
Theoretical Computer Science 290 (2003) 1057–1106
www.elsevier.com/locate/tcs

Analysis of security protocols as open systems�

Fabio Martinelli
Istituto per le Applicazioni Telematiche-C.N.R., via G. Moruzzi 1, I-56100 Pisa, Italy

Received 13 October 2000; received in revised form 17 April 2001; accepted 6 August 2002
Communicated by R. Gorrieri

Abstract

We propose a methodology for the formal analysis of security protocols. This originates from
the observation that the veri.cation of security protocols can be conveniently treated as the
veri.cation of open systems, i.e. systems which may have unspeci.ed components. These might
be used to represent a hostile environment wherein the protocol runs and whose behavior cannot
be predicted a priori. We de.ne a language for the description of security protocols, namely
Crypto-CCS, and a logical language for expressing their properties. We provide an e2ective
veri.cation method for security protocols which is based on a suitable extension of partial
model checking. Indeed, we obtain a decidability result for the secrecy analysis of protocols
with a .nite number of sessions, bounded message size and new nonce generation.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Security protocol analysis; Process algebras; Partial model checking; Temporal logic

1. Overview

The increasingly growing amount of security-sensitive information :owing into com-
puter networks has attracted a lot of interest in the investigation of formal methods for
the de.nition and analysis of the security properties which these systems must ensure.

Computer networks may consist of thousands of geographically distributed com-
puters, and communicating between two of them may involve the exploiting of the
communication features of many others in the network. This results in the need of
establishing secure communication channels, so that the exchanged information is kept
con.dential all through the communication steps (secrecy). Furthermore, the commu-
nicating parties should be sure about the origin of the messages they receive (message

� This paper is a revised and extended version of [35].
E-mail address: fabio.martinelli@iit.cnr.it (F. Martinelli).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00596 -0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37832227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:fabio.martinelli@iit.cnr.it

1058 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

authentication) or the identity of the other parties involved in the communication (en-
tity authentication). Several communication protocols have been developed to try to
solve these problems through cryptography [44]. The messages sent in the network are
usually encrypted, i.e. manipulated so as to make the actual message recoverable only
by the users who know some given information, such as a decryption key; furthermore,
messages are sometimes digitally signed, i.e. manipulated so as to make the message
recoverable by anyone, while making sure it may have been originated only by the
user who knows a certain piece of information, i.e. the signature key.

Cryptography is a fundamental tool for ensuring security properties, but it is not
suBcient by itself, as proved by many :aws found in cryptographic protocols (e.g.,
see [3,13,29,40]). This holds even by assuming cryptography as completely reliable,
i.e. without considering crypto-analysis attacks but only how messages are exchanged
among the parties involved in the protocol. Thus, cryptographic protocols are rec-
ognized to be prone to errors, even though, conceptually, they involve only a few
communication steps between the parties.

Over the last few years, several techniques for .nding :aws in such protocols have
been developed (e.g., see [13,26,27,29,31,37,40,43]). Some of them are based on (.-
nite) state-exploration, and can typically ensure error-freeness for bounded systems
only. Other approaches are based on proof techniques for authentication logic (e.g.,
see [3,21,42]) or process algebra (e.g., see [2,8]). Type systems and other static anal-
ysis techniques have also been successfully exploited (e.g., see [16]).

Our approach is novel in this area. It was spurred by the observation that security
protocols can be conveniently described by open systems. Generally speaking, a system
is open if it has some unspeci.ed components. This un-speci.cation may depend on
several factors: for instance, we are at an early development phase and hence not
all the implementation details are .xed or perhaps we are simply unable to predict
a component’s behavior within a system. In both cases, however, we want to make
sure that, whenever the unspeci.ed component is de.nitely .xed, the resulting system
works properly, e.g. ful.lls a certain property. Thus, the intuitive idea underlying the
veri.cation of an open system is the following: an open system satis.es a property
if and only if, whatever component is substituted to the unspeci.ed one, the whole
system satis.es this property. In the context of formal languages for the description of
system behavior, an open system may be simply regarded as a term of this language
which may contain “holes” (or placeholders). These are the unspeci.ed components.
Consider, for instance, a language for describing concurrent systems such as CCS [38]
or CSP [20] and let | be the operator for representing parallel-running systems; then
A|() and A|B|() may be considered as open systems.

Several situations which commonly arise in computer security analysis may be
regarded as instances of open systems veri.cation, e.g.:
• Security protocols involve several parties sending and receiving information over a

possibly insecure network. We can then imagine a hostile intruder being “present
into” the network and being able to listen, tap into and fake messages to attack the
protocol. Suppose, for instance, having a user A willing to send a message m to
another user B. This situation is usually described through the term A|B. It would be
better to consider instead the open system A|B|(), where the unknown component

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1059

(the hole) may be used to take into account the presence of an intruder whose
behavior we are not able to predict. Note that A and B are not necessarily aware of
the presence of the intruder.

• Sometimes, we also need to consider situations where some of the parties to a
protocol behave maliciously, trying to achieve an advantage for themselves. Indeed,
such parties could not behave as prescribed by the protocol. In the above example, if
we choose not to trust B, then the situation should be properly modeled by analyzing
the context A|(). In contrast with the previous example, where we add information
about the presence of an external intruder, here we remove the information about the
“intended” behavior of a certain user, e.g. B; however, A still assumes the presence of
B with such “intended” behavior. This amounts to require A has a strategy to protect
itself against whatever malicious behavior B may have during the participation to
the protocol.

Thus, when analyzing security-sensitive systems, neither the enemy’s behavior nor the
malicious users’ behavior should be .xed beforehand. This will prevent us from making
unjusti.ed assumptions which could lead to erroneous (and dangerous) veri.cation
results. To sum up, a system should be secure regardless of the behavior the malicious
users or intruders may have, which is exactly a veri.cation problem of open systems. 1

Indeed, our proposal for de.ning security properties as “open systems” properties is
the following (e.g. see [34–36]):

For every component X S |X |= p; (1)

where X stands for the possible enemies, S is the system under examination, consisting
of honest participants, | is the parallel-composition operator, p is a logical formula
expressing the security property and |= is the truth relation. It roughly states that
the property p holds for the system S, regardless of the component (i.e., intruder,
malicious user, hostile environment, etc.) which may possibly interact with it. We can
instantiate the previous idea by assuming the process X is an intruder trying to discover
information which should remain enclosed in the system S. The con.dentiality of this
information may be expressed by the logical formula p. If (1) holds, then the piece
of information would remain unknown to any attacker X of the system S.

However, we need a method to mechanically check the properties expressed as (1).

1.1. The analysis method

We give an outline of our analysis approach, which will be discussed in further
detail in the remainder of this paper.

Note that such properties as (1) look like validity statements of mathematical logic,
i.e.

For every component X X |= p; (2)

where the formula p must be checked for every structure X . The main di2erence is
that in (1) we check the components X in combination with a system S.

1 Note also the analogy between open system veri.cation and game theory issues as remarked in [24].

1060 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

Our aim is to reduce such a veri.cation problem as (1) to such a validity check-
ing problem as (2). To obtain this, we apply and extend the partial model checking
techniques used for the compositional veri.cation of concurrent systems (see [5,25]).

Consider a system S in combination with a process X and try to .gure out if the
whole system S |X enjoys a property expressed by a formula p or not. Then, partial
model checking techniques can be used to .nd the suBcient and necessary condition
on X , expressed by a logical formula pS , so the whole system S |X satis.es p. Brie:y,
we have

S |X |= p i2 X |= pS: (3)

The key to obtaining such results is that the semantics of several formal description
languages is given in the Structured Operational Semantics (SOS) style: there is a set
of premises=conclusion rules which are used to infer the activities of complex systems
starting from the activities of their components. Assume, for example, to have a single
rule, like the following one:

S1
a→ S ′1 S2

b→ S ′2
S1 | S2

a→ S ′1 | S ′2
;

where S a→ S ′ means the system S is able to perform the activity a and evolve in the
system S ′. Then, the semantics of the composition of two systems (S1 | S2) is uniquely
obtained from the semantics of the two components, say S1 and S2. This form of
compositional reasoning simpli.es our task. Suppose to have a set of formulas denoting
system activities and that the formula p means the activity a may be performed.
Assume also that S1

a→ S ′1 holds for some S ′1. Then, a suBcient condition on S2 to
have S1 | S2 satisfying p is simply S2 performing the activity b. This condition may be
described through a formula, say pS1 . However, the behavior of S1 | S2 is completely
determined by the previous SOS rule. Thus, the unique possibility to have the .ring
of the transition a by S1|S2 is through the application of the rule itself. Indeed, the
condition S2 enjoying pS1 turns out to be also necessary. (The actual formal framework
is rather more complex and depends on the logic used and the particular format of SOS
rules, e.g. see [5,25,34].)

Using property (3), such veri.cation problems as in (1) can be easily reduced to
such problems as in (2).

Now, we only need to equip our logic with a suitable validity (satis.ability) deci-
sion procedure. The wide research on temporal logic provides us with several useful
techniques and results. The computational complexity of validity decision procedures
is usually unfeasible. It is however worth noticing that, at least for the properties an-
alyzed in this paper, the validity (satis.ability) problem can be eBciently solved for
formulas obtained after partial model checking, i.e. in polynomial time in their size.
(However, note that the size of the formula could be exponential in the size of the
system analyzed.) A software tool implementing our methodology has actually been
developed [30].
Outline of the paper: The remainder of this paper is organized as follows. Sec-

tion 2 de.nes the language (actually a process calculus) we use for the description of

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1061

cryptographic protocols. Section 3 de.nes a logical language for the de.nition of the
secrecy properties of protocols. Section 4 explains the proposed approach. Section 5
shows examples of our analysis. Finally, Section 6 provides some concluding remarks.
The proofs have been attached in the appendix for readability purposes.

2. Crypto-CCS: an operational calculus for the description of protocols

This section presents the calculus we use for the description of security proto-
cols, which is a slight modi.cation of CCS process algebra [38] using cryptography-
modeling constructs and dealing with secret (con.dential) values (hence the name
Crypto-CCS). The model consists in a set of sequential agents able to communicate
each other by exchanging messages.

