©

%ﬂd@'yﬁa Niionate detle Ficerche

Efficient Strategies for Partitioning and
Querying a Hierarchical Document Space

B. Codenotti, G. De Marco, M. Leoncini, M. Montangero, M. Santini

IIT TR-25/2002

Technical report

Dicembre 2002

H /B

Istituto di Informatica e Telematica

Efficient Strategies for Partitioning and Querying a Hierarchical
Document Space

Bruno Codenotti* Gianluca De Marco' Mauro Leoncinit Manuela Montangero®

Massimo Santini¥

Abstract

We consider a problem arising in the efficient management of a Hierarchical Document Space, i.e.,
partitioning the leaves of a tree among a set of servers in a such a way that it is possible to take full
advantage of the hierarchical system to efficiently answer user’s queries. After proving that the problem
is NP-Hard, we devise efficient approximate solutions, and we make a number of experiments which show
that allowing for very little space inefficiency can be instrumental to achieving a significant improvement
in the query efficiency.

Keywords: Algorithm analysis, information storage and retrieval, approximation algorithms, hierarchical
document collections.

1 Introduction

A wide body of work in Information Retrieval (IR) addresses issues such as creating and maintaining
hierarchically structured collections of documents. The exponential growth of the web, with the related
difficulties of finding and organizing relevant information, has done nothing but increase the interest, at the
scientific as well as commercial level, towards the development of efficient hierarchical retrieval systems.
Indeed hierarchical web retrieval systems offer a number of potential advantages over flat keyword based
search utilities. As an example, they can offer greater query precision and much faster response times
[1, 7].

Roughly speaking, the different approaches adopted to produce structured ontologies can be divided
into two categories, namely classification and clustering systems. Successful hierarchical topic taxonomies
have been manually created before the computing era (e.g., the Dewey Decimal Classification system,
published in 1876 for the first time) and of course recently, in connection with the development of the web
(e.g., the Yahoo! directory). Automatic classification systems have also been proposed to overcome the
difficulties of manually compiling very large directories [2, 1, 6]. However, automatic classification system
have to confront a number of challenging problems, such as incrementality and classification reliability.
These issues have been at least partially dealt with for moderate size data sets, but are far from being
solved for the huge data sets typically associated with the web.

A complementary approach to the automatic construction of structured ontologies is given by clus-
tering (see, e.g., [12]). With respect to classification, clustering has the advantage that the topics need
not be defined in advance. Indeed, clustering is the problem of automatically assigning class labels to
the documents. Clustering is a widely investigated problems in many fields (such as Machine Learning,
Data Mining, Computational Geometry, and of course Information Retrieval). However, there is no clear

*Dept. of Comp. Sci.,The Univ. of Chicago, On leave from IIT — CNR, e-mail codenott@cs.uchicago.edu

fIst. di Informatica e Telematica, Via G. Moruzzi 1, I-56100 Pisa (Italy), e-mail demarco@iit.cnr.it

Dip.to di Scienze Sociali, Cognitive e Quantitative, Via Giglioli Valle 9, I-42100 Reggio Emilia (Italy), e-mail
leoncini@unimo.it

$1st. di Informatica e Telematica, Via G. Moruzzi 1, I-56100 Pisa (Italy), e-mail montangero@iit.cnr.it

IDip.to di Scienze Sociali, Cognitive e Quantitative, Via Giglioli Valle 9, I-42100 Reggio Emilia (Ttaly), e-mail
msantiniQunimo.it

indication as to whether or not existing algorithms could effectively be employed in large scale web appli-
cations (see, e.g., [4, 5], for a discussion of the difficulties connected to the efficient clustering of very large
document collections and for sequential and distributed algorithms with “state of the art” performances).

In this paper we isolate a problem, which we call Minimum Redirections Problem, related to the
maximum efficiency achievable when querying a hierarchically structured corpus, and look at it from an
algorithmic viewpoint.

More precisely, the Minimum Redirection Problem consists of partitioning the set of leaves of a tree
among a set of servers in such a way that the number of servers that store the leaves of any subtree is
minimum (on the average) over the set of possible partitions. Formally, let T = (V, E) be a (rooted) tree
and, for any node v of T, let L(v) denote the set of leaves of the subtree rooted at v. We want to find a
partition P of the leaves of T' such that the quantity

> H{AeP|Lv)nA#0) (1)

veEV

is minimum over the set of all the partitions. Note that, for a given partition P, measure (1) over |P|
represents the average number of sets from P having non empty intersection with the descendant of any
internal node v.

