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Abstract  

 
Over the last several years, both theoretical and empirical approaches to lexical knowledge and encoding have prompted a radical 
reappraisal of the traditional dichotomy between lexicon and grammar. The lexicon is not simply a large waste basket of exceptions and 
sub-regularities, but a dynamic, possibly redundant repository of linguistic knowledge whose principles of relational organization are 
the driving force of productive generalizations. In this paper, we overview a few models of dynamic lexical organization based on 
neural network architectures that are purported to meet this challenging view. In particular, we illustrate a novel family of Kohonen 
self-organizing maps (T2HSOMs) that have the potential of simulating competitive storage of symbolic time series while exhibiting 
interesting properties of morphological organization and generalization. The model, tested on training samples of as morphologically 
diverse languages as Italian, German and Arabic, shows sensitivity to manifold types of morphological structure and can be used to 
bootstrap morphological knowledge in an unsupervised way.     

 

1. Introduction 

Traditional generative approaches to language inquiry 

view word competence as consisting of a morphological 

lexicon, an assorted hotchpotch of exceptions and 

sub-regularities, and a grammar, a set of productive 

combinatorial rules (Di Sciullo and Williams 1987; 

Prasada and Pinker 1993). Whatever cannot be assembled 

through rules must be relegated wholesale to the lexicon, 

whose size depends on the generative power of the 

grammar: the richer the power, the poorer the lexicon.  

Baayen (2007) observes that the approach reflects an 

outdated view of lexical storage as more ‘costly’ than 

computational operations. Similarly, alternative theoreti-

cal models question the primacy of grammar rules over 

lexical storage, arguing that morphological regularities 

emerge from independent principles of lexical organiza-

tion, whereby fully inflected forms are redundantly stored 

and mutually related through entailment lexical relations 

(Matthews 1991; Pirrelli 2000; Burzio 2004; Blevins 

2006). This view prompts a radically different computa-

tional metaphor than traditional generative models. A 

speaker’s knowledge corresponds more to one large dy-

namic relational database than to a general-purpose 

automaton augmented with lexical storage.  

In spite of the large body of theoretical literature on the 

topic, however, few computational models of the lexicon 

can be said to address such a complex interaction between 

storage and computation. Contrary to what is commonly 

held, connectionism has failed to offer an alternative view 

of the interplay between lexicon and grammar. As we 

shall argue in more detail in the ensuing session, there is 

no place for the lexicon in classical connectionist net-

works. Somewhat ironically, they seem to have adhered to 

a cornerstone of the rule-based approach to morphologi-

cal inflection, thus providing a neurally-inspired mirror 

image of inflection rules. 

In this paper, we will explore the somewhat complemen-

tary view that storage plays a fundamental role in lexical 

modelling, and that computer simulations of short-term 

and long-term memory processes can go a long way in 

addressing issues of lexical organization. The present 

paper lends support to this claim by illustrating a novel 

neural network architecture known as “Topological 

Temporal Hebbian Self-Organizing Map” (or T2HSOM 

for short, Ferro et al. 2010). A T2HSOM has the potential 

of simulating dynamic storage of symbolic time series 

while exhibiting interesting properties of morphological 

self-organization. Trained on morphologically diverse 

families of word forms, T2HSOMs can be shown to 

bootstrap morphological structure in an unsupervised way. 

Finally, we suggest that they offer an ideal workbench for 

understanding the structure of the lexicon by simulating 

memory processes.   

2. Background 

As a first approximation, the lexicon is the store of words 

in long-term memory. Any attempt at modelling lexical 

competence must hence take issues of string storage very 

seriously. In this respect, the rich cognitive literature on 

short-term and long-term memory processes (Miller 1956; 

Baddeley and Hitch 1974; Baddeley 1986; 2006; Henson 

1998; Cowan 2001; among others) has the unquestionable 

merit of highlighting some fundamental issues of coding, 

maintenance and manipulation of time-bound constraints 

over strings of symbols.  

Word forms are primarily sequences of sounds or letters 

and so the question of their coding (and maintenance) in 

time is logically prior to any other processing issue. In 

spite of this truism, however, coding issues have suffered 

unjustified neglect by the NLP research community over 

the last 30 years. In fact, the mainstream connectionist 

answer to the problem of time series coding, namely 

so-called “conjunctive coding”, appears to elude some 

core issues in lexical representation.  

