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Abstract

The preconditioned conjugate gradient (CG) is often applied in image reconstruction as a
regularizing method. When the blurring matrix has Toeplitz structure, the modified circulant
preconditioner and the inverse Toeplitz preconditioner have been shown to be effective. We
introduce here a preconditioner for symmetric positive definite Toeplitz matrices based on a
trigonometric polynomial fit which has the same effectiveness of the previous ones but has
a lower cost when applied to band matrices. The case of band block Toeplitz matrices with
band Toeplitz blocks (BTTB) corresponding to separable point spread functions (PSFs) is also
considered. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

In many engineering applications it is necessary to numerically solve large struc-
tured m × m dimensional linear systems

Hmx = b − �, (1)

where � represents unknown noise or measurement errors. In particular for image
restoration problems, Hm is the blur operator, x is the original image and Hmx
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is the blurred image (see [2]). The matrix Hm is defined by the so-called point
spread function (PSF), which describes how the imaging system affects the points
of the original image. In many imaging systems the PSF is space invariant, band-
limited and center-symmetric, so that the matrix Hm turns out to have a symmet-
ric 2-level band Toeplitz structure. In this paper, we assume that these hypotheses
hold.

Unlike blurring, which we consider to be a deterministic process, the noise is due
to a random process, for which we can only assume the knowledge of some statistical
properties. A frequent assumption is that � is a Gaussian white noise, having spectral
components ηi which are independent stochastic variables with mean 0 and variance
σ 2. Moreover, we assume that b dominates �, otherwise the reconstruction of the
original image would be impossible.

The problem of the image restoration is then that of finding a good approxima-
tion of x, given Hm and b. The problem, though well-posed, in the sense that it
has a unique solution, is actually the discretization of an ill-posed continuous prob-
lem. Hence it inherits a large condition number, and the finer the discretization, the
larger the condition number of Hm. It follows that the exact solution of the system
Hmy = b may differ considerably from x even if � is small. This difficulty can be
overcome by employing special techniques, known as regularization methods. One
of the first regularization methods and probably the most used one is the Tikhonov
method, which seeks the solution of a least-squared problem depending on a regu-
larizing parameter. The difficulty of tuning this parameter has suggested a different
approach to the problem. In fact, some iterative methods for solving linear systems
enjoy a regularizing property known as semiconvergence. The classical conjugate
gradient (CG) method, which applies to symmetric positive definite matrices, shares
the regularizing property.

Since the problem is ill-conditioned, the use of a suitable preconditioner is re-
quired. Circulant preconditioners, modified in order to cope with the noise, have
shown to be effective [10]. They can be inverted by using FFT with a computational
cost O(m logm). The same computational cost is reached by the inverse Toeplitz
preconditioner [9], based on the symbol function of the Toeplitz coefficient matrix
and having regularizing effects. Unfortunately this cost O(m logm) holds even for
band matrices.

For band matrices a band preconditioner, which can be inverted with the cost
O(m) (that is the same of the single CG iteration), would be preferable. In [11]
a general-purpose preconditioner based on the minimum-phase LU factorization is
studied which, when applied to band matrices, lowers the computational complexity
of the iterative step to O(m), but the modification of this preconditioner for problems
with noise does not appear to be simple.

In this paper, we propose a band preconditioner, which is based on the symbol
function of the Toeplitz coefficient matrix and achieves regularizing effects. This
preconditioner is effective for the image reconstruction problems with band positive
definite Toeplitz matrix and has a computational cost O(m).
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After some preliminaries in Section 2, the idea on which the preconditioner is
based is described in Section 3, where we explain in detail how to construct the
preconditioner for the 1-D case and examine the eigenvalues of the preconditioned
matrix. The preconditioner is then extended to the separable 2-D case in Section
5. Sections 4 (for the 1-D case) and 6 (for the 2-D case) describe some numerical
experiments with different problems: the obtained results are compared with those
produced by the circulant preconditioner and the inverse Toeplitz preconditioner.

2. Preliminaries

Let us first examine the behavior of CG when applied to solve problem (1) with a
symmetric positive definite matrix Hm. It is useful to consider the sets L = {λi, i =
1, . . . , m} and U = {ui , i = 1, . . . , m} of eigenvalues and eigenvectors of Hm, re-
spectively. Following [10], we detect two subspaces

Un=span{ui , λi � ε1}, noise subspace of dimension dn,

Us =span{ui , λi � ε2}, signal subspace of dimension ds,

where ε1 and ε2 are two parameters connected to the magnitudes of noise and of
signal, respectively. Between Un and Us a transient subspace is spanned by the re-
maining eigenvalues. The subsets �n and �s of � = {1, . . . , m} contain the indices
corresponding to Un and Us . The hypothesis that b dominates � corresponds to
require that ε1 < ε2 and that the original image belongs essentially to Us .