To analyze cryptographic protocols, we need to formally model a wide range of func-
tions, such as encryption, decryption, hashing, etc., and each of them enjoys speci.c
algebraic properties which may signi.cantly a2ect the correctness of such protocols.
To manage such variety, we decided to parameterize our calculus through a set of
message-manipulating rules. For the application of these rules, we added a new con-
struct to the calculus. We thus build a framework which is parametric w.r.t. the speci.c
crypto-system used and the way messages are manipulated.

2.1. Types, typed messages and inference systems

Here, we de.ne the data handling part of calculus. First of all, we introduce the
notions of type, message and typed message. Types are used to record the structure
and kind of data. Since certain operations are meaningful only over data with a certain
structure, types permits us to de.ne managing rules that precisely corresponds to these
operations. 2 Messages are the data manipulated by agents and typed messages are
messages whose structure is explicitly represented. We introduce also the notion of
inference system which models the possible operations on typed messages.
Types: Consider a set of symbols BT = {T 1; : : : ; T n} that represent the basic types

and a set of symbols F= {F1; : : : ; Fl} that represent the constructors for structured
types. Assume to have a countable set TV of type variables. Then, the set Types is
de.ned by the following grammar:

t ::= x |T |F1(t1; : : : ; tar(F1)) | : : : |Fl(t1; : : : ; tar(Fl));

where x∈TV; T ∈BT and ar(F) is the number of arguments of the constructor F .
Messages: Consider a collection {T1; : : : ; Tn} of in.nite sets which are pairwise dis-

joint, i.e. Ti ∩ Tj = ∅ when i 	= j. Each set Ti contains the messages of the basic type
T i. Assume to have a countable set V of message variables. Then, the set Msgs of
messages is de.ned by the following grammar:

m ::= x |M |F1(m1; : : : ; mar(F1)) | : : : |Fl(m1; : : : ; mar(Fl));

2 Types will be also useful for de.ning some conditions for our analysis.

1062 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

where x∈V; M ∈ ⋃
j∈{1;:::; n} T

j and ar(F) is as above. (Note that we use the set F
of constructors both for types and messages.)
Typed messages: We can label each message with a type that denotes its structure.

Consider an assignment � that maps message variables to types and let type :Msgs
→
Types be:

type(m) =



�(x) if m = x;

T i if m ∈ Ti ; where i ∈ {1; : : : ; n};
F(type(m1); : : : ; type(ml)) if m = F(m1; : : : ; ml):

Let Tmsgs be the set of typed messages de.ned as {m: type(m) |m∈Msgs}. Types,
messages and typed messages without variables are said to be closed. The set of
closed typed messages of a closed-type T is Tmsgs(T). For the sake of readability, we
sometimes leave out a type from a typed message since this can be inferred from the
message itself. Equality between typed messages means syntactic equality. Furthermore,
we write 〈〈mi :Ti〉〉i∈I , with I = {1; : : : ; n}, for a sequence m1 :T1 : : : mn :Tn.
Inference system: Agents are able to obtain new messages from the set of messages

produced or received through an inference system. This system consists in a set of
inference schemata. An inference schema can be written as

IS =
m1 : t1 · · ·mn : tn

m0 : t0
;

where m1 : t1; : : : ; mn : tn is a set of premises (possibly empty) and m0 : t0 is the con-
clusion. Consider a pair of assignments (�1; �2), with �1 :V
→Msgs; �2 :TV
→Types,
then let m[�1] be the message m where each variable x is replaced with �1(x) (a sim-
ilar de.nition applies to the type t[�2]). Given a sequence of closed typed messages
〈〈m′

1 : t′1; : : : ; m
′
n : t′n〉〉, we say that a closed typed message m : t can be inferred from

〈〈m′
1 : t′1; : : : ; m

′
n : t′n〉〉 through the application of the schema IS (written as 〈〈m′

1 : t′1; : : : ;
m′
n : t′n〉〉 �IS m : t) if there exists a pair of assignments (�1; �2), with �1 :V
→Msgs; �2 :

TV
→Types, s.t. m0[�1] : t0[�2] =m : t and mi[�1] : ti[�2] =m′
i : t

′
i , for i∈{1; : : : ; n}.

(Note that, given 〈〈m′
1 : t′1; : : : ; m

′
n : t′n〉〉, it is decidable whether or not there exists m : t

s.t. 〈〈m′
1 : t′1; : : : ; m

′
n : t′n〉〉 �IS m : t.) A deduction (or proof) for a closed typed message

m : t is a .nite tree, rooted in m : t, whose nodes are messages built from their de-
scendants through the application of an instance of an inference schema. Given an
inference system, we can de.ne an inference function D s.t. if � is a .nite set of
closed messages, then D(�) is the set of closed messages that can be deduced starting
from �. We assume that D(�) is decidable.

Example 2.1. Table 1 shows an inference system for the modeling of cryptographic
functions similar to the one used in [27,31,43]. Consider a set of basic types BT = {Key;
Agents; Nonces} which stand for encryption keys, agent names and random numbers.
Consider also a set of constructors F= {E; (−1); ×} which are, respectively, the
constructors for encryptions, decryption keys and pairs. For instance, the followings
are types: Nonces×Agents; Agents×E(Key; Nonces) (we use the in.x notation for
the pairing construct), E(x; Agents×Agents) (with x∈TV) and Key−1 (we use the

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1063

Table 1
A simple inference system

x : t1 y : t2
(x; y) : t1 × t2

(1)
(x; y) : t1 × t2

x : t1
(2)

(x; y) : t1 × t2
y : t2

(3)

x : t y :Key
E(y; x) :E(Key; t)

(4)
E(y; x) :E(Key; t) y−1 :Key−1

x : t
(5)

Table 2
Inference of m : T from (E(k; m); k−1) :(E(Key; T) × Key−1)

m′ :T ′

E(k; m) :E(Key × T)
(2)

m′ :T ′

k−1 :Key−1 (3)

m :T
(5)

superscript notation for the inverse constructor). Given a set of messages �, then
m :T ∈D(�) i2 m :T can be inferred by the rules (1–5). Rule 1 builds the pairs of
two messages; Rules 2 and 3 are used to obtain the components of a pair; Rule 4
allows messages to be encrypted using a key, while Rule 5 allows messages to be
decrypted using the corresponding inverse key. Consider the closed typed message
m′ :T ′ = (E(k; m); k−1) : (E(Key; T)×Key−1) (note we use commas to separate mes-
sages in pairs). Then, m :T ∈D({m′ :T ′}) since there exists a deduction of m :T from
m′ :T ′ (see Table 2).

2.2. Agents and systems

We de.ne the control part of our calculus for the description of cryptographic pro-
tocols. Basically, we consider (compound) systems which consist of sequential agents
running in parallel. A sequential agent may be used to represent one (or more) user’s
sessions of a security protocol. These sessions typically consist of ordered sequences of
actions for each user. A protocol which consists of the concurrent execution of several
sessions of protocol participants may be described by a compound system.

The terms of our calculus are generated by the following grammar:

(COMPOUND SYSTEMS:) S ::= S\L | S1‖S2 |A�,
(SEQUENTIAL AGENTS:) A ::= 0 |pc:A |A1 + A2 | [m = m′]A1;A2 |

[〈〈mi〉〉i∈I �IS x :T]A1;A2,
(PREFIX CONSTRUCTS:) pc ::= c!m | c?x :T | &xc;T | genx; IT k ;

where m;m′; m1; : : : ; mn are closed messages or variables, x is a message variable, T; T k

are closed types and Tk is also basic, C is a .nite set of channels with c∈C, � is a
.nite set of closed typed messages, L is a subset of C and i∈ I ⊆N (the set of natural
numbers).

We brie:y give the informal semantics of sequential agents and compound system
as well as some static constraints on the terms of the calculus.

1064 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

Sequential agents:
• 0 is the process that does nothing.
• pc:A is the process that can perform an action according to the particular pre.x

construct pc and then behaves as A:
◦ c!m allows the message m to be sent on channel c.
◦ c?x :T allows messages m :T to be received on channel c. The message received

substitutes the variable x.
◦ &xc;T is used to eavesdrop a communication on channel c which occurs in

other sub-components of the system. The eavesdropped message substitutes the
variable x.

◦ genx; iT is used to generate new random messages of a basic type T . The message
generated substitutes the variable x.

• A1 + A2 is the process that non-deterministically decides to behave as A1 or A2.
• [m=m′]A1;A2 is the matching construct. If the two messages are equal to each other,

then the process behaves as A1, otherwise as A2.
• [〈〈mi〉〉i∈I �IS x :T]A1;A2 is the inference construct. If, applying a case of inference

schema IS with the premises 〈〈mi :Ti〉〉i∈I , a message m :T can be inferred, then the
process behaves as A1 (where x is replaced with m); otherwise the process behaves
as A2. This is the message-manipulating construct of the calculus: we can build a
new message by using the messages in 〈〈mi〉〉i∈I and the inference rule IS.

Consider, for instance, the inference system in Table 1 and the sequential agent:

c?x :E(Key; T): {receives x}
[x k−1 �5 y :T] {and tries to decrypt it}

(out!y:0) {with success}
; out!err:0 {with failure}:

The agent may receive a message and try to decrypt it using the inverse key k−1: if
it succeeds, then the calculated value is sent on channel out, otherwise the system
outputs an error message err.

Given a message m in D(�), we can .nd a sequential agent X� which may build m
by using several times the inference construct (since proofs always consist of a .nite
number of applications of the inference rules).
Compound systems:

• The system S\L is prevented from performing actions whose channel belongs to the
set L, except for synchronizations.

• A compound system S‖S1 performs an action a if either of its sub-components
performs a, and a synchronization action ()c;m), if the sub-components perform
complementary actions, i.e. send-receive actions. It is worth noticing that, unlike
CCS, our synchronization actions carry information about the message exchanged
and the channel used. In this way, we can model eavesdropping. Indeed, the agents of
one component, e.g. S, might know the message exchanged during the synchroniza-
tion of the other component, i.e. S1, by simultaneously performing an eavesdropping
action &.

