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Abstract

This paper describes nagging, a technique for parallelizing search in a heterogeneous distributed
computing environment. Nagging exploits the speedup anomaly often observed when parallelizing
problems by playing multiple reformulations of the problem or portions of the problem against each
other. Nagging is both fault tolerant and robust to long message latencies. In this paper, we show how
nagging can be used to parallelize several different algorithms drawn from the artificial intelligence
literature, and describe how nagging can be combined with partitioning, the more traditional search
parallelization strategy. We present a theoretical analysis of the advantage of nagging with respect
to partitioning, and give empirical results obtained on a cluster of 64 processors that demonstrate
nagging’s effectiveness and scalability as applied to A∗ search, αβ minimax game tree search, and
the Davis–Putnam algorithm.
 2002 Published by Elsevier Science B.V.
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1. Introduction

Many artificial intelligence problems of practical interest can be posed in terms of
search. Not surprisingly, the development of a robust network infrastructure coupled
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with the advent of reasonably-priced computing equipment has helped focus attention
on techniques that use multiple processors operating in parallel to improve search
performance. Some of this work has centered on developing application-level toolkits to
access a distributed computing environment as well as resource-management tools that
enable an application to exploit computing resources that span organizational boundaries
(e.g., “grid computing”) [2,11,15,22].

Aside from differences in enabling technology, most attempts to parallelize search are
quite similar, involving some sort of partitioning [13,14]. The general idea is that each
processing element takes responsibility for a portion of the search space, and that the
individual solutions to these subproblems can then be compared or composed to obtain
a solution to the original problem. Different partitioning schemes usually differ in their
target computer architecture (e.g., SIMD vs. MIMD, shared memory multiprocessors vs.
networks of workstations, etc.) and how they address a number of technical problems, such
as load balancing(how best to assign work in order to exploit all available processors all of
the time) and fault tolerance(how to notice and recover from the momentary inaccessibility
or outright loss of one or more processing elements). Nevertheless, partitioning is the basis
of a diverse set of projects, including SETI@Home, the search for radio signal evidence
of extraterrestrial life, GIMPS, the search for Mersenne prime numbers, and various code
breaking efforts from distributed.net.

Unfortunately, many problems do not partition well. One reason is that information
acquired early in a serial search process can often be used to reduce the amount of search
performed overall: for example, consider how the α and β values are used to prune the
game tree in αβ minimax search. If the search is partitioned, the information acquired
while searching one subspace may come too late to help reduce the search in another
subspace explored simultaneously, resulting in a search that may actually be slower with
multiple processors than it is with a single processor.1 This problem is an instance of
the more general speedup anomalyproblem, first studied for branch-and-bound style
algorithms on two well-known NP-hard problems in [19]. A speedup anomaly occurs when
a solution is obtained more slowly with more processors than it is with fewer processors,
or, alternatively, when a solution is obtained superlinearly faster with multiple processors.
Later, such superlinear speedups were routinely studied, particularly within the parallel
logic programming and theorem proving communities (see, e.g., [7]).

This paper describes a distributed search paradigm called nagging that exploits
the speedup anomaly often observed when parallelizing problems by playing multiple
reformulations of the problem or portions of the problem against each other. Nagging has
several advantages over partitioning techniques; it is intrinsically fault tolerant, naturally

1 Even if the information were made available in a timely fashion, sharing the information among multiple
processors would entail some amount of communication overhead. In general, the cost of communication tends
to increase as the number of processors increases. Depending on the underlying architecture, sharing information
may involve interprocessor communication or the use of shared memory. For shared-memory multiprocessors,
there are practical design limits on the number of processors one can incorporate in a single machine. For
more loosely-coupled processors, interprocessor communication (either in directed or broadcast form) requires
overhead for generating and servicing messages; furthermore, as the number of processors increases, higher
message latencies associated with larger networks generally entail larger communication overheads.
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load-balancing, requires relatively brief and infrequent interprocessor communication, and
is robust in the presence of reasonably large message latencies. These properties help make
nagging suitable for use on geographically-distributed networks of processing elements.
Originally developed in the course of our work on distributed automated deduction [35,39,
40], we show here how nagging can be generalized and applied to a broad range of search
algorithms from the artificial intelligence literature. We develop an analytical performance
model comparing nagging and partitioning, and use this model to make some predictions
about their respective performance. Finally, our performance claims are justified via an
empirical evaluation of nagging and partitioning on three well-known yet significantly
different search algorithms; A∗ search [20], αβ minimax game tree search [27], and the
Davis–Putnam search algorithm [6].

2. Nagging and search

Nagging is an asynchronous parallel search pruning technique where a single master
processor(or master), performing some standard search procedure, is advised by one or
more nagging processors(or naggers), each performing identical search procedures, about
portions of its master’s search space that need not be explored.

Let us consider a search procedure that is designed to find a globally-optimal solution
in a finite, implicitly-defined, search space; this is the case, for example, when trying to
determine the best next move to make in game tree search with fixed horizon (similar
arguments hold for situations where any legal solution suffices, such as for theorem
proving or satisfiability problems). At initialization, each nagger obtains the problem
specification from its master processor. It then engages in a series of nagging episodes,
each initiated by the nagger when it becomes idle, until the master has completed its
search.

A nagging episode begins when the nagger requests a snapshot of its master’s current
state, which is concisely described by communicating the sequence of choices made
through the predefined search space (see Fig. 1). The master selects a nagpoint(a node
along its own current path from which the nagger will begin its own exploration of the
space) according to some predefined nagpoint selection criteria; it then communicates this
nagpoint and the value describing its own current best solution to the nagger.

The master and the nagger now race to exhaust their respective search spaces; while
the two search spaces are semantically equivalent, they may well be searched differently,
leading to different expected solution times. If we are searching for an optimal solution,
there are only three possible outcomes to consider:

(1) Abort: If the master backtracks over the nagpoint before the nagger completes its own
search, the master signals the nagger to abort the nagging episode, which causes the
nagger to once again become idle and initiate a new nagging episode.

(2) Prune: If the nagger completes its search and finds there are no better solutions than
that already known by the master, then the nagger interrupts the master and forces it to
backtrack to the nagpoint, resulting in a reduction in the master’s search space.



74 A.M. Segre et al. / Artificial Intelligence 140 (2002) 71–106

Fig. 1. Nagging episode. The square node indicates the current position of the master process, which is executing
a depth-first search. A nagpoint is selected along the master’s search path, and is described to the nagging process
by communicating the series of choices from the root of the search tree to the nagpoint. The nagger reconstructs
the master’s search space up to the nagpoint and then commences exploring its own, transformed, version of the
space rooted at the nagpoint.

(3) Solve: Finally, should the nagger find a better solution than that communicated by the
master, it can abort its own current search and report the new value to the master so
that the master might use this new value to reduce its own search space.

Of course, for nagging to have the greatest possible positive effect on the master’s search
efficiency, we would prefer the second and third cases occur with high probability, and we
hope the first case occurs only rarely. Should the second and third cases never occur, we
can expect no improvement in the master’s expected time to solution: indeed, the master’s
search will surely be less efficient due to the small—but measurable—additional overhead
of servicing its naggers.

Two techniques are applied to improve the odds. First, a nagger can be nagged
recursively by yet another processor in order to help it exhaust its own search space more
quickly. Second, and more importantly, each nagger may apply a problem transformation
function to reduce, in practice, the size of its search space while retaining at least some
of the information content implicit therein (note that effective problem transformation
functions are typically dependent on both the search algorithm in use and the problem
domain itself). We will discuss both of these techniques later in this paper.

The main characteristics of nagging are clear even within this simplified context.
First, nagging does not require explicit load balancing, since idle machines always
initiate nagging episodes to keep themselves busy. As long as the master processor is
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still searching, new nagpoints can be provided at will. Second, nagging is intrinsically
fault tolerant: since the master’s search is unaffected should a nagger fail or become
inaccessible, losing a nagger will never compromise the correctness or quality of the
solution produced by the master, nor will the master ever stop and wait for the missing
nagger. Finally, communication is brief, since even deep search states can be described
concisely as a sequence of choices, while the results reported by a nagger often reduce to a
single bit (e.g., prune/don’t prune) or just a few bits (e.g., a new value for the best solution
to date).

3. NICE: A Network Infrastructure for Combinatorial Exploration

To support our work on nagging, we have developed NICE, the Network Infrastructure
for Combinatorial Exploration. NICE is specifically designed to support both nagging
and partitioning for search algorithms; it allows application programmers to parallelize
their search procedures by making appropriate function calls within their code. The NICE
distribution includes niced, a Unix resource management daemon, niceq, a daemon status
query program, and niceapi, the applications programmer’s interface library. The code is
written in ANSI C with BSD sockets over TCP/IP, and is known to run on multiple variants
of the Unix operating system, including Linux, Sun OS, and HPUX.

The NICE daemon, or niced, must be running on every participating machine, whether
master or nagger. Typically, it is started automatically as part of the system boot process,
and runs as long as its host CPU is running (the daemon itself is single threaded
and extremely lightweight, having no noticeable impact on system performance). NICE
daemons are arranged hierarchically, with each daemon reporting to a single parent daemon
while answering to zero or more child daemons. The NICE daemon fulfills three primary
functions:

(1) The daemon maintains contact with the NICE hierarchy, occasionally exchanging host
load and availability information with its parent and child daemons, and managing
failure recovery should its parent and/or child daemons become unreachable or
unresponsive. Each daemon may also initiate local reorganization of the NICE
hierarchy in a greedy attempt to enhance overall search performance according to each
host’s current actual load.

