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Abstract

In this paper we investigate the node spatial distribution generated by nodes moving according to

the random waypoint model, which is widely used in the simulation of mobile ad hoc networks. More

speci�cally, we consider a generalization of this model, called generalized random waypoint model,

in which nodes can remain stationary for the entire simulation time with a given probability, and

where the pause time between consecutive movements is chosen according to an arbitrary probability

distribution. Furthermore, we allow the nodes to be initially distributed according to an arbitrary

density. We show that the structure of the asymptotic spatial density resulting from this mobility

model is composed by three distinct components: the initial, the uniform and the non-uniform com-

ponent. The relative values of these components depends on the mobility parameters. We also derive

an explicit formula of the two-dimensional node spatial density, which is proved to �t very well data

obtained through experimentation.

1 Introduction

Performance analysis in presence of mobility is of primary importance in the design of wireless networks.

For example, in cellular networks user's movement patterns are used to optimize the cell and location

area layout, the dynamic channel allocation scheme, and so on. Since real movement patterns are often

diÆcult to obtain, a common approach is to use a synthetic mobility model, which resembles to some

extent the behavior of real \mobile entities". Based on this model, useful conclusions regarding critical

network parameters can be provided. However, the accuracy of the results heavily depends on how close

the chosen model is to the real scenario.

Mobility modeling has been extensively studied in the �eld of cellular networks. For example, Zonoozi

and Dassanayake [20] have shown (by means of extensive simulations and \goodness-of-�t" tests) that

the cell residence time of a mobile user moving according to a given mobility pattern follows a generalized

gamma distribution. In the Brownian mobility model, it has been shown that, given the user's location

at time t0, the probability distribution of the physical location at time t > t0 can be calculated [12].

Very accurate mobility models for cellular networks are presented in [13, 17]. For a survey of mobility

modeling of cellular networks see [2].

Although interesting, these results are not applicable to ad hoc networks. In fact, most of them

concern speci�c properties of cellular networks (e.g., cell residence time, number of hando�s during a

call, and so on). Furthermore, the emphasis is usually on modeling the properties of a single mobile user,

rather than on the global mobile user's distribution. Finally, the mobility patterns considered resemble

the typical motions that occur in cellular systems, i.e. human and vehicular motion. Hence, an accurate

study of the probabilistic properties of a mobile ad hoc network is, to the best of our knowledge, still

lacking.

A very common mobility model used in the wireless ad hoc networks community is the random way-

point model [11]. In this model, every node chooses uniformly at random a destination in the (bounded)

deployment region R, and moves toward it with a certain velocity. When it reaches the destination, it

remains stationary for a prede�ned pause time, and then it starts moving again with the same rule. As it

has been observed in [2, 3, 5], nodes moving according to the random waypoint model tend to concentrate

in the middle of the deployment region R, originating the so called border e�ect. The intensity of this
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e�ect for di�erent values of the mobility parameters has been carefully investigated in [5], where it is

shown that for large values of the pause time the border e�ect is limited, and the spatial distribution can

be well approximated with the uniform distribution. However, for other combinations of these parameters

the border e�ect becomes very intense, and the resemblance with the uniform distribution is no longer

valid. This indicates that the node spatial distribution generated by the random waypoint model is not

uniform.

The fact that the spatial distribution generated by the random waypoint model is not uniform has

two important consequences. First, it reduces the applicability of existing theoretical results concerning

mobile ad hoc networks [1, 8, 14], which are based on the so called uniformity assumption: i.e., they assume

that in any snapshot of the mobile network the nodes are distributed uniformly and independently at

random in the deployment area. Second and more important, it implies that the representativeness of

the huge amount of experimental data obtained using the random waypoint model could be impaired. In

fact, typical settings for an experimentation based on the random waypoint model are the following: a

few tenths or a hundred of nodes are distributed uniformly at random in a square region; then, they start

moving according to the random waypoint model with a certain velocity. The behavior of the mobile

network is observed for a number of steps (where one step often corresponds to one second) in the order

of, at most, one thousand. Similar settings have been used, for instance, in the evaluation of routing

[6, 7, 9, 10, 11, 18], multicast [15] and energy-conserving [19] protocols. Since typical values of the pause

time are in the order of hundreds of steps, it follows that nodes in the above described scenario performs

in general only a very limited number of movements during the observation period. Considering that

the initial node distribution (which is uniform) is di�erent from the asymptotic distribution generated by

the random waypoint model (which is not uniform), this implies that few node movements could not be

enough to reach the \steady state" of the network. In other words, observing the network for relatively

few steps after the initial node deployment could be not representative of the actual long term behavior

of the system.