Conjunctive codes (e.g., Coltheart, Rastle, Perry, Lang-

don and Ziegler 2001; Harm and Seidenberg 1999; 

McClelland and Rumelhart 1981; Perry, Ziegler, and 
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Zorzi 2007; Plaut, McClelland, Seidenberg, and Patterson 

1996) are typically assumed to be available in the input 

(or encoding) layer of a multi-layered perceptron in the 

form of a built-in repertoire of context-sensitive Wickel-

phones, such as #Ca and cAt to respectively encode the 

letters c and a in cat. However, the use of Wickelphones 

raises the immediate  issue of their ontogenesis, since they 

appear to solve the problem of coding time series by re-

sorting to time-bound relations whose representation in 

the encoding layer remain unexplained. A second related 

issue is the acquisition of phonotactic knowledge. 

Speakers are known to exhibit differential sensitivity to 

diverse sound patterns. Effects of graded specialization in 

the discrimination of sound clusters and lexical 

well-formedness judgements are the typical outcome of 

acquiring a particular language. If such patterns are part 

and parcel of the encoding layer, the same processing 

system cannot be used to deal with different languages 

exhibiting differential sound constraints. 

A third limitation of conjunctive coding is that phonemes 

and letters are bound with their context. This means that 

two elements like #Ev and vEr representing two instances 

of the same letter e in #every are in fact as similar (or as 

different) as any two other elements. We are just left with 

token representations, the notion of type of unit remaining 

out of the representational reach of the system. This 

makes it difficult to generalize knowledge about pho-

nemes or letters across positions (the so-called dispersion 

problem: Plaut, McClelland, Seidenberg, and Patterson 

1996; Whitney 2001). It is also difficult to align positions 

across word forms of differing lengths (i.e., the alignment 

problem: see Davis and Bowers 2004), thus hindering 

recognition of both shared and different sequences be-

tween morphologically-related forms. The failure to pro-

vide a principled solution to alignment problems 

(Daugherty and Seidenberg 1992; Plaut, McClelland, 

Seidenberg, and Patterson 1996; Seidenberg and 

McClelland 1989) is particularly critical from the per-

spective of lexical storage. Languages wildly differ in the 

way morphological information is sequentially encoded, 

ranging from suffixation to prefixation, sinaffixation, 

apophony, reduplication, interdigitation and combinations 

thereof. For example, the alignment of lexical roots in 

three as diverse pairs of paradigmatically related forms 

such as English walk-walked, Arabic kataba-yaktubu (‘he 

wrote’ - ‘he writes’), German machen-gemacht 

(‘make’-‘made’ past participle) requires substantially 

different processing strategies. Pre-coding any such 

strategy into lexical representations (e.g. through a fixed 

templatic structure that separates the lexical root from 

other morphological markers) would have the effect of 

slipping in morphological structure directly into the input, 

thereby making input representations dependent on lan-

guages. A far more plausible solution would be to let the 

processing system home in on the right sort of alignment 

strategy through repeated exposure to a range of lan-

guage-specific families of morphologically-related words. 

This is exactly what conjunctive coding cannot do.   

To our knowledge, there have been three attempts to 

tackle the issue within a connectionist framework: Re-

cursive Auto-Associative Memories (RAAM; Pollack 

1990), Simple Recurrent Networks (SRN; Botvinick and 

Plaut 2006) and Sequence Encoders (Sibley et al. 2008). 

The three models set themselves different goals: i) en-

coding an explicitly assigned hierarchical structure for 

RAAM, ii) simulation of a range of behavioural facts of 

human Immediate Serial Recall for Botvinick and Plaut’s 

SRNs and iii) long-term lexical entrenchment for the 

Sequence Encoder of Sibley and colleagues.  

In spite of their considerable differences, all systems share 

the important feature of modelling storage of symbolic 

sequences as the by-product of an auto-encoding task, 

whereby an input sequence of arbitrary length is eventu-

ally reproduced on the output layer after being internally 

encoded through recursive distributed patterns of node 

activation on the hidden layer(s). Serial representations 

and memory processes are thus modelled as being con-

tingent on the task. In particular, Botvinick and Plaut’s 

paper makes the somewhat paradoxical suggestion that 

human performance on immediate serial recall develops 

through direct practice on the task of word repetition. 