(2) The daemon provides the interface through which a qualifying application may
request additional processors. It is also responsible for security, certifying which
applications on which hosts are allowed to request support from other processors,
which executables can be run on the local host, as well as which files, if any, can
be accessed locally.

(3) The daemon manages the local host’s resources according to prespecified host-specific
constraints: for example, some hosts may be available only during specified times,
such as during nighttime hours. Thus the daemon must decide when a processor can
respond to requests for new processes, and must also manage previously spawned but
still running processes, putting them to sleep and later waking them when the host
becomes available once more.
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A NICE-enabled application communicates with the NICE infrastructure via a set of
callable functions contained in the NICE applications programmer’s interface. This link-
able library contains functions that, when invoked, request new copies of the application be
spawned on other machines. It also contains functions to support communication between
applications and between the application and the NICE daemon. Note that the library does
not actually contain code for the search algorithms, but rather only the handful of functions
that are needed to parallelize—via either nagging or partitioning—appropriately designed
serial search algorithms.

Both the NICE daemon and NICE API represent fairly mature software efforts: versions
of the NICE daemon have been running continuously on our systems for several years, with
no noticeable impact on performance. The code is very robust, with NICE daemons running
reliably and unobtrusively for periods of many months between system restarts. But more
to the point, while the NICE infrastructure represents a necessary enabling technology that
directly supports research in distributed search algorithms without the additional features
provided in more general toolkits such as PVM [2] or MPI [15], the more interesting
parallelization issues are algorithmic ones. What is perhaps most remarkable about NICE
is that such a simple and lightweight infrastructure naturally supports parallelization of a
broad array of search algorithms.

4. Applications of nagging

While, as we have seen in Section 2, the main idea that underlies nagging is quite
simple, there are a number of important details (e.g., the design of appropriate problem
transformation functions) that have a direct effect on how well nagging works. These issues
are best discussed in the context of specific search algorithms: here, we show how three
well-known search algorithms drawn from the artificial intelligence literature—the Davis–
Putnam algorithm, the A∗ search algorithm, and the αβ minimax search algorithm—can
be parallelized using nagging.

4.1. The Davis–Putnam algorithm

First proposed by Davis and Putnam, and later refined by Loveland, the Davis–Putnam
algorithm is the fastest known solution technique for Boolean satisfiability problems that
is both sound and complete.2 We say it is complete because if there is a solution, the
Davis–Putnam algorithm guarantees that solution will eventually be found. Other fast
solution methods for satisfiability problems such as GSAT, WSAT or simulated annealing
are local search procedures that are sound, but not complete [36]. Note that completeness

2 Recall a Boolean variableis a variable that can only be trueor false. A Boolean formulaconsists of variables
related via the usual logical connectors ¬, ∧, ∨,→ and↔; a formula is in conjunctive normal form(CNF) if it
is a conjunction of clauses, where each clause is a disjunction of literals, and each literal is a Boolean variable
or its negation. By definition, the SAT-CNF problem (determining whether or not a given CNF Boolean formula
is satisfiable) is NP-complete; that is, it is possible to certify a solution is correct in polynomial time, but it is
commonly believed that actually finding a solution requires exponential time [5].
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does not necessarily imply an exhaustive search; rather, if the given problem is satisfiable,
any solution is equally correct, so we can terminate the search as soon as any solution is
found. The search space must only be searched exhaustively when we need to guarantee
an unsatisfiable problem has no solution. This kind of search-until-first-solution behavior
arises most often in automated deduction or theorem proving environments; precisely the
contexts where nagging was first proposed.

The Davis–Putnam algorithm solves a particular type of Boolean satisfiability problem,
usually called SAT-3-CNF or simply 3SAT, that deals only with Boolean formulas having
at most three literals per clause (note that any Boolean formula that can be expressed in
CNF can also be expressed in 3CNF by direct manipulation along with the addition of
some number of new Boolean variables) [16]. The general idea is simple; if there are a
total of N variables, then one can systematically examine all 2N possible combinations of
truth assignments in order to determine if at least one of these truth assignments satisfies
the formula.

Two observations serve to reduce the number of variable combinations the Davis–
Putnam algorithm need look at in practice. First, if a partial solution having m variable
bindings is inconsistent (that is, fails to satisfy one of the clauses), then all 2(N−m)
completions of this partial solution must also be inconsistent and can be safely pruned:
there can exist no solution in this portion of the search space. Second, if a partial solution
contains the negations of any k − 1 literals from a given k-literal clause, then, if there is
to be any hope of finding a satisficing solution, the lone remaining literal in the clause
must be satisfied by binding its variable appropriately. Of course, once bound, the newly
bound variable may force other variable bindings as well, thus effectively reducing the
search space: this process is called unit propagation. Thus the Davis–Putnam algorithm
operates by systematically examining combinations of truth assignments, with periods of
unit propagation occurring whenever possible (see Fig. 2).

What is the expected solution time for this algorithm? In principal, larger formulae
define a larger search space and therefore entail longer solution times. In practice, however,
exactly how much time is required depends on more subtle characteristics of the specific
problem instance (e.g., ratio of number of variables to number of clauses as well as the
distribution of variables within the clauses themselves). Put simply, not all like-sized 3SAT
problems are equally hard [26,43]. Some problem instances can be easy (imagine, for
example, a Boolean formula in CNF where every clause shares a single literal), while others
of exactly the same size may result in exponential-time performance. In practice, the order
with which variable settings are tried has a critical effect on the time to solution. Numerous
splitting rules, or heuristics for “good” orderings, exist, but no universal rule will work for
all problem instances: existence of a universal splitting rule providing polynomial time
performance on all 3SAT problem instances would imply P= NP.

Parallelizing the algorithm of Fig. 2 using partitioning is relatively straightforward: we
explore recursive calls to search() on separate processors as long as additional processors
are available. Of course, we can’t really know a priori how large each individual subspace
is, as some branches may quickly lead to an inconsistent partial solution. This means that it
is hard to ensure that the work is fairly distributed over the available processing elements.
Furthermore, without some notion of subspace size, it is difficult to determine whether a
processor assigned to a subspace has actually failed, gone offline, or is simply taking a
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3sat(F : formula) : boolean;
return(search(F , extractVars(F ));

search(F : formula, S: variables) : boolean;
V : variable← head(S);
C: clause;

if (F = ∅) then return(true);
elseif (∃C ∈ F | size(C)= 0) then return(false);
elseif (∀C ∈ F | V /∈ C ∧¬V /∈ C) then return(search(F,S\{V }));
elseif (search(propagate(substitute(F , V )), S\{V })) then return(true);
elseif (search(propagate(substitute(F , ¬V )), S\{V })) then return(true);
else return(false);

substitute(F : formula, V : variable) : formula
G : formula←∅;
C : clause;

for C in F

if(V /∈ C)
G←G∪ (C\{¬V });

return(G);

propagate (F : formula) : formula
C : clause;

while(∃C ∈ F | size(C)= 1)
F ← substitute(F,head(C));

return(F );

Fig. 2. Davis–Putnam algorithm for 3SAT. The problem instance is a Boolean formula F in 3CNF represented
as a list of clauses, where each clause is a list of at most three variables, and each variable is either a literal or
a negated literal. The search() function operates recursively, removing satisfied clauses from F until either there
are no more clauses left in F or one of the clauses in F is shown to be unsatisfiable. The splitting rule is encoded
explicitly in the ordering and pattern of negations in the list S , which initially contains all of the literals in F ,
some of which may be negated. Variables whose values are set “early” by unit propagation are “skipped” in the
third clause of the large conditional statement. The substitute() function constructs and returns G, a new copy of
F with satisfied clauses filtered out and references to the negated sense of variable V removed from the remaining
clauses. The functions head() and size() functions return the first element and the cardinality of their argument,
respectively, and the function extractVars() returns a list of the variables contained in the given formula.

long time to search what turned out to be an unexpectedly large space. Addressing load
balancing and fault tolerance issues can only add to the overhead costs associated with
partitioning [32].

Compare this partitioning strategy with nagging (see Fig. 3). At initialization, each
nagger is provided with the original Boolean formula that specifies the 3SAT problem
we wish to solve. A nagging episode begins when the nagger requests a nagpoint from its
master, who briefly interrupts its own search to select a random nagpoint. Each nagpoint
corresponds to one of the partially-instantiated Boolean formulae considered by the master
in the course of its recursive calls to search(). Upon receiving the nagpoint, the master
resumes its own search, while the nagger first applies a problem transformation function
to the nagpoint (e.g., by reordering the list of as-yet-unbound variables, or by randomly
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status≡ true | false| abort

nag3sat(F : formula) : boolean;
N : formula;
result: status;

niceInit();
if(niceRoot()) then return(searchExplicit(F , extractVars(F )));
else

while(true)
N← niceIdle();
result← searchExplicit(N, transform(extractVars(N)));
if (result= true) then niceSolve(N , result);
elseif (result= false) then nicePrune(N);

Fig. 3. Sketch of nagging implementation for the algorithm of Fig. 2. The call to niceInit() connects to the
NICE infrastructure and ensures copies of this process are spawned on all participating processors; it also
ensures spawned processes are provided with copies of the original problem. The root process (the function
niceRoot() returns true only on the root processor) performs the normal Davis–Putnam search, while non-root
processes engage in a series of nagging episodes, each initiated when niceIdle() requests a new nagpoint, denoted
N . The function searchExplicit() is logically equivalent to the search() function of Fig. 2, but with explicit
stack manipulation and interrupt handling capabilities for processing messages to/from parent/child processes
(convenient primitives to support this functionality are provided in the NICE API). For the nagging processors,
the transform() function randomly reconfigures the splitting rule as described in the text. Depending on the
outcome of the nagger’s search, the nagger may pass a solution to its parent (function niceSolve()) or force its
parent to backtrack (function nicePrune()). Note that a nagger’s search may also be interrupted by its parent if
the parent exhausts the space rooted at the nagger’s nagpoint before the nagger does; in this case, searchExplicit()
would immediately return abort, and the nagger would simply request a new nagpoint.

inverting their logical sense, thereby switching the order in which V and¬V are explored),
and then begins its own search. Should the nagger find an assignment that makes the
formula true, it interrupts the master and provides the solution, which the master can then
in turn provide as the solution to the problem. Should the nagger instead exhaust its space
without finding a solution, it can interrupt the master and force the master to backtrack past
the nagpoint. Should the master backtrack over the assigned nagpoint before the nagger
completes its own search, the master should abort the nagger, who is then free to seek a
new nagpoint from the master.