Assume that the internal nodes and the leaves of the tree represent topics (categories) and documents,
respectively. Then a query issued at a given internal node v will be redirected to those servers that store
the documents associated with the subtree rooted at v. Within this framework, minimizing (1) amounts
to minimizing the average number of servers under the assumption that queries are issued against any two
different categories with the same probability. Since we have no available data on the frequency distribution
of topic search (or direct browsing), we regard (1) as a rough measure that applies to a worst case scenario.

The outline of the paper is the following. In Section 2 we define the Minimum Redirection Problem
formally and prove that it is an NP-hard optimization problem by a reduction from Minimum Bin Packing.
We then prove an inapproximability result for a measure closely related to (1), for which the reduction is
approximation preserving. We address the problem of approximating optimal redirections in Section 3. We
give an efficient 2-approximation algorithm for Minimum Redirection Problem, which uses a subroutine
to approximately solve certain Minimum Bin Packing instances, and prove that the approximation ratio
is tight by showing a family of trees for which the output is arbitrarily close to twice the optimal value.
We compare our algorithm with a simple algorithm which minimizes the number of sets in the partition
(a measure related to the number of servers needed to store the document collection). Although for some
family of trees such simple algorithm computes also a provably better approximation to (1), we experi-
mentally observe that, in general, space efficiency comes at the expenses of a reduced query redirection
performance. The section on the experimental results (Section 4) describes other outcomes of running our
algorithm (with two different Bin Packing subroutines) on three different data sets: Open Directory Project
(ODP), Yahoo!, and Arianna [13, 14, 15]. The most promising evidence suggested by the results is that
allowing for a little extra space (servers) may make it possible to obtain big savings in query redirections.

2 Minimum Redirection Problem

In this section we formally introduce the Minimum Redirection Problem and we show that it is NP-hard.
The following notation will be used for trees: given a tree T' and a vertex v of the tree, Sy (v) will denote the
subtree rooted at v, Ly(v) and Ny (v) will denote the set of leaves and internal nodes of St (v), respectively.
We will drop the subscript when T is clear from the context, and we will omit to specify v to intend the
root, i.e., L are the leaves of T'.

Definition 1 (Number of redirections) Let T = (V, E) be a tree and P a partition of L. The number of
redirections for a node v of T given P is

pr(v;P) = {A € P | Ly(v) N A # 0};

similarly, the total number of redirections for the tree T given P is

pr(P) = Z pr(v,P),

UENT

and the average number of redirections for the tree T given P is
pr(P) = pr(v,P)/|Nr|.

Definition 2 (Number of extra redirections) Let T = (V, E) be a tree and P a partition of L. The number
of extra redirections for a node v of T' given P is

XT(UaP) = pT(UaP) - L
Similarly, x7(P) = > xr(v,P) and x7(P) = x1(v,P)/|Nr|-

Given vertex v, the number pr(v,P) counts how many sets of partition P contain leaves of subtree
St(v), and can be regarded as the number of servers to which a query against v will be redirected. The
corresponding measure x7(v,P) represents the number of extra redirections, considering that the query
must be sent to at least one server. The corresponding average values are defined under the hypothesis
that queries are issued against any two different categories with the same probability.

Definition 3 (Minimum Redirection Problem) Given a tree T and a positive integer capacity ¢, find a
partition P of Lt such that

1. for every set A € P the cardinality of A is bounded by c;
2. the total number of redirections pr(P) is minimized.

A feasible solution is a partition P satisfying only condition 1.

Lemma 1 Given a tree T = (V, E) and a feasible solution P for capacity c, for every vertexv € V,

M < pT(U,P) < ZPT(U,P)a

C

where the summation extends over the children of v.

Proof. A set of the partition can not contain more than c leaves, thus |Ly(v)|/c sets are necessary. The
union of the partitions given by the children of v is a feasible solution. o

We show that the Minimum Redirection Problem is NP-hard by reduction from Minimum Bin Packing.