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1065

Table 3
Operational semantics, where the symmetric rules for ‖1; ‖2 and ‖& are left omitted

(!)
(c!m:A)�

c!m→ (A)�
(?)

m :T ∈ Tmsgs(T)

(c?x :T:A)�
c?m→ (A[m=x])�∪{m : T}

(&)
m :T ∈ Tmsgs(T)

(&xc;T :A)�
&c; m→ (A[m=x])�∪{m : T}

(gen)
g = RT (i)

(genx;iT :A)�
)g→ (A[g=x])�∪{g : T}

([]1)
m = m′ (A1)�

a→ (A′
1)�′

([m = m′]A1;A2)�
a→ (A′

1)�′
([]2)

m �= m′ (A2)�
a→ (A′

2)�′

([m = m′]A1;A2)�
a→ (A′

2)�′

(+1)
(A1)�

a→ (A′
1)�′

(A1 + A2)�
a→ (A′

1)�′
(+2)

(A2)�
a→ (A′

2)�′

(A1 + A2)�
a→ (A′

2)�′

(D1)
〈〈mi :Ti〉〉i∈I 	IS m :T (A1[m=x])�∪{m : T}

a→ (A′
1)�′

([〈〈mi〉〉i∈I 	IS x :T]A1;A2)�
a→ (A′

1)�′

(D2)
@(m :T)〈〈mi :Ti〉〉i∈I 	IS m :T (A2)�

a→ (A′
2)�′

([〈〈mi〉〉i∈I 	IS x :T]A1;A2)�
a→ (A′

2)�′

(‖1)
S a→ S′

S‖S1
a→ S′‖S1

(‖2)
S c?m→ S′ S1

c!m→ S′1
S‖S1

)c;m→ S′‖S′1
(‖&)S

)c;m→ S′ S1
&c;m→ S′1

S‖S1
)c;m→ S′‖S′1

(\L1)
S a→ S′ channel(a) =∈ L

S\L a→ S′\L

• Finally, the term A� represents a system which consists of a single sequential agent
whose knowledge, i.e. the set of messages it has, is described by �. The agent’s
knowledge increases as it receives (or eavesdrops) messages (see rules (?; &) in
Table 3), infers new messages from the messages it knows (see rules D1 and
D2) and generates new random messages (see rule (gen)). Sometimes we omit to
represent agent’s knowledge when this can be easily inferred from the context.

Remark 2.1. Note that we do not allow constructs for modeling recursion, thus our
systems may have only .nite computations. Adding recursion is possible, but it would
make undecidable the veri.cation problem of the properties we are going to consider
in this paper. It is also worth noticing that, using typed channels, we implicitly assume
that the receiver of a message can recognize the structure of the received messages,
even if it may not be able to retrieve the actual meaning of such messages.

Static constraints: We assume our terms to respect some well-formedness conditions
that can be statically checked. In particular:
Bindings: The inference construct [〈〈mi〉〉i∈I �IS x :T]A1;A2 binds the variable x in A1,

whereas the variable x must not appear in A2. The pre.x constructs c?x :T:A; &xc;T :A;
genx; iT :A bind the variable x in A. A sequential agent is said to be closed if every

1066 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

variable is bound. We assume that each variable may be bound at most once. In the
sequel, we only consider compound systems made of closed agents.
Agent’s knowledge: For every sequential agent A�, we require that all the closed

messages that appear in A belong to its knowledge �. More formally, let is closed be
a function that given a message m returns {m} if this is closed, ∅ otherwise. Then, let
M (A) be

M (c!e:A) = is closed(e) ∪M (A);

M (c?x :T:A) =M (&xc;T :A) = M (genx;iT :A) = M (A);

M (A+ A′) =M (A) ∪M (A′);

M ([m = m′]A;A′) = is closed(m) ∪ is closed(m′) ∪M (A) ∪M (A′);

M ([〈〈mi〉〉i∈I �IS x :T]A;A′) =
(⋃
i∈I
is closed(mi)

)
∪M (A) ∪M (A′):

So, for every sequential agent A�, we require M (A)⊆�.
Random message generation: We partition each set of basic values Tk , k ∈{1; : : : ; n},

into two disjoint sets, the initial values ITk (.nite) and the random values RTk (in.nite
and countable). Thus, we distinguish between the values of type Tk which may initially
be known by the agents, i.e. ITk , and the ones which are guessed later on, i.e. RTk .
The construct genx; iT k allows to guess a random value of a basic-type Tk , i.e. a message
in RTk . (Random messages of structured types can be built using random values of
basic types as sub-components.) Since these values must be randomly guessed, two
di2erent agents should not be able to guess the same value and each guessed value
should be di2erent from the previous ones. To formally model this, we consider a set of
injective functions RTk :N
→RTk , with Tk basic type, supplying the values guessed by
the agents. We only consider compound systems s.t. the pre.x constructs genx; iT appear
only once, given i and T . Moreover, if genx; iT occurs in an agent, and RTk (i) = g, then
g must not occur in any knowledge of the agents of the system. The set of random
values of a basic type which belong to a system S, namely rand(S), consists of the
RTi values contained in the knowledge of the sequential agents in S plus the messages
g, so the pre.x genx; iT belongs to an agent in S, with g=RT (i).

Remark 2.2. Our assumptions on the random messages clearly limit the intruder ca-
pabilities of attacking a protocol in our model. For example, let the intruder know an
encrypted message. Then, in principle, it could try to decrypt it by iteratively guessing
every possible decryption key. This is called a brute force attack. In our model, each
guessed message is always di2erent from those previously guessed and also from the
initial ones. Hence, the guessed decryption keys will always be di2erent from the key
used to encrypt the message and so the intruder will not be able to decrypt the mes-
sage. In a real programming system, since the set of possible keys is usually bounded,
the brute force attack would lead the intruder to guess the correct decryption key and
therefore the secret message. However, the set of possible keys is usually large enough

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1067

to make similar attacks computationally infeasible. Our model tries to re:ect this sit-
uation. (This form of abstraction is often assumed when applying formal methods to
security protocol analysis.)

2.2.1. Operational semantics and auxiliary notions
Here, we give the operational semantics of Crypto-CCS and some auxiliary de.ni-

tions.
The activities of the agents of the systems are described by the actions they can

perform. The set Act of actions which may be performed by a compound system
is de.ned as: Act= {c?m; c!m; &c;m;)c;m | c∈C; m∈Msgs; m closed}∪ {)g | g∈RTi}:
Below, we give a de.nition of the function channel that, given an action, returns a
channel (void if the channel is not speci.ed), and message that, given an action, returns
its message.

c!m c?m)c;m &c;m)g

Channel c c void c void
Message {m} {m} {m} {m} {g}

We denote a sequence of actions with Greek letters (the empty sequence is -). The
function msgs, de.ned as msgs(a.) =message(a)∪msgs(.) and msgs(-) = ∅, returns
the set of communicated messages in a sequence of actions. As usual, we use a Labeled
Transition System (LTS) to assign semantics to our calculus. The semantics of closed
terms is given by the least set of action relations induced by the rules shown in Table 3.

Let Sort(S) be the set of channels that occur in S. This set represents the channels
where agents of S may communicate. We consider S :=Nil when ∀a∈Act : S a9 (i.e.
when there is no system S ′ s.t. S a→ S ′). Let SubM(m) be the set of subterms of m
and SubM(�) be

⋃
m∈� SubM(m). We say that a message m is initial, i.e. composed

only of initial values, if SubM(m)∩RTk = ∅ for each k ∈{1; : : : ; n}.
For notational convenience, we sometimes use S||LX instead of (S‖X)\L. As a nota-

tion we also use S
.
→ S ′ if . is a .nite sequence of actions ai; 16i6n s.t. S = S0

a1→
· · · an→ Sn = S ′.

Note 1. If a sequential agent sends out a message during a computation, then this
message can be deduced by the agent’s knowledge, i.e. if X�

.
→X ′
�′

c!m→ X ′′
�′′ then

m∈D(�′). Moreover, the static constraints on systems are preserved after perform-
ing activities, i.e. if S satis;es our constraints and S a→ S ′ then also S ′ satis;es our
constraints. In the following, we also assume that systems in their initial con;guration
know only initial messages.

Example 2.2. Consider a simple case of public key encryption, and apply as inference
system the one in Table 1. For each user U , there is a pair of keys, i.e. (PK(U); PK
(U)−1), so that PK(U) (the public key of U) is known by every one in the system
and PK(U)−1 (the private key of U) is only known by the user U . The public key

1068 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

is used to encrypt messages. Since this is public, everyone can do it. The private key
is used to decrypt messages. Since only U is assumed to know this key, even if an
agent could eavesdrop the communication, it could not retrieve the message m. We
thus model a situation where an agent A tries to send B a message m encrypted with
the B public key.

The sender A�A , with �A = {mA :T; PK(B) :Key}, is the following:

[mA PK(B) �4 x :E(Key; T)] {encrypts mA with PK(B)}
(cAB!x:A1) {sends it}
; 0:

The receiver B�B , with �B = {PK(B)−1 :Key−1}, is the following:

cAB?y :E(Key; T): {receives y}
[y PK(B)−1 �5 z :T] {tries to decrypt it}

B1 {successful}
; 0 {failed};

where A1 and B1 stand for the possible continuations after the protocol of A and B,
respectively. Finally, the description of the compound system is Sys=A�A‖B�B . Brie:y,
the agent A builds the encrypted message, then sends it on channel cAB. The agent B
receives an encrypted message from channel cAB and then tries to decrypt it using the
inverse (private) key PK(B)−1. If the protocol has been run properly, the variable z
of B should contain mA.

3. A logical language for the description of protocol properties

We illustrate a logical language (LK) for the speci.cation of the functional and
security properties of a compound system. We have extended a normal multimodal logic
(e.g., see [46]) with operators which make it possible to specify whether a message
belongs to an agent’s knowledge after a computation . performed by the whole system,
starting from a .xed initial knowledge. The syntax of the logical language LK is de.ned
by the following grammar:

F ::= T |F | 〈a〉F |[a]F | ∧
i∈I
Fi |

∨
i∈I
Fi |m ∈ K�

X;. | ∃. :m ∈ K�
X;.;

where a∈Act, m is a closed message, X is an agent identi.er, I is an index set and �
a .nite set of closed typed messages. The language without m∈K�

X; . and ∃. :m∈K�
X; .