Of course, simply racing the nagger against the master may not produce useful
speedups; what is really needed is a good problem transformation function that will
increase the nagger’s chances of beating the master within the subspace defined by the
nagpoint, hence reducing the master’s own search space. The insight is that a serial
search procedure must necessarily commit to searching a single incarnation of the current
problem’s search space, while alternate versions of the same search space may entail
differing effort to search. Since expected time to solution for a given problem instance
is critically dependent on the splitting rule used, changing the splitting rule may lead the
nagger to complete its search more quickly than the master.

To gauge if such a strategy might succeed, we can, as a first approximation, empirically
examine how a random permutation applied to both variable selection and descendent
ordering (i.e., a random splitting rule) affects the overall solution time. We randomly
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Fig. 4. Davis–Putnam algorithm applied to 100 randomly-generated “difficult” 3SAT problems of various sizes.
Each problem is solved twice, once using the default search ordering (tstd) and the second time with the
permutation transformation applied before solving (trnd). Results are shown on a log–log scale for clarity. Had
all the datapoints been tightly clustered along the diagonal trnd = tstd line, the probability of a nagging processor
beating the master would be low; since this is not the case here, permutation appears to be a good candidate
problem transformation function for this particular domain.

generate 100 “difficult” 3SAT problems of varying sizes [37]. For this demonstration,
time to solution is measured and recorded twice for each 3SAT: once using the default
search ordering (tstd) and the second time with the random permutation transformation
applied before solving (trnd). The results are shown in Fig. 4; each datapoint in the graph
represents the CPU time required to solve the permuted problem (ordinate) plotted against
the CPU time for default problem (abscissa). Datapoints appearing below the diagonal
trnd = tstd line represent problems that were solved more quickly with the permutation
function applied, while those falling above the diagonal were solved more quickly using
the default ordering.

We observe that the random splitting rule beats the default splitting rule about half the
time, sometimes by a significant margin (note the plot uses a log–log scale for clarity,
although unfortunately this somewhat obscures the magnitudes of the differences). The
datapoints do not lie tightly clustered about the diagonal line: the farther off the line they
are, the greater advantage one might expect to see in a nagging system using this problem
transformation function.3 This demonstration illustrates how speedups are possible even if
only a single nagging episode is allowed per problem and even if the selected nagpoint is
always the root node of the search. Indeed, since each nagging episode gives you another

3 Of course, this is just an example; more effective problem transformation functions might make use of
alternative splitting heuristics, or might even elect to throw away a subset of clauses in order to decrease the
size of the search space. In the latter case, solutions in the reduced space no longer correspond to solutions of
the original Boolean formula; however, failure to find a solution for this smaller space still implies no possible
solution exists for the original space, so the master can still be forced to backtrack.
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chance of beating the default splitting rule, multiple nagging episodes over a broad array
of properly selected nagpoints should have a better chance of improving a system’s overall
search performance, an effect we’ll observe in the experiments of Section 6.

4.2. A∗ search

Consider the well-known traveling salesperson problem, or TSP. The problem is as
simple to state as it is hard to solve:

Given a collection of N points, find the shortest tour that visits each point and returns
to the original starting point.

TSP problems lie hidden in a surprisingly large number problems from operations research
and engineering; since TSP is known to be NP-hard, much research has focused on
appropriate algorithms and the use of heuristics to find good yet less-than-optimal solutions
quickly [33]. Yet devising an algorithm that is guaranteed to provide the (globally) optimal
solution is simple, if one is willing to accept poor worst-case performance. Here, we
examine one such optimal algorithm for Euclidean TSP (i.e., where the points lie in
Euclidean space) based on A∗ search, a heuristically-guided branch-and-bound search
strategy.4

The obvious solution technique is to enumerate all possible tours and then return the
shortest one. Starting with an arbitrary 3-point tour and using symmetry to reduce the
space, it is easy to see that there are (N − 1)!/2 different possible tours. We can do a little
better by showing that the H points defining the convex hull of the point set must appear
in fixed order in any optimal tour; by starting with the convex hull (as opposed to a random
3-point tour), we can reduce the size of the search space, slightly, to (N − 1)!/(H − 1)!. In
either case, an exhaustive search algorithm operating on this search space will require, by
Sterling’s formula, O(NN) time.

The basic insight required to turn this simple enumeration algorithm into a branch-and-
bound algorithm is that information garnered during the search can be used to reduce the
combinations that must be examined. If the cost of the current partial solution is greater
than that of the shortest solution found so far, we can exclude all completions of the
partial solution from the search—since, in Euclidean space, adding more points to the
tour can only make it longer—without sacrificing optimality. We can do even better by
incorporating a heuristic estimate of the cost to complete a partial tour, pruning subtrees
rooted at partial tours where the partial tour cost plus an estimate of the additional cost
required to complete the tour exceeds the cost of the current best solution. If the heuristic
estimate used always underestimates the true additional cost of the partial solution, we say
the heuristic is admissible, and it can be shown that the resulting A∗ search algorithm will

4 Note that we are not recommending this as a solution technique for TSP problems encountered in practice;
rather, we are using TSP as an intuitively accessible example with which to describe the parallelization of A∗
search. Most real applications would be better served by using one of the many efficient heuristic algorithms
for TSP that yield good, but not optimal solutions, although advanced cut techniques have been combined with
partitioning strategies to find optimal solutions to problems as large as 15,000 points [1].
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tsp(S : points) : tour
H : tour← convexHull(S);
return(search(H , (S\points(H)), ∅));

search(T : tour, S : points, B : tour) : tour
P : point;

if(S =∅ ∧ (B = ∅∨ cost(T ) < cost(B))) then return(T );
elseif(S = ∅) then return(B);
elseif(cost(T ) + estimate(S) � cost(B)) then return(B);
else
P ← head(S);
for i from 0 to |T | by 1
B← search(insert(P, i, T ), (S\{P }), B);

return(B)

Fig. 5. A∗ algorithm for Euclidean TSP. The tsp() function takes a set of points S as input and returns the
lowest-cost tour. The heart of the code is the recursive function search(), which takes a partial tour T , a set S
of points yet to be visited, and B, the lowest-cost tour found so far, and recursively explores the space rooted at
that partial tour. Note that if no solution better than B can be found below T , then there is no need to search any
further. The cost() function returns the cost of its tour argument, or 0 if the argument is the null tour ∅, while
estimate() returns a lower bound on the additional cost of adding the points in its argument to any existing partial
tour. As before, the function head() returns the first element of its argument, while points() returns the point set
of its tour argument and insert() inserts a new point P into the ith position of partial tour T . Parallelization of
this algorithm with nagging follows in a manner similar to the sketch given in Fig. 3.

still return the optimal solution while exploring no more nodes (and generally far fewer
nodes) than branch-and-bound search (see Fig. 5) [28].

As for the Davis–Putnam algorithm, applying partitioning to the serial algorithm of
Fig. 5 is relatively simple: the idea is to explore different recursive calls to search()
on separate processors [4,23,31]. Of course, load balancing and fault tolerance issues
are present here, just as with the Davis–Putnam algorithm. But there are also additional
complications due to fact that A∗ search is not just a satisficing search(i.e., search to
first solution) but rather an optimizing search(i.e., search to best solution). The difference
is that every node in the search space must be either searched or safely pruned so that
the search procedure can certify that no better solution exists (compare with the Davis–
Putnam algorithm, where only unsatisfiable formulae entail an exhaustive search, while
finding any solution to a satisfiable formula terminates the search immediately). The net
effect is to make the subspaces more interdependent: to see why this is so, consider what
happens when a new (and presumably favorable) best solution is found in the first subspace
explored by a serial search process. Clearly, the new solution’s lower cost may lead to
significantly less search in subsequent subspaces. When these subspaces are searched in
parallel, however, this new best solution may not be discovered until most of the work
in the other subspaces has already been performed. And even if the new best solution is
found soon enough to have an impact on the concurrent subspace searches, its cost must
be communicated to all the other processors, entailing some additional communication
overhead.
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We now consider parallelizing the serial algorithm of Fig. 5 using nagging; the general
idea is identical to that of Fig. 3 for the Davis–Putnam algorithm. Idle naggers request a
nagpoint (corresponding to a partial tour passed in one of the recursive calls of the search()
function still on the master processor’s calling stack) and search this space in parallel.
Unlike the partitioning case, there are no load balancing or fault tolerance problems here:
nagpoints are generated whenever they are solicited, and lost or unresponsive naggers can’t
affect the master’s own search. Of course, as with the Davis–Putnam algorithm, the key to
effective nagging—that is, nagging that actually provides some speedup—is an effective
problem transformation function. One reasonable approach might be to randomly perturb
the order in which points are inserted into the growing partial tour (e.g., by reordering
the list of as-yet-unvisited points), or perturb the order in which descendent nodes are
generated (e.g., by changing the insertion order within the loop of the searchExplicit()
function). Alternatively, we might rely on problem-specific knowledge and choose a
mixture of the many TSP-specific heuristic ordering strategies from the operations research
literature. Or one might even adopt an abstraction transformation, where a nagger simply
throws away a certain number of points in the point set. This transformation can still
provide speedup if the optimal tour in the abstracted search space is longer than the master’s
current best solution (in Euclidean space, the cost of the optimal tour for the reduced
problem is a lower bound to the cost of the optimal tour on the original points). We’ll look
at how nagging compares with partitioning for the Euclidean TSP algorithm just described
in Section 6.