Moreover, short-term memory effects appear to be ac-

counted for in terms of a long-term dynamics dictated by 

the process of weight adjustment through learning. Al-

though long-term memory effects are known to increase 

short-term storage capacities, developmental evidence 

shows that the causal relationship is in fact reversed, with 

children with higher order short-term memory being able 

to hold on to new words for longer, thus increasing the 

likelihood of long-term lexical learning (Baddeley 2007). 

We describe here a novel computational architecture for 

lexical processing and storage. The architecture is based 

on Kohonen’s Self-Organizing Maps (SOMs; Kohonen 

2001) augmented with first-order associative connections 

that encode probabilistic expectations (so called, Topo-

logical Temporal Hebbian SOMs, or T2HSOMs for short; 

Koutnik 2007; Pirrelli et al. in press; Ferro et al. 2010). 

T2HSOMs mimic the behaviour of brain maps, medium 

to small aggregations of neurons in the cortical area of the 

brain, involved in selectively processing homogeneous 

classes of data. T2HSOMs define an interesting class of 

general-purpose memory models for serial order, exhib-

iting a non-trivial interplay between short-term and 

long-term memory processes. At the same time, they 

simulate incremental processes of topological 

self-organization whereby lexical sequences are arranged 

in maximally predictive hierarchies exhibiting interesting 

morphological structures. 

3. Topological Temporal SOMs 

T2HSOMs are grids of topologically organized memory 

nodes with dedicated sensitivity to time-bound stimuli. 

Upon presentation of an input stimulus, all map nodes are 

activated synchronously, but only the most highly acti-

vated one, the so-called Best Matching Unit (BMU), wins 

over the others. Figure 1 illustrates two chains of BMUs 

triggered by the input German forms gemacht and gelacht 

(‘made’ and ‘laughed’ past participle) exposed to a 20x20 
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nodes map one letter at a time. In the Figure, each node is 

labelled with the letter the node is most sensitive to after 

training. Pointed arrows represent temporal connections 

linking two consecutively activated nodes. The thickness 

of each arrow gives the strength of the temporal connec-

tion. Finally, arrows depict the temporal sequence of node 

exposure (and node activation), starting from the begin-

ning-of-the-word symbol ‘#’ (anchored in the top left 

corner of the map) and ending with ‘$’.  

 

 

 

Figure 1 – BMU activation chains for gemacht-gelacht 

 

Dedicated sensitivity and topological organization are not 

wired-in on the map. Neighbouring nodes become in-

creasingly sensitive to letters that are similar in both en-

coding and distribution through drilling. 

 

 

Figure 2 - Outline architecture of a T2HSOM 

 

Figure 2 offers the architecture of a T2HSOM. Each node 

in the map is connected with all elements of the input 

layer through communication channels with no time delay, 

whose strength is modified through training.  Connections 

on the temporal layer, on the other hand, are updated with 

a fixed one-step time delay, based on activity synchroni-

zation of the BMU at time t−1 and the BMU at time t. It is 

important to appreciate at this juncture that, unlike clas-

sical conjunctive representations in either Simple Recur-

rent Networks (Elman 1991) or Recursive SOMs (Voeg-

tlin 2002), where both order and item information is col-

lapsed on the same layer of connectivity, T2HSOMs keep 

the two sources of information stored on separate (spatial 

and temporal) layers, which are trained according to in-

dependent principles. The aspect has interesting reper-

cussions on issues of order-independent generalizations 

over symbol types and goes a long way to addressing both 

dispersion and alignment problems in word matching. 

3.1 Memory structures and memory orders 

Through repeated exposure to word forms encoded as 

time series of letters, a T2HSOM shows a tendency to 

dynamically store strings as trie-like graphs, eliminating 

prefix redundancy and branching out when two (or more) 

different nodes are alternative continuations of the same 

history of past activated nodes (Figure 1). This lexical 

organization accords well with cohort models of lexical 

access (Marslen Wilson 1987) and is in keeping with a 

wide range of empirical evidence on human word proc-

essing and storage: i) development of minimally-entropic 

forward chains of linguistic units, enhancing predictive 

and anticipatory behaviour in language processing 

(Altmann and Kamide 1999;  Federmeier 2007; Pickering 

and Garrod 2007); ii) frequency-based competition be-

tween inflected forms of the same lexical base (e.g. brings 

and bringing) (Hay 2001; Ford, Marslen-Wilson and 

Davis 2003; Lüdeling and De Jong 2002; Moscoso del 

Prado Martín, Bertram, Häikiö, Schreuder and Baayen 

2004); iii) simultaneous activation of false morphological 

friends (e.g. broth and brother) (Frost et al. 1997; Longtin 

et al. 2003; Rastle et al. 2004; Post, Marslen-Wilson, 

Randall and Tyler 2008). 