Since U is a basis for Rm, vectors x and � can be written as

x =
m∑
i=1

xiui and � =
m∑
i=1

ηiui ,

hence the exact solution of the system Hmy = b can be written as

y = H−1
m b =

m∑
i=1

ξi ui , where ξi = λixi + ηi

λi
.

The components ξi for i ∈ �s are nearly equal to the corresponding components xi
of x and the components ξi for i ∈ �n can be much greater than xi . Let x(k) be the
vector computed at the kth iteration by applying the CG method with x(0) = 0. It can
be shown that

x(k) =
m∑
i=1

ϕ
(k)
i ξi ui , where ϕ

(k)
i = 1 − Rk(λi),

Rk being the kth Ritz polynomial [17]. Under the assumptions that λi |xi | � λi‖x‖
(discrete Picard condition) and that � is a Gaussian white noise, the oscillations
around the zero of the polynomial Rk(λ) tend to be smaller when λ keeps away from
zero. Moreover, the neighborhood of zero where Rk(λ) is near 1 shrinks when k
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increases (see [10]). As a consequence ϕ
(k)
i is close to 1 for indices i corresponding

to the highest eigenvalues λi , while it is close to 0 for low values of k and indices i
corresponding to the smallest eigenvalues λi . Hence it acts as a filter: at the beginning
of iteration, for small values of k, only the components corresponding to the signal
subspace are allowed to pass, while the components corresponding to the noise sub-
space are filtered. In this phase, the iteration reconstructs the signal. On the contrary,
for high values of k, all the filters are nearly equal to 1 and the noise components
interfere. Hence the method must be stopped before it starts to reconstruct the noise.
The most used stopping rule prescribes to iterate until the residue becomes lower
than a suitable quantity δ related to � (see [8]).

When the coefficient matrix is ill-conditioned, as in the present case, the num-
ber of iterations required by CG for obtaining a satisfactory result can be large and
preconditioning is required to increase the rate of convergence. The preconditioners
that are used in the general case are not satisfactory for our problem, because they
are designed to reduce the condition number by clustering all the eigenvalues around
1. In this way the signal and the noise subspaces are mixed up and the effect of the
noise appears before the image is fully reconstructed.

In the present context, the right preconditioner should reduce the number of it-
erations required to reconstruct the information from Us , that is, it should cluster
around 1 the ds greatest eigenvalues, letting the dn smallest ones away from the
cluster. Circulant preconditioners, frequently applied to Toeplitz matrices, can be
easily modified in order to cluster only the eigenvalues we are interested in, instead of
all the spectrum (see [10]). To this aim an estimate of dn must be known. A technique
to separate Us from Un is based on the assumption that the Fourier coefficients of
� have approximately the same magnitude for all the frequencies and they dominate
the Fourier coefficients of b corresponding to �n (see [10]). In this paper, we assume
a rough estimate of dn and ds to be available.

In the following, we present in detail a new regularizing preconditioner based on
a fit technique. At first, we deal with the 1-D problem, then we extend the same
technique to the more interesting 2-D case.

3. The 1-D problem

We consider the problem of approximating the vector x, solution of

HNx = b − �, (2)

where HN is the symmetric band Toeplitz matrix

HN ≡ (hij ), hij =
{
h|i−j | for |i − j | � w,

0 otherwise,
i, j = 1, . . . , N,

w being the bandwidth. Matrix HN is the N-section of a bi-infinite Toeplitz matrix,
say H, whose symbol is the symmetric Laurent polynomial of degree w
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h(z) = h0 +
w∑
i=1

hi(z
i + z−i ), hi ∈ R. (3)

Let h̃(θ) be the restriction of h(z) on the unit circle of the complex plane, that is

h̃(θ) = h(eiθ ) = h0 + 2
w∑
i=1

hi cos iθ, θ ∈ [−�, �].