4.3. SPAM:αβ minimax search

Historically, much research within the artificial intelligence community has focused
on the problem of playing zero-sum two-player games, such as chess or checkers. Most
of this research involves derivatives or variants of αβ minimax search, which is itself
a straightforward refinement of the original notion of minimax search. Within this field,
various forms of parallelism have also received a lot of attention [3,8,9,17]. Here, we show
how the αβ minimax search algorithm can be parallelized using nagging, producing an
algorithm we call SPAM, for Scalable Parallel Alpha-Beta Minimax.

The idea underlying any minimax procedure is to generate the tree of legal moves to
a fixed depth (given by the ply argument) and evaluate the quality of the resulting board
positions using a static board evaluation function, or SBE.5 The SBE looks at a board and
returns a value on [−∞,∞], with −∞ representing a loss and∞ representing a win for
the specified player. By selecting the maximum/minimum values at alternating levels, these
leaf SBE values can be propagated up to the root of the tree, by definition a maximizing
level, where they can be used to select the branch leading to the best attainable outcome for
the current player. Deeper searches generally lead to more informed choices; unfortunately,

5 There exist numerous alternative formulations of the minimax search procedure. This particular formulation
was selected for its simplicity. Of course, any formulation of the minimax algorithm assumes that what is good for
one’s opponent is symmetrically bad for the player him or herself, and that the opponent is a rational one, making
decisions based on an identical SBE. Also, note that our formulation only returns the best SBE value found in the
tree of given ply rooted at the given board. In practice, the procedure should also return the corresponding move.
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alphabeta(B : board, P : player, D : integer) : score
return(search(B, P , D, −∞, +∞)

search(B : board, P : player, D : integer, α : score, β : score) : score
M :move;

if(won(B, opponent(P ))) then return(α);
elseif(D = 0) then return(SBE(B, P ));
else

for M in legalMoves(B, P )
α =max(α,−search(applyMove(B,M), opponent(P ), D− 1, −β, −α);
if(α > β) return(α);

return(α);

Fig. 6. “Negamax” formulation of αβ minimax search algorithm. Return the best possible score player P can hope
to attain in the search space of D depth rooted at board B. Pruning occurs when α exceeds β within the loop over
the possible legal moves at this board position, causing the function to return immediately. We assume the won(),
legalMoves(), SBE(), and applyMove() functions have the appropriate game-specific definitions; opponent()
returns the other player, and max() has the usual semantics.

the size of the game tree that must be examined increases exponentially with the depth of
exploration. Thus for meaningfully large games (e.g., chess) this exponential growth makes
all but the most shallow searches impractical.

The intuition underlying αβ pruning is to exploit information generated during the
exploration of one portion of the search space to justify skipping or pruning other parts of
the space. Judicious pruning can extend the computational horizon under which the search
operates, allowing deeper searches in the same amount of computation time. Of course, one
can’t really beat the exponential nature of the search: there will always be some practical
maximum on the depth of search. The idea is to extend that maximum as much as possible
by reducing the number of branches that must be examined.

Extending the minimax algorithm to perform αβ pruning is relatively straightforward;
the basic idea is to pass two additional parameters called α and β , which serve as bounds
on the interesting values at any given node (see Fig. 6). Paths whose leaf values are
guaranteed not to fall in the interval [α,β] (initially [−∞,+∞]) would never be chosen by
the minimax procedure and therefore can be safely ignored. As the game tree is searched, α
values will only increase and β values will only decrease, further constraining the search. It
should also be clear that, by construction, αβ minimax search produces identical choices to
minimax search in all cases. Furthermore, as with A∗ search, the search reduction produced
by αβ pruning depends on the order in which paths are searched; for some pathological
game trees, αβ minimax and standard minimax will search identical game trees.6 From
an analytic perspective, the number of calls to the SBE will vary between roughly 2bd/2

(the best case) and bd (the worst case) for a game tree of depth d with uniform branching

6 Indeed, many real-world implementations of αβ minimax search try to improve performance by generating
internal choice points in an ordered fashion, usually guided by a cheap, fast, secondary SBE function applied
to the board positions represented by these internal nodes. Of course, board positions which look “bad” locally
may actually turn out to be “good” several ply deeper, so internal choice point reordering is nothing more than a
greedy optimization technique that may lead to—but does not guarantee—more efficient search.
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factor b [18]. Thus while the exponential factor is still present, it may be significantly
reduced, allowing deeper, more informed, searches in the same amount of time.

While implementing αβ minimax search requires only minor extensions to the
basic minimax procedure, these modifications make attempts to parallelize the search
significantly more complicated. This is because minimax search is easily decomposed
at any node, and game trees rooted at each child node can be considered independently
by separate processing elements. Once child SBE values are computed in parallel, it is a
simple matter to compare these estimates and select the best alternative. In contrast, for αβ
minimax search, partitioning and parallel exploration of the game tree may well require
more time than the corresponding serial search. This is because the savings realized by
αβ pruning over standard minimax search result from exploiting the information obtained
searching one part of the game tree while exploring another (like for A∗ search, but unlike
for the Davis–Putnam algorithm). Even if one could instantly share new α and β values
with all of the processing elements at zero communication cost, the new values may come
too late to matter. In short, the parallel algorithm might well search a greater number of
nodes than would the serial algorithm.

The SPAM algorithm exploits all of the search constraints embodied by the α and β

values while keeping communication between processing elements infrequent and brief.
The nagging algorithm (see Fig. 7) is essentially identical to that described for A∗ search

nagpoint= {B : board, P : player, D : integer, α : score, β : score}
nagalphabeta(B : board, P : player, D : integer) : score
N : nagpoint;
result, α′, β′ : score;

niceInit();
if (niceRoot()) then return (searchExplicit(B, P , D, −∞, +∞)
else

while(true)
N← niceIdle();
{α′, β′} ← narrow(N.α,N.β)

result← searchExplicit(N.B,N.P,N.D,α′, β′)
if (result> α′ ∧ result< β′) then niceSolve(N , result);
elseif (result= α′) then niceRestrict(N, N.α, result);
elseif (result= β′) then niceRestrict(N, result, N.β);

Fig. 7. Sketch of nagging implementation for the algorithm of Fig. 6. As for Fig. 3, the function searchExplicit() is
identical to the search() function of Fig. 6, but with explicit stack manipulation and interrupt handling capabilities.
The root process performs the normal αβ minimax search, while non-root processes engage in a series of nagging
episodes, each initiated when niceIdle() requests a new nagpoint. Nagpoints are again denoted N , but here consist
of a board position, the next player to move, a search depth limit, and α and β values. For the nagging processors,
the narrow() function randomly reduces the search range as described in the text, and serves as a part of the
problem transformation function in combination with permutations, provided by modifying the nagger’s copy of
the legalMoves() function (Fig. 6) to randomly perturb the sequence of legal moves generated. Depending on
the outcome of the nagger’s search, the nagger may pass a solution to its parent (function niceSolve()) or force
its parent to refine its own α or β parameters (function niceRestrict()). Note that a nagger’s search may also be
interrupted by its parent if the parent exhausts the space rooted at the nagger’s nagpoint before the nagger does;
in this case, searchExplicit() would immediately return abort, and the nagger would request a new nagpoint.
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and the Davis–Putnam algorithm, except that here we will exploit a problem transformation
function based on both permutation and window narrowing. The idea is that a nagger can
artificially restrict its master’s αβ window; using a narrow interval [α′, β ′] (where α < α′
and β ′ < β) ensures that the nagger’s search procedure will prune aggressively, exploring
only a relatively small number of nodes in the search space, thereby increasing the odds
that it will beat the master (of course, we can also permute the node exploration order
as well).7 In exchange for the reduction in search, the value computed by the nagger’s
transformed search may not always be directly substituted for the true value that would
be computed by the master for the same subspace. More precisely, if the nagger returns a
value that is greater than α′ and less than β ′, then this corresponds to the true value that
would be computed by the master, and we can force the master to backtrack and continue
its search from that point on. But if the nagger returns a value less than α′ (alternatively:
greater than β ′), then it means that the true value lies between α and α′ (alternatively:
β ′ and β). This information can be used to reduce the master’s search space by setting the
master’s β to α′ (alternatively: α to β ′), which may well lead to immediate improvement of
the search efficiency for the master’s current search. In Section 6 we’ll empirically examine
the behavior of SPAM with this problem transformation function.

5. Analysis

We now introduce simple analytical models of both nagging and partitioning that help
to explain how and when nagging can be expected to provide a performance advantage
over more traditional partitioning methods. Our analysis relies on techniques developed for
reliability data analysis; specifically, understanding how a problem transformation function
used defines a probability distribution of solution times for a specific problem [21,24,25].

Let us assume that a random variable x drawn from a distribution X represents the
solution time of a specified problem under a given problem transformation function. Of
course, the exact nature of X depends on the search algorithm and problem transformation
function applied; we’ll examine different choices for X later. The behavior of x can be
described by its density function f (x) and its corresponding cumulative density function
F(t), which measures the probability that the solution time x is less than some specified
time value t :

F(t)= Pr(x � t)=
t∫

x=0

f (x)dx. (5.1)

Note that the physical interpretation of x imposes certain constraints on allowable values
for f (x) and F(t): more precisely, f (x) � 0, f (x) = 0 for x � 0, F(0) = 0, and
F(∞)= 1 follow from the fact that real problems are never solved in less than zero time
and the probabilistic semantics of F(t).