It can be shown that trie-like memory structures maximize 

the map’s expectation of upcoming symbols or, equiva-

lently, minimize the entropy over the set of transition 

probabilities between consecutive BMUs. This is 

achieved through a profligate use of memory resources, 

whereby several nodes are recruited to be most sensitive 

to contextually specific occurrences of the same letter. 

  

 

 

Figure 3 – Stages of chain dedication through learning 
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Figure 3 illustrates how this process of incremental spe-

cialization unfolds through training. For simplicity we are 

assuming that the map is trained on two strings only: #a1 

and #b1. Panel a) represents an early stage of learning, 

when the map recruits a single BMU for the symbol 1 

irrespective of its embedding context. After some more 

learning epochs, two BMUs are recruited after an a or a b 

through equally strong connections (Panel b). Connec-

tions get increasingly specialized in Panel c), where the 

two 1 nodes are preferentially selected by either context. 

Finally, Panel d) illustrates a stage of dedicated connec-

tions, where each 1 node is selected by one specific left 

context only. This stage is reached when the map can train 

each single node without affecting any neighbouring node. 

Technically, this corresponds to a learning stage where the 

map’s neighbourhood radius r is equal to 0.   

4. Emergent Morphological Structure 

To what extent do we find morphological structure in a 

lexical map organized according to the principles 

sketched above?  We observe a straightforward correla-

tion between morphological segmentation and topological 

organization of BMUs on the map: word forms sharing 

sub-lexical constituents tend to trigger chains of identical 

or neighbouring nodes. 

 

 

Figure 4 – BMU activation chains for crediamo-vediamo 

 

The map distance between BMUs triggered by identical 

morphemic constituents of two morphologically-related 

forms is expected to be shorter than the map distance 

between BMUs activated by morphologically heteroge-

neous constituents. In a nutshell, topological distance is a 

function of morphological proximity. In traditional ap-

proaches to word segmentation, this is equivalent to 

aligning morphologically-related word forms by mor-

phological structure. As chains of activated nodes encode 

time sequences of symbols, T2HSOMs can be said to 

enforce alignment through synchrony. 

To illustrate, we trained three different instances of a 

T2HSOM on Italian, German and Arabic verb forms. 

Figure 4 plots the activation chains of the present indica-

tive forms vediamo (‘we see’) and crediamo (‘we believe’) 

on a 20x20 nodes Italian map, trained on 32 Italian verb 

forms. The chains are clearly separated on the roots cred- 

and ved-, but converge as soon as more letters are shared 

by the two forms. Eventually the substring -iamo activates 

a unique BMU chain. We take this to mean that the sub-

string is recognized by the map as encoding the same type 

of inflectional ending. Note that the shared substring 

-iamo takes different positions in the two forms, starting 

from the forth letter in vediamo and from the fifth letter in 

crediamo. In traditional positional coding, this raises an 

alignment problem. In our map, -iamo receives a con-

verging topological representation, as order information is 

relative and time-dependent rather than absolute. 

German past participles provide a case of discontinuous 

morphological structure. Let us turn back to Figure 1 

above. Note that gemacht and gelacht share the same 

sequence of BMUs for ge-, but they part on the roots 

mach- and lach- to eventually meet again upon recogni-

tion of the ending –t. This is expressed in terms of topo-

logical distance between BMUs in Figure 5, giving the 

per-node topological distance of the BMU chains for 

gemacht and gelacht. 

 

 

Figure 5 – Topological distance matrix for gemacht-gelacht 

 

Besides identical nodes for ge- and –t, the matrix shows 

that morphological structure is inherently graded on 

morpheme boundaries, with the topological distance be-

tween the roots narrowing down as the shared suffix gets 

closer, in keeping with psycholinguistic evidence on word 

processing (Hay and Baayen 2005).  

