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ON THE HARDNESS OF

APPROXIMATING THE PERMANENT OF

STRUCTURED MATRICES

Bruno Codenotti, Igor E. Shparlinski,
and Arne Winterhof

Abstract. We show that for several natural classes of “structured”
matrices, including symmetric, circulant, Hankel and Toeplitz matrices,
approximating the permanent modulo a prime p is as hard as computing
its exact value. Results of this kind are well known for arbitrary matri-
ces. However the techniques used do not seem to apply to “structured”
matrices. Our approach is based on recent advances in the hidden num-
ber problem introduced by Boneh and Venkatesan in 1996 combined with
some bounds of exponential sums motivated by the Waring problem in
finite fields.
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1. Introduction

Given a matrix X = (xij)
n
i,j=1 over a ring, we denote by perX its permanent ,

that is,

perX =
∑

σ∈Sn

n∏

i=1

xiσ(i),

where Sn denotes the symmetric group acting on {1, . . . , n}.
The permanent has attracted a lot of attention in mathematics and com-

puter science (Minc 1982). It is well known that, unless a very strong com-
plexity conjecture is false, the permanent is very hard to compute. In technical
terms, the permanent is ]P-complete. Thus in a number of papers various ap-
proximability and non-approximability properties of the permanent have been
considered, taking into account randomized algorithms as well. In particu-
lar, it has been shown by Cai et al. (1999) that randomized polynomial time
algorithms cannot compute the permanent correctly even on a very small frac-
tion of the instances, unless P]P = BPP. Recall that the class ]P is the class
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of functions counting the number of accepting computations in a nondeter-
ministic polynomial time Turing machine (see Valiant 1979a,b,c), while the
class BPP is the analogue of the class P for probabilistic computations (with
bounded error). The inapproximability results mentioned above apply to arbi-
trary matrices and take advantage of the random self-reducibility properties of
the permanent (see Cai et al. 1999; Feige & Lund 1996/1997; Linial et al. 1998
and references therein). Such results should be contrasted with the random-
ized polynomial time approximation schemes, which apply to matrices with
nonnegative entries (Jerrum et al. 2000).

On the other hand, despite a variety of results on permanents of struc-
tured matrices, little is known on the computational complexity of structured
permanents, except for very special cases.

Here we propose an alternative approach which allows us

◦ to obtain conditional non-approximability results for symmetric matrices,

◦ to prove a connection between approximation and exact computation
for circulant, Hankel and Toeplitz matrices, and, more generally, for all
classes of matrices which are closed under scalar multiplication. For more
on these matrices and on other interesting families of matrices closed
under scalar multiplication, the reader is encouraged to see Pan (2001).

We recall that a square matrix X = (xij)
n
i,j=1 is a Hankel matrix if its entries

xij depend only on i + j, and a Toeplitz matrix if its entries xij depend only
on i − j. Circulant matrices are a special family of Toeplitz matrices, whose
entries xij depend only on i− j (mod n).

For these classes of matrices over a finite field Fp of p elements, where p is
prime, we prove that if computing the permanent is hard then approximating
the permanent is hard as well.

More precisely, if PERMn,µ denotes an oracle which, given any matrix X
over Fp from a family which is closed under scalar multiplication, outputs an
approximation to perX, we prove that there exists an efficient probabilistic
algorithm which makes polynomially many calls to PERMn,µ and evaluates
perX correctly with high probability. This reduction works for rather crude
approximations to perX.

This approach certainly applies to general matrices as well, although in this
case Theorems 1.7 and 1.9 of Feige & Lund (1996/1997) give a much stronger
result. However, the method of proof does not apply to structured matrices.
Indeed, the transformation described in the proof of Theorem 5.2 of Feige &
Lund (1996/1997) does not preserve structural properties as being symmetric
or Toeplitz.
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Our method takes advantage of recent advances in the hidden number prob-
lem, a problem introduced by Boneh & Venkatesan (1996, 1997). The approach
of Boneh & Venkatesan (1996, 1997) (which is based on lattice reduction al-
gorithms) combined with exponential sum techniques has led to a number of
results in cryptography and complexity theory (González Vasco & Shparlinski
2001, 2002; Li et al. 2002; Mahassni et al. 2001; Nguyen & Shparlinski 2002,
2003; Shparlinski 2001a,b, 2002; Shparlinski & Winterhof 2003).