We can use this statistical model to study the behavior of the coarsest possible form of
nagging, where each of the n nagging processors operates on an identical copy of the entire

7 In the limit, where α′ + ε = β′ this reduces to zero-window search [29].



A.M. Segre et al. / Artificial Intelligence 140 (2002) 71–106 87

problem instance. In essence, the n naggers are racing to find a solution, each operating on
a different, solution-equivalent, transformation of the original space.8 Once any processor
completes its search, the solution it finds (or fails to find) applies without modification
to the original problem instance. In practice, multiple naggers usually search different,
randomly selected, nodes along the master’s current search path in service of a master
search process; furthermore, some of the more effective transformation functions in use
may not be solution equivalent (see, e.g., the abstraction transformation of Sections 4.1
and 4.2, and the window narrowing transformation of Section 4.3).

Let the random variable vn represent the time elapsed before one of the n independent
processors finds the problem solution. Clearly, for the coarse nagging model, vn =
min(x1, x2, . . . , xn) where each xi is an independent random variable drawn from the
original distribution X. Let Gn(t) be the corresponding cumulative density function of
vn. Since vn = min(x1, x2, . . . , xn), and each xi is independent, Gn(t) represents the
probability that at least one of the xi values is less than t , which is 1 minus the probability
that all the xi values exceed t . Thus using Eq. (5.1):

Gn(t)= Pr(vn � t)= 1−
n∏
i=1

(
1− F(t)

)= 1− (
1− F(t)

)n
. (5.2)

Taking the derivative of Gn(t) with respect to t evaluated at vn yields the density function
gn(vn):

gn(vn)= nf (vn)
(
1− F(vn)

)n−1
. (5.3)

A similar argument can be made to construct a coarse model of partitioning. Technically,
the argument is somewhat more problematic, since once a problem is partitioned and
distributed to different processors, each processor is indeed solving a different problem,
whose solution time distributions might vary significantly from the original one. However,
as is the case with nagging, we can make reasonable assumptions to support some crude—
but still informative—comparisons between the two models.

First, we assume that the original problem, whose solution time is still described
by a random variable x drawn from a distribution X, is partitioned in n subproblems
each having identically-sized search spaces; essentially, we’re claiming a perfect a priori
solution to the load balancing problem. Second, we assume that fault tolerance is not an
issue, and that all processors actually will terminate their search and return their partial
solutions. Third, we assume that run times scale linearly, that is, that the run time of a
subproblem of size 1/n is governed by x/n, where the random variable x refers to the
solution time of the original problem. Finally, we assume that the cost of merging the
subproblem solutions together to form a solution to the original problem is negligible. The
last assumption is the most problematic, since for NP-hard problems the cost is likely to
be high if the merger is even feasible. However, since it is our intent to compare this model

8 A solution-equivalent transformationis one that transforms the original space without losing any existing
solutions or adding spurious solutions; the permutation transformation is a good example of a solution-equivalent
transformation, while the abstraction transformation of Section 4.2 and the window narrowing transformation of
Section 4.3 are not.
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of partitioning with nagging, we can afford to make generous assumptions on behalf of
partitioning without compromising the essence of our comparisons.

With these assumptions in place, the time required to solve the partitioned problem
under this coarse partitioning model is described by a random variable wn defined as
wn = max(x1/n, x2/n, . . . , xn/n), since it is necessary to solve each of the subproblems
before merging their solutions together.9 Proceeding in the same fashion as for nagging, we
obtain the density function hn(wn) from the cumulative density function Hn(t) as follows.
Since Hn(t) represents the probability that wn < t , i.e., all the x/n are less than t , we have

Hn(t)= Pr(wn � t)=
n∏

i=1

Pr

(
xi

n
< t

)
= F(nt)n (5.4)

from which we obtain

hn(wn)= n2f (nwn)
(
F(nwn)

)n−1
. (5.5)

Note that g1(v1) = h1(w1) = f (x) and thus G1(t) = H1(t) = F(t), just as one should
expect given that the single processor system is the trivial case of both the coarse nagging
and coarse partitioning models.

Once the appropriate distribution X has been fixed, it is relatively easy to make
performance comparisons between serial execution, coarse nagging and coarse partitioning
by comparing their expected solution times.

5.1. The uniform distribution

The first sample distribution we look at is the simplistic case where X is the uniform
distribution with values x ranging between two constants tlo and thi.10 For this uniform
distribution, the density function is

f (x)= 1

(thi − tlo)
(5.6)

for tlo � x � thi and f (x)= 0 elsewhere. It easy to see that

F(t)=
t∫

x=tlo

1

(thi − tlo)
dx = t − tlo

thi − tlo
(5.7)

9 Unfortunately, the model becomes more complicated for satisficing—as opposed to optimizing—search.
Consider the Davis–Putnam algorithm: if the Boolean formula is true, the algorithm will terminate when the
first subproblem that finds a solution terminates, or wn =min(x1/n,x2/n, . . . , xn/n). On the other hand, if the
Boolean formula is false, the search will have to exhaust the entire search space to guarantee no solution is
overlooked, and thus the required time should be wn =max(x1/n,x2/n, . . . , xn/n) as given in the text. Thus a
mixture model that blends these two cases together might provide a more appropriate model of satisficing search.

10 From a practical perspective, the uniform distribution is not of great interest, since there is relatively little
reason to believe solutions times of real problems would fit. Nonetheless, it does serve as useful point of
comparison for the other distributions considered later in this paper.
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for tlo < t < thi, F(t)= 0 for t � tlo and F(t)= 1 for t � thi. Applying Eq. (5.3), we obtain
the density function for an n-processor coarse nagging system:

gn(vn)= n(thi − vn)
n−1

(thi − tlo)n
. (5.8)

In a similar fashion, but using Eq. (5.5) for the n-processor coarse partitioning model, we
obtain

hn(wn)= n2 (nwn − tlo)
n−1

(thi − tlo)n
. (5.9)

5.2. The exponential distribution

Using the same approach we can consider other, more realistic, probability distributions.
Here we look at an exponential distribution with a fixed minimum time tlo and decay
parameter λ. The exponential distribution has long been used to model equipment failure in
reliability studies; it follows from a uniform random failure pattern, modeled as a Poisson
process [24]. This distribution’s density function is given by

f (x)= λ
e−λx

e−λtlo
= λeλ(tlo−x) (5.10)

with cumulative density function

F(t)=−eλ(tlo−t ). (5.11)

Appropriate substitution in Eq. (5.3) yields

gn(vn)= nλeλn(tlo−vn) (5.12)

for the coarse nagging case, while Eq. (5.5) produces

hn(wn)= n2λeλ(tlo−nwn)
(
1− eλ(tlo−nwn)

)n−1 (5.13)

for the coarse partitioning case.

5.3. The lognormal distribution

Recently, some have characterized the observed behavior of backtracking search on
satisfiability problems using distributions of the Pareto–Lévy form. Such distributions
differ from the exponential distribution used in Section 5.3 because they are heavy tailed,
that is, their complementary cumulative density function 1 − F(t) decays slower than
exponentially. Heavy tailed distributions have been used to justify a random restart strategy
(a sort of single processor version of coarse nagging) for satisfiability problems [12].
Many different heavy-tailed distributions are used in reliability analysis, although the
most commonly used are the Weibull and the lognormal distributions (others include
the Gumbel or extreme value distribution, the Birnbaum–Saunders distribution, etc.). The
key question remains how to choose which distribution best models the observed search
behavior—not only for satisfiability problems, but for all the search problems studied
here. Fortunately, exploratory data analysis techniques for testing distributional adequacy
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such as the Kolmogorov–Smirnov or the (somewhat more sensitive) Anderson–Darling
goodness-of-fit tests are well known [38], and support our use of the lognormal distribution
for this analysis.11

Consider a lognormal distribution with fixed minimum time tlo, scale parameter µ, and
shape parameter σ . The distribution’s density function is

f (x)= 1

σ(x − tlo)
√

2π
e
−(log(x−tlo)−µ)2

2σ2 . (5.14)

The cumulative density function can be expressed in terms of Φ , the cumulative density
function of the standard normal distribution, or erf, the error function

F(t)=Φ

(
log(t − tlo)−µ

σ

)
= 1

2
+ 1

2
erf

(
log(t − tlo)−µ√

2σ

)
. (5.15)

Appropriate substitutions can be made into Eqs. (5.3) and (5.4) to obtain gn(vn) and
hn(wn), although the resulting expressions are not terribly informative since expressions
containing erf are notoriously difficult to simplify.

5.4. Comparing nagging and partitioning

We are now ready to make direct comparisons between performance estimates for
coarse nagging and for coarse partitioning for some range 1 . . .n of processing elements.
One simple comparison is to look at the performance ratios, defined as the ratio of the serial
expected solution time E(x) to the parallel expected solution time E(vn) (for nagging) or
E(wn) (for partitioning), where the expected solution times E(x), E(vn) and E(wn) are
simply the average elapsed times.