 

 

Figure 6 – Topological distance matrix for spielen-gespielt 
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A case of root-alignment in German lexically-related 

forms is illustrated in Figure 6, showing the per-node 

distance between spielen and gespielt. Once more, this 

would be out of reach of positional coding. 

More difficult cases of root-alignment arise in the context 

of Semitic morphologies, where the relative position of 

the letters shared by lexically-related forms vary dra-

matically, as in kataba vs. yaktubu, respectively the per-

fective and imperfective forms of the verb triliteral root 

ktb (‘write’). An interesting related question is to what 

extent the activation chains corresponding to Arabic per-

fective and imperfective forms are successful in repre-

senting the morphological notions of triconsonantal root 

and interdigitated vowel pattern. The problem is not 

trivial, as discontinuous morphological patterns are 

known to be beyond the reach of chaining models for 

serial order. Given two forms like kataba (‘he wrote’) and 

hadama (‘he shattered’) for example, vowels in the two 

strings are all preceded by different left contexts. 

 

 

Figure 7 –  Topological distance matrix for kataba-hadama 

 

Figure 7 illustrates the solution offered by a T2HSOM to 

the problem.  The three a’s in the perfective vowel pattern 

are given dedicated representations on the map, triggering 

differently located BMUs. Not only is the map able to 

discriminate between three different instances of the same 

symbol (a) in the same string (kataba), but it can also 

align each such a with its homologous a in another mor-

phologically-related form (hadama).  In fact, this seems to 

be a necessary step to take if we want the map to get a 

notion of the Arabic perfective vowel pattern.  

To understand how this is possible, observe that temporal 

information is not limited to information about the actu-

ally occurring left context. The BMU activated by the 

symbol a in the input string #ha at time t receives support, 

through temporal connections, from all nodes activated at 

time t-1. The nodes include, among others, the k node, 

which competes with the h node at time t-1 as it receives 

temporal support from the # node activated at time t-2 

(due to the existence of #ka in kataba). By reverberating 

simultaneous activation of competing nodes to an ensuing 

state, the map can place a nodes triggered by #ka and #ha 

in the same area, as they share a comparatively large 

portion of pre-synaptic support. In general, the mecha-

nism allows the map to keep together nodes activated by 

letters in the same position in the string. 

5. Lexical access and recall 

So far, we considered chains of BMU activation based on 

exposure to time-bound sequences of letters. By inspect-

ing activation chains, we can tell whether the map re-

cognizes an input signal as a specific sequence of symbols 

or not. This is not trivial and requires both sensitivity to 

letter codes and the capacity of anticipating upcoming 

symbols on the basis of already seen symbols. Nonethe-

less, it says little about issues of lexical storage per se. 

How do we know that the map has actually stored the 

sequence it is able to recognize? 

We can model lexical recall as the task of reinstating a 

sequence of letters from the integrated pattern of activa-

tion of a map that has just seen that sequence. Recall that a 

form is exposed to the map one letter at a time. At each 

time tick, each letter leaves an activation pattern that ac-

cumulates in the map short-term buffer. When the whole 

form is shown, the map’s short-term buffer will thus retain 

the concurrent activation of all letters forming the just 

seen word (Figure 8).  
 

 

Figure 8 – Per-letter and concurrent activation for #ist$ 

 

We may eventually feed this pattern back into the map and 

ask the map to recall from it the expected sequence of 

letters. Note that this is a considerably more difficult task 

than activating a specific node upon seeing a particular 

letter. A whole word integrated pattern of activation is the 

lexical representation for that word. If the map is able to 

accurately encode letters and their order of appearance, it 

will be successful in accessing and retrieving the whole 

word from its long-term store. 

To assess the capacity of a T2HSOM to develop, access 

and retrieve lexical representations, we trained a 40x40 

map on 5000 Italian word forms, sampled from the book 

The Adventures of Pinocchio by Collodi. We then probed 

the memory content of the map on two test sets: the entire 

set of “training” word tokens (about 1050 different form 

types), and a sample of about 250 unseen inflected forms 

of all verbs that are found in the training set in at least one 

other form. No frequency information was given for the 

latter “testing” set. 
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Results of the experiments are shown in Figure 9 in terms 

of per-word and per-letter accuracy over types and tokens.  

