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Optimal Capacity ofp-Persistent CSMA Protocols
Raffaele Bruno, Marco Conti, and Enrico Gregori

Abstract—In this letter we deal with the characterization and
computation of the value, say opt, corresponding to the max-
imum protocol capacity in -persistent carrier-sense multiaccess
(CSMA) protocols. The contribution of this letter is twofold. First,
we give an analytical justification, and a numerical validation of
a heuristic formula widely used in the literature to characterize
the opt. Second, we provide closed formulas for the opt, and
we show that the optimal capacity state, given the message length
distribution, is characterized by an invariant figure: the opt

product.

Index Terms—Capacity, carrier sense multiaccess, wireless net-
works.

I. INTRODUCTION

CARRIER-SENSE multiaccess (CSMA)-BASED access
schemes have been usually adopted for wireless multiac-

cess networks due to the inherent flexibility of random access
protocols. Recently, the performance analysis of-persistent
CSMA protocols have gathered a renewed interest since the
behavior of the IEEE 802.11 MAC protocol [7] can be closely
studied by a -persistent CSMA model (see [1] and [2]).
Due to the limited wireless channel bandwidth, a significant
performance index for wireless (LANs) is the protocol ca-
pacity, i.e., the maximum channel utilization achievable by the
access scheme. In [3] it was shown that the channel utilization
in -persistent CSMA protocols is strongly affected by the
adopted value. Specifically, small values cause large delays
due to collisions, while large values degrade the protocol
capacity forcing the channel to be idle. A tradeoff between
small and large values is therefore necessary. In this letter we
prove that this tradeoff problem reduces to identify thevalue
that balances the time wasted in collisions with the time spent
listening to the channel. It is worth pointing out that a similar
balancing equation was already proposed for optimizing the
performance of the Slotted-Aloha [4] and-persistent IEEE
802.11 [2] protocols. However, in previous papers the use
of this balancing equation was motivated only by simple
heuristic considerations. In particular, in [2] it was analyzed
the -persistent IEEE 802.11 protocol where the messages
length were geometrically distributed, and it was numerically
shown that the balance between collisions’ durations and idle
times is a valid approximation of the optimal capacity state.
On the other hand, in this work we analytically investigate the
optimal capacity state to formally prove that for the family of
-persistent CSMA protocols, independently of the message

length distribution, the balance between collisions’ durations
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and idle times is asymptotically exact (i.e., it is exact for a large
number of active stations). Finally, the proposed balancing
equation is also exploited to derive approximated closed
formulas for the value, that constitute a very compact and
powerful characterization of the maximum protocol capacity in
-persistent CSMA protocols.

II. PROTOCOLMODEL

We consider a system with active stations accessing a
slotted multiaccess channel. The random access protocol for
controlling this channel can be either a Slotted-Aloha or a-per-
sistent CSMA algorithm. In the first case (i.e., Slotted-Aloha),
the stations transmit constant-length messages with lengththat
exactly fits in a slot of length . In the second case (i.e.,
CSMA), the message length is a random variablewith av-
erage . To simplify the presentation we will assume that the

values always correspond to an integer number of slots. In
both cases (i.e., slotted-Aloha and CSMA), when a transmis-
sion attempt is completed (successfully, or with a collision),
each network station with packets ready for transmission (here-
after backlogged station) will start a transmission attempt with
probability . To study the channel utilization,, for -persistent
CSMA protocols we observe the channel between two consec-
utive successful transmissions. Let us denote withthe time
between the th and the th successful transmission, also
referred to as theth virtual transmission time, and with the
duration of the th successful transmission. Hence, the channel
utilization can be expressed as

(1)

By denoting with the average duration of a successful
transmission (i.e., according to our protocol model) and with

the average time between two consecutive successful
transmissions, and by assuming that both and exist
and are finite, then (1) can be written as

(2)

The formula can be obtained by considering the behavior
of the -persistent CSMA protocols. Specifically, by denoting
with the number of collisions that occur during, the fol-
lowing relationship holds:

where, with reference to, is the duration of theth (pos-
sible null) idle time that precedes the channel busy period (either
collision or success), is the duration of the th collision
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given that a collision occurs, and is the length of the suc-
cessful transmission. Hence

(3)

With routine algebraic manipulations (3) can be rewritten as

(4)
where is the average number of collision in a virtual
transmission time, and is the average duration of a
collision, given that a collision occurs. The unknown quantities
in (4) are derived in Lemma 1 of [2] under the assumptions: 1)
all the stations adopt a-persistent CSMA algorithm to access
the channel; 2) all the stations operate in saturation conditions,
i.e., they have always a message waiting to be transmitted; and
3) the message lengths are random variables identically and
independently distributed.