(“knowledge” operators) is called L.
Informally, T and F are the true and false logical constants; the 〈a〉F modality

expresses the possibility to perform an action a and then satisfy F . The [a]F modal-
ity expresses the necessity that, after performing an action a, the system satis.es F ;∨
i∈I (

∧
i∈I) represents the logical disjunction (conjunction). As usual, we consider∨

i∈∅ (
∧
i∈∅) as F(T). A system S satis.es a formula m∈K�

X; . if S can perform a

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1069

Table 4
Semantics of the logical language

S |= T; for every process S

S |= F; for no process S

S |= ∧
i∈I Fi i2 ∀i ∈ I : S |= Fi

S |= ∨
i∈I Fi i2 ∃i ∈ I : S |= Fi

S |= 〈a〉F i2 ∃S′ : S a→ S′ and S′ |= F

S |= [a]F i2 ∀S′ : S a→ S′ implies S′ |= F

S |= m ∈ K�
X; . i2 ∃S′ : (S

.�→ S′) ↓X= .′ and

m :T ∈ D(� ∪ msgs(.′))

S |= ∃. : m ∈ K�
X; . i2 ∃. : S |= m ∈ K�

X; .

computation . of actions and an agent of S, identi.ed by X , can infer the message
m starting from the set of messages � plus the messages it has come to know dur-
ing the computation .. The formula ∃. :m∈K�

X; . is satis.ed by a system S if there
exists a computation . and an agent X of S s.t. X� can infer m during the comput-
ation ..

We assume that a unique identi.er can be assigned to every sequential agent in
a compound system (e.g., the path from the root to the sequential agent term in the
parsing tree of the compound system term). Then, given a sequence of transitions
S

.
→ S ′ of a compound term S, let (S
.
→ S ′) ↓X be the sequence of actions of the agent

identi.ed by X in S, that have contributed to the transitions of the whole system. 3

Finally, the formal semantics of a formula F ∈LK w.r.t. a compound system S is
inductively de.ned in Table 4

We can establish a decidability result for the sub-logic which consists only of the
logical constants, disjunctions and the possibility modality.

Lemma 3.1. Consider a formula F ∈L, which consists only of the logical constants,
disjunctions and the possibility modality, and a ;nite set of closed messages �. It is
decidable if there exists a sequential agent X s.t. X� |= F .

3 For simpli.cation, here we leave out the technical details. We can however achieve this result by suitably
adding information on the transitions, e.g., see [10].

1070 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

3.1. Veri;cation problems for security protocols

The formula ∃. :m∈K�
X; . plays a central role in the analysis of security protocols,

because it makes it possible to express secrecy properties. Indeed, it may be used to
check whether the agent X can discover a certain message or not. We are mainly
interested in the study of properties like:

No agent (intruder), communicating with the agents of the system S, can retrieve
a secret that should only be shared by some agents of S,

or dually
There exists an agent (intruder) that, communicating with the agents of the system
S, can retrieve a secret that should only be shared by some agents of S.

In our model, the latter property can be formally restated as follows:

∃X� s:t: S‖X� |= ∃. :m∈K�
X;.; (4)

where m is the secret message. However, we are not interested in every computation
. of S‖X . Indeed, consider the following example where the system S consists of the
single agent 0{m : T}, whose unique secret is m. Then, due to our semantic modeling of
receiving actions (see rule (?) in Table 3), it is possible for an intruder to obtain any
secret messages. For instance, let Y be c?x :T:0, then:

0{m : T}‖Y∅ c?m : T→ 0{m : T}‖0{m : T}:

Thus, Y discovers m after performing the receiving action c?m :T . This means that
S satis.es property (4), i.e. it is not secure, which contradicts our intuition. How-
ever, note that the receiving action c?m :T simply models the potential communication
capability of Y (and thus of the system S‖Y) with an external (omniscient) environ-
ment. But, when we .x X�, we want to consider S‖X� as a closed system and study
only its internal communications, i.e. the actual communications between the system
S and its “hostile” environment represented by X . We thus consider the following
formulation:

∃X� s:t: (S‖X�)\L |= ∃. :m ∈ K�
X;.; (5)

where L is the set of channels on which S and X can communicate, i.e. Sort(S‖X).
Note that all the possible computations of (S‖X�)\L are actually the internal computa-
tions of S‖X . In the context (S‖())\L the intruder X is forced to communicate only
with the system S. In our working example, i.e. S‖Y∅, no internal action is possible
because S does not perform any output which may synchronize with the receiving
actions of Y . Thus, the system (S‖Y∅)\L does nothing. 4 So, as the intuition suggests,
S does not satisfy property (5). Note that if we consider the system S ′ = c!m:0{m : T},

4 Actually, when considering a generic agent X , we also need to take into account the guessing actions.
However, by construction, guessed values will always be di2erent from m.

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1071

whose unique secret is m, then

S ′‖Y∅)c;m→ 0{m : T}‖0{m : T};

which clearly shows that S ′ does satisfy (5) as the intuition suggests (because S ′

is making public its secret). For the previous considerations we make the following
assumption.

Remark 3.1. We analyze the context (S‖())\L (S‖L() by using the short notation)
when we want to study the secrecy properties for a system S against an intruder (or a
malicious) agent X , with Sort(X)⊆L.

We usually assume the intruders have some initial knowledge. This will depend on
the system under investigation.

Example 3.1. Consider the protocol in the Example 2.2 and look for an intruder X�X ,
if any, who can actively interact along the communication channel cAB and discover
the secret message mA, i.e.

(A�A‖B�B‖X�X)\{cAB} |= ∃. :mA ∈ K�X
X;. :

If we assume that mA =∈D(�X) and PK(B)−1 =∈D(�X), then, for every X which can
only communicate via cAB, the previous statement does not hold. So, no intruder will
be able to know the exchanged message mA under the above hypothesis. In the sequel,
we show how to prove this fact.

Formulation (5) models a scenario where a system is attacked by an external agent.
But, we need also to consider more subtle situations, e.g., where a legitimate user of the
system is willing to act maliciously against the other legitimate participants. Consider
a system that consists of n sequential agents Ai�i , with i∈{1; : : : ; n}. To check whether
the agent Ai may apply a successful strategy in order to obtain a secret m of some
other participants, say Aj with i 	= j, we can study if

∃X�i s:t: (‖l∈{1;:::;n}\{i}Al�l ‖X�i)\L |= ∃. :m∈K�i
X;.: (6)

We can also imagine more complex situations where a system is under attack by an ex-
ternal intruder and by a group of internal agents, i.e. we can study if ∃X�i∃Y i1�i1 : : :∃Y

ik
�ik

s.t.

(‖l∈{1;:::;n}\IA\{i}Al�l ‖l′∈IAY l
′
�l′

‖X�i)\L |= ∃. :m ∈ K�i
X;.∨

l′∈IA ∃. :m ∈ K�l′
Y l′ ;.

; (7)

where IA= {i1; : : : ; ik} and i =∈ IA.
Note that we only deal with secrecy properties; however, several other security

properties can be encoded as secrecy ones, e.g., for the authentication properties see
[30,33].

1072 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

4. Analysis method

4.1. Intuition

In the previous sections, we set a framework for de.ning security properties (so
far secrecy only) for cryptographic protocols as properties of open systems. Now, we
want to de.ne suitable techniques which may help us to solve the veri.cation problem.
In particular, we want to follow and extend the analysis approach for open systems
developed in [34], which is based on partial model checking techniques (e.g., see
[5,25]).

The central idea is to turn the problem of verifying an open system into a validity
(satis.ability) checking problem of a certain logic. To achieve this, we use the partial
model checking techniques proposed within the concurrency theory for compositional
analysis of systems: suppose we have a compound system S1‖S2 that has to satisfy a
certain property F . Using partial model checking techniques, we can reduce this veri.-
cation problem to checking whether either component, say S2, satis.es a new property
F==S1 (see Section 4.3 for its formal de.nition), which is obtained by “evaluating” the
behavior of the other component S1 (hence the name “partial evaluation”).

Observing the compositional analysis proposed in [5,25], it can be noted that it is
semantic driven. Likewise, our partial evaluation functions derive from the inspection
of the operational rules of calculus. Below we try to give an insight in the way partial
model checking (or partial evaluation) works and the main diBculties we encounter in
this speci.c .eld for the analysis of cryptographic protocols.
Possibility formula: Consider the system S := c?x :T:0 and suppose we want to de-

terminate the necessary and suBcient condition on a sequential agent X to obtain

S‖X |= 〈)c;m′〉T:
This statement means that the system S‖X performs an internal communication of the
message m′ on the channel c. Recall that S‖X may perform the)c;m′ action (according
to the operational semantics in Table 3) if and only if either situation holds (the rule
to infer the transition is in brackets):
(1) (Rule ‖1) S performs)c;m′ in isolation.
(2) (Rule ‖1 symm.) X performs)c;m′ in isolation.
(3) S‖X performs a form of synchronization, i.e.

• (a) (Rule ‖2) S performs a reading action and X the complementary sending
action.

• (b) (Rule ‖2 symm.) S performs a sending action and X the complementary
reading action.

• (c) (Rule ‖&) S performs an internal communication action and X an eavesdrop-
ping action.

• (d) (Rule ‖& symm.) S performs an eavesdropping action and X an internal
communication action.