We assume H to be positive definite, hence h̃(θ) > 0 for any θ .
In the following for any bi-infinite Toeplitz matrix T

• t (z) denotes the symbol of T and t̃ (θ) denotes its restriction on the unit circle of
the complex plane,

• It denotes the interval of R having endpoints

tinf = inf
θ
t̃(θ) and tsup = sup

θ

t̃(θ),

• for any integer m � 1, Tm denotes the m-section of T.
A classical result due to Grenander and Szegö [6] relates the spectrum of the finite

sections Tm of a positive definite Toeplitz matrix T with the behavior of its symbol
t (z) on the unit circle. It states that all the eigenvalues λi(Tm) belong to It and that
for any function ϕ continuous on It it holds

lim
m→∞

1

m

m−1∑
i=0

[
ϕ (λi(Tm)) − ϕ

(̃
t(θi)

)] = 0, where θi = 2�i

m
. (4)

Hence the eigenvalues λi(Tm) are equally distributed as t̃ (θi).
To construct a good preconditioner PN for our problem we should know, at least

approximatively, the eigenvalues of HN . This knowledge is not directly available,
but can be obtained indirectly from h̃(θ). In fact, let H = {̃h(θi), θi = 2�i/N, i =
0, . . . , N − 1} be the set of N equally spaced samples of h̃. From (4), we derive that
H results in a sufficiently good approximation of L to be used for our purpose.
Then we detect in H two subsets Hn and Hs , formed by the dn smallest and the ds
greatest elements of H, respectively.

Our idea is to modify selectively the spectrum of the preconditioned matrix by
acting on the symbol. More precisely, we want to find a Laurent symmetric polyno-
mial p(z) of suitable degree with p̃(θ) > 0, in such a way that the function f (z) =
p−1(z)h(z) has a set F of samples of f̃ where
• as many as possible values of Fs are clustered around 1,
• the values of Fn do not belong to the cluster around 1 and are as small as possi-

ble.
Let F and P be the bi-infinite Toeplitz matrices having symbols f (z) and p(z),

respectively. Matrix P−1
N HN (which in general has no Toeplitz structure) differs from

FN (which has a Toeplitz structure), but it is close enough to have the required clus-
tering [13] and regularizing property.
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A similar approach is commonly used to remove the ill-conditioning of a prob-
lem by deleting the zeroes of function h(z) on the unit circle (see for example
[3,4,13,15,16]).

3.1. Construction of the polynomial p(z)

Let ε be a truncation parameter and let � be a subset of equally spaced elements
of � having cardinality κ . Partition � = �1 ∪ �2, where

�1 = {
i ∈ � : h̃(2�i/N) � ε

}
.

Consider the discrete function ψ(θ) defined on the nodes θi = 2�i/N with i ∈ � as
follows:

ψ(θi) =
{
h̃(θi) for i ∈ �1,

ε for i ∈ �2.

We fix a (small) integer µ, with 1 � µ � κ − 1. The function

p(z) = p0 +
µ∑

i=1

pi(z
i + z−i ), pi ∈ R, (5)

we are looking for, should satisfy the following requirements
• p̃(θ) = p0 + 2

∑µ
i=1 pi cos iθ is a good approximation of ψ(θ),

• p̃(θ) > c for a constant 0 < c < ε and p̃(θ)−1h̃(θ) does not oscillate too much.
The function p̃(θ) can be computed in several ways. We suggest to find a mini-

mum norm approximation, for example, a least squares or a minimax approximation,
on the basis {1, cos θ, . . . , cosµθ}. We point out that the degree µ of p̃(θ) should be
small with respect to κ , in order to avoid oscillations, and that κ should be indepen-
dent of N, in order to make the cost of the computation of the coefficients p0, . . . , pµ

negligible.
Actually the request on the nodes θi to be equally spaced can be released, provided

that they are regularly placed in the whole interval [0, �]. For example they could be
selected more sparsely near the eigenvalues corresponding to the transient subspace
and more densely elsewhere.

The choice of the truncation parameter ε should be made taking into account that
f̃ (θ) = p̃−1(θ )̃h(θ) must have a value nearly 1 when θ is close to the nodes θi ,
with i ∈ �1, and a value nearly h̃(θ)/ε when θ is close to the nodes θi , with i ∈ �2.
Thus a suitable value for ε is the greatest one for which �2 does not contain indices
belonging to �s . In this way the growth of the eigenvalues of Un is kept as small as
possible.

The band preconditioner PN , outlined above, compares favorably with the circu-
lant preconditioner from the point of view of the computational cost, because it can
be factorized with a cost of O(n). But it is unsuitable when N is large and there is not
enough memory space to keep the factorization of PN . To overcome this problem the
matrix PN is further approximated by a product QNQT

N , where QN is a lower trian-
gular Toeplitz matrix with the same bandwidth of PN . In this way the computational
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cost of an iteration of PCG is not increased and the memory space to keep QN is
reduced to O(1). In Section 3.3, we show that the eigenvalues of the preconditioned
matrix Q−T

N Q−1
N HN so obtained are interlaced, except for a small number, with those

of FN , thus sharing the required clustering and regularizing property.