In order to circumvent this problem, the node spatial distribution generated by the random waypoint

model must be investigated. A �rst step in this direction was done in [4], where the node spatial

distribution of one-dimensional networks (i.e., nodes moving along a line) when the pause time is 0

is derived. In this paper, we derive an explicit formula of the long run two-dimensional node spatial

distribution of the random waypoint model for arbitrary values of the pause time. Our analysis will also

show that a similar expression holds for a generalized and more realistic version of the random waypoint

model. In this generalized random waypoint model, nodes can remain stationary for the entire simulation

time with a given probability, and the pause time between consecutive movements is chosen according

to an arbitrary probability distribution. Furthermore, we allow the nodes to be initially distributed

according to an arbitrary density. We show that the structure of the asymptotic spatial density resulting

from this mobility model is composed by three distinct components: the initial, the uniform and the non-

uniform component. The relative values of these components depends on the mobility parameters. The

quality of our formula is validated through extensive experimentation, which shows that the theoretical

curve �ts very well experimental data for many combinations of the mobility parameters.

We remark that the formula of the node spatial distribution obtained in this paper has a great

practical relevance. By initially distributing the nodes according to our formula, we put the network in

its asymptotic \steady state", thus avoiding the large number of mobility steps (in the order of thousands)

needed to make the system converge to this \steady state". Thus, the computational resources can be

used to investigate the behavior of the network after the \steady state" has been reached, rather than

wasted in \calculating" it.

2 The node spatial distribution of the random waypoint model

In the random waypoint model [11], every node chooses uniformly at random a destination in the deploy-

ment region R. In this paper, we assume that R is the unit square [0; 1]2. The node moves toward the

destination with a velocity chosen uniformly at random in the interval [vmin; vmax]. When it reaches the

destination, it remains stationary for a prede�ned pause time tpause, and then it starts moving again ac-

cording to the same rule. We have also included a further parameter in the model, namely the probability

pstat that a node remains stationary during the entire simulation time. Hence, only (1� pstat) � n nodes
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(on the average) will move. Introducing pstat in the model accounts for those situations in which some

nodes are not able to move. For example, this could be the case when sensors are spread from a moving

vehicle, and some of them remain entangled, say, in a bush or tree. This can also model a situation where

two types of nodes are used, one type that is stationary and another type that is mobile.

We are interested in characterizing the node spatial distribution that results from a network whose

nodes move according to the random waypoint model for a very large number of mobility steps. First,

we observe that in this mobility model each node moves independently of each other, hence we can

concentrate our attention on the spatial distribution of a single node. More formally, we want to determine

the probability density function PDFX(t) as t grows to in�nity, where X(t) denotes the position of the

node in the deployment region at time t.

As it can be easily seen, this density function is composed by three distinct components: the initial,

the pause and the mobility component. The initial component accounts for the fact that a node can

remain stationary for the entire network operational time. The pause component accounts for the fact

that a node \rest" before starting a new movement. Finally, the mobility component accounts for the

time that a node is actually moving.

Let us consider each component separately. The initial component can be easily determined by

observing that a node remains stationary during the entire network operational time with probability

pstat, and that nodes are initially distributed uniformly at random in the deployment region. Since a

stationary node will never move, the initial component fI of the density function is:

fI(x; y) =

�
pstat if(x; y) 2 [0; 1]2

0 otherwise
;

independently of the time t at which we observe the node position. Hence, the initial component is the

uniform distribution except for the fact the
R
R
fI(x; y)dxdy equals pstat and not 1 as in the uniform case.

Thus, the initial component can be seen as a uniform distribution \weighted" by pstat.