A more meaningful statistic is the expected speedup, defined as the expected value
of x/vn for nagging (alternatively: x/wn for partitioning). We say this metric is more
meaningful because it represents the expected speedup observed in an experiment where
serial performance is compared directly with parallel performance on each individual
problem. We define a new random variable φn = x/vn (alternatively: ψn = x/wn) and
compute its expected value E(φn) (alternatively: E(ψn)). Since both φn and ψn are ratios,
we consider their geometric means, that is

E∗(φn)= eE(log(φn)) (5.16)

11 We generated four sets of 100 datapoints each by solving a single problem for each of A∗/TSP, Davis–
Putnam/3SAT/unsatisfiable, Davis–Putnam/3SAT/satisfiable, and SPAM/Othello 100 times using a strictly
solution-equivalent problem-transformation function (i.e., permutation in this case). We then applied the
Anderson–Darling test to see which of the set of tested distributions (normal, lognormal, exponential, Weibull,
Gumbel, and logistic) were consistent with the observed data. In all but two cases, the Anderson–Darling test
rejected (p < 0.05) all of the tested distributions exceptfor the lognormal distribution (the exceptions are the
Davis–Putnam/3SAT/satisfiable data, where the Anderson–Darling test rejected all but the lognormal and Weibull
distributions, and the SPAM/Othello data, where the Anderson–Darling test rejected all but the lognormal and
Gumbel distributions). While these tests are not entirely conclusive (they are, after all, based on just a few
randomly-generated problems), they do seem to suggest that the lognormal is well suited to modeling the range
of search behaviors studied in this analysis.
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and

E∗(ψn)= eE(log(ψn)) (5.17)

rather than E(φn) or E(ψn) directly, since the geometric mean is more representative of
the expected speedup over many such trials. Exploiting the additive properties of expected
values and the fact that x and vn (alternatively: x and wn) are independent, we obtain:

E
(
log(φn)

) = E
(
log(x)

)−E
(
log(vn)

)

=
thi∫

x=tlo
log(x)f (x)dx −

thi∫
vn=tlo

log(vn)gn(vn)dvn (5.18)

and, similarly,

E
(
log(ψn)

)=
thi∫

x=tlo
log(x)f (x)dx −

thi∫
wn=tlo/n

log(wn)hn(wn)dwn. (5.19)

Unfortunately, the formulae for E∗(φn) and E∗(ψn) are often quite complex in the gen-
eral case. However, values for both E∗(φn) and E∗(ψn) are easily tabulated for spe-
cific values of n, which lend themselves to graphical comparison (see Fig. 8). Qual-
itatively speaking, Fig. 8 makes clear the noticeable scaling advantage of nagging
over partitioning within this analytical model, especially for the exponential and log-
normal distributions, which correspond more closely to distributions observed in prac-
tice.

Another interesting metric is suggested by closer examination of the performance ratio
for coarse nagging in the exponential distribution case:

E(x)

E(vn)
= tlo + 1

λ

tlo + 1
nλ

. (5.20)

We note that, when both λ and tlo are small, the performance advantage obtained by coarse
nagging can—on average—approachn, or linear speedup. This implies that coarse nagging
can be expected to provide superlinear speedups with respect to a serial search about half
the time in the exponential distribution case. For heavy-tailed distributions, the advantage
of coarse nagging is even more decisive, providing some theoretical justification for the
observed effectiveness of random restart strategies on serial processors.

More formally, it is interesting to compute and compare the probability that a coarse
nagging or partitioning system will exhibit superlinear speedup with respect to the average
sequential case, which is easily expressed as:

Pr

(
vn � E(x)

n

)
=Gn

(
E(x)

n

)
(5.21)

for nagging, and

Pr

(
wn � E(x)

n

)
=Hn

(
E(x)

n

)
(5.22)
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Fig. 8. Expected speedups E∗(φn) and E∗(ψn) vs. number of processing elements for uniform (tlo = 0.01,
thi = 1.0), exponential (tlo = 0.01, λ = 2), and lognormal distributions (tlo = 0.01, µ = 0.5, σ = 1.5). This
statistic illustrates the scaling advantage of nagging over partitioning within this simple analytic model for all
three distributions studied, and how the advantage of nagging grows as the distribution becomes more heavy
tailed.

for partitioning. As before, while the resulting expressions may be difficult to simplify, it
is easy to tabulate values for n= 2, . . . ,10 (see Table 1).

It is clear that, for all of the distribution models studied here, the coarse model of
nagging retains its potential for producing superlinear speedup as the number of processors
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Table 1

Technique Distribution n= 2 n= 3 n= 4 n= 5 n= 6 n= 7 n= 8 n= 9 n= 10

Nagging Uniform 0.43 0.41 0.39 0.38 0.37 0.36 0.36 0.35 0.34
Partitioning Uniform 0.25 0.13 0.06 0.03 0.02 0.01 0.00 0.00 0.00
Nagging Exponential 0.62 0.62 0.61 0.60 0.59 0.59 0.58 0.57 0.56
Partitioning Exponential 0.40 0.25 0.16 0.10 0.06 0.04 0.03 0.02 0.01
Nagging Lognormal 0.85 0.88 0.89 0.90 0.91 0.91 0.91 0.91 0.91
Partitioning Lognormal 0.60 0.46 0.36 0.28 0.21 0.17 0.13 0.10 0.08

is increased, while the already limited potential of partitioning to do so rapidly vanishes as
more processors are added.

Of course, the analytic models presented here are relatively simple, and do not
correspond exactly with how nagging and partitioning are actually applied in practice.
We’re mostly interested in how well the observations made using the coarse models hold up
in more realistic situations: for example, we might nag or partition recursively, use problem
distribution functions that are not strictly solution equivalent (e.g., window narrowing or
abstraction), or elect to nag or partition multiple times per problem at internal nodes of the
search tree rather than just once at the root node. We turn to these rather more practical
questions in the next section, using experimentally-obtained quantitative data to support
our claims about nagging’s performance in a principled manner.

6. Empirical evaluation

Empirical studies, if carefully done, can give a realistic picture of a system’s behavior.
Here, we focus on performance issues, using experimental data to contrast the relative
performance of nagging and partitioning as well as to support our claims regarding the
scalability of nagging.

6.1. Experiment 1

The first experiment compares implementations of nagging and partitioning that are
purposefully designed to evoke the coarse analytic models of the previous section. The
experimental procedure is straightforward. First, for each of the three tested algorithms
(Davis–Putnam/3SAT, A∗/TSP, and SPAM/Othello), 100 randomly-generated problems
are solved serially using a fixed search order on a 450 MHz Celeron machine running
the Linux operating system.12 Next, a second 450 MHz Celeron machine is added to the
NICE hierarchy, and each problem is solved twice more, once using the second machine

12 The random problem sets were generated to provide a good cross-section of solution times ranging from
0.01 seconds (the resolution of the Linux system clock) to roughly 20 minutes on a single processor system.
Davis–Putnam/3SAT problems ranged from 120 to 140 variables (with between 514 to 604 clauses), and were, as
mentioned in Section 4.1, intended to be “difficult” problems, while the randomly-generated A∗ /TSP problems
ranged from 29 to 33 cities. The SPAM/Othello problems consisted of random, legal, mid-game Othello boards
(having 18 to 22 pieces placed) searched to an 8 or 9 ply horizon.
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as a nagging processor and once using is as a partitioning processor instead. For each
problem, the solution found and elapsed processor time used by the master processor (as
returned by the ANSI C clock() function) are recorded. Any search that is not completed
by a prespecified resource limit is marked as censored, and the best solution found so far
is returned for comparison.

Like the coarse analytic models of the previous section, the only problem transformation
function used here is the permutation transformation, which is used for all three algorithms
(we’ll examine other transformation functions in Section 6.2). Unlike the coarse analytic
models, however, for optimizing search algorithms (SPAM/Othello and A∗/TSP), more
than one nagging event may occur in the course of the experiment. While nagging
always takes place at the root node, a nagger that finds a better solution is allowed to
immediately report its new bound to the master and begin a new nagging event, applying
the newly obtained bound and a new permutation transformation to the root node once
more.

A similar change is made for the partitioning case: to address the load-balancing issues
normally associated with partitioning, we use an asynchronous partitioning protocol that
is similar to that used for nagging. As with nagging, an idle slave processor initiates the
process by requesting additional work from its master. Instead of a nagpoint, however, the
master provides its slave the last available sibling node of the “highest” available ancestor
node along its own search path. The slave then searches this partition using the identical
search ordering as the master. When the slave completes its search, it reports the result
to the master who then marks the assigned sibling node as solved. The master is then
free to assign another partition to the slave. Note that if the master’s search enters the
subspace assigned to a slave, the slave in effect becomes a nagger, albeit one without
the benefit of a problem transformation function, but with a head start on its search
space.

All of the 3SAT problems were solved by every system configuration within the
prespecified resource limit. For the Othello problems, one of the 100 random problems was
censored (not solved within the resource limit) by the serial search system, yet was easily
solved by both the nagging and partitioning systems. The situation is more complicated for
the TSP problems, as a total of 14 problems were censored by the serial system. Of these
14 problems, five were solved to optimality by both the nagging and partitioning system,
and one additional problem was solved to optimality by the nagging system alone. It is
important to note that where censoring occurred in both serial and parallel configurations,
qualitatively better solutions were produced by the parallel systems (for six of eight such
problems, nagging found the shortest tour, while partitioning found the shortest tour in the
remaining two cases). So, at least in terms of number of problems solved to optimality as
well as quality of solution when problems were not solved optimally, the performance edge
appears to belong to nagging.