Definition 4 (Minimum Bin Packing) Given a finite set of items with positive integer sizes s1,..., S, and
a positive integer capacity c, find a partition Q of {1,...,n} such that > ;c48; < c for every A € Q and
|Q| is minimum. We shall refer to Y ;c 4 s; as to the level of A.

The Minimum Bin Packing problem is NP-hard, approximable within 3/2 [11] but not approximable
within 3/2 — ¢ for any € > 0 [8, 3]. Nevertheless it admits a FPTAS™ and is approximable within 1 + € in
time polynomial in 1/e, where e = O(log?(opt) /opt) [10].

First of all, we prove a simple lemma that we will use in the subsequent hardness and inapproximability
theorems.

Lemma 2 For every tree T' having all the leaves at distance 2 from the root and every partition P of the
leaves, there exists a partition P’ such that

1. pr(P") < pr(P),

2. for every v different from the root, Ly(v) C A" € P'.

Proof. We iterate the following argument over all v € V such that pr(v,P) > 1. Let o € V be one such
node.

Define P = {A" #0 | A’ = A\ Lr(9),A € P} U Lp(d). Then, pr(9,P') =1 < pr(9,P). If v is not
the root and v # 9, we have pr(v,P') = pr(v,P). Finally, if r is the root, pr(r,P') = |P'| < |P|+1 =
pr(r,P) + 1.

Hence pr(P') < pr(P). o

Theorem 1 The Minimum Redirection Problem is NP-hard.

Proof. Reduction is from Minimum Bin Packing. Suppose we are given an instance of Minimum Bin

Packing with capacity ¢ and items of size si,...,s,. We define tree T as in Figure 1.
1 2 n
H --H N H H B
Figure 1: Tree T' constructed in the reduction from Min Bin Packing on input (¢; s1, ..., 8y).

Let P be a feasible solution to the Minimum Redirection Problem on 7" with capacity ¢. By Lemma 2,
we can assume that pr(i,P) =1 for every 1 < i <n.

The partition Q of {1,...,n} given by the sets {¢ | L7(i) C A € P}, for 1 < i < n, has the same
cardinality of P and gives immediately a feasible solution to the Minimum Bin Packing problem. Moreover,
pr(P) = Q[+ n.

Now, if P is such that pp(P) is minimum, then |Q| will also be minimum. o

The same hardness result clearly holds for the problem of minimizing yr(P). For the latter, the
following stronger inapproximability result holds

Theorem 2 The minimum number of extra redirection is not approzimable within 3/2 — e for any e > 0.

Proof. The same reduction as in Theorem 1 holds, with x7(P) = |Q| — 1. The result then follows from
the inapproximability of Minimum Bin Packing cited above. o

3 Approximation algorithm

In this section we present a recursive 2-approximation algorithm to solve the Minimum Redirection Prob-
lem. We show that the analysis of the approximation factor is tight by giving a family of trees for which
the approximation factor approaches 2.

The input of the recursive call is a vertex v and the output is a partition of L(v): if v is a leaf then
the output is simply the singleton composed by v. Otherwise a recursive call is made on the children of v
collecting the results in a partition P of L(v). Considering the cardinality of each set in P as an item size,
the algorithm computes a feasible solution to the Minimum Bin Packing problem. Finally, the recursive
call returns a coarser partition obtained from P by merging the sets that have been packed together.

Let BP(¢;s1,...,5y) be an approximation algorithm for the Minimum Bin Packing problem. We say
that BP is a reasonable bin packer if the levels I; > 1o > ... > [, of its solution are such that

1. l; > ¢/2,for all 1 <i < m,

2. lyp1+ 1l >c.

These conditions together simply say that the solution is minimal, in the sense that any two sets in the
partition can not be merged together without violating the capacity constraint.

The recursive procedure of the approximation algorithm for the Minimum Redirection Problem is the
following;:

Approx-MRN(v)

if v is a leaf then return {v};

for every child u of v, P,, = Approx-MRN(u);
{Pl, e ,Pn} = UuPu,

Q= BP(C; |P1|1---5|P’n‘);
P = {AJA = Uicq P, Q € Q};
return P.

Let r be the root of tree T, then P =Approx-MRN(r). is the solution of the Minimum Redirection
Problem.

We now prove that Approx-MRN is a 2-approximation algorithm.