Since the starting and ending point of a node movement in the random waypoint model are chosen

uniformly at random in R, the pause component has a formula similar to that of the initial component.

More precisely, we have:

fP (t)(x; y) =

�
(1� pstat)p(t) if(x; y) 2 [0; 1]2

0 otherwise
;

where fP (t) denotes the pause component of the density function at time t, and p(t) is the probability

that a node is \resting" at time t. The term (1 � pstat) accounts for the fact that a resting node is not

stationary. Since we are interested in characterizing the asymptotic density (i.e., the density as t!1),

we must determine the value of p(t) as t!1. This way we obtain the asymptotic expression of the pause

component, denoted fP . For the sake of simplicity, assume that vmin = vmax = v, i.e. that the node

always moves with the same velocity v. In the random waypoint model, a node alternates rest periods

(lasting tpause steps each) and movement periods. Under our simplifying hypothesis vmin = vmax = v,

the duration of a movement period depends only on the distance between the starting and destination

point of the movement. Let i(t) denotes the number of movements completed before time t, and let tmovej

denotes the duration of the j-th movement (see Figure 1).We have:

lim
t!1

p(t) = lim
t!1

P
i(t)
j=1

tpause

tpause+tmovej

i(t)
= lim

t!1

tpause
P

i(t)
j=1

1
tpause+tmovej

i(t)

By the law of large numbers, we obtain:

lim
t!1

tpause
P

i(t)
j=1

1
tpause+tmovej

i(t)
=

tpause

tpause +E[tmove]
;

where E[tmove] is the expected duration of the movement period. Denoting with E[d] the expected

distance between a pair of points chosen uniformly at random in R, we can conclude that limt!1 p(t) =
tpause

tpause+
E[d]
v

= p.
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0 t

t_pauset_move1 t_pause t_pauset_move2 t_movei(t)

Figure 1: A node alternates between rest periods (tpause) and movement periods (tmovej ) .

Contrary to the case of the initial and pause component, the mobility component is not uniform. In

fact, this is the component that generates the border e�ect observed in [2, 3, 5]. Denoting with fM (x; y)

the limit of the mobility component as t!1, we can summarize our discussion in the following theorem:

Theorem 1. The asymptotic spatial density function of a node moving in R according to the random

waypoint model of parameters pstat, tpause and vmin = vmax = v, is

f(x; y) =

�
pstat + (1� pstat)p+ (1� pstat)(1� p)fM (x; y) if(x; y) 2 [0; 1]2

0 otherwise
;

where p =
tpause

tpause+
E[d]
v

.

The formula for f(x; y) of Theorem 1 is fully coherent with the statistical analysis presented in [5]:

the density is the sum of a uniform (fI(x; y) + fP (x; y)) and a non-uniform (fM (x; y)) component. As

pstat and/or tpause increase, the uniform component of the density becomes predominant, and f(x; y)

can be well approximated with the uniform distribution. Conversely, for small values of pstat and/or

tpause, the non-uniform component dominates and generates a signi�cant border e�ect. The inuence of

the velocity on f(x; y) is less evident: in general, higher velocities cause a decreased value of tmove and,

consequently, a more uniform distribution. However, for extreme values of tpause the e�ect of the velocity

is negligible. For example, if tpause = 0 then the pause component of the density is 0, regardless of the

value of v. Similarly, if tpause is very large, then p � 1 regardless of the value of v.

In order to give a precise formula for f(x; y), we need to evaluate E[d] and fM (x; y). While it is known

that E[d] = 0:521405 [16], deriving fM is not straightforward. The expression of fM for one-dimensional

motion (i.e., the node moves along a line of length 1) has been derived in [4], using a technique based

on the construction of a temporal histogram that counts how often the node is observed in any point

x 2 [0; 1]. Since the expected distance between a pair of points chosen uniformly at random in [0,1] is 1/3

[16], we can state the exact formula of the asymptotic spatial distribution of a node moving according to

the one-dimensional random waypoint model:

Theorem 2. The asymptotic spatial density function of a node moving in [0; 1] according to the random

waypoint model of parameters pstat, tpause and vmin = vmax = v, is

f(x) =

�
pstat + (1� pstat)p+ (1� pstat)(1� p)6x(1� x) ifx 2 [0; 1]

0 otherwise
;

where p =
tpause

tpause+
1
3v

.