Cases 1, 3b, 3c and 3d are not possible since S only performs reading actions. Further-
more, case 2 is not possible either since X is a sequential agent and does not perform

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1073

Table 5
Partial evaluation function for S‖() and L

T==S := T

F==S := F

(〈a〉F)==S := 〈a〉(F==S) ∨∨
S
a→S′ F==S

′ (a �=)c;m;)g)

(〈)c;m〉F)==S :=
∨
S
c!m→S′

〈c?m〉(F==S′) ∨∨
S
c?m→S′

〈c!m〉(F==S′)∨∨
S
)c;m→ S′

〈&c;m〉F==S′ ∨
∨
S
)c;m→ S′

F==S′

(〈)g〉F)==S :=




〈)g〉(F==S) g =∈ rand(S)∨
S
)g→S′

F==S′ otherwise

([a]F)==S := [a](F==S) ∧∧
S
a→S′ F==S

′ (a �=)c;m;)g)

([)c;m]F)==S :=
∧
S
c!m→S′

[c?m](F==S′) ∧∧
S
c?m→S′

[c!m](F==S′)∧∧
S
)c;m→ S′

[&c;m]F==S′ ∧∧
S
)c;m→ S′

F==S′

([)g]F)==S :=




[)g](F==S) g =∈ rand(S)∧
S
)g→S′

F==S′ otherwise∨
i∈I Fi==S

:=
∨
i∈I (Fi==S)∧

i∈I Fi==S
:=
∧
i∈I (Fi==S)

internal actions. To summarize, X can only perform the corresponding sending action,

i.e. X c!m′
→ , which is expressed by the formula

X |= 〈c!m′〉T:
Thus 〈)c;m′〉T==S is 〈c!m′〉T. The necessity modality is accordingly treated.
Disjunction: The reduction of a formula which is either a conjunction or a disjunction

can be separately achieved for each operand, and the resulting formulas connected
by the corresponding logical operator, i.e. conjunction or disjunction. E.g., for the
disjunction operator, we have:

S‖X |= F1 ∨ F2 i2

S‖X |= F1 or S‖X |= F2 i2

X |= F1==S or X |= F2==S i2

X |= F1==S ∨ F2==S:

Note that, at least for the sub-language L, the construction of the formula eventually
comes to an end (see Table 5): as a matter of fact, each time a reduction is performed,
either the system S performs a computation step or the formula to be analyzed has a
smaller size than the previous one. It must be borne in mind that we consider systems
which can only perform .nite sequences of actions.

1074 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

Knowledge formula: The formula which deals with secrecy, i.e. ∃. :m∈K�
X; ., is more

complex and needs more work. As noted in the Remark 3.1, the context (S‖())\L
(S||L() for short) is more suitable than S‖() for secrecy analysis. Thus, we only
perform the partial model checking of the formula ∃. :m∈K�

X; . in contexts like S||L().
To understand how we can perform the partial model checking, note that

S‖LX |= ∃. :m ∈ K�
X;. (8)

means S‖LX performs a computation . s.t. X can infer m :T from the messages dis-
covered during this computation and its initial knowledge �. We have two di2erent
situations, depending on the length of .:
(1) . is empty;
(2) . is equal to a.′ for some action a and computation .′ and so S||LX performs an

action a by reaching a con.guration S ′||LX ′. In turn, there is a computation .′ from
S ′||LX ′ s.t. X may infer m.

More formally, statement (8) is equivalent to

S‖LX |= m ∈ K�
X;-∨

(a;�′)∈AK
〈a〉(∃.′ :m ∈ K�′

X;.′) (9)

where AK is {(a; �′) | ∃S ′; X ′; �′ s.t. S||LX� a→ S ′||LX ′
�′}. Each pair in AK represents an

action that S||LX� can perform and the resulting knowledge of X . The logical formula in
(9) may be considered as an unwinding step of the semantic de.nition of ∃. :m∈K�

X; .
w.r.t. the system S.

Now, note that m∈K�
X; - is equivalent to T or F, depending on m :T ∈D(�) or not.

Thus, the .rst disjunct in the formula in (9) is T or F. Next, we are going to prove
that, under some assumptions, it is possible to .nitely iterate the unwinding step for the
formula ∃.′ :m∈K�′

X; .′ until we obtain a formula which only consists of disjunctions,
possibility formulas and the logical constants T and F. We can eventually apply partial
model checking techniques to these simple logical operators and checking the formula
∃. :m∈K�

X; . would be possible. So, it is worthy using formulation (9) instead of (8).
To illustrate the problems, we encounter during the unwinding phase, consider again

the set AK . This can be represented by the combination of the following three sets:
(1) AKI = {(a; �′) | ∃S ′; X ′; �′ s.t. S||LX� a→ S ′||LX ′

�′ by rules ‖2; ‖& or symm.}. This set
represents the possible interactions between S and X .

(2) AKS = {(a; �) | ∃S ′ s.t. S||LX� a→ S ′||LX� by rule ‖1}. This set represents the actions
performed by S only.

(3) AKX = {(a; �′) | ∃X ′; �′ s.t. S||LX� a→ S||LX ′
�′ by rule ‖1 symm.}. This set represents

the actions performed by X only.
Consider a pair (a; �′) in the .rst set. Then, if

S‖LX |= 〈a〉(∃.′ :m ∈ K�′

X;.′n)

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1075

it must be

∃S ′; X ′; �′ : S||LX� a→ S ′||LX ′
�′ and S ′||LX ′

�′ |= ∃.′ :m ∈ K�′

X;.′ :

We can again unwind the formula ∃.′ :m∈K�′

X; .′ , now with respect to S ′. Note that
the system S ′ may perform less steps than S. Thus, if we could limit ourselves only
to the pairs in AKI , then our unwinding phase would eventually terminate. The same
reasoning applies to pairs in AKS . However, if we also consider the pairs in AKX ,
which correspond to the situation where only X acts, then this reduction strategy is
not guaranteed to .nish. Indeed, the size of the system S will not decrease. Never-
theless, in the context S||L(), the agent X can only guess random messages without
interacting with S. Thus, since we consider only systems with .nite behavior, we have
the following observation.

Observation 4.1. If we could ;x an upper bound for the number of generation actions
that are performed by the agent X before any interaction with S, then the unwinding
process would eventually terminate.

In the next subsection, we will identify a class of sequential agents, namely the well-
behaved ones, ful.lling the requirement stated in the previous observation.
The partial model checking of the knowledge formula ∃. :m∈K�

X;. can be solved when
we consider only well behaved agents. Moreover, we will make some general assump-
tions on the inference system. These allow us to safely stick to the class of well-
behaved agents as attackers when analyzing the security of a system. Indeed, we will
prove that, if a generic sequential agent is able to successfully attack the system, then
a well-behaved agent can do that too.

4.2. Well-behaved agents

Roughly speaking, an agent is well behaved if it only performs well-behaved com-
putations, where a computation is such if and only if, whenever its .rst action is the
guessing of a random value, then this value occurs in a message successively sent
and between these two events there are only guessing actions. We thus require that
the intruder actually uses its random generated messages in a sending action. First,
we formalize the concept of well-behaved agent.

De+nition 4.1. A sequential agent X� is well behaved if, during its execution, it only
performs well-behaved computations, where a computation . is well behaved i@ when-
ever .=)g1.

′ then .′ =)g2 : : :)gnc!m
′.′′, with n¿1; and {gi}i∈{1;:::; n} ⊆SubM(m′).

The set of basic types that can appear in an agent is .nite. Moreover, for each type,
the set of di2erent random messages that can appear as submessages in a message is
limited. Thus, we can .nd an upper bound for the number of random generation actions
that may appear in any computation of a well-behaved agent. By observation (4.1),
the partial model checking phase eventually terminates when the unknown component
is a well behaved agent.

1076 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

We make two assumptions on the deduction function. Using these assumptions, we
can prove that it is suBcient to consider only well-behaved agents as intruders in the
system. Indeed, if an intruder attacks the system, then also a well behaved one can
perform a similar attack. The two assumptions are the following.

Assumption 4.1. Given a message m, suppose g :T i is a random value not occurring
either in m or in any of the messages in �. Then, we have m∈D(�∪{g :T i}) i2
m∈D(�).

Consider the deduction function D which has only the following rule schema:

y :T x :T ′

F(y) :F(T)
;

where F is a type constructor. Assume also to have a basic message m :T and a
random value g′ :T ′. We can see that D does not enjoy the previous assumption.
Indeed, we have that F(m) :F(T)∈D({m :T; g′ :T ′}) but F(m) :F(T) =∈D({m :T}),
whereas g′ :T ′ does not occur both in m :T and in F(m) :F(T).

Note, however, that there is no relationship between the message F(y) :F(T) and
x :T ′, indeed any type T ′ message is just suBcient to deduce F(y) :F(T). Perhaps,
this rule can only be used to test the presence of any type T ′ message in the intruder’s
knowledge. However, since an intruder can always infer a random-type T ′ message,
this rule seems useless. Inference systems commonly used in literature do not have any
similar rule. According to the next assumption, basic-type messages cannot be forged.

Assumption 4.2. If m is a message and m∈D(�), then every basic-type value of m
must be a submessage of some message in �.

For example, this assumption prevents the deduction function by producing random
values which are not within the set �, i.e. which are not guessed using the appropriate
construct gen. For example, the following rule does not ful.ll this assumption:

m :T
E(g; m) :E(Key; T)

;

where g is a value of a basic type. Note that this assumption implies that new basic-type
messages can only be obtained by performing a guessing action.

Finally, under the previous assumptions, we can prove the following lemma which
tells that we can limit ourselves to consider well-behaved sequential agent only in the
analysis of formulas on the form ∃. :m∈K�

X; ..

Lemma 4.1. Given a system S and an initial message m, suppose that there exists
a sequential agent X� s.t. Sort(S‖X)⊆L and S||LX� |=∃. :m∈K�

X; .. Then, a well-

behaved agent X ′
� exists s.t. S||LX ′

� |=∃. :m∈K�
X ′ ;..

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1077

Table 6
Partial evaluation function for ()\L and L

T==L
:= T

F==L
:= F

(〈a〉F)==L
:=

{
〈a〉(F==L) channel(a) =∈ L;
F otherwise:

([a]F)==L
:=

{
[a](F==L) channel(a) =∈ L;
T otherwise:∨

i∈I Fi==L
:=
∨
i∈I (Fi==L)∧

i∈I Fi==L
:=
∧
i∈I (Fi==L)

4.3. Partial evaluation functions

Finally, we present the partial evaluation functions. For the logical language L,
that has no knowledge operators, the partial evaluation function for the context S‖X
is given in Table 5. The main di2erence w.r.t. the work in [5] is about the constraints
on the generation actions. Indeed, when considering the case about the generation of an
action)g, we cannot let the intruder guess a random message which belongs to S, i.e.
it is in rand(S). The next statement is about the correctness of the partial evaluation
function.

Proposition 4.1. Given a system S, a sequential agent X and a logical formula F ∈L
then

S‖X |= F i@ X |= F==S:

Sometimes, it is also useful to consider the context ()\L, which consists only of
the restriction operator. The partial evaluation function ==L for such context w.r.t. the
formulas in L is given in Table 6. The next proposition states its correctness.