3.2. Factorization of the polynomial p(z)

Once the function p(z) is determined, the polynomial

q(z) =
µ∑

i=0

qiz
i, qi ∈ R,

such that
• q(z) has all roots outside the unit circle,
• q0 > 0,
• q(z)q(z−1) = p(z)

is sought. The Toeplitz matrix Q having symbol q(z) is banded lower triangular and
satisfies QQT = P . Hence Q is the Choleski factor of P. The polynomial q(z) is
called the factor of p(z).

A factorization analogous to the present one is the minimum-phase factorization,
described in [11] where the preconditioner of the coefficient matrix is constructed
by using the factorization of the Laurent polynomial symbol of the matrix into two
factors; the first one having only zeros outside the unit circle, the second one only
inside the unit circle. We follow [7,12], where the Wiener–Hopf factorization of
bi-infinite Toeplitz matrices in the Wiener class is studied. Among the five meth-
ods described in [7] for computing q(z), we suggest the third one (called the roots
method) which is simple and effective in the case of low degree polynomials. It is
based on the computation of the roots zi for i = 1, . . . , 2µ of (5). Clearly if zi is
a root also z−1

i is a root, thus for any root lying outside the unit circle, there is a
corresponding root in the circle and vice versa. No root lies on the unit circle. Hence
the set z = {zi, |zi | > 1} contains µ roots. The polynomial q(z) is constructed by
taking all the roots in z

q(z) = qµ
∏
zi∈z

(z − zi), where q2
µ = (−1)µpµ

/ ∏
zi∈z

zi

and

sgn(qµ) = sgn(pµ).

If the coefficients pi are severely unbalanced, a scaling technique is suggested before
computing the roots (see [7]).

The matrix QNQT
N is called fit preconditioner. Due to the band structure, the

computation of the vector Q−T
N Q−1

N v for any v /= 0 requires 2µN operations. Then
any iteration of the PCG costs (2µ + 2w + 5)N operations [1].
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3.3. Eigenvalues of the preconditioned matrix

In order to examine the behavior of the PCG with the fit preconditioner, we need
the two following lemmas which relate the spectrum of the preconditioned matrix
(QNQT

N)−1HN effectively used to the spectrum of the matrix FN . The symbol of F
is f (z) = p−1(z)h(z) = q−1(z)q−1(z−1)h(z) and can be expressed by a symmetric
Laurent series f (z) = f0 + ∑∞

i=1 fi(z
i + z−i ).

Lemma 1. Let a(z) = a0 + ∑∞
i=1 ai(z

i + z−i ), b(z) = ∑µ
i=0 biz

i, ai, bi ∈ R be
the symbols of the Toeplitz matrices A (symmetric) and B (lower banded). The prod-
uct matrix C = BABT has symbol c(z) = b(z)a(z)b(z−1). For any integer n, with
n � 2µ, the symmetric matrix Dn = Cn − BnAnB

T
n has rank ρ � 2µ.

Proof. Partition matrices An and Bn as follows:

An =
[
A11 A12

AT
12 A22

]
, Bn =

[
B11 O

B21 B22

]
,

where A11 and B11 ∈ Rµ×µ. Consider the bordered matrices

An =
A00 A01 A02

AT
01 A11 A12

AT
02 AT

12 A22

 , Bn =
[
B10 B11 O

OT B21 B22

]
,

where A00 and B10 ∈ Rµ×µ. The n-section Cn of C satisfies Cn = BnAnB
T
n and it

can be shown by direct computation that

Dn = BnAnB
T
n − BnAnB

T
n =

[
D11 D12

DT
12 O

]
,

where

D11 =B10A00B
T
10 + B11A

T
01B

T
10 + B10A01B

T
11 ∈ Rµ×µ,

D12 =B10A01B
T
21 + B10A02B

T
22 ∈ Rµ×(n−µ).

Hence Dn has rank ρ � 2µ. �

Lemma 2 (The rank theorem of [14]). Let A, W, Y be n-dimensional symmetric ma-
trices, with A = W + Y, and let αi, ωi and ηi be the respective eigenvalues indexed
in increasing order. Let � and ν be the number of positive and negative eigenvalues
of Y (ρ = � + ν is the rank of Y). Then for all k such that ν < k � n − � it holds

ωk−ρ � ωk−ν � αk � ωk+� � ωk+ρ.
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Moreover, for i, j such that 1 � i + j − 1 � n it holds

ωi + ηj � αi+j−1 and αn−i−j+2 � ωn−i+1 + ηn−j+1

(in particular ω1 + η1 � α1 � ω1 + ηn).