Function f(x) for di�erent combinations of the mobility parameters is shown in �gures 2 and 3. The

correspondent cumulative density function CDF (x) is also reported. For the sake of comparison, the

�gures show the curves obtained with the uniform distribution. As it is seen, for increasing values of pstat
and/or tpause the plots of f(x) and CDF (x) approach those of the uniform distribution. It is also seen

that the non-uniform component of the density (obtained when pstat = tpause = 0) is parabolic.

In the next section, we derive the expression of the mobility component fM of the density for two-

dimensional networks.
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Figure 2: Density and cumulative density function of the one-dimensional node spatial distribution for

di�erent values of the pause time. pstat and v are set to 0 and 0.001, respectively.
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Figure 3: Density and cumulative density function of the one-dimensional node spatial distribution for

di�erent values of pstat. The pause time and v are set to 0 and 0.001, respectively.

3 The two-dimensional mobility component

As observed in [4], the mobility component in two dimensions cannot be directly derived from the formula

for the one-dimensional case. In fact, the two-dimensional movement is composed by two dependent one-

dimensional movements. Furthermore, the speed of the mobile node when projected along the x-axis in

general is not constant, and is di�erent from the (non-constant) speed along the y-axis. For this reason,

we will use a di�erent technique.

Let P (x; y; d) denote the probability that the mobile node is in a square of side d centered in (x; y),

denoted S
xy

d
. By de�nition of probability density function, we have:

P (x; y; d) =

Z
x+d=2

x�d=2

 Z
y+d=2

y�d=2

fM (x; y) dy

!
dx : (1)

When d is suÆciently small, fM can be considered constant in S
xy

d
, and (1) can be rewritten as:

P (x; y; d) = d2fM (x; y) :

Hence, we have:

fM (x; y) = lim
d!0

P (x; y; d)

d2
:

In order to calculate P (x; y; d) we observe that, given the assumption pstat = tpause = 0 (we recall that

we are investigating the mobility component), the mobile node can be considered as always moving from

a starting point S to a destination point D. Denoting by Ptr(x; y; d) the probability that the trajectory

(i.e., the line that connects S with D) intersect S
xy

d
, and by l

xy

d
the length of the segment that intersect
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( , )x y

S

D

(0,0) (1,0)

(0,1) (1,1)

Figure 4: Intersection of the trajectory with S
xy

d
. The length of the segment that intersect S

xy

d
(bold

line) is denoted l
xy

d
.

S
xy

d
(see Figure 4), and by observing that the node moves along the trajectory with constant speed, we

have:

P (x; y; d) = Ptr(x; y; d) �
l
xy

d

L
;

where L is the length of the trajectory. Since we are investigating the asymptotic node spatial distribution,

by the law of large numbers we can replace L with the expected distance between two randomly and

uniformly distributed points in [0; 1]2, which we denote E[L]. Note that E[L] does not depend on the

coordinates (x; y) of the point. Similarly, l
xy

d
can be replaced by the expected length of the intersection

of the trajectory with S
xy

d
, denoted E[l

xy

d
]. Contrary to E[L], E[l

xy

d
] does depend on the position of the

point: intuitively, the closer (x; y) is to the border, the smaller value of l
xy

d
is expected. Noting that

E[l
xy

d
] is anyway proportional to d, we have:

E[l
xy

d
] = k(x; y) � d :

In order to simplify the analysis, we approximate the function k(x; y) with a constant k. As we shall see,

this approximation has negligible inuence on the quality of our analysis. Summarizing, we have:

fM (x; y) = lim
d!0

P (x; y; d)

d2
= lim

d!0

Ptr(x; y; d)

d
�

k

E[L]
:

Up to a constant, we have then reduced the original problem to the problem of determining the

probability that a trajectory intersect S
xy

d
. Observe that it is not necessary to calculate the exact value

of k and E[L], since they will be absorbed by the multiplicative constant needed to normalize fM .