Theorem 3 Given a tree T and a positive integer capacity c, let Py be the optimal partition of the leaves
and P4 the one found by Approz-MRN using a reasonable bin packer. For every vertex v in tree T we have

2 pr(v, Popt) > pr(v,Pa).

Proof. Suppose that pr(v, Popt) < pr(v,Pa) =m and let [> Iy > ... > I, be the levels of the solution
returned by Approx-MRN(v).
Since BP is reasonable, and observing that the sum of the levels is |Ly(v)|, we have

m—2

|Lr(v)| = Z Li+ (lm—1+ 1) > (m —2)c/2 + ¢ = mc/2,
i=1

that implies
| L (v)]

2. ——* >m.
C

From Lemma 1 we have that pr(v, Popt) > |Lr(v)|/c and hence

2 pr(v,Popt) > 2+ @ >m = pr(v,Pa).
o
Corollary 1 Approz—MRN is a 2-approximation algorithm.
Proof. Using the same notation as in Theorem 3, we have
2- PT(POpt) = 2 ZPT('U’POW)
v
> Y pr(v,Pa)
v
= pr(Pa)-
o

The simple analysis of Theorem 3 turns out to be accurate. In fact we can prove the following:

Theorem 4 There exists a family of trees for which the performance ratio of Approz-MRN approaches 2.

Figure 2: Example of T for n = 2 (and ¢ = 8).

Proof. Given a positive integer n > 0 consider the pair (7', c) where ¢ = 4n and the tree T is defined as
folows: the nodes are {l;, |0 <k < (2n—-1)2n+ 1)} U{vx |0 <k <2n—-1}U{wg |1 <k <2n-1}
and the edges are such that the [)’s are the leaves, the vy’s are such that L(vg) = {l; | [i/(2n + 1)] = k}
(for 0 < k < 2n — 1), and, finally, the children of the wy’s are {wg_1,vx} (for 1 < k < 2n — 1), while the
children of w; are {vg,v1}.

First of all, we consider the solution P4 of Approx-MRN on input (7', c). As it is easy to check

since Approx-MRN(vy) = L(vg) (for 0 < k£ < 2n — 1) and no such sets can be merged, since |L(vg)| =
2n +1 > ¢/2. Hence it is straightforward to conclude that p(vg,Pa) = 1 (for 0 < k < 2n —1). By

construction,
Lwg) = |J L(w), (2)
0<i<k+1
so that p(wg,Pa) =k +1 (for 1 <k < 2n — 1), and hence

p(Pa)=02n-1)x1+ > (k+1)=2n>+0(n)
1<k<2n—1

Now we consider the solution of an algorithm (called Simple from now onwards) that packs the leaves
traversing the tree frontier from left to right in sets of size ¢. More formally, let Sy = {l; | |i/4n| = k}, for
0 <k < [|L|/4n] = [(4n% — 1)/4n] = n, then the solution Pg of Simple is

Ps={Sk|0<k <n}
By straightforward inequalities, it is easy to check that

L(vgg) C Sk 0<k<n
L(vog11) C S U Sky1 0<k<n-1

so that p(vg,Ps) = 1+ (k mod 2) < 2 (for 0 < k < 2n — 1); moreover, using also equation (2), one can
conclude that (for 1 <k < 2n —1)

L(wg) C U Si
0<i<[1+k/2]

so that p(wg,Ps) < [1+k/2] (for 1 <k < 2n — 1). Hence

p(Ps)<(@n—1)x2+ Y [1+k/2]=n"+O0(n)
1<k<2n—-1

by observing that

SooM+k/2] =) [1+@2)/21+ D [1+4(2i+1)/2]

1<k<2n—-1 1<i<n 0<i<n—1
= > (G+D+ > (+2)
1<i<n 0<i<n—1
= 2) i
2<i<n

We can finally obtain the (asymptotic) approximation ratio of Approx-MRN on input (7', c). If if Py is
the optimal solution, we have p(P,p) < p(Ps) so

p(Pa) o p(Pa) _ 20”4 0(n)
p(Popt) — p(Ps) = n?+ O(n)

=2+ o0(1).

o

In proving Theorem 4 we showed that on a accurately worked out family of trees, Simple has a better
performance ratio than Approx-MRN. In practice, however, the latter is much better than Simple (see
Section 4). Moreover, it is not difficult to find a different family of trees for which Simple is also provably
worse.