Here we show that the above combination of two celebrated techniques,
lattice reduction and bounds of exponential sums, can be applied to studying
the permanent.

For integers s and p ≥ 1 we denote by bscp the remainder of s on division
by p.

For an integer p and a real η > 0 we denote by APPROXη,p(t) any integer
u which satisfies the inequality

(1.1) | btcp − u| <
p

2η+1
.

Thus, roughly speaking, if η is an integer, then APPROXη,p(t) is an integer
having about η most significant bits same as btcp. However, this definition is
more flexible and better suited to our purposes. In particular we remark that
η in inequality (1.1) need not be an integer.

We always assume that the field Fp consists of elements {0, . . . , p− 1}, so
that we can apply APPROXη,p to elements of Fp.

Using the above notation, we can formulate the hidden number problem as
follows:

Let α ∈ Fp. Assuming we have access to values APPROXη,p(αt),
for some η > 0 and for many known random values t ∈ F∗p, recover
the number α.

It is clear that the only case of interest occurs when η < log p. In Boneh &
Venkatesan (1996) a polynomial time algorithm has been given which recovers α
for η ∼ log1/2 p. However it has turned out that for many applications the prop-
erty that t is randomly selected from F∗p is too restrictive (see González Vasco &
Shparlinski 2001, 2002; Li et al. 2002; Mahassni et al. 2001; Nguyen & Shpar-
linski 2002, 2003; Shparlinski 2001a,b, 2002; Shparlinski & Winterhof 2003).
For those applications one has rather to study the case when t is selected at
random from a certain sequence T of elements from Fp. The above papers
show that the uniformity of distribution properties of T plays a crucial role
and thus exponential sums have been brought into the problem. However,
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for some sequences, for example, for very small multiplicative subgroups of F∗p
such uniformity results are not available. To deal with this case, in Shparlinski
& Winterhof (2003) a modification of the basic algorithm has been proposed
which replaces the sequence T with the sequence of all k-sums of the elements
of this sequence. This change usually amplifies the uniformity of distribution
properties up to the required level. In Shparlinski & Winterhof (2003) this ap-
proach has been applied to proving a bit security result for the Diffie–Hellman
scheme. Here we use the same approach to study permanents.

Throughout the paper log x always denotes the binary logarithm of x > 0
and the constants in the ‘O’-symbols may occasionally, where obvious, depend
on a small positive parameter ε and are absolute otherwise. We always as-
sume that p is a prime number with p ≥ 5, thus the expressions log log p and
log log log p are defined (and positive).

2. Hidden number problem and Waring
problem in finite fields

We recall that the discrepancy D(Ω) of a sequence Ω = (ων)
N−1
ν=0 of N elements

of the interval [0, 1] is defined as

D(Ω) = sup
J⊆[0,1]

∣∣∣∣
A(J,N)

N
− |J |

∣∣∣∣ ,

where the supremum is extended over all subintervals J of [0, 1], |J | is the length
of J , and A(J,N) denotes the number of points ων in J , for 0 ≤ ν ≤ N − 1.
For our purposes we also need the following definition. We say that a finite
sequence T of elements of Fp is ∆-homogeneously distributed modulo p if for
any a ∈ F∗p the discrepancy of the sequence (batcp /p)t∈T is at most ∆.

Our principal tool is the following statement which is Lemma 4 of Nguyen
& Shparlinski (2002) and which is a generalization of Theorem 1 of Boneh &
Venkatesan (1996). The proof makes use of an approximation algorithm for
the closest vector problem in a lattice and follows the same lines as the proof
of Theorem 1 of Boneh & Venkatesan (1996).

Lemma 2.1. Let ω > 0 be an arbitrary absolute constant. For a prime p,
define

η =

⌈
ω

(
log p log log log p

log log p

)1/2⌉
, d =

⌈
3 log p

η

⌉
.