Consider the square S
xy

d
of side d centered around the point of coordinate (x; y), and �x an arbitrary

starting point S=(xs; ys) in the unit square. Since the distribution of the destination point of a trajectory

is uniform, the probability that a trajectory starting at S intersects S
xy

d
is given by the area of the

polygon shaded in Figure 5. Observe that the area of the polygon depends on d and on the coordinates

of S and S
xy

d
. Denoting with A(x; y; xs; ys; d) this area, we can then calculate Ptr(x; y; d) as the integral

of A(x; y; xs; ys; d) over all possible positions of S, i.e.:

Ptr(x; y; d) =

ZZ
[0;1]2

A(x; y; xs; ys; d) dxs dys ;

and fM can be obtained calculating the limit of the ratio of this integral to d as d goes to 0.
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(0,0) (1,0)

(0,1) (1,1)

S

( , )x y

Figure 5: If the starting point of the trajectory is in S, Ptr(x; y; d) is given by the area of the shaded

polygon, denoted A(x; y; xs; ys; d).

Finding the exact expression of A(x; y; xs; ys; d) is not straightforward. In fact, the shape of the

polygon depends on the relative positions of S and S
xy

d
. For this reason, given the coordinate of S

xy

d
, we

divide [0; 1]2 into a number of regions, with the property that all the (starting) points in the same region

induce polygons with the same shape. This way, we can calculate the partial integral independently on

each region, and obtain the overall integral as the sum of the contributes of all the regions.

The division of the unit square into regions for a given position of S
xy

d
is reported in Figure 6. First,

we divide [0; 1]2 into four quadrants Q1; : : : ; Q4. Quadrants are separated from each other by strips of

width d, obtained by extending the sides of S
xy

d
to the borders. Each quadrant is then further divided

into three subquadrants, obtained by extending the lines that connect the opposite corner of the unit

square to opposite vertices of S
xy

d
. We then have a total of 16 regions. However, it should be noted that

the area of some of these regions goes to 0 as d goes to 0, hence their contribution can be omitted when

calculating the value of the overall integral. This is the case of the area of the four strips of width d, as

well as of the area of Q12 and of the corresponding regions in the other quadrants. Then, we can rewrite

the overall integral as:ZZ
[0;1]2

A(x; y; xs; ys; d) dxs dys =
X

i=1;:::;4

ZZ
Qi

A(x; y; xs; ys; d) dxs dys ;

where each of the
RR
Qi

A(x; y; xs; ys; d) dxs dys can be rewritten as:

ZZ
Qi1

A(x; y; xs; ys; d) dxs dys +

ZZ
Qi2

A(x; y; xs; ys; d) dxs dys :

In the following, we detail the derivation of a partial integral referring to the �rst quadrant, under the

hypothesis that x� y and x� 1=2. The derivation of the partial integrals referring to the other regions

can be obtained by similar geometric arguments, and is not reported for the sake of brevity. It should

also be observed that, due to the multiple symmetries of the problem, evaluating fM (x; y) for (x; y)2R,

where R = f(x; y)2 [0; 1]2 j (x � y)^(x �1=2)g, is suÆcient to determine fM (x; y) in all the unit square

by proper variable substitutions.

Let us assume that S is in Q11. Then, A(x; y; xs; ys; d) can be calculated as the di�erence between

the area of triangles SR1R2 and SP1P2, augmented with half of the area of Sxy
d

(see Figure 7). Hence,

we can write:

A(x; y; xs; ys; d) =
1

2
d

�
d� x+ xs + y � ys +

4y2s(xs � x+ y � ys)

(2y � 2ys + d)(2ys � 2y + d)

�
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(0,0) (1,0)

(0,1) (1,1)

Q2Q11

Q4
Q3

Q1 2

Q1 3

( , )x y

Figure 6: The unit square is divided into quadrants, separated by strips of width d. Every quadrant is

then divided into three sub-quadrants, obtained by extending the lines that connect the opposite corner of

the unit square to opposite vertices of S
xy

d
. For clarity, only the division of the �rst quadrant is reported.

