sentence and capitalized; first word of sentence and not capitalized; 

two parts joined by a hyphen. 

2.4.2   Dictionary Features 

The following dictionary features are extracted: 

3-letter suffix present in the suffix dictionary; similarly for 3-letter prefix; 

presence in dictionary LastWords; presence in dictionary FirstWords; not present 

in the Frequent Words dictionary; lowercase word present in dictionary LowerIn. 

2.4.3   Features from Surrounding Words 

The following features of the surrounding words are extracted: 

both previous, current and following words are capitalized; both current and 

following words are capitalized; both current and previous words are capitalized; 

word is in a sequence within quotes; the two previous words are in the bigrams 

dictionary for a certain type. 

2.5   Global Features 

The NerFeatureExtractor adds a global feature, whenever a previous occurrence 

of the current word: 

was preceded by a word designator; was preceded by a bigram in the bigram 

dictionary; was present in the dictionary FirstWords; was present in the dictionary 

of last words; was in capitalized without being at the start of a sentence; was an 

acronym. 

3   Experiments 

A remarkable aspect of our NER is that it can do without POS features: the 

morphological features it computes are sufficient to categorize tokens according to 

their function in a sentence. 

The following features were specified in the configuration file for the NER task: 

the previous word is capitalized; the following word is capitalized; the current 

word is in upper case; the current word is in mixed case; the current word is a 

single uppercase character; the current word is a uppercase character and a dot; the 

current word contains digits; the current word is two digits; the current word is 

four digits; the current word is made of digits and „/‟; the current word contains $; 

the current word contains %; the current word contains „; the current word is made 

of digits and dots. 

 



The NER using features similar to these had been tested on the CoNLL 2003 

corpus and test set, achieving state of the art scores: 97.85% accuracy, 90.75% 

precision, 87.97% recall, 89.34 FB1. 

3.1   Post Processing Rules 

An error analysis of the NER output on a development set, obtained from 10% of the 

training corpus, revealed many mistakes, particularly for Location entities. To correct 

the most obvious cases, we introduced a couple of post processing rules. A common 

case of errors is tagging as Person a street name which includes a proper name, e.g. 

“via Vittorio Veneto”. The tagger annotates “Vittorio Veneto” as a Person. The post 

processing Rule 1 corrects these mistakes. 

Let‟s call NP constituent a word whose POS tag is either an adjective, number, 

noun, or foreign word. The following post processing rules are applied to the output 

of the tagger: 

Rule 1 If a token is not annotated as an entity, its POS is noun and it is associated to 

Location in the dictionary FirstWords, the following token is capitalized and 

annotated as B-LOC, or a capitalized NP constituent or a number followed 

by a capitalized NP constituent, then annotate the current token as B-LOC, 

and the following token as I-LOC. 

Rule 2 If a token is not annotated as an entity, its POS is number and the next token 

is annotated as Location, then tag the current token as Location as well. 

Applying these rules, the accuracy for Locations improved by over 5 in FB1 and 

consequently also the overall accuracy of the tagger improved. 

4   Results 

The official results are quite poor due to a wrong submission. We report in the 

following Table unofficial results, before and after the application of the above post 

processing rules. 

 

 Accuracy Precision Recall FB1 

Before 96.99% 78.41% 68.22% 72.96 

PostProc 97.02% 78.57% 68.45% 73.16 

5   Conclusions 

The NER tagger that we developed has some interesting features: it does not use POS 

tagging information nor external resources. In this configuration the NER tagger 

achieved state of the art accuracy on the official English benchmark from CoNLL 

2003. 

When applied to the Evalita 2009 data sets, with minor configuration changes for 

taking into account differences in word order between English and Italian, the 



accuracy dropped significantly, despite the fact that both benchmarks have 

approximately the same size and the tagger extracts a similar number of training 

features. 

A SuperSense Tagger [3] based on the same tagger also achieved excellent 

accuracy. Further investigation is required to explain such unexpected drop in 

performance in the Italian NER task. 
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