Let T be a sequence of elements of Fp, 2−η-homogeneously distributed mod-
ulo p. There exists a probabilistic polynomial time algorithm A such that for
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any α ∈ Fp, given as input the prime p, d elements t1, . . . , td ∈ T , and d integers

ui = APPROXη,p(αti), i = 1, . . . , d,

for sufficiently large p, its output satisfies

Pr[A(p, t1, . . . , td; u1, . . . , ud) = α] ≥ 1− p−1,

where the probability is taken over all t1, . . . , td chosen uniformly and indepen-
dently at random from the elements of T and over all random choices of the
algorithm A.

For a prime p and z ∈ Fp we use the notation

ep(z) = exp(2πiz/p).

Thus, we see that in order to use Lemma 2.1 we need to establish a certain
uniformity of distribution property of the sequence T which naturally leads to
a problem of estimating exponential sums with elements of our sequence T .

By Theorem 1 of Konyagin (1992) we have the following bound (see also
Cochrane et al. 2003; Konyagin 2002; Konyagin & Shparlinski 1999).

Lemma 2.2. For any 0 < ε < 1 there exists a constant c(ε) > 0 such that for
any integer n with

n ≤ p(log log p)1−ε

log p

we have the bound

max
a∈F∗p

∣∣∣
∑

λ∈F∗p

ep(aλ
n)
∣∣∣ ≤ p

(
1− c(ε)

(log p)1+ε

)
.

Unfortunately the bound of Lemma 2.2 is too weak to be applied directly.
We however apply it to k-sums of nth powers of elements of Fp.

For integers k, n ≥ 1 and an element t ∈ Fp we denote by Nk,n,p(t) the
number of solutions of the equation

λn1 + · · ·+ λnk = t, λ1, . . . , λk ∈ F∗p.
The problem of finding the smallest possible value of k for which the congru-
ence (or in more traditional settings the corresponding equation over Z) has a
solution for any t is known as the Waring problem. However for our purposes
just solvability is not enough. Rather we need an asymptotic formula for the
number of solutions.

We show that Lemma 2.2 can be used to prove that for reasonably small k,
Nk,n,p(t) is close to its expected value.
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Lemma 2.3. For any 0 < ε < 1 there exists a constant C(ε) > 0 such that for
any integer n with

n ≤ p(log log p)1−ε

log p

the bound

max
t∈Fp

∣∣∣∣Nk,n,p(t)−
(p− 1)k

p

∣∣∣∣ ≤
(p− 1)k

p2

holds for any integer k ≥ C(ε)(log p)2+ε and sufficiently large p.

Proof. The well known identity (see for example Lidl & Niederreiter 1997,
Chapter 5.1)

∑

a∈Fp
ep(au) =

{
0 if u ∈ F∗p,
p if u = 0,

implies that

Nk,n,p(t) =
∑

λ1,...,λk∈F∗p

1

p

∑

a∈Fp
ep(a(λn1 + · · ·+ λnk − t))

=
1

p

∑

a∈Fp
ep(−at)

(∑

λ∈F∗p

ep(aλ
n)
)k
.

Separating the term (p−1)k/p, corresponding to a = 0, and applying Lemma 2.2
to other terms, we obtain

max
t∈Fp

∣∣∣∣Nk,n,p(t)−
(p− 1)k

p

∣∣∣∣ ≤ (p− 1)k
(

1 +
1

p− 1

)k−1(
1− c(ε)

(log p)1+ε

)k

and the desired result follows. �
Assume that for α ∈ F∗p and an integer n ≥ 1 we are given an oracle

HNPn,µ,p such that for every λ ∈ F∗p, it returns APPROXµ,p(αλ
n).

Lemma 2.4. Let ϑ > 0 be an arbitrary absolute constant and let

µ = ϑ

(
log p log log log p

log log p

)1/2

.