This area must be integrated over Q11. Observing that the line that delimits the lower side of Q11 has

equation �y = m11�x+ q11, where m11 =
2y+d

2x�2+d
and q11 =

2y+d
2�2x�d

, we can write:Z
Q11

A(x; y; xs; ys; d) dxs dys =

Z x�
d
2

0

�Z 1

m11xs+q11

1

2
d

�
d� x+ xs + y � ys +

4y2
s
(xs � x+ y � ys)

(2y � 2ys + d)(2ys � 2y + d)

�
dys

�
dxs (2)

We then evaluate the limit of the ratio of (2) to d as d goes to 0, obtaining:

lim
d!0

(2)

d
=

1

4
xy

�
x2 + x(6y � 7) + 2(3� 4y + y2)

(x� 1)(y � 1)
+ 2(x+ y) log

��
1

x
� 1

��
1

y
� 1

���

This term gives the contribution of Q11 to the spatial density. The overall density can be calculated by

summing the contribution of all the regions. The resulting expression, which we denote fR(x; y), must

then be normalized in such a way that
R
R
fR(x; y)dxdy = 1

8
(note that the area of R is 1

8
). After long

and tedious calculation which is not reported, we have obtained the following expression for fR(x; y):

fR(x; y) =

6y +
3

4
(1� 2x+ 2x2)

�
y

y � 1
+

y2

(x� 1)x

�
+

3

2

�
(2x� 1)y(1 + y) log

�
1� x

x

�
+ y(1� 2x+ 2x2 + y) log

�
1� y

y

��

It should be observed that fR(x; y) is not de�ned for x = 0 or y = 0. However, it can be easily extended

by continuity to the boundary of R. Summarizing, we can write:

fM (x; y) =

�
0 if (x = 0) or (y = 0)

fR(x; y) otherwise
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(0,0) (1,0)

(0,1) (1,1)

Q11

Q1 2

Q1 3

S

P1

P2

R1 R2

Figure 7: The area A(x; y; xs; ys; d) when S is in Q11 can be calculated as the di�erence of the areas of

triangles SR1R2 and SP1P2 (shaded area), plus half of the area of S
x;y

d
(light shaded area).

We remark that the expression of fM (x; y) above is valid only for (x; y)2R. The expression of fM (x; y)

on the remainder of [0; 1]2 can be easily obtained by observing that, given the symmetry of the problem,

fM (x; y) = fM (y; x) = fM (1�x; y) = fM (x; 1� y). The 3D and contour plot of fM (x; y) are reported in

Figure 8.

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 8: Three-dimensional plot of the mobility component, and contour lines corresponding to the

values fM (x; y) = .5, 1, 1.5 and 2.

4 The generalized random waypoint model

In the previous sections, we have derived the expression of the one and two-dimensional node spatial

distribution of the random waypoint model. In the derivation, we have often used the law of large

numbers to estimate the asymptotic value of some parameters (e.g., the probability p that a node is

resting). Hence, our results can be straightforwardly extended to a generalized random waypoint model,

where the pause time and the velocity are chosen according to arbitrary probability distributions with
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expectation E[tpause] and E[v], respectively. We can further generalize the mobility model by allowing

the node to be initially placed according to an arbitrary density finit. The generalized random waypoint

model can be then de�ned as follows:

De�nition 1 (Generalized random waypoint model). In the generalized random waypoint model,

nodes are initially distributed in R = [0; 1]2 with density finit. A node remains stationary for the entire

network operational time with probability pstat. If the node is not stationary, it chooses its destination

uniformly at random in R, and moves towards it with a velocity v chosen according to an arbitrary

probability distribution Pv. When the node arrives at destination, it rests for a time tpause, chosen

according to an arbitrary probability distribution Ppause. Then, it starts a new movement as described

above.