 

Italian    accuracy 

    % types % tokens 

recognition training set  per word 99.2 99.7 

   per letter 100 100 

 testing set   per word 99.6 99.6 

   per letter 100 100 

recall training set  per word 97.3 98.8 

   per letter 99.1 99.6 

 testing set  per word 75.7 75.7 

   per letter 95.1 95.1 

 

Figure 9 – Accuracy results on seen and unseen Italian word 

forms 

 

German    accuracy 

    % types % tokens 

recognition training set  per word 99.6 98.5 

   per letter 99.6 99.9 

 testing set   per word 96.7 96.7 

   per letter 99.6 99.6 

recall training set  per word 94.2 97.9 

   per letter 98.9 99.6 

 testing set  per word 80.7 80.7 

   per letter 95.8 95.8 

 

Figure 10 – Accuracy results on seen and unseen German 

word forms 

 

Figure 10 shows the results of a 40x40 T2HSOM trained 

on 5000 German word tokens (about 1750 different form 

types), sampled from three fairy tales by brothers Grimm. 

The testing set included 150 unseen inflected forms of 

verbs and nouns that are found in the training set in at 

least one other form, with no frequency information. 

All in all, T2HSOMs show a remarkable capacity of ac-

tivating appropriate BMUs upon recognition of input 

letters, both on seen words (training set) and unseen 

words (testing set). Moreover, they can also recall most 

such words. In fact more than 97% of the Italian forms 

and more than the 94% of the German forms in the 

training set are retrieved accurately through activation of 

BMUs chains. On both the Italian and German training 

sets,  recall errors strongly correlate with low word fre-

quency and word length effects, with most missed word 

forms showing frequency values close to 1 (Figure 11). 

That more than just storage is involved here is shown by 

the results on the testing set, assessing the ability of the 

map to “recall” unseen words. More than 75% Italian 

unseen words and 80% German unseen words are re-

trieved accurately, meaning that the maps developed 

memory traces of expected, rather than simply attested, 

sequences. T2HSOMs can in fact structure familiar in-

formation in a very compact (but accurate) way through 

shared activation paths, thus making provision for con-

nection chains that are never triggered in the course of 

training. The effect is reminiscent of what we noted in 

Figure 3 above, where wider neighbourhoods, typical of 

early stages of learning, favour profligate and more liberal 

inter-node connections. Only when the map is free to train 

neighbouring nodes independently, dedicated paths de-

velop. In the current experimental setting, the map is too 

small to be able to dedicate a different node to each dif-

ferent context-dependent occurrence of a letter.
1
 Fewer 

nodes are recruited to be sensitive to several different 

context-dependent tokens of the same letter type and to be 

more densely connected with other nodes. A direct con-

sequence of this situation is generalization, corresponding 

to the configurations shown in 3.b) and 3.c), where both 

the a and b nodes develop more outgoing connections 

than those strictly required by the training evidence. Most 

notably, this is the by-product of the way the map stores 

and structures lexical information.   

 

Italian training set frequency length 

 μ σ μ σ 

all words 2.8 7.4 7.0 2.5 

correctly recalled words (97.3%) 2.8 7.5 7.0 2.5 

wrongly recalled words (2.7%) 1.2 0.4 8.6 2.4 

German training set   

all words 2.9 6.7 5.9 2.4 

correctly recalled words (94.2%) 3.0 6.9 5.7 2.3 

wrongly recalled words (5.8%) 1.1 0.3 8.9 2.7 

 

Figure 11 – Mean value and standard deviation of word 

form frequency and length for Italian and German training 

sets. 

6. Concluding Remarks and Developments 

To date, both symbolic and connectionist approaches to 

the lexicon have laid emphasis on processing aspects of 

word competence only, whereby morphological produc-

tivity is modelled as the task of outputting a – possibly – 

unknown word form (say an inflected form like shook) by 

taking as input its lexical base (shake). Such a “deriva-

tional” approach to word competence (Baayen 2007), 

however, obscures the interplay between storage and 

computation, adhering to a view of morphological com-

petence as the ability to play a word game.  