As shown in [2], the channel utilization is a function of the
protocol parameter, the number of active stations and the
message length distribution. is a constant value, given the
message length distribution. The protocol capacity, say ,
can thus be obtained by finding thevalue, say , that min-
imizes

(5)

For instance, for the Slotted-Aloha access scheme thevalue
is calculated by considering in (5) constant length messages
which transmission occupies one . Hence, by solving (5)
we obtain that and (see also

[5]). Unfortunately, from (5) it is not possible to derive an exact
closed formula for the value in the case of a general mes-
sage-length distribution. Equation (5) can be adopted to numeri-
cally derive the optimal capacity state in an off-line analysis, but
it is necessary to derive a simple, yet approximate, relationship
to characterize the value corresponding to the optimal capacity.

III. A B ALANCING EQUATION TO DERIVE A QUASI-OPTIMAL

CAPACITY STATE

Lemma 1 below shows that, asymptotically, in-persistent
CSMA protocols the optimal capacity state is characterized by
the balancing between collisions’ durations and idle times.

Lemma 1: For and , the value that satisfies
(5) can be obtained by solving the following equation:

(6)

where is the average duration of a collision
given that at least a transmission occurs.

Proof: The proof is derived by observing that forvalues
close to the optimal value:i) given a collision, the probability
that more than two stations collide is negligible (as shown in
[6]), hence ; ii ) for

it holds . In fact, the value is a de-
creasing function of the collision length and when (as in
the Slotted-Aloha) the . Hereafter, we assume that

. Under the assumptioni), substituting the expressions

of and (see [2]) in (5), after some algebraic ma-
nipulations, it follows that the value is derived by solving

(7)
Taking the derivative of with respect to , and im-
posing it equal to 0, we obtain the following equation:

(8)

The value is the solution of (8). First we analyze the left
hand side (LHS) of (8). It is easy to observe that the LHS of (8)
is equal to that tends to if is sufficiently
large. Furthermore, , i.e., the prob-
ability that at least a station is transmitting. Under the condition

, the right hand side (RHS) of (8) can be expressed as

(9)

By indicating with the collision probability con-
ditioned to have at least one transmitting station, it holds that

(10)

It is worth noting the similarity between the RHS of (10), and
the RHS of (9). Specifically, the RHS of (9) can be written as

(11)

Hence, it follows that (8) can be rewritten as:

(12)

By dividing all the terms in (12) by , and substituting the
approximation with , (12) becomes

, and this concludes the proof.
Lemma 1 shows that, asymptotically in-persistent CSMA

protocols the optimal capacity state is characterized by the
balancing between collisions’ durations and idle times. To
verify the existence of this relationship for small and medium

values, we numerically solved both (5) and (6) for a wide
range of values, and several message-length distributions.
Specifically, in Fig. 1 we show, for several average message
lengths, the relative error1 between the value, and the
value that solve (6), say . The shown results refer only to a
geometric message-length distribution, however similar results
have been obtained also for the deterministic and bimodal
distributions. Fig. 1 also shows the relative error between
the and the channel utilization measured when all the
stations adopt the value. Results presented in the figures

1The relative error is the difference between the exact value and its approxi-
mation, normalized to the exact value.
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Fig. 1. Relative errors related top and � approximations for a
geometric message-length distribution.

indicate that (6) provides accurate estimates also for
small-medium values. Specifically, (6) provides an ap-
proximation of the protocol capacity with a relative error that
is always lower than 1%. Furthermore, shows a low
sensitiveness to the deviations of thevalue from . In fact,
the relative error related to the approximation is always
a magnitude lower than the relative error related to the
approximation. Finally, the relative errors related to the
and approximations rapidly decreases when the message
length and the network population increase. In the following
we further elaborate (6) to derive a closed formula for the
value.

Lemma 2: In a -station network that adopts a-persistent
CSMA access scheme, in which the message are i.i.d. random
variables, if the stations operate in asymptotic conditions and
the (i.e., the value is much lower than 1),2 the

value is

(13)

Proof: We assume that the value is identified by (6).
By assuming that collisions involve exactly two stations, under
the condition , (6) reduces to

(14)

By solving (14) we obtain (13) and this concludes the proof of
the lemma.

Proposition 1: For large and large , has the fol-
lowing limiting expressions:

(15a)

(15b)

2This is as more correct as bigger is the average message length.

Fig. 2. TheMp product for a geometric message-length distribution.

Proof: Formulas (15a) and (15b) are obtained taking the
limits of (13)

Formulas (15a) and (15b) indicate that, when , the
product mainly depends on the average collision length

but not on the network population size. To confirm this indica-
tion and to validate the above formulas, in Fig. 2 we plot the

product versus the number of stations in the network,
for the geometric message-length distribution.3 In the figure we
report both the exact value obtained by the numerical
solution of (5) and its approximation provided by (15a). The
numerical results are aligned with all previous observations and
confirm the accuracy of (15a). To conclude, it is worth pointing
out that (13), together with either (15a) or (15b), might be used
to define an optimal tuning of the-persistent CSMA proto-
cols. However, in a wireless environment it is difficult to have a
precise knowledge of the number of stations having packets to
transmit. The interested reader is referred to [6], where a simple
feedback-based algorithm that keep
without any knowledge of the number of active station, and/or
the message length distribution, has been proposed and evalu-
ated.
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