Given an integer k, let T} be the tree composed by a root r with k£ children w;, each having c leaves
except for u; having ¢ + 1 leaves (see Figure 3). The solution P4 of Approx-MRN on such trees is forced
to use two sets for the leaves of ui, but it uses only one set for the other w;s, hence pr, (u1,Pa) = 2
and p7y (ui, Pa) = 1, for 1 < ¢ < k. At the root we have pr, (r,P4) = k+ 1 and for the whole tree
P, (Pa) =2k +2.

On the other hand, the solution Pg of Simple splits leaves rooted at each u; into two sets and, thus,
pr, (ui, Pp) = 2 for 1 <i <k and still pr, (r, Pg) = k + 1. For the whole tree we have pr, (Pg) = 3k + 1.

Amw

Figure 3: Example of a tree on which Simple solution is worst than the Approx-MRN one. Numbers close
to vertices are the redirections numbers.

4 Experimental results

In order to evaluate the performance of Approx-MRN against realistic datasets, we have executed a number
of experiments on data taken from various sources on the web. We have also compared its performance
with that of Simple, which in some cases can be a viable alternative.

4.1 Datasets
We have collected three different datasets: “Open Directory Project” (ODP), “Yahoo!” and “Arianna”.

Dataset | Documents | Categories

ODP 3,266,779 403, 550
Yahoo! 2,336,117 102, 880
Arianna 54,988 285

Table 1: The datasets.

The first dataset was obtained from a dump of the “Open Directory Project” [13] database (freely
available on-line). The ODP powers core directory services for some of the most popular portals and search
engines on the web, including AOL Search, Netscape Search, Google, Lycos, DirectHit, and HotBot.

The second dataset was obtained by recursively downloading the first 5 levels of the Yahoo! hierarchy
[14] and using the information provided in the pages at the 5-th level to estimate the contents of the
remaining levels of the hierarchy.

The last dataset was kindly provided by the staff of “Arianna” [15], an Italian search engine and web
directory service.

Table 1 summarizes the number of documents (leaves) and categories (internal nodes) for every dataset.

4.2 Algorithms

We implemented two variants of Approx-MRN choosing two different implementations for the BP subroutine
(that, as one can easily check, are both reasonable in the sense of Section 3).

The first, which we call “Half Full Fit” (HFF), is based on a straightforward on-line algorithm that
keeps one open set at a time and packs items until at least half the capacity is used (possibly joining the
two sets with smallest level when all items have been taken care of).

The second, which we call “First Fit Decreasing” (FFD) [9], is based on the well known First Fit
Decreasing Bin Packing strategy.

We also implemented Simple, that, as already pointed out, just packs the leaves traversing the frontier
of the tree from left to right using for every set all the available capacity.

We use Simple mainly as a benchmark to test the effectiveness of the more complicated strategies of
Section 3.

4.3 Performance evaluation

We run HFF, FFD and Simple on the three datasets for different capacity c. We choose the values of ¢
according to the number of documents in the datasets, so that the resulting number of sets in the partition
(number of needed servers) ranges from tens to thousands.

For every run, we computed the following measures:

1. the number |P| of sets in the partition,

2. a measure of extra space used, defined as k = |P|/[|L|/c],
3. the total number of redirections p(P),

4. the average number of extra redirections x(P).

Observe that the first two measures are related to the space efficiency, while the last two to the query
efficiency.