Differences in solution quality aside, we are mostly interested in quantifying changes
in system performance. Here, we compare computed speedup values (recall speedup is
defined as the ratio of serial solution time to parallel solution time), where a speedup
value of 1.0 implies no difference between the serial and parallel systems, while larger
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Table 2

Nagging speedup Partitioning speedup

N min µ µ∗ max N min µ µ∗ max

A∗/TSP 92 0.86 2.43 1.51 69.73 91 0.55 1.80 1.68 5.23
SPAM/Othello 100 0.98 3.28 1.55 148.32 100 1.01 2.14 1.75 22.55
Davis–Putnam/3SAT 100 0.45 7.54 2.00 221.00 100 0.55 7.39 1.87 481.17

satisfiable 49 0.45 12.93 2.50 221.00 49 0.55 13.43 2.25 481.17
unsatisfiable 51 0.98 2.36 1.62 14.19 51 1.07 1.59 1.57 1.99

speedups imply the parallel system is faster.13 Table 2 presents minimum, arithmetic
mean (µ), geometric mean (µ∗), and maximum speedups computed excluding doubly-
censored datapoints for all tested systems. Given the methodological difficulties just noted,
some interpretation is in order. Consider, for example, the A∗/TSP and SPAM/Othello
values shown in the table. For both of these algorithms, the mean speedup µ reported by
nagging is larger than that for partitioning, but the geometric mean µ∗ is less than that for
partitioning. This is a consequence of the nondeterministic nature of nagging; the amount
of speedup you get can vary dramatically from one trial to the next, even when solving the
same problem. In contrast, partitioning is by nature more conservative and likely to provide
more uniform amounts of speedup on subsequent trials. This behavior is also at least
partially evident in the maximum speedup values shown, as nagging’s best performance
in the test suite represents an order of magnitude improvement over partitioning. Note
also that, as one would expect, the minimum values hover by and large at or just below
1.0. Values below 1.0 represent a performance penalty incurred by the parallel systems
with regard to the serial system. This is partly due to initial setup costs (e.g., connecting
with the NICE infrastructure) and partly due to communication overhead (as we shall soon
see, the smallest values observed are usually associated with problems that can be solved
quickly with a single processor, hence precluding the amortization of startup costs over
longer solution times).

The results for the Davis–Putnam/3SAT problems are notably different from those for
the other tested systems: over the entire set of problems, nagging’s measured speedups
exceed those of partitioning (as measured by both µ and µ∗). If restricted to satisfiable
formulae only, partitioning’s measured performance is similar to that of nagging. Recall

13 Methodologically, direct comparison of sets of speedup values is somewhat difficult for a number of reasons.
First, as noted earlier, reporting arithmetic means for ratios like speedup is problematic; reporting geometric
means would perhaps be a better choice, but this is not consistent with the general practice of the parallel
processing community, where arithmetic means are the norm. Furthermore, it is important to keep in mind that
the distribution of observed speedup values are quite skewed (not surprisingly, given that, by definition, they are
bounded below at 0): simply reporting summary statistics that evoke normal distributions in the minds of some
readers is misrepresentative. Finally, some caution must be exercised when comparing censored datapoints [34].
Since identical resource limits are imposed on both parallel and serial trials, doubly-censored datapoints will have
unit speedup values. Singly-censored datapoints are harder; fortunately, in our experiments, all singly-censored
datapoints are censored by the serial system (never by the parallel system), so their computed speedup values
represent underestimates of true speedup. Note, however, that direct comparisons of computed speedup values
between uncensored and singly-censored datapoints or singly-censored and doubly-censored datapoints should
be made only with care.
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that the Davis–Putnam/3SAT algorithm searches until it encounters a satisficing solution,
exhausting the search space only if the given formula is not satisfiable. This early-
termination behavior implies that either nagging or partitioning could just get lucky and
quickly encounter a solution, yielding large observed speedup values (this is consistent
with the maximum observed speedup values reported in the table). In contrast, the search
on unsatisfiable formulae unfolds in a manner more consistent with that of the other search
algorithms, since one must exhaust the entire search space before labeling a formula
as unsatisfiable. On these problems, nagging’s performance clearly dominates that of
partitioning by all reported measures.

Of course, summary statistics such as the speedup values just shown obscure the
relation between speedup values and problem difficulty: observing a 200-fold performance
improvement on a problem that takes several hours to solve on one processor should be
more meaningful than observing a similar speedup on a problem that might be solved in
just a few milliseconds. To provide a gestalt view of speedup with respect to problem
difficulty, we turn to a graphical representation of the data (see Figs. 9–11): these plots
show parallel solution time against serial solution time.14 Interpretation of this kind of plot
is relatively straightforward, as datapoints falling below the upper diagonal line are faster in
parallel (i.e., have speedup values larger than 1.0), while datapoints falling above the upper
diagonal line are faster on one processor. The lower line represents a speedup value equal
to the number of processors in use; hence a datapoint falling below this line correspond to
superlinear speedups.

Fig. 9 shows results for the A∗/TSP system. Since identical resource limits are
imposed on all serial and parallel trials, doubly-censored datapoints should fall on the
diagonal line. Singly-censored datapoints are best understood as datapoints that have
been artificially shifted to the left of their true position, because their plotted serial
solution times (ordinate) represent lower bounds on their true serial solution times. As
is clear from the plot, nagging generally provides some speedup and occasionally provides
exceptional speedups, while partitioning is mostly constrained to the region between the
two diagonal lines. As expected, the few datapoints that are slower for either nagging
or partitioning (i.e., those datapoints corresponding to those speedup values less than 1.0
reported earlier) are relegated to the left hand side of the plot, and represent small problems
where the startup costs of parallel execution are not effectively amortized over longer
solution times. A similar trend is observed on more difficult (i.e., larger serial solution
times) problems, where superlinear speedups are more likely to occur. Aside from the
amortization argument, a second factor may also be at work here: one would naturally
expect a concomitantly greater payoff by finding a good solution early within a larger
search space.

While the mechanism by which a nagging system attains superlinear speedup is clear, it
is somewhat less clear how a partitioning system can achieve this kind of performance. To

14 Note that, for clarity, the data are plotted in log–log space, even if this transformation does tend to obscure
the relative performance differences on large and small problems: i.e., a 1 unit vertical (alternatively: horizontal)
difference on the top half (alternatively: right side) of the plot represents a much larger time interval than an
identical 1 unit vertical (alternatively: horizontal) difference on the bottom half (alternatively: left side) of the
plot.
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Fig. 9. Two-processor A∗ /TSP performance plot in log–log space. Datapoints falling below the upper diagonal
line are faster in parallel, while datapoints falling below the lower diagonal line are superlinearly faster in parallel.
Doubly-censored datapoints should fall on the diagonal line, while singly-censored datapoints appear artificially
displaced to the left of their true positions.

understand how this can happen, recall that the partitioning system implementation tested
here differs from the coarse model of the previous section with respect to the asynchronous
load balancing policy adopted; as a consequence, multiple partitioning events may occur
in the course of solving a single problem. We might therefore attribute those few occasions
where partitioning attains superlinear speedups to situations where exceptionally good
bounds are found in early partitions, so that subsequent partitioning events can enjoy the
benefits in terms of additional pruning. A similar explanation accounts for the occasional
superlinear speedups reported by the SPAM/Othello partitioning system (see Fig. 10). Note
that, as for A∗/TSP, the SPAM/Othello partitioning system still seems less likely to attain
superlinear speedups, especially on larger problems, than does the nagging system, while
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Fig. 10. Two-processor SPAM/Othello performance plot in log–log space. Datapoints falling below the upper
diagonal line are faster in parallel, while datapoints falling below the lower diagonal line are superlinearly faster
in parallel.

the nagging system on occasion delivers large speedups. Particularly noticeable is the
lone censored problem, where because the serial solution time plotted is a lower bound
to the true serial solution time, the speedup attained by nagging is at least 148.32, as
compared with a lower bound speedup of only 22.54 for partitioning. The results shown in
Fig. 11 for the Davis–Putnam/3SAT solver show a similar pattern. Recall that both nagging
and partitioning can be expected to result in large speedups on satisfiable formulae, due
to the algorithm’s early-termination behavior. Thus many of the unsatisfiable problems’
datapoints lie well in the superlinear speedup zone of the plot. Yet, once again, only
nagging seems likely to result in superlinear speedups for (unsatisfiable) problems of any
meaningful size.

6.2. Experiment 2

Our analysis of the previous section relied on using strictly solution-equivalent
transformation functions. In this experiment, we explore the performance of window
narrowing, a non solution-equivalent problem transformation function, in SPAM. Recall
that the main idea is that a nagger can artificially restrict its αβ window in order to
gain execution speed at the expense of information: indeed, window narrowing will prune
more aggressively, but may not be as informed as solution-equivalent transformations. Our
protocol (somewhat arbitrarily) randomly narrows each nagpoint window, while forcing
processors corresponding to leaf nodes in the nagging hierarchy to use a unit window, thus
essentially performing zero-window search at leaf processors.

The experimental procedure is identical to that of Experiment 1, and the same 100
random Othello problems are used. Note that since we are only using two processors, the
nagging processor is always a leaf processor, and is therefore always operating with unit
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Fig. 11. Two-processor Davis–Putnam/3SAT performance plot in log–log space. Datapoints falling below the
upper diagonal line are faster in parallel, while datapoints falling below the lower diagonal line are superlinearly
faster in parallel.

Fig. 12. Two-processor SPAM/Othello performance plot in log–log space, both with and without the use of the
window narrowing transformation. Datapoints falling below the upper diagonal line are faster in parallel, while
datapoints falling below the lower diagonal line are superlinearly faster in parallel.

window size. The results, plotted against serial solution times, are shown in Fig. 12 (note
that the non-narrowing system data is identical to that shown in Fig. 10).