Theorem 1. Let HN be the matrix of system (2). For a fixed integer µ, let p(z)
be the Laurent polynomial obtained in Section 3.1 as a suitable approximation of
h(z). Let q(z) be the factor of p(z) and f (z) = p−1(z)h(z). Then no more than 2µ
eigenvalues of Q−T

N Q−1
N HN lie outside of If and each of the other eigenvalues is

interlaced between two eigenvalues of FN .

Proof. For the matrix Q−1
N HNQ−T

N , similar to the preconditioned matrix Q−T
N Q−1

N

HN , we have

Q−1
N HNQ−T

N − FN = Q−1
N

(
HN − QNFNQT

N

)
Q−T

N .

From Lemma 1, applied to the functions a(z) = f (z) and b(z) = q(z), it follows that
matrix HN − QNFNQT

N has rank ρ � 2µ, that is, Q−1
N HNQ−T

N = FN + Y , where
Y is a symmetric correction of rank ρ. Then by Lemma 2, no more than ρ eigenvalues
of the preconditioned matrix Q−T

N Q−1
N HN are outside the interval If and the other

eigenvalues are interlaced with the eigenvalues of FN . �

From Theorem 1 it follows that the behavior of the eigenvalues of the precondi-
tioned matrix, except a small number of them, is described by the graphic of the func-
tion f (z) on the unit circle, which by construction has a suitable selected clustering
with regularizing effect.

4. Experiments with the 1-D problem

The 1-D examples refer to an original image x of size N = 64, defined by

xi = �124(1 + sin�15i/N�)� , i = 1, . . . , N.

Example 4.1 (Gaussian PSF). The N × N blurring matrix is the N-section of the
bi-infinite Toeplitz matrix H whose symbol is the symmetric Laurent polynomial (3)
of degree w = 8 with coefficients hi = β exp(−αi2), i = 0, . . . , w, where α = 0.2
and β is the normalizing constant such that

∑w
i=−w hi = 1. This matrix corresponds

to the 1-D version of a Gaussian PSF. The function h̃(θ) is positive and the condition
number of HN is approximately 105.

The noisy image b is obtained by computing HNx + �, where � is a vector of
randomly generated entries, with normal distribution and mean 0. The entries of �

are scaled in such a way that ‖�‖2/‖HNx‖2 = 10−4. The dimensions of the noise and
signal subspaces are estimated to be dn = 22 and ds = 40, respectively. By checking
the set H, the estimate 0.01 is found for ε.
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First the system is solved by CG. At the ith iteration the relative norm 2 error ei
of the computed vector x(i) with respect to the original image x is taken. The error
history (long dashed line) is plotted in Fig. 2. As expected, the error shows an initial
quick decrease until a minimal value is reached, followed by a slow increase, when
the noise is reconstructed.

Approximations to ψ(θ) with various degrees and point numbers have been con-
sidered. For example, for µ = 5 and κ = 20 the least-squared fit of function ψ(θ) is

p̃(θ)=0.256 + 0.408 cos θ + 0.229 cos 2θ + 0.083 cos 3θ + 0.02 cos 4θ

+ 0.004 cos 5θ.

Function f̃ (θ) = p̃(θ)−1h̃(θ) is plotted in Fig. 1 (continuous line) together with
function h̃(θ) (dashed line).

The factor q(z) results to be

q(z) = 0.256 + 0.324 z + 0.256 z2 + 0.12 z3 + 0.028 z4 + 0.008 z5.

Two eigenvalues of the preconditioned matrix Q−T
N Q−1

N HN lie outside If .
The PCG method is then applied with the fit preconditioner so obtained. The error

history (continuous line) is compared with that of the non-preconditioned CG (long
dashed line) in Fig. 2.

For comparison purpose the same problem is solved using Chan [5] circulant
preconditioner, modified as in [10], with truncation parameter τ = 0.005 and the
inverse Toeplitz preconditioner of [9] with the same truncation parameter (the ex-
periments show that this is the optimal value to be used for both the methods). The
error histories (short dashed line for the circulant preconditioner, dot–dashed line for
the inverse Toeplitz preconditioner) are also shown in Fig. 2.