Symbolic approaches encode word forms using tradi-

tional computational devices for storage, allocation and 

serial order representation such as ordered sets, strings 

and the like. These devices provide built-in means of se-

rializing order information through chains of pointers 

which are accessed and manipulated by independently 

required recursive algorithms. In classical connectionist 

architectures (Rumelhart and McClelland 1986), on the 

other hand, the internal representation of word forms in 

the lexicon is modelled by the pattern of connections 

between the hidden and the output layer in a multilayered 

                                                           
1
A 1600 nodes T2HSOM uses up the 2.5% level of connectivity 

required to store all forms as dedicated BMU chains.  
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perceptron mapping lexical bases onto inflected forms 

(e.g. go vs. went). Serial order is pre-encoded through 

dedicated nodes, and the resulting lexical organization 

appears to be contingent upon the requirements of the task 

of generating novel forms. In principle, different tasks 

may impose different structures on the lexicon.  

In this paper we took a somewhat different approach to 

the problem. We assumed that word storage plays a fun-

damental role in both word learning and processing. The 

way words are structured in our long-term memory (the 

lexicon) is key to understanding the mechanisms gov-

erning word processing and productivity. This perspective 

offers a few advantages. First, it allows scholars to prop-

erly focus on word productivity (the explanandum) as the 

by-product of more basic memory strategies (our ex-

planans) that must independently be assumed to account 

for fundamental aspects of word learning (including but 

not limited to storage of word forms). Secondly, it opens 

up new promising avenues of scientific inquiry by tapping 

the large body of empirical evidence on short-term and 

long-term memorization strategies for serial order (see 

Baddley 2007 for a comprehensive recent overview). 

Furthermore, it gives the opportunity of using sophisti-

cated computational models of language-independent 

memory processes (Brown Preece and Hulme 2000; 

Henson 1998; Burgess and Hitch 1996, among others) to 

shed light on language-specific aspects of word encoding. 

Finally, it promises to provide a comprehensive picture of 

the complex dynamics between computation and memory 

underlying morphological processing.  

Put in a nutshell, the processing of unknown words re-

quires mastering rule-governed combinatorial processes. 

In turn, these processes presuppose knowledge of the 

sub-word units to be combined. We argue that preliminary 

identification of the basic inventory of such units depends 

on memorization of their complex combinations. The way 

information is stored thus reflects the way such informa-

tion is dynamically represented, and eventually accessed 

and retrieved as patterns of concurrent activation of 

memory areas. According to the view endorsed here, 

memory processes have the ability not only to hold in-

formation but also to structure and manipulate it. 

By exploiting the full potential of T2HSOMs, we can  

simulate processes of dynamic interaction between 

short-term and long-term memory processes on a classical 

memory task like Immediate Serial Recall (Henson 1998; 

Cowan 2001). Moreover, we can investigate aspects of 

co-organization of concurrent temporal maps, each 

trained on different modalities of the same input stimuli. 

This dynamic is key to modelling pervasive aspects of 

synchronization of multi-modal sequences in both lin-

guistic (e.g. reading) and extra-linguistic (e.g. visuomotor 

coordination) tasks (Ferro et al. 2011). Finally, we are in a 

position to explore emergence of islands of reliability 

(Albright 2002) in the morphological lexicon to account 

for processes of analogy-driven generalization on the 

morphological input.        
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Appendix - The T2HSOM model 
 
A.1 Short-term dynamics: activation and filtering 
In recognition mode, the activation level of the map’s i-th 
node at time t is: 

)()()( ,, tytyty iTiSi ×+×= ba  

where α and β weigh up the respective contribution of the 
spatial and temporal layers, and  
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is the normalized Euclidean distance between the input 
vector x(t) at time t and the spatial weight vector asso-
ciated with the i-th node, and 

å
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is the weighted temporal pre-activation of the i-th node at 
time t prompted by the state of activation of all N nodes of 
the map at time t-1. The BMU at time t is identified by 
looking for the maximum activation level 
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eventually normalized to ensure network stability over 
time: 
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A.2 Long-term dynamics: learning 
In T2HSOM learning consists in topological and temporal 
co-organization. 
 