In addition to graphical comparisons, we can also test, statistically, the null hypothesis
“permutation with window narrowing is no faster than permutation alone”. If we can reject
this null hypothesis, then we can conclude that window narrowing is beneficial. To test
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the hypothesis without making any distributional assumptions, we’ll use a nonparametric
statistic, the paired Wilcoxon signed-ranks test [42]; what such nonparametric statistics
may sacrifice in terms of power is more than counterbalanced by their broad applicability.
Using 100 paired samples as the input, the paired sign test easily rejects the null hypothesis
using the traditional critical value for statistical significance (p < 0.05). Of course,
statistics notwithstanding, Fig. 12 clearly shows that both transformation functions are
doing the job; yet the results shown here do underline the critical importance of the nature
of the transformation function used.

6.3. Experiment 3

While both nagging and partitioning are often capable of delivering effective—and,
in the case of nagging, often superlinear—speedups, exceptional speedups will not
necessarily be the rule for every problem. In this section, we shall examine a problem
domain where both nagging and partitioning deliver some speedup, but neither approach
manages to produce exceptional results.

Consider the following team assignment problem, or TAP, drawn from the sports
economics literature:

Given a collection of N players and T teams, where the ith player has an associated
quality value Qi , find an assignment of players to teams so that there are an equal
number of players on each team and the differences between relative team qualities,
computed as a function of their constituent player qualities, are minimized.

There are many variants of this problem, depending on the team quality metric used; some
more complex variants may involve higher order effects (e.g., individual player quality
may be a function of teammate qualities) [41]. For this experiment, however, we’ll choose
a simple linear metric, so that we are in effect minimizing the sum, over the set of all
teams, of the absolute value of the difference between team quality (the sum of player
qualities) and the hypothetical average team quality (computed as the product of team
size and average player quality). Our goal is to find the best-matched team assignments
in terms of team quality; for this particular metric, a perfect solution produces T teams
of exactly average quality if such a solution exists. Our solution applies the same A∗
search algorithm described in Section 4.2 to the team assignment problem. Formulating
an admissible heuristic function that properly bounds the solution value for any partial
assignment is not overly difficult; the function used here estimates the potential deviation
from the target team quality (i.e., the average player quality times the team size) [30].

The experiment follows the same protocol as Experiment 1 using 100 randomly
generated matching problems; the results are shown in Fig. 13.15 The most striking feature
of the plot in Fig. 13 is the extent to which the partitioning system tracks the linear speedup
line: only on smaller problems, where solution times are of the same order as the system

15 Random problems were once again generated so that serial solution times ranged between 0.01 seconds, the
resolution of the Linux system clock, up to about 5 minutes. The resulting problem set assigned between 15 and
32 players to 2, 3, or 4 teams.
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Fig. 13. Two-processor A∗ /TAP performance plot. Datapoints falling below the upper diagonal line are faster in
parallel, while datapoints falling below the lower diagonal line are superlinearly faster in parallel.

clock resolution, is there any significant deviation from this line. On the other hand, the
performance of nagging is decidedly worse than that of partitioning, rarely even attaining
linear speedup.

It is tempting to attribute the poor performance of nagging to the use of an inadequate
problem transformation function, as permutation of the search space here clearly does not
provide additional pruning as for, say, TSP. Yet it is much more likely that the problem
lies with the heuristic estimate: if it is not informative (i.e., close to the true additional
cost of the partial solution), then A∗ search cannot be expected to explore fewer nodes
than simple branch-and-bound. One cannot compensate for a poor heuristic estimate with
a better problem transformation function. Alternatively, the difficulty may lie with the
problem itself. If the cost landscape tends to be populated with many local minima whose
values are near that of the global minima, even a highly informative heuristic will not lead
to much pruning. As mentioned in Section 4.1, we must acknowledge that some NP-hard
problems are harder than others. Unlike 3SAT problems, however, it is possible that TAP
problems are simply all uniformly difficult.

6.4. Experiment 4

In this experiment, we provide empirical support for the scalability of nagging, showing
how additional processors have a beneficial effect on the performance of the system, and
provide direct comparison with the behavior of partitioning. The experimental procedure
is like that of Experiment 1, except that we now use 8, 16, 32, or 64 essentially identical
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Table 3

CPUs Nagging speedup Partitioning speedup

N min µ µ∗ max N min µ µ∗ max

2 92 0.86 2.43 1.51 69.73 91 0.55 1.80 1.68 5.23
64 100 0.96 12.29 4.95 256.22 95 0.38 4.49 3.90 10.21

processors arranged in a hierarchy with branching factor less than or equal to three.16 In
this section, we will focus on results obtained with 64 processors.17

We turn first to some simple descriptive statistics. Recall that in Experiment 1 using
only two processors, there were 8 problems left unsolved by nagging, and 9 problems left
unsolved by partitioning (these correspond to the doubly-censored datapoints of Fig. 9).
When 64 processors are applied, the nagging system solves all 100 problem optimally,
while the partitioning system still leaves five unsolved problems. So, at least qualitatively,
the performance of nagging exceeds that of partitioning. We can also use observed speedup
values to help quantify this trend (see Table 3; as before, doubly-censored datapoints are
excluded). Direct comparison of both µ and µ∗ confirms the advantage of nagging in this
experiment; indeed, the maximum observed speedup for nagging exceeds the maximum
observed speedup for partitioning by more than a factor of twenty. Moreover, the values
given in the table are fully consistent with the argument first advanced in Section 5.3,
that is, that the probability of obtaining a superlinear speedup is higher for nagging than
for partitioning (here, the nagging system produces superlinear speedups on at least three
of 100 problems—and possibly more, given the amount of censoring observed—while
partitioning fails to produce any superlinear speedup at all).

One troubling fact is that the observed mean speedups µ and µ∗ are significantly less
than N , the number of processors employed. In our analytical model, the predicted µ∗
values—while still less than N—were significantly more in line with N . We can attribute
this discrepancy to two differences. First, the model of Section 5 is a coarse model, where
all processors engage in a single nagging episode on the root node of the search, while
the experimental model allows repeated nagging episodes applied at internal nodes of the
search process. Second, and more to the point, the analytical model had all N − 1 naggers
reporting directly to the single master search process, while the experiment allowed no
more than three processors to nag the master directly (the remaining N − 4 processors
were used to recursively nag the naggers). That the NICE hierarchy limits each daemon
to only three descendents is quite arbitrary; while increasing the branching factor of the
hierarchy raises the communication overhead incurred by the master, one must balance
the increased overhead on the performance benefits obtained. Note that the tradeoff is
complicated, since the optimal configuration may differ depending on the search algorithm
or even the problem instance. In any case, adaptive configuration of the NICE hierarchy is
still an area we are actively exploring.

16 The actual hierarchy depends on the NICE resource management daemon, and is constantly changing in
response to local system load and availability.

17 For the record, in our tests, both nagging and partitioning scale smoothly from 2 to 64 processors.
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Fig. 14. Sixty-four processor A∗ /TSP performance plots for nagging (top) and partitioning (bottom); compare
with two processor A∗ /TSP performance plots given in Fig. 9. Datapoints falling below the upper diagonal line
are faster in parallel, while datapoints falling below the lower diagonal line are superlinearly faster in parallel.

Fig. 14 presents a graphical view of the same data, and can be compared directly with the
plots of Fig. 9 to confirm the descriptive statistics outlined above: nagging indeed appears
more effective than partitioning in applying additional processors to reduce solution time.
Not surprisingly, this observation appears more striking on larger problems, where the cost
of initializing additional processors is readily amortized over longer solution times. We
conjecture that this trend extends to still larger problems; indeed, the fact that nagging
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solves all problems optimally while partitioning still leaves five unsolved problems within
the prespecified resource bound is consistent with this conjecture.

7. Conclusion

Nagging is a paradigm for parallel search in a heterogeneous distributed computing
environment. It is applicable to a broad range of different artificial intelligence search
algorithms, and scales easily to a large number of processors. We have shown, using
an analytical performance model, how nagging is often a superior approach to the more
traditional partitioning strategy commonly employed to parallelize search. We have also
presented empirical results that confirm the predictions of our analytical model and support
our claims regarding both the performance and scalability of nagging across several
different domains and search algorithms.

We are currently working on a number of refinements to nagging. First, inspired by
the empirical and analytical results reported here, we have already experimented with
randomly mixing nagging and partitioning within the same search. The idea is that
since nagging and partitioning appear to be complementary, one should actively manage
a mixture of approaches in order to more effectively guide the use of computational
resources. We are currently focusing on how to decide whether a new event should be
a nagging event or a partitioning event. Based on the analytic model of Section 5, it should
be possible to use statistical evidence obtained in the course of a problem solving episode
to decide how best to use an idle processor on a particular problem. This decision might
well change over the course of the search: for example, early events might be primarily
nagging events and later events might be primarily partitioning events. The basic idea is to
let information about this particular problem solving process guide the best application of
processor power over the course of the search process.

We are also working on extensions to the NICE infrastructure itself. We are experi-
menting with better hierarchy-formation and restructuring algorithms in order to better
apply the available computational resources to a given problem. We are also looking at
cryptographic certification techniques for distributing new NICE-enabled applications to
processors within the NICE hierarchy.

Much of this work is being performed in the context of an extraordinarily challenging
computational biology application. Over the last two years, we have been working on
HOPS, an ab initio distributed hybrid optimization protein structure prediction engine
(see, e.g., [10]). HOPS is large, interdisciplinary, project involving faculty and students
from biochemistry, computer science, operations research and applied mathematics. It
combines a distributed search (using both nagging and partitioning) over a discrete
space of protein conformations with traditional continuous optimization techniques (e.g.,
nonlinearly constraint nonlinear programming, interior point methods, etc.) to find the
energetically most favorable conformation of a specified protein according to an energy
model of our own design. Given the sheer size of these search problems, HOPS is a perfect
example of the kind of application where nagging’s distinguishing features—effectiveness,
scalability, and fault tolerance—should shine.
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