Table 1 summarizes the minimal value obtained and the iteration number required
by the non-preconditioned CG, the PCG with the fit preconditioner, the PCG with
the circulant preconditioner and the PCG with the inverse Toeplitz preconditioner.

-3 -2.5 -2 -1.5 -1 -0.5

0.2

0.4

0.6

0.8

1

Fig. 1. Functions f̃ (θ) = p̃(θ)−1h̃(θ) (continuous line) and h̃(θ) (dashed line).
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Fig. 2. Example 4.1: Error histories for non-preconditioned CG (long dashed line), PCG with the fit
preconditioner (continuous line), PCG with the circulant preconditioner (short dashed line) and PCG with
the inverse Toeplitz preconditioner (dot–dashed line).

Table 1
Example 4.1: Minimal error values and iteration numbers for non-preconditioned CG, PCG with the fit
preconditioner, PCG with the circulant preconditioner and PCG with the inverse Toeplitz preconditioner

Method Minimal error Iteration

CG 0.0648 24
Fit preconditioner 0.0618 3
Circulant preconditioner 0.0648 8
Toeplitz preconditioner 0.0653 10

Example 4.2 (Diffraction in incoherent illumination PSF). The blurring matrix HN

is the N-section of the matrix H whose symbol is the symmetric Laurent polynomi-
al (3) of degree w = 8 with coefficients hi = β(sin(αi)/i)2, i = 0, . . . , w, where
α = 1.5145 and β is the normalizing constant. This matrix corresponds to the 1-
D version of the PSF which describes the diffraction effects caused by a system
of lenses in a spatially incoherent illumination [2]. For the chosen value of α the
function h̃(θ) is positive and the condition number of HN is approximately 600. The
noise vector � is scaled in such a way that ‖�‖2/‖HNx‖2 = 10−3. The dimensions of
the noise and signal subspaces are estimated to be dn = 7 and ds = 40, respectively.
By checking the set H, the estimate 0.3 is found for ε. The least-squared fit to ψ(θ)

obtained for µ = 5 and κ = 20 is

p̃(θ)=0.548 + 0.333 cos θ + 0.765 cos 2θ + 0.0005 cos 3θ + 0.023 cos 4θ

+ 0.011 cos 5θ
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and the factor q(z) results to be

q(z) = 0.704 + 0.220 z + 0.547 z2 − 0.0046 z3 + 0.0138 z4 + 0.008 z5.

Fig. 3 shows the error histories of the non-preconditioned CG (long dashed line),
the PCG method with the fit preconditioner (continuous line), the PCG method with
the modified circulant preconditioner (short dashed line) and the inverse Toeplitz
preconditioner (dot–dashed line). The value τ = 0.07 for the circulant precondition-
er and the value τ = 0.05 for the inverse Toeplitz preconditioner have been used as
truncation parameters (from the experiments these values result to be the best ones).

Table 2 summarizes the minimal value obtained and the iteration number required
by the non-preconditioned CG, the PCG with the fit preconditioner, the PCG with
the circulant preconditioner and the PCG with the inverse Toeplitz preconditioner.
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e

Fig. 3. Example 4.2: Error histories for non-preconditioner CG (long dashed line), PCG with the fit pre-
conditioner (continuous line), PCG with the circulant preconditioner (short dashed line) and PCG with
the inverse Toeplitz preconditioner (dot–dashed line).

Table 2
Example 4.2: Minimal error values and iteration numbers for non-preconditioned CG, PCG with the fit
preconditioner, PCG with the circulant preconditioner and PCG with the inverse Toeplitz preconditioner

Method Minimal error Iteration

CG 0.0175 11
Fit preconditioner 0.0174 6
Circulant preconditioner 0.0179 7
Toeplitz preconditioner 0.0164 7
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Fig. 4. Eigenvalues of the fit preconditioned matrix (continuous line), of the circulant preconditioned
matrix (dashed line) and of the inverse Toeplitz preconditioned matrix (dot–dashed line).

By examining the previous examples (especially the second one), it appears that
the values, which should be taken as truncation parameters by both the circulant
preconditioner and the inverse Toeplitz preconditioner to enjoy the regularizing prop-
erty, are much smaller than the value ε required by the fit preconditioner. This can
be explained by the different way the preconditioners cluster the eigenvalues (see
Fig. 4).