(i) Topological learning 
In classical SOMs, this effect is taken into account by a 
neighbourhood function centered around BMU. Nodes 
that lie close to BMU on the map are strengthened as a 
function of BMU’s neighbourhood. The distance between 
BMU and the i-th node on the map is calculated through 
the following Euclidean metrics: 
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where n is 2 when the map is two-dimensional. The to-
pological neighbourhood function of the i-th neuron is 
defined as a Gaussian function with a cut-off threshold: 
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where σS(tE) is the topological neighbourhood shape 
coefficient at epoch time tE, and νS(tE) is the topological 
neighbourhood cut-off coefficient at epoch time tE. 
The synaptic weight of the j-th topological connection of 
the i-th node at time t+1 and epoch tE, is finally modified 
as follows: 
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where αS(tE) is the topological learning rate at tE. 
 
(ii) Temporal learning 
On the basis of BMU at time t-1 and BMU at time t, three 
learning steps are taken: 

· temporal connections from BMU at time t-1 (the 
j-th neuron) to the neighbourhood of BMU at 
time t (the i-th neurons) are strengthened: 
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· temporal connections from all neurons but BMU 
at time t-1 (the j-th neurons) to the neighbour-
hood of BMU at time t (the i-th neurons) are 
depressed as well:  
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· temporal connections from BMU at time t-1 (the 
j-th neuron) to nodes lying outside the neigh-
bourhood of BMU at time t (the i-th neurons) are 
depressed as well: 
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(iii) Learning decay 
As an epoch ends, an exponential decay process applies to 
each learning parameter so that the generic parameter p at 
tE is calculated according to the following equation: 

p
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A complete list of the learning parameters is shown be-
low: 

· αS: learning rate of the topological learning 
process 

· σS: shape parameter of the neighbourhood 
Gaussian function for the topological learning 
process 

· νS: cut-off distance of the neighbourhood Gaus-
sian function for the topological learning process 

· αT: learning rate of the temporal learning process 
· σT: shape parameter of the neighbourhood 

Gaussian function for the temporal learning 
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process 
· νT: cut-off distance of the neighbourhood Gaus-

sian function for the temporal learning process 
· βT: offset of the Hebbian rule within the temporal 

learning process 
 
(iv) Post processing 
At a given epoch tE, the transition matrix is extracted from 
the temporal connection weights mi,j(tE), so that Pi,j(tE) is 
the probability to have a transition from the i-th node to 
the j-th node of the network (i.e., the j-th node will be the 
BMU at time t+1, given the i-th node is the BMU at time 
t): 
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At the same time the labelling procedure is applied. A 
label Li (i.e., an input symbol) is assigned to each node, so 
that the grapheme-base coding of the c-th symbol matches 
the i-th node’s space vector best: 
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A.3 Lexical recall 

During the lexical recall task, an activation pattern at time 
t does not die out at time t+1, but accrues in the map’s 
short-term buffer. When the whole form is shown, the 
map’s short-term buffer thus retains the integrated acti-
vation pattern of all letters of the currently input form. 
Lexical recall is eventually modeled as the task of res-
toring the input sequence, by priming the map with the ‘#’ 
symbol first, followed by the integrated activation  pattern. 
More formally, we define the integrated activation pattern 
Ŷ{ŷ1,…, ŷN} of a word of k symbols as the result of 
choosing   
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Lexical recall is thus modeled by the activation function 
(see Section A.1 above), with 
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A.4 Parameter configuration 
The experiments shown in the present work were per-
formed using the following parameter configuration: 

· 40x40 map nodes 
· 30 elements in the input vector (orthogonal 

symbol character coding) 
· 100 learning epochs 
· learning rates starting from maximum value (i.e. 

1.0), exponentially increasing/decaying over 
epochs (with a time-constant equal to 25 epochs) 
according to the training error trend 

· spatial shape parameter starting from a value so 
that the Gaussian function has a gain equal to 90% 
at the maximum cut-off distance, with no decay 
over epochs 

· temporal shape parameter starting from a value 
so that the Gaussian function has a gain equal to 
20% at the maximum cut-off distance, with no 
decay over epochs 

· cut-off distances starting from the maximum 
distance between two nodes in the map, expo-
nentially increasing/decaying over epochs (with 
a time-constant equal to 5 epochs) according to 
the training error trend 

· offset of the Hebbian rule within the temporal 
learning process starting from 0.01), exponen-
tially increasing/decaying over epochs (with a 
time-constant equal to 25 epochs) according to 
the training error trend 
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