Proposition 4.2. Given a system S ′, a set of channels L and a logical formula F ∈L,
we have

(S ′)\L |= F i@ S ′ |= F==L:

Example 4.1. Consider the context (S‖())\{c}, where S = c?x :T:0. Then, by applying
Propositions 4.1 and 4.2, we have

(S‖(X))\{c} |= 〈c?m〉T ∨ 〈)c;m〉T i2 Proposition 4:2;

S‖X |= (〈c?m〉T ∨ 〈)c;m〉T)=={c} i2 Proposition 4:1;

X |= ((〈c?m〉T ∨ 〈)c;m〉T)=={c})==S:

Note that (〈c?m〉T ∨ 〈)c;m〉T)=={c} = 〈)c;m〉T and 〈)c;m〉T==S = 〈c!m〉T.

1078 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

Table 7
Partial evaluation function for S||LX , with Sort(S‖X) ⊆ L, and ∃. : m ∈ K�X;.

∃. : m ∈ K�
X;.==S

:=∨
(c;m′ ;S′)∈Send(S) 〈c!m′〉(∃. : m ∈ K�

X;.==S
′) (sending) ∨∨

(c;m′ ;〈〈gi〉〉i∈I ;S′)∈RSend(S)〈〈)gi 〉〉i∈I 〈c!m′〉
(∃. : m ∈ K�∪〈〈gi〉〉i∈I

X;. ==S′) (guessing and sending) ∨∨
S
c!m′→ S′

〈c?m′〉(∃. : m ∈ K�∪{m′}
X;. ==S′) (receiving) ∨∨

S
)c;m′→ S′

〈&c;m′ 〉(∃. : m ∈ K�∪{m′}
X;. ==S′) (eaves-dropping) ∨∨

S
a→S′(a=)c;m;)g)

∃. : m ∈ K�
. ==S

′ (idling) ∨
m ∈ K�

X;-==S (nothing to do)

m ∈ K�
X;-==S

:= ∃. : m ∈ K�
X;.==Nil

:=


 T m ∈ D(�)

F m =∈ D(�)

where :

Send(S) = {(c; m′; S′) | S c?m′
→ S′ and m′ ∈ D(�)}

RSend(S) = {(c; m′; 〈g1; : : : ; gn〉; S′) | ∃X� s.t. X�
)g1 ;:::;)gn�→ X ′

�′ ; S
c?m′
→ S′;

m′ ∈ D(�′); {gi}i∈{1;:::;n} ⊆ SubM (m′)\(SubM (�)∪ rand(S))}

Now, we will focus on the treatment for ∃. :m∈K�
X; . since this is the one mostly

involved in the analysis of security properties. We have already illustrated the idea:
.rst, we unwind this formula in a disjunction of possibility formulas; next, we apply
the partial model checking function to these simpler formulas. We give the partial
evaluation function for ∃. :m∈K�′

X; . and S||LX , with X well behaved, in Table 7. We
grouped together the formulas corresponding to the same behavior (in brackets) of the
intruder X :
• Sending: This disjunction takes into account the sending actions of the intruder on

which the system S is willing to synchronize. The intruder performs these actions
only starting from its initial knowledge �, without guessing any new random mes-
sage. Indeed, Send(S) (see Table 7) is a set of triples which represent the channel
used, the message sent and the relative derivative of the system S. Each message
must be inferable from the knowledge �.

• Guessing and sending: Here the intruder performs a preliminary sequence of guessing
actions before sending. Since we consider well-behaved agents, then these random
values must occur in the message sent. Indeed, RSend(S) (see Table 7) is a set of
quadruples which represent the channel used, the message sent, the guessing sequence
of the random values and the relative derivative of the system S. (Note that Send(S)
and RSend(S) depend on the knowledge �, although not explicitly mentioned.) In
practice, the number of guessings of random messages is related to the receiving
actions of the system.

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1079

• Receiving: This disjunction takes into account the messages that the intruder may
receive from S. The messages received increase the intruder’s knowledge �.

• Eavesdropping: This disjunction takes into account the messages that the intruder
may eavesdrop from S. The eavesdropped messages increase the intruder’s knowl-
edge �.

• Idling: This disjunction takes into account the possible con.gurations that are reached
by an action of the system only.

• Nothing to do: This takes into account the possibility that the intruder has already
gathered enough information to deduce m.

It is worth noticing that these partial evaluation functions are only determined by the
logic chosen to describe the security properties and by the operational semantics of
the calculus. Thus, in our approach, we make no assumptions about the intruder’s
capabilities; the intruders are simply sequential agents of the system, with a certain
initial knowledge.

The next statement is about the correctness of the partial evaluation, where we
assume that X is a well-behaved sequential agent.

Proposition 4.3. Given a system S and a well-behaved sequential agent X� where �
is ;nite and Sort(S‖X)⊆L, then if m is an initial message, we have

S||LX� |= ∃. :m ∈ K�
X;. i@ X� |= ∃. :m ∈ K�

X;.==S:

Eventually, we reduced our veri.cation problem to a satis.ability problem. In partic-
ular, the partial evaluation of the formula ∃. :m∈K�

X; .==S actually produces a formula
in L, i.e. which only consists of the logical constants, disjunctions and possibility
formulas. Our next and last step is to provide a satis.ability procedure for the sublogic
which only consists of the previous operators.

4.4. Main result

Note that the formula F =∃. :m1 ∈K�
X; .==S shows several in.nitary disjunctions, i.e.

disjunctions whose index set is in.nite. This makes it diBcult to establish satis.ability
results about such formulas. Indeed, the two index sets, i.e. Send(S) and RSend(S),
might be in.nite. In particular, RSend(S) is always in.nite since, by construction, we
assume an in.nite number of basic-type random values. Moreover, Send(S) is also
in.nite whenever the set of messages of a certain-type T that can be inferred from �
is in.nite and the system S is willing to receive on a channel of type T . Since we want
to obtain a theory to be e2ectively mechanized, we add two further assumptions to our
deduction function. These enable us to .nd a formula which has only disjunctions with
.nite indexes and which can be satis.ed if and only if the formula obtained after the
partial evaluation phase can be satis.ed. Our assumptions seem not too restrictive: as
a matter of fact, the inference systems commonly used in literature enjoy them (and
also the one given in Table 2).

According to the following assumption, for each type T , a .nite number of messages
can be inferred from a .nite set of messages.

1080 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

Assumption 4.3. When � is .nite, D(�)∩Tmsgs(T) is .nite.

This ensures that Send(S) is a .nite set, when � is .nite. As a matter of fact,
Send(S) consists of triples of the form 〈c; m; S ′〉, where c is a channel of S, m is a

message that can be inferred from � and S ′ is a derivative of S s.t. S c?m→ S ′. The set
of channels of S is .nite. According to the previous assumption, the set of messages
of a certain-type T that can be inferred by the intruder is .nite. Thus, only a .nite
number of di2erent messages m may appear as a second element of the triples. Finally,
this also ensures that only a .nite number of di2erent derivatives S ′ of S may appear
as a third element.

The reason for the next assumption is to avoid an inference system that depends on
particular random values. First, we need to introduce the concept of type-preserving
bijection. We say that a bijection 4 between random values of basic type is type
preserving if whenever 4(g :T) = g′ :T ′ then T ′ =T . Type-preserving bijections natu-
rally extend to bijections between actions, sequence of actions, sequential agents and
compound systems in a straightforward way.

Assumption 4.4. If IS is an inference schema and 4 a type-preserving bijection be-
tween random values, then: m1 :T1 : : : mn :Tn �IS m :T i@ 4(m1 :T1) : : : 4(mn :Tn)�IS
4(m :T).

A schema that does not satisfy this assumption is the following:

g :T
m:T ′ ;

where g :T; m :T ′ are closed messages and g =∈SubM(m). Consider the inference system
which only consists of the previous rule, and additionally, that 4(g :T) = g′ :T for some
g′ 	= g. Then, m :T ′ ∈D({g :T}), but 4(m :T ′) =m :T ′ =∈ D({4(g :T)}) =D({g′ :T})
= ∅.

In our context, anytime a random message is generated, it is brand-new; there are no
relationships between new random messages and the others existing in the system. The
latter two assumptions on the inference system ensure that, when analyzing the secrecy
of an initial message, it is not necessary to look for a certain sequence of random
messages, it is suBcient to generate a sequence of messages with the appropriate
types. The following example may help.

Example 4.2. Consider an inference system having only one inference schema:

x :T
Hash(x) :Hash(T)

(�hash);

which might model one-way functions, i.e. functions that are easily computed but whose
inverses are computationally hard. The inference system leaves out a rule to infer x by
knowing Hash(x). Hence, the Hash function cannot be formally inverted.

Consider the system S which receives a value y on the channel c. Then, it
communicates a secret message m :T depending on Hash(y) =Hash(m) or not. Thus,

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1081

we will have:

S = c?y :T:

[y �hash z :Hash(T)]([z = Hash(m)]c!m:0; 0)

; 0;

where m is a con.dential message of S. We analyze the context S||LX where L= {c}.
Let us assume the initial knowledge of the intruders X is empty. Thus, intruders can
only infer a new message and send it to the system. So, consider the set:

RSend(S) = {(c; g1; 〈g1〉; S ′) | ∃X� s:t: X�
)g1
→ X ′; S

c?g1→ S ′; g1 ∈ RTT\rand(S)}:
This set is in.nite, because there is an in.nite number of messages in RTT . However,
each derivative S ′ in the quadruples of RSend(S) has the following form:

[g �hash z :Hash(T)][z = Hash(m)]c!m:0; 0;

where g is a random value which di2ers from any initial value of S. Thus, Hash(g)
will always be di2erent from Hash(m) and so m will be never sent on the channel c.
The results of the analysis do not depend on a speci.c random value. We can simply
choose one of them, representative of all the others.

Note that the computations of a system S do not signi.cantly di2er when S receives
a random message instead of another one, provided these are both newly created.
The only di2erence is the “renaming” of the two random values in the messages
exchanged during the computation. So, if we are interested in studying the secrecy of
an initial value m, which does not contain any random message, then we can safely limit
ourselves to consider only a subset of the quadruples existing in RSend(S), without
considering every possible random message generation sequence.