We believe that this generalization of the random waypoint model allows a more accurate simulation of

realistic scenarios. In fact, nodes can be initially placed according to an arbitrary distribution, rather than

the uniform distribution. Thus, we can model those situations in which nodes are, for instance, initially

concentrated in a subregion of R. More importantly, we do not force a node to have the same pause time

during the entire network operational time. This is a very unrealistic aspect of the random waypoint

model, which is further ampli�ed by the fact that the pause time is assumed to be the same for all the

nodes in the network. Conversely, we simply assume that the pause time after each movement is chosen

according to an arbitrary distribution, which does not change with time. Furthermore, this distribution

is the same for all the nodes in the network. Then, our probabilistic homogeneity assumption is far less

stringent than the equality assumption of the original model. A similar generalization is made for the

velocity, which is chosen according to an arbitrary distribution, which does not change with time and is

the same for all the nodes in the network.

We can thus state the following theorem, which is the main result of this paper:

Theorem 3. The asymptotic spatial density function of a node moving in R according to the generalized

random waypoint model of parameters finit, pstat, Ppause and Pv, is

f(x; y) =

�
pstatfinit + (1� pstat)p+ (1� pstat)(1� p)fM (x; y) if(x; y) 2 [0; 1]2

0 otherwise
;

where p =
E[Ppause]

E[Ppause]+
0:521405
E[Pv]

, E[Ppause] is the expected pause time, and E[Pv] is the expected velocity.

Theorem 3 is very important, since it states that as long as the motion pattern has some (probabilistic)

homogeneity, the structure of the asymptotic spatial density is composed by three distinct component:

the initial component finit, a uniform component generated by the fact that the movement destinations

are chosen uniformly in R, and the mobility component fM . The relative values of these components

depend on pstat and on the expected value (not on the actual distribution) of the pause time and velocity.

Hence, a very large class of mobility models is captured by the formula stated in Theorem 3.

Finally, we want to emphasize the Theorem 3 has also a great practical relevance. So far, the only way

to investigate relevant asymptotic properties of mobile networks was to simulate the nodes movement

for a very large number of steps. This is done at the expense of considerable computational resources.

As a consequence, the size of the mobile system is usually kept small (it is rarely above 100 in existing

experimental results). As wireless ad hoc networks will become reality in a near future, their size is likely

to grow to as much as thousands of nodes. Hence, the simulation of large mobile networks, in which

the scalability of the protocols can be carefully investigated, will become an issue. We believe that our

characterization of the node spatial distribution of mobile networks be of great help in the simulation of

large mobile ad hoc networks. By initially distributing the nodes according to the formula of Theorem

3, we put the system in its asymptotic \steady state", thus avoiding the large number of mobility steps

(in the order of thousands) needed to make the system converge to this \steady state". Thus, the

computational resources can be used to investigate the behavior of the network after the \steady state"

has been reached, rather than wasted in \calculating" it.
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5 Experimental evaluation

In this section we report the result of the experiments that we have performed to validate our theoretical

analysis.

For the experiments we have utilized the simulator used in [5] to test the uniformity of the node

spatial distribution. The simulator takes as input the number n of nodes to distribute, the number

]sim of simulations to run and the number ]steps of mobility steps to perform for each simulation. The

simulator also takes as input the parameters of the random waypoint model, i.e. pstat, tpause (expressed

as the number of steps that the node remains stationary between two movements), and the minimum

(vmin) and maximum (vmax) velocity. Nodes are distributed uniformly and independently at random in

[0; 1]2; then, they start moving according to the random waypoint mobility model. In order to record

the node spatial distribution, we divide [0; 1]2 into a number of square cells of the same side, arranged

in a grid fashion. In our experiments, we used a grid of 31� 31 cells of side 1=31. After ]steps steps of

mobility, the number of nodes in each cell is recorded. These numbers are accumulated over the ]sim

simulations, and are reported as the result of the experiment. If the theoretical analysis is accurate, the

3D plot obtained using these data should closely resemble that obtained by our formula.

In the �rst experiment, we have evaluated the impact of the approximation that we made in the

derivation of fM (we recall that we have approximated the function k(x; y) in the expression of E[l
xy

d
] with

a constant) on the quality of our analysis. For this reason, we set pstat and tpause to 0, and vmin = vmax =

0:01. We then distributed n = 961 nodes in the deployment region, and we performed 10000 simulations

of 10000 mobility steps each. These numbers were chosen because they are a good compromise between

statistical accuracy (we recall that our simulation corresponds to 9610000 independent experiments) and

running time.