There exists a polynomial time probabilistic algorithm which, for any 0 < ε < 1
and any integer n with

n ≤ p(log log p)1−ε

log p
,

makes O(µ−1(log p)3+ε) calls of the oracle HNPn,µ,p and then recovers α with
probability at least 1 +O(2−µ/2).
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Proof. Take C(ε) from Lemma 2.3, and set

k = dC(ε)(log p)2+ε)e, η = 2µ/3, d = d3η−1 log pe.
Then by Lemma 2.3 the sequence

T = (λn1 + · · ·+ λnk | λ1, . . . , λk ∈ F∗p)
of k-sums of nth powers of elements of F∗p is 2−η-homogeneously distributed
modulo p. Now we call the oracleHNPn,µ,p for dk uniformly and independently
at random chosen

λ11, . . . , λ1k, . . . , λd1, . . . , λdk ∈ F∗p
and get integers uhj with

|bαλnhjcp − uhj | < p/2µ+1, h = 1, . . . , d, j = 1, . . . , k.

For h = 1, . . . , d we put

vh =
k∑

j=1

⌊
αλnhj

⌋
p
, th =

⌊ k∑

j=1

λnhj

⌋
p
, uh =

k∑

j=1

uhj

(where we used addition over Z).
Note that for sufficiently large p,

|vh − uh| < kp/2µ+1 ≤ p/2η+1.

Next, we have

vh − uh − bvhcp + buhcp = νp with ν ∈ {−1, 0, 1}.
If ν = 1 then we obtain

bvhcp − buhcp + p = |vh − uh| < p/2η+1,

which is only possible if bvhcp > p− p/2η+1. If ν = −1 then we obtain

buhcp − bvhcp + p = |vh − uh| < p/2η+1

which is only possible if bvhcp < p/2η+1. If ν = 0 then we obtain

| bαthcp − buhcp | = | bvhcp − buhcp | = |vh − uh| < p/2η+1.

By Lemma 2.3, the probability that p/2η+1 ≤ bvhcp ≤ p − p/2η+1 for all h =
1, . . . , d is 1 +O(d2−η). Now the algorithm of Lemma 2.1 yields the correct α
with probability at least 1 + O(d2−η + p−1) = 1 + O(2−µ/2) if p is sufficiently
large. �
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3. Main result

In this section, we exploit the advances in the hidden number problem to
prove our main results. Roughly speaking, we show that approximating the
permanent of matrices which belong to a class which is closed under scalar
multiplication is as hard as computing it. We then use the known fact that
the permanent of general matrices is hard to compute (unless P]P = BPP) to
prove a hardness result for symmetric matrices.

In the following, we give some definitions, and we state and prove these
results.

We say that a class Mn of n × n matrices with entries from Fp is closed
under scalar multiplication if for any X = (xij)

n
i,j=1 ∈ Mn and any λ ∈ F∗p we

also have Xλ = (λxij)
n
i,j=1 ∈Mn.

Recall that PERMn,µ denotes an oracle which, given any X ∈Mn, outputs
APPROXµ,p(perX).

Theorem 3.1. Let ϑ > 0 and ε > 0 be arbitrary constants. Then for any
class Mn of matrices over Fp which is closed under scalar multiplication, of
size

n ≤ p(log log p)1−ε

log p
,

there exists a probabilistic algorithm running in time polynomial in n and log p
which for any X ∈Mn makes polynomially many calls to the oracle PERMn,µ

with

µ =

⌈
ϑ

(
log p log log log p

log log p

)1/2⌉

and evaluates perX correctly with probability at least 1 +O(2−µ/2).

Proof. Given X ∈Mn, let us select λ ∈ F∗p uniformly at random, compute
Xλ and use the oracle PERMn,k with input Xλ to evaluate

APPROXη,p(perXλ) = APPROXη,p(λ
n perX).

By Lemma 2.4, repeating this procedure O(µ−1(log p)3+ε) times, we obtain the
desired result. �

Corollary 3.2. For any constants δ > 0 and A ≥ 1 there is a constant C > 0
depending only on δ and A such that the following statement holds true. If
for some constant ϑ > 0 there is a probabilistic polynomial time algorithm
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which, with exponentially small failure probability, achieves an approximation
of APPROXη,p(perS) with

η =

⌈
ϑ

(
log p log log log p

log log p

)1/2⌉

to the permanent of an n×n symmetric matrix S over Fp for at least δQ log−AQ
primes p of the interval [Q, 2Q] with some Q satisfying

Q ≥ Cn logA n and logQ = nO(1)

and returning an error message for other primes, then P]P = BPP.