Capacity | Algorithm |P] K p(P) | x(P)
HFF 1,132 | 0.3856 | 407,884 | 0.0107
4000 | FFD 827 | 0.0122 | 406,767 | 0.0080
Simple 817 | 0.0000 | 409,300 | 0.0142
HFF 564 | 0.3790 | 405,500 | 0.0048
8000 | FFD 413 | 0.0098 | 405,005 | 0.0036
Simple 409 | 0.0000 | 406,416 | 0.0071
HFF 280 | 0.3659 | 404,414 | 0.0021
16000 | FFD 207 | 0.0098 | 404,202 | 0.0016
Simple 205 | 0.0000 | 404,988 | 0.0036
HFF 144 | 0.3981 | 403,943 | 0.0010
32000 | FFD 104 | 0.0097 | 403,840 | 0.0007
Simple 103 | 0.0000 | 404,268 | 0.0018
HFF 74 | 0.4231 | 403,727 | 0.0004
64000 | FFD 53 | 0.0192 | 403,676 | 0.0003
Simple 52 | 0.0000 | 403,906 | 0.0009
HFF 33 | 0.2692 | 403,617 | 0.0002
128000 | FFD 27 | 0.0385 | 403,601 | 0.0001
Simple 26 | 0.0000 | 403,731 | 0.0004
Table 2: Experiments on the ODP dataset.
Capacity | Algorithm | |P| K p(P) | x(P)
HFF 836 | 0.4291 | 106,769 | 0.0378
4000 | FFD 587 | 0.0034 | 105,573 | 0.0262
Simple 585 | 0.0000 | 106,828 | 0.0384
HFF 410 | 0.3993 | 104,606 | 0.0168
8000 | FFD 294 | 0.0034 | 104,095 | 0.0118
Simple 293 | 0.0000 | 104,852 | 0.0192
HFF 200 | 0.3605 | 103,623 | 0.0072
16000 | FFD 148 | 0.0068 | 103,423 | 0.0053
Simple 147 | 0.0000 | 103,871 | 0.0096
HFF 101 | 0.3649 | 103,203 | 0.0031
32000 | FFD 74 | 0.0000 | 103,120 | 0.0023
Simple 74 | 0.0000 | 103,376 | 0.0048
HFF 50 | 0.3514 | 103,018 | 0.0013
64000 | FFD 37 | 0.0000 | 102,985 | 0.0010
Simple 37 | 0.0000 | 103,128 | 0.0024
HFF 24 | 0.2632 | 102,934 | 0.0005
128000 | FFD 19 | 0.0000 | 102,922 | 0.0004
Simple 19 | 0.0000 | 103,003 | 0.0012

Table 3: Experiments on the Yahoo! dataset.

Capacity | Algorithm | |P]| k| p(P)| x(P)
HFF 758 | 0.7227 | 2,602 | 8.1298

125 | FFD 461 | 0.0477 | 1,684 | 4.9088
Simple 440 | 0.0000 | 1,784 | 5.2596

HFF 329 | 0.4955 | 1,182 | 3.1474

250 | FFD 239 | 0.0864 928 | 2.2561
Simple 220 | 0.0000 | 1,032 | 2.6211

HFF 153 | 0.3909 646 | 1.2667

500 | FFD 117 | 0.0636 565 | 0.9825
Simple 110 | 0.0000 656 | 1.3018

HFF 76 | 0.3818 441 | 0.5474

1000 | FFD 58 | 0.0545 404 | 0.4175
Simple 55 | 0.0000 469 | 0.6456

HFF 39 | 0.3929 355 | 0.2456
2000 | FFD 29 | 0.0357 337 | 0.1825
Simple 28 | 0.0000 | 377 | 0.3228

HFF 19 | 0.3571 313 | 0.0982
4000 | FFD 15 | 0.0714 307 | 0.0772
Simple 14 | 0.0000 331 | 0.1614

Table 4: Experiments on the Arianna dataset.

4.4 Discussion

For what concerns the measure k, Simple obviously achieves k = 0 while FFD is usually slightly better
than HFF. On the other hand, both FFD and HFF give better figures for x7(P) than Simple; also in this
case FFD is slightly preferable over HFF.

Empirical evidence seems to suggest that allowing for very little extra space, can be instrumental to
achieving a dramatic improvement for the average number of extra redirections. For example, figures in
Table 2 for capacity 128,000, show that an increase of 4% in the size leads to a 400% improvement in the
average number of extra redirections, while figures in Table 3 (for the same capacity), show that even with
the same number of servers used one can have a 300% improvement.

In a system where queries are in the order of thousands per second, this can lead to great advantages.

4.5 Implementation details

The measure p(P) can be computed efficiently according to the following scheme.
Number the leaves of the tree according to a post-order visit. Now visit again the tree and,

e if you are at a leaf, mark with its number the set of the partition containing it,

e if you are at an internal node v, first visit all of its children, and then count how many sets in the
partition have a mark between the minimum and maximum leaf number of the subtree S(v). As one
can check, such value is pr(v, P).

If the data structure representing a leaf of the tree maintains a pointer to the partition containing it,
marking requires constant time for every leaf, while counting the number of sets in P with a number within
a given interval can be done in O(|P|) time. Hence, the measure pr(P) can be computed in O(|T||P|) time
(and linear space).