The 3D and contour plot resulting from the experiment, which are reported in Figure 9, show a very

close resemblance with the plots of fM . This resemblance is further evidenced by the plots shown in

Figure 10. These graphics report two cuts parallel to the x-axis (for y = 0:5 and y � 0:21), and the

diagonal cut of the 3D plot. The result of this experimentation shows that the approximation that we

made in the derivation of fM does not a�ect the quality of the result.
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Figure 9: Three-dimensional plot of the experimental data, and contour lines corresponding to the values

fM (x; y) = .5, 1, 1.5 and 2.

In the second experiment, we have veri�ed how well our formula of node spatial distribution �ts the

experimental data in two di�erent scenarios. Namely, we set pstat = 0:1, tpause = 100 and vmin = vmax =

0:01 in the �rst scenario, and pstat = 0:3, tpause = 300 and vmin = vmax = 0:01 in the second. As in the

previous case, we set n = 961 and ]steps = ]sim = 10000. The results of the experiments are reported

in �gures 11,12,13,14. As it is seen, our formula is a good �t of the experimental data in both scenarios.

11



0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

Figure 10: Cuts parallel to the x-axis for y = 0:5 (left) and y � 0:21 (center), and diagonal cut (right)

of the 3D plots of the theoretical and experimental node spatial distribution. Experimental data are

represented by bold points.
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Figure 11: Three-dimensional plot of the theoretical (left) and experimental (right) data for the case

pstat = 0:1, tpause = 100 and vmin = vmax = 0:01.
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Figure 12: Cuts parallel to the x-axis for y = 0:5 (left) and y � 0:21 (center), and diagonal cut (right)

of the 3D plots of the theoretical and experimental node spatial distribution for the case pstat = 0:1,

tpause = 100 and vmin = vmax = 0:01. Experimental data are represented by bold points.
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Figure 13: Three-dimensional plot of the theoretical (left) and experimental (right) data for the case

pstat = 0:3, tpause = 300 and vmin = vmax = 0:01.
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Figure 14: Cuts parallel to the x-axis for y = 0:5 (left) and y � 0:21 (center), and diagonal cut (right)

of the 3D plots of the theoretical and experimental node spatial distribution for the case pstat = 0:3,

tpause = 300 and vmin = vmax = 0:01. Experimental data are represented by bold points.

Finally, we have veri�ed the quality of our formula for the generalized random waypoint model. To

this purpose, we extended the simulator by allowing nodes to be initially distributed uniformly at random

in [0; 1=2]2. Further, the pause time is chosen uniformly at random between a minimum and maximum

value for each movement.

We have simulated the following scenario: nodes initially distributed uniformly at random in [0; 1=2]2,

pstat = 0:2, tpause chosen uniformly at random in the interval [100; 300] at each movement (independently

for each node). Finally, the velocity was chosen uniformly at random in the interval [0:005; 0:015]. We

distributed n = 961 nodes, and we performed 10000 simulations of 10000 mobility steps each. The result

of the experiment is shown in �gures 15 and 16. Also in this case, the formula �ts the experimental data

very well.

6 Conclusions

In this paper, we have derived an explicit formula of the two-dimensional node spatial distribution

generated by a generalization of the random waypoint model. The good quality of our formula has
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Figure 15: Three-dimensional plot of the theoretical (left) and experimental (right) data for the general-

ized random waypoint model.
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Figure 16: Cuts parallel to the x-axis for y = 0:5 (left) and y � 0:21 (center), and diagonal cut (right)

of the 3D plots of the theoretical and experimental node spatial distribution for the generalized random

waypoint model. Experimental data are represented by bold points.

been con�rmed by extensive experimentation, whose results have shown a very good �t between the

experimental and theoretical curves.

Besides its practical relevance, we believe that our result is a starting point in the characterization

of fundamental properties of mobile ad hoc networks: given the node density derived in this paper, the

average route length, or the minimum transmitting range yielding a high probability of connectedness

(just to cite two important parameters of ad hoc networks) in presence of mobility can be studied in a

theoretical framework. As a further direction of research, we mention extending our analysis to group

mobility models.
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