To make formal this idea, we de.ne a relationship among the random messages
sequences. Then we illustrate it through an example.

De+nition 4.2. Consider two sequences 〈〈gi :Ti〉〉i∈I and 〈〈g′i :T ′
i 〉〉i∈I , each consist-

ing of distinct random messages. If there exists a type-preserving bijection 4 s.t.
4({gi}i∈I) = {g′i}i∈I and 4(g) = g if g =∈{gi}i∈I ∪{g′i}i∈I , then we say the two se-
quences are related by 4, i.e. 〈〈gi :Ti〉〉i∈I ≡4 〈〈g′i :T ′

i 〉〉i∈I .

Example 4.3. Consider the sequences 〈〈g1 :T; g2 :T 〉〉 and 〈〈g2 :T; g3 :T 〉〉. Then, we
have that 〈〈g1 :T; g2 :T 〉〉 ≡4 〈〈g2 :T; g3 :T 〉〉 where 4(g1) = g3; 4(g2) = g2; 4(g3) = g1

and 4 is the identity elsewhere. Note that two sequences may be related even if they
have some values in common.

We can prove that, if S
.
→ then 4(S)

4(.)
→ , i.e. two systems related by a bijection 4
perform computations which are related by this bijection 4. Assumption 4.4 is required
to prove this result.

1082 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

Lemma 4.2. Consider a system S and assume that 〈〈gi :Ti〉〉i∈I ≡4 〈〈g′i :T ′
i 〉〉i∈I . As-

sume also that in S there is no subterm genx; kT y s.t. RTT (k) is equal to gi :Ti or g′i :T
′
i

for some i∈ I . Then, we have

S
.
→ S1 ⇒ 4(S)

4(.)
→ 4(S1):

The next lemma shows that if an intruder performs a successful secrecy attack on
the system after a sequence of guessing actions ., then another attack exists with a
sequence .′ related to . by a bijection 4. This implies that we need to consider only
one of these sequences in our secrecy analysis.

Lemma 4.3. Let 〈〈gi :Ti〉〉i∈I ≡4 〈〈g′i :T ′
i 〉〉i∈I ; consider a system S and a sequential

agent X , with Sort(S‖X)⊆L, and let no subterm genx; kT in S‖X be s.t. RTT (k) is equal
to gi :Ti or g′i :T

′
i for some i∈ I ; furthermore, assume SubM(�)∩ ({gi :Ti}i∈I ∪{g′i :

T ′
i }i∈I) = ∅. If m :T is an initial message, then

S||LX�∪{gi : Ti}i∈I |= ∃. :m ∈ K�∪{gi : Ti}i∈I
X;.

i@

4(S)||L4(X)�∪{g′i : T ′
i }i∈I |= ∃. :m ∈ K�∪{g′i : T ′

i }i∈I
4(X);. :

This result provides us with the technical guidance required to perform a translation
from the formula F , obtained through the partial evaluation functions in Table 7, to
another one, denoted by F̃ , in such a way that F is satis.able i2 F̃ is satis.able.
This translated formula F̃ shows only .nitary disjunctions. The idea is to quotient
RSend(S) and take only a representative for each class of tuples whose sequences of
random message generation can be related to each other through a bijection.

De+nition 4.3. The relation ≡e over tuples of RSend(S) is de.ned as:

(c; m :T; 〈〈gi :Ti〉〉i∈I ; S ′) ≡e (c′; m′ :T ′; 〈〈g′i :T ′
i 〉〉i∈I ; S ′1)

i2

c = c′; T = T ′;∃4 : 〈〈gi :Ti〉〉i∈I ≡4 〈〈g′i :T ′
i 〉〉i∈I ; S ′1 = 4(S ′); m′ = 4(m)

Intuitively, two tuples of RSend(S) are related by ≡e if, whenever they have the
same typed channel, then the two sequences of random messages are related by a
bijection 4 and also the messages and the derivatives of S are related by this bijection.
Note ≡e is an equivalence relation. The quotient of RSend(S) w.r.t. the relation ≡e,
namely RSend(S)=≡e , turns out to be .nite.

Lemma 4.4. RSend(S)=≡e is a ;nite set.

The translation F̃ is simply the partial evaluation function in Table 7 where RSend(S)
is replaced with RSend(S)=≡e .

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1083

The next lemma states that we can just study the satis.ability problem of F̃ instead
of that of F .

Lemma 4.5. Under the hypothesis of Proposition 4.3, let F =∃. :m1 ∈K�
X;.==S. Then,

we have

∃X� s:t: X� |= F i@ ∃Y� s:t: Y� |= F̃ :

The two agents X and Y are related by a bijection. Thus, the main di2erence is
that they guess di2erent sequences of random values, yet related by type-preserving
bijections.

Finally, we have reduced the checking of the existence of an agent X� s.t. S||LX� |=
∃. :m∈K�

X; . to a satis.ability problem for a .nitary formula in a sublogic of L. The
main result of this paper is the following.

Theorem 4.1 (Martinelli [35]). Consider a system S, with Sort(S)⊆L, a ;nite set of
typed messages � and an initial message m :T . It is decidable if there exists X�, with
Sort(X)⊆L, s.t.

S‖LX� |= ∃. : m ∈ K�
X;.:

Moreover, if ∃. :m∈K�
X; .==S is satis.able, then we can build an agent (the attacker)

which is a model of such a formula.
So far, in our analysis, we only considered sequential agents as possible intruders.

However, this is not a signi.cant restriction. As a matter of fact, if there is an attack
performed by a compound system, then there is an attack by a sequential agent whose
knowledge is the union of the knowledge of the agents of the compound system. There
is only a technical restriction which prescribes that the system S under investigation
must not use the eavesdropping action (as the intuition suggests since S should consist
only of honest agents).

Theorem 4.2. Consider a system S, with Sort(S)⊆L and no construct &xc; T occurring
in it, a system Y = ‖k∈{1; :::; l}Y k�k consisting of a set of sequential agents Yk with
Sort(Y k�k)⊆L for k ∈{1; : : : ; l}, and an initial message m :T . Suppose that, for some
i∈{1; : : : ; l}, we have

S‖LY |= ∃. : m ∈ K�i
Y i ;.

then there exists a sequential agent X�, with �=
⋃
k∈{1; :::; l} �k , s.t.

S‖LX� |= ∃. : m ∈ K�
X;.:

4.4.1. About the complexity of the procedure
Our decision procedure consists of building the formula through partial model check-

ing and studying its satis.ability. This check can be done in linear time in the size of

1084 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

this formula. (Furthermore, this can be done on-the-Cy, i.e. during the construction of
the formula itself. 5) However, the size of the formula depends on the speci.c inference
system used. Thus, the complexity of the procedure cannot easily be estimated.

Nevertheless, we will try to roughly estimate the size of the formula in the simple
case where S is a sequential agent and the inference system only consists of a basic
type and the pairing function. This should provide the reader with an idea of the
eBciency of our procedure (see also Section 5.2 for a signi.cant example).

Let n be the max length of a computation of S. Let l be the max height of the
types used in S. Let k be the maximum number of di2erent pre.x constructs that can
be enabled in each state of S. Then, the size of the formula after partial evaluation is
bound by

kn(|�S | + |�X | + 2ln)2ln:

If we do not consider the intruder able to guess new random messages, then the size
of the formula is bound by

kn(|�S | + |�X |)2ln:

Usually, l is very small (e.g., 3 or 4). However, if we consider compound systems,
then n grows linearly with the number of sequential agents. Thus, as expected, our
procedure su2ers the state explosion problem.

5. Examples

We show two examples of analysis using our method. The .rst is simple and will
be explained in the details. The second one is more complex and has been checked
by using our veri.cation tool PaMoChSA, which implements the approach described
in this paper (e.g., see [30]).

5.1. Example 3.1

First, consider the simple system of the Example 3.1.
An agent A is going to send a con.dential message mA to the agent B. The sender

A�A , with �A = {mA; PK(B)}, is the following:

[mA PK(B) �4 x : E(Key; T)](cAB!x:0); 0:

The receiver B�B , with �B = {PK(B)−1}, is the following:

cAB?y : E(Key; T):([y PK(B)−1 �5 z : T]0; 0):

We study whether or not there is an intruder which can interact with our system and
retrieve the message mA, i.e.

∃X�X s:t: (A�A‖B�B‖X�X)\{cAB} |= ∃. : mA ∈ K�X
X;. :

5 Thus, we are able to .nd an attack, if any, even without building the whole formula.

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1085

Table 8
Unfolding of ∃. : mA ∈ K�XX;. ==S

∃. : mA ∈ K�X
X;. ==S

:=
(guessing)

〈〈)g1 〉〉〈cAB!E(PK(B); g1)〉(∃. : mA ∈ K�X∪{g1}
X;. ==S1)

∨ (guessing)
〈〈)g1 ;)g2 〉〉〈cAB!E(g2; g1)〉(∃. : mA ∈ K�X∪{g1 ;g2}

X;. ==S2)
∨ (receiving)
〈cAB?E(PK(B); mA)〉(∃. : mA ∈ K�X∪{E(PK(B);mA)}

X;. ==S3)
∨ (eaves-dropping)
〈&cAB;E(PK(B);mA)〉(∃. : mA ∈ K�X∪{E(PK(B);mA)}

X;. ==S4)
∨ (idling)
∃. : mA ∈ K�X

X;. ==S4
∨ (nothing to do)
F
where
S1 = A�A‖[E(PK(B); g1) PK(B)−1 	5 z : T]0; 0
S2 = A�A‖[E(g2; g1) PK(B)−1 	5 z : T]0; 0:
S3 = 0‖cAB?y : E(Key; T):[y PK(B)−1 	5 z : T]0; 0
S4 = 0‖[E(PK(B); mA) PK(B)−1 	5 z : T]0; 0

The initial messages of S =A‖B are mA; PK(B)−1 and PK(B). It is reasonable to
assume that the initial knowledge �X of X is simply the public key PK(B). (Other
messages can be guessed by the intruder during the attack.) We apply the partial
evaluation rules in Table 7 (along with the reduction for in.nitary disjunctions).