For what concerns the implementation of Approx-MRN, in order to achieve a reasonable running time,
we had to employ a slightly more complicated data structure.

10

We represented the partition of the leaves by means of a Union-Find data structure endowed with an
additional doubly linked list (dll) that keeps track of the root of every tree in the Union-Find forest, i.e.,
of the sets in the partition. Updating the dll after a union operation requires extra constant time with
respect to the usual Union-Find implementation.

We can take advantage of the dll to implement the Approx-MRN very efficiently. Indeed, for every
recursive call, with small extra effort, one can maintain the head and tail of the sub-dll corresponding to
the collection of sets in input to the BP subroutine, instead of scanning every time the Union-Find forest
to look for the roots.

5 Conclusions and further work

We believe that a careful investigation of the computational problems underlying the efficient management
of a hierarchical document space is worthwhile. In particular it becomes crucial if one aims at fully
exploiting hierarchical systems on large scale data sets. This paper is a first step towards this goal, and has
provided some guidelines concerning potential advantages of a well designed distribution of the document
collection among the servers.

A possible direction for further investigations on the subject of this paper is the study of the impact of
different (i.e., non uniform) distributions of user’s query on the measure of redirections.

Another obvious direction concerns the addition of incrementality in the document collection under
different hypotheses on the ratio of change in the document collection itself.

References

[1] S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghavan, Scalable feature selection, classification and
signature generation for organizing large text databases into hierarchical topic taxonomies, The VLDB
Journal 7 (1998), 163-178.

[2] C.Chekuri, M. H. Goldwasser, P. Raghavan, and E. Upfal, Web Search Using Automatic Classification,
Proc. Sizth Int. World Wide Web Conference, Santa-Clara, CA, 1997.

[3] P. Crescenzi, V. Kann, A compendium of NP optimization problems,
http://www.nada.kth.se/theory/problemlist.html.

[4] 1. S. Dhillon, J. Fan, and Y. Guan, Efficient clustering of very large document collections, Data Mining
for Scientific and Engineering Applications, R. Grossman, G. Kamath, and R. Naburu editors, Kluwer
Academic Publishers, 2001.

[5] I. S. Dhillon and D. S. Modha, A data clustering algorithm on distributed memory multiprocessing,
Large-Scale Parallel Data Mining, Lecture Notes in Artificial Intelligence, Volume 1759, pp. 245-260,
2000 (also appears Proc. Large-scale Parallel KDD Systems Workshop, ACM SIGKDD, 1999).

[6] S. Dumais and H. Chen, Hierarchical Classification of Web Content, Proceedings of the 23rd ACM
SIGIR, Athens, Greece, 2000.

[7] O. Frieder, D. Chowdhury, D. A. Grossman, and G. Frieder, Efficiency Considerations for
Scalable Information Retrieval Servers, Journal of Digital information, 1 (2000). Available at
http://jodi.ecs.soton.ac.uk/Articles/v01/i05/Frieder/.

[8] M. R. Garey, and D. S. Johnson, Computers and Intractability: a guide to the theory of NP-
completeness, W. H. Freeman Company, San Francisco, 1979.

[9] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham, Worst-case performance
bounds for simple one-dimensional packing algorithms, SIAM J. of Computing 3 (1974), 299-325.

11

[10] N. Karmarkar, R. M. Karp, An efficient approximation scheme for the one-dimensional bin packing
problem, Proc. 23"% Ann. IEEE Symp. on Foundations of Computer Science, 1982, 312-320.

[11] D. Simchi-Levi, New worst case results for the bin packing problem, Naval Res. Logistics 41 (1994),
579-585.

[12] R. Weiss, B. Velez, M. Sheldon, C. Namprempre, P. Szilagyi, A. Duda, and D. Gifford, Hypursuit: A
hierarchical network search engine that exploits content-link hypertext clustering, Proceedings of the
Seventh ACM Conference on Hypertert, Washington USA, 1996.

[13] http://www.dmoz.org/
[14] http://www.yahoo.com/

[15] http://arianna.libero.it/

12

	cover25.pdf
	Consiglio Nazionale delle Ricerche
	Efficient Strategies for Partitioning and Querying a Hierarc
	Iit