In fact the eigenvalues of the circulant preconditioned matrix (dashed line) and
those of the inverse Toeplitz preconditioner (dot–dashed line) show two neatly sep-
arated clusters around 1 and around 0. All the eigenvalues smaller than τ are in the
cluster around 0. On the contrary the two clusters of eigenvalues of the fit precon-
ditioned matrix (continuous line) are connected by an intermediate increasing set. A
too small value for ε would reduce the cluster around 0, letting some noise eigen-
values to escape from it. This different behavior must be taken into consideration in
the 2-D case, as we will see later. As noted in [10], if it is not clear where the noise
subspace ends, an overestimation of the noise subspace is better than an underestima-
tion. Experiments conducted with higher values of the truncation parameters show a
comparable performance from the point of view of the minimum error obtained. Of
course the iteration number increases for higher truncation values.

5. The 2-D problem

We consider now the case where the coefficient matrix of the system is a band
block Toeplitz matrix with band Toeplitz blocks. Such a matrix form is commonly
called BTTB. We restrict ourselves to the separable case, that is, we consider the
problem of approximating the vector x solution of

Hmx = b − �,
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where Hm = KN ⊗ JN has size m = N2, and K and J are symmetric positive def-
inite band Toeplitz matrices, whose symbols are the Laurent polynomials k(z) and
j (v) of degrees wk and wj , respectively. Hence Hm has symbol h(z, v) = k(z)j (v).

A generalization of the classical Grenader and Szegö theorem states that the ei-
genvalues of Hm belong to the interval Ih having endpoints

hinf = inf
θ
k̃(θ) inf

η
j̃ (η) and hsup = sup

θ

k̃(θ) sup
η

j̃ (η),

where k̃(θ) = k(eiθ ) and j̃ (η) = j (eiη), with θ, η ∈ [−�, �], are the restrictions of
k(z) and j (v) on the unit circle. Moreover, the eigenvalues λi(Hm) = λr(KN)λs(JN),
r, s = 1, . . . , N , are equally distributed as k̃(θr )j̃ (ηs), θr = 2�r/N and ηs = 2�s/N .

5.1. Construction of the fit preconditioner

As in the 1-D case the set H which approximates the set of eigenvalues of Hm

is considered. It is formed by all the products k̃(θr )j̃ (ηs), r, s = 1, . . . , N . In the set
H the two subsets Hn and Hs , corresponding to the eigenvalues of the noise and
of the signal subspaces, are detected. Two values εk and εj are determined in such
a way that the set of the products k̃(θr )j̃ (ηs) with k̃(θr ) > εk and j̃ (ηs) > εj has
approximately the cardinality of Hs . Consequently the subsets of indices �1 and �2
for the function k̃(θ) and �1 and �2 for the function j̃ (η) are determined (see Section
3.1). Two functions ψ(θ) and ϕ(η) are considered such that

ψ(θi) =
{
k̃(θi) for i ∈ �1,

εk for i ∈ �2,
ϕ(ηi) =

{
j̃ (ηi) for i ∈ �1,

εj for i ∈ �2.

Two polynomials p(z) of degree µp and r(v) of degree µr are found, with p̃(θ)

and r̃(η) approximating ψ(θ) and ϕ(η), respectively. The factors q(z) and s(v) of
p(z) and r(v), respectively, are computed and the associated band lower triangular
Toeplitz matrices Q and S are used for the preconditioner.

The matrix VNV T
N , with VN = QN ⊗ SN is called fit preconditioner. Matrix VN

is a block banded lower triangular matrix with blocks of the same structure. We have

(Q−T
N Q−1

N KN) ⊗ (S−T
N S−1

N JN) = V −T
N V −1

N (KN ⊗ JN).

Hence the cost of an iteration is (2(µp + µr + wk + wj) + 5)N2 operations.

Theorem 2. Let VNV T
N be the fit preconditioner of the matrix KN ⊗ JN . Let If be

the interval having endpoints

finf = inf
θ

[
p̃−1(θ )̃k(θ)

]
inf
η

[̃
r−1(η)j̃ (η)

]
,

fsup =sup
θ

[
p̃−1(θ )̃k(θ)

]
sup
η

[̃
r−1(η)j̃ (η)

]
.

Then at most O(N) of the eigenvalues of the preconditioned matrix lie outside If .
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The proof follows immediately by applying to the block case the same consider-
ations developed in Theorem 1.

6. Experiments with the 2-D problem

We apply the fit preconditioner to two different 2-D images. Having checked that
the 2-level circulant preconditioner and the inverse Toeplitz preconditioner have sim-
ilar performances, in this case, we compare the fit preconditioner only with the circ-
ulant preconditioner.