Proof. We show that the above algorithm can be transformed to a proba-
bilistic algorithm to compute the permanent of symmetric n×n binary matrices
(that is, matrices with 0, 1-entries). The latter problem is ]P-complete, as fol-
lows from the easy reduction, mapping any arbitrary n × n binary matrix X
to the 2n× 2n symmetric matrix

S =

[
0 X
XT 0

]
,

whose permanent is the square of the permanent of X, perS = (perX)2.
Given any symmetric n × n binary matrix S, it is obvious that 0 ≤ perS

≤ n!.
Let us set

` =

⌈
n log n

logQ

⌉

and let us choose ` primes in the interval [Q, 2Q] for which there exists an
algorithm A in the condition of the theorem.

We can build a set L of such primes iteratively by just selecting random
integers in the interval [Q, 2Q] and testing them for primality by the algorithm
of Agrawal et al. (2002) (one can also use one of any of the polynomial time
probabilistic primality tests, see Bach & Shallit 1996; Crandall & Pomerance
2001), and then whether they are already on the list and whether they are such
that the algorithm A works for them.

We remark that because of the conditions on Q we have ` < 0.5δQ log−AQ
for an appropriately chosen constant C > 0. Thus at each of the ` steps we
have at least δQ log−AQ − ` > 0.5δQ log−AQ “suitable” primes. Hence each
step takes only (logQ)O(1) = nO(1) binary operations.
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We also see that each p ∈ L satisfies n = O(Q log−1Q) = O(p log−1 p),
so Theorem 3.1 applies. Therefore the approximation algorithm A can be
transformed into a probabilistic algorithm to compute bperScp for each p ∈ L.
Thus using the Chinese Remainder Theorem, in time polynomial in ` and logQ,
and thus in n, we can compute perS modulo

∏

p∈L
p > Q` ≥ n! ≥ perS

and hence find the actual value of perS.
The assertion now follows by applying a result by Cai et al. (1999), who have

proved that the existence of a probabilistic algorithm correctly computing the
permanent of a matrix for any inverse polynomial fraction of all inputs implies
the unlikely collapse P]P = BPP. �

4. Remarks

Note that, although the traditional measure for the size of an n× n matrix X
over Fp is about n2 log p, some matrices admit a much shorter description. For
example, an s-sparse circulant matrix, with only s non-zero entries per row,
can be described by only O(s log np) bits. For such matrices it is enough to
specify s pairs (mν , xν), ν = 1, . . . , s, where mν , 1 ≤ mν ≤ n, is the position
of the νth non-zero entry xν ∈ Fp in the first row. In this case, provided that
the oracle PERMn,k accepts such a description, the algorithm of Theorem 3.1
becomes polynomial in s lognp.

Using this setting, one can consider an analogue of Theorem 3.1 for the
determinant as well. Indeed, although the determinant is an “easy” function
for dense matrices, it is not clear whether for s-sparse circulants it can be
computed in time polynomial in s lognp. Moreover, an analogue of Theorem 3.1
and its modification for matrices with “short description” holds for the much
wider class of matrix functions known as immanants , whose complexity has
been studied, for example, by Bürgisser (2000a,b). Immanants are expressions
of the form

immχX =
∑

σ∈Sn
χ(σ)

n∏

i=1

xi,σ(i),

where χ : Sn → C is an irreducible character of the symmetric group Sn.
The trivial character χ(σ) = 1 corresponds to the permanent, the alternating
character χ(σ) = sign σ corresponds to the determinant. Because for any
character χ we have immχXλ = λn immχX, the result of Theorem 3.1 holds
for immχX instead of just perX without any other changes.
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Our approach can also be used to prove the hardness of modular approxi-
mation of several other polynomial functions, such as cycle format polynomials
and the factor polynomials (see Section 3.3 of Bürgisser 2000a). In fact, our
technique applies without any changes to any function F on matrices for which
F (Xλ) = λmF (X) with some integer m ≥ 1 (depending only on the dimension
n of X).
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