Example 6.1 (Gaussian PSF). For this example a 256 × 256 image of a letter by
Galileo has been blurred with the separable 2-D Gaussian PSF (see Fig. 5 for the
original image and Fig. 6 for the blurred noisy image). The blurring matrix is Hm =
KN ⊗ JN , where both KN and JN are N-sections of Gaussian matrices with band-
width w = 8. KN corresponds to the symbol having coefficients ki = β exp(−αi2),
i = 0, . . . , w, with α = 0.2, and JN corresponds to the symbol having coefficients
ji = β exp(−αi2), i = 0, . . . , w, with α = 0.5. In both cases β is the normalizing
constant. The condition number of Hm is about 7.8 × 106. The noise vector � is
scaled in such a way that ‖�‖2/‖Hmx‖2 = 10−3.5. The dimensions of the noise and
signal subspaces are estimated to be dn = 25 000 and ds = 10 000. By checking the
set H, the values εk = 0.2 and εj = 0.4 are determined.

Fig. 5. Original image.
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Fig. 6. Blurred image.

Fig. 7. Fit PCG 10 iteration.

Fig. 9 shows the error histories of the non-preconditioned CG (long dashed line),
the PCG method with the fit preconditioner (continuous line) and the PCG meth-
od with the modified circulant preconditioner (short dashed line). The value τ =
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Fig. 8. Fit PCG 50 iteration.
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Fig. 9. Example 6.1: Error histories for non-preconditioned CG (long dashed line), PCG with the fit
preconditioner (continuous line) and PCG with the circulant preconditioner (short dashed line).

0.004 (which from the experiments results to be the best one) has been used as the
truncation parameter for the circulant preconditioner.

Figs. 7 and 8 show the images reconstructed after the first and the fifth iterations
of PCG with the fit preconditioner. Table 3 summarizes the minimal value obtained
and the iteration number required by the non-preconditioned CG, the PCG with the
fit preconditioner and the PCG with the circulant preconditioner.
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Table 3
Example 6.1: Minimal error values and iteration numbers for non-preconditioned CG, PCG with the fit
preconditioner and PCG with the circulant preconditioner

Method Minimal error Iteration

CG 0.068 16
Fit preconditioner 0.070 5
Circulant preconditioner 0.048 6
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Fig. 10. Example 6.2: Error histories for non-preconditioned CG (long dashed line), PCG with the fit
preconditioner (continuous line) and PCG with the circulant preconditioner (short dashed line).

Example 6.2 (Diffraction in incoherent illumination PSF). For this example a 110 ×
110 image of Saturn has been blurred with the separable 2-D PSF of the diffraction in
incoherent illumination (see Fig. 11 for the original image and Fig. 12 for the blurred
noisy image). The blurring matrix is Hm = KN ⊗ KN , where KN is the N-section
of the matrix K with bandwidth w = 8, whose symbol is the Laurent polynomial
considered in Example 4.2, that is, h(z, v) = k(z)k(v), where the coefficients of k
are ki = β(sin(αi)/i)2, i = 0, . . . , w, w = 8, with α = 1.5145 and β is the nor-
malizing constant. The condition number of Hm is about 3.6 × 104. The noise vector
� is scaled in such a way that ‖�‖2/‖Hmx‖2 = 10−4. The dimensions of the noise
and signal subspaces are estimated to be dn = 4000 and ds = 3000. By checking the
set H, the value εk = 0.5 is determined.

Fig. 10 shows the error histories of the non-preconditioned CG (long dashed line),
the PCG method with the fit preconditioner (continuous line) and the PCG meth-
od with the modified circulant preconditioner (short dashed line). The value τ =
0.01 (which from the experiments results to be the best one) has been used as the
truncation parameter for the circulant preconditioner.
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Fig. 11. Original image.

Fig. 12. Blurred image.

Figs. 13 and 14 show the images reconstructed after the first and the 14th iter-
ations of PCG with the fit preconditioner. Table 4 summarizes the minimal value
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Fig. 13. Fit PCG 10 iteration.

Fig. 14. Fit PCG 140 iteration.

obtained and the iteration number required by the non-preconditioned CG, the PCG
with the fit preconditioner and the PCG with the circulant preconditioner.
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Table 4
Example 6.2: Minimal error values and iteration numbers for non-preconditioned CG, PCG with the fit
preconditioner, PCG with the circulant preconditioner and PCG with the inverse Toeplitz preconditioner

Method Minimal error Iteration

CG 0.0165 27
Fit preconditioner 0.0166 14
Circulant preconditioner 0.0165 17
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