Note 2. In the remainder of this section, we state that a formula F reduces to a
formula F ′ whenever F =

∨
i∈I Fi, F

′ =
∨
i∈I ′ Fi and I

′ ⊂ I ; moreover, we require that
F is satis;able i@ F ′ is satis;able.

• First, we consider ∃. :mA ∈K�X
X; .==S where S =A�A‖B�B . To calculate this formula, we

need to calculate Send(S) and RSend(S)=≡e (see Table 7). In particular, we have:
◦ Send(S) = { }. Indeed, note that Send(S) represents the possible messages that the

intruder may generate from its knowledge and the system is willing to synchro-
nize with. However, the system S may only receive messages of type E(Key; T)
whereas the intruder can derive no messages of that type from �X .

◦ RSend(S)=≡e = {(cAB; E(PK(B); g1) :E(Key; T); 〈〈g1 :T 〉〉; S1); (cAB; E(g2; g1) :
E(Key; T); 〈〈g1 :T; g2 :Key〉〉; S2)} where S1 and S2 are given in Table 8. The .rst
tuple of RSend(S)=≡e represents the intruder, which guesses a message g1 of type
T and uses it in a communication with S. The second tuple of RSend(S)=≡e rep-
resents the intruder which guesses a message g1 of type T and a message g2 of
type Key and builds the encryption of g1 with g2.

So we obtain the formula in Table 8. We can make a .rst reduction by noticing
that the eavesdropping behavior of the intruder is more dangerous than the idling
one; i.e. if the formula corresponding to idling is satis.able then also the formula
relative to eavesdropping is satis.able. Thus, the disjunction of the eavesdropping
and the idling formula reduces to the eavesdropping formula. Moreover, note that

1086 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

Table 9
Unfolding of ∃. : mA ∈ K�X∪{g1}

X;. ==S1

∃. : mA ∈ K�X∪{g1}
X;. ==S1

:=

(receiving)

〈cAB?E(PK(B); mA)〉(∃. : mA ∈ K�X∪{E(PK(B);mA);g1}
X;. ==S5)

∨ (nothing to do)

F

where

S5 = 0‖[E(PK(B); g1) PK(B)−1 	5 z : T]0; 0

the formula G ∨F is equivalent to G. Thus, the last three subformulas reduce to

〈&cAB;E(PK(B);mA)〉(∃. : mA ∈ K�X∪{E(PK(B);mA)}
X;. ==S4):

In addition, note that S4
a9 for every action a (so S =Nil); thus, by de.nition

in Table 7, (∃. :mA ∈K�X∪{E(PK(B); mA)}
X; . ==S4) is F because mA =∈D(�X ∪{E(PK(B);

mA)}).
• Next, we analyze: ∃. :mA ∈K�X∪{g1}

X; . ==S1. We have that Send(S1) = { } and RSend

(S1)=≡e = { } because S1
c?m9 for every action c?m. So, we obtain the formula in

Table 9. This formula reduces to its .rst argument, i.e.

〈cAB?E(PK(B); mA)〉(∃. : mA ∈ K�X∪{E(PK(B);mA);g1}
X;. ==S5):

However, note that S5
a9 for every a∈Act; thus, by de.nition of the partial eval-

uation function, ∃. :mA ∈K�X∪{E(PK(B); mA); g1}
X; . ==S5 is F because mA =∈D(�X ∪{E(PK

(B); mA); g1}). Thus, the whole formula in Table 9 reduces to F.
• Next, we analyze: ∃. :mA ∈K�X∪{g1 ; g2}

X; . ==S2. This formula reduces to F. The reasoning
proceeds as above.

• Next, we analyze: ∃. :mA ∈K�X∪{E(PK(B); mA)}
X; . ==S3. We .rst compute Send(S3) and

RSend(S3). In particular, we have:
◦ Send(S3) = {(cAB; E(PK(B); mA); S4)}, because E(PK(B); mA)∈D(�X ∪{E(P
K(B); mA)}).

◦ RSend(S3)=≡e = {(cAB; E(PK(B); g1) :E(Key; T); 〈〈g1 :T 〉〉; S5); (cAB; E(g2; g1) :
E(Key; T); 〈〈g1 :T; g2 :Key〉〉; S6)} where S6 is given in Table 10.

Note that S5 and S6 are equal to Nil, i.e. they can perform no actions. Thus, by
de.nition of the partial evaluation function, ∃. :mA ∈K�X∪{E(PK(B); mA); g1}

X; . ==S5 and

∃. :mA ∈K�X∪{E(PK(B); mA); g1 ; g2}
X; . ==S6 are F, because mA =∈D(�X ∪{E(PK(B); mA);

g1; g2}) (and so mA =∈D(�X ∪{E(PK(B); mA); g1})). Thus, the whole formula in
Table 10 reduces to F.

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1087

Table 10
Unfolding of ∃. : mA ∈ K�X∪{E(PK(B);mA)}

X;. ==S3

∃. : mA ∈ K�X∪{E(PK(B);mA)}
X;. ==S3

:=

(guessing)

〈〈)g1 〉〉〈cAB!E(PK(B); g1)〉(∃. : mA ∈ K�X∪{E(PK(B);mA);g1}
X;. ==S5)

∨ (guessing)

〈〈)g1 ;)g2 〉〉〈cAB!E(g2; g1)〉(∃. : mA ∈ K�X∪{E(PK(B);mA);g1 ;g2}
X;. ==S6)

∨ (nothing to do)

F

where

S6 = 0‖[E(g2; g1) PK(B)−1 	5 z : T]0; 0

Table 11
Final unfolding of ∃. : mA ∈ K�XX;. ==S

∃. : mA ∈ K�X
X;. ==S

:=

(guessing)

〈〈)g1 〉〉〈cAB!E(PK(B); g1)〉F
∨ (guessing)

〈〈)g1 ;)g2 〉〉〈cAB!E(g2; g1)〉F
∨ (receiving)

〈cAB?E(PK(B); mA)〉F
∨ (eaves-dropping; idling; nothing to do)

F

• Next, we analyze: ∃. :mA ∈K�X∪{E(PK(B); mA)}
X; . ==S4. This formula reduces to F. The

reasoning proceeds as for ∃. :mA ∈K�X∪{g1 ; g2}
X; . ==S2.

To summarize, we obtain that ∃. :mA ∈K�X
X; .==S reduces to the formula in Table 11 and

.nally to F. Thus, there is no intruder with initial knowledge �X which can discover
the exchanged message mA.

5.2. Needham Schroeder public key protocol

This protocol has became paradigmatic for testing analysis tools for cryptographic
protocols. It has a subtle :aw discovered by Lowe [27] which arises in the presence
of a malicious agent.

1088 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

Table 12
Needham Schroeder public key protocol

A �→ B : {Na; A}PK(B) A �→ B : {Na; A}PK(B)

B �→ A : {Na; Nb}PK(A) B �→ A : {Na; Nb; B}PK(A)

A �→ B : {Nb}PK(B) A �→ B : {Nb}PK(B)

Flawed version Lowe’s corrected version

Table 13
Description in Crypto-CCS of the Needham Schroeder public key protocol

Let NSPK be A‖B‖LX�X , where �X = {A; B; PK(X)−1; PK(X); PK(A); PK(B)};
L = {cAB; cAX ; cBX }; A = AB + AX ; B = BA + BX with:

AB = [Na A 	1 y][y PK(B) 	4 y1]

cAB!y1:

cAB?r1 : E(Key; Nonce × Nonce):

[r1 PK(A)−1 	5 y2][y2 	2 y3]

[y3 = Na]

[y2 	3 y4][y4 PK(B) 	4 y5]

cAB!y5

BA = cAB?r2 : E(Key; Nonce × Id):

[r2 PK(B)−1 	5 z1][z1 	3 z2]

[z2 = A]

[z1 	2 z3][z3 Nb 	1 z4]

[z4 PK(A) 	4 z5]

cAB!z5:cAB?r3 : E(Key; Nonce)

[r3 PK(B)−1 	5 z6][z6 = Nb]

and
AX = AB[NX

a =Na; PK(X)=PK(B); cAX =cAB]

BX = BA[NX
b =Nb; PK(X)=PK(A); cBX =cAB]

Note: The tailing 0 is omitted, i.e. [m = m′]A1 stands for [m = m′]A1; 0 (similarly for the deduction
constructs).

In Table 12, we show the intended execution of the protocol by using the notation
which is commonly found in literature. In the :awed version, the sender A communi-
cates to B a fresh nonce Na (i.e. a randomly guessed value) and its name encrypted
with the public key of B (thus only B can decrypt this message). Next, the receiver B
communicates to A the just received nonce Na and a fresh nonce Nb, both encrypted
with the public key of A. Finally, the sender A communicates to the receiver the nonce
Nb encrypted with the public key of B. At the end of a successful run between a sender
A and a receiver B, only these two processes should know Na and Nb. 6

We analyzed the Crypto-CCS speci.cation in Table 13 which consists of three
agents: A; B and X . The agent A may act as initiator both with B and X ; the agent B
acts as responder, while the agent X may act as initiator or responder of the protocol.
The speci.cation for X is not given, thus we check whether the system is secure

6 These nonces could be used to establish a new communication channel with a new shared key that is a
function of these values.

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1089

Table 14
The Lowe’s attack described in common notation

(1) A �→ X : E(PK(X); (Na; A))

(2) X (A) �→ B : E(PK(B); (Na; A))

(2) B �→ X (A) : E(PK(A); (Na; Nb))

(1) X �→ A : E(PK(A); (Na; Nb))

(1) A �→ X : E(PK(X); Nb)

(2) X (A) �→ B : E(PK(A); Nb)

against whatever behavior the agent X could have. We only speci.ed the intruder’s
initial knowledge, i.e. the public keys of A and B, the names of A and B and its private
and public key. We need not give the nonces to the intruder because it can guess them
by itself. We performed our analysis and, as expected, we found the :aw in [27]: an
intruder X masks as A to B and discovers both nonces Na and Nb.

The attack is given in Table 14 (we use X (A) as the intruder involved in the
communication as agent A): the attack consists of two concurrent sessions: in the
.rst one, the agent A initiates the protocol with X ; in the second one, the agent X
communicates with B pretending to be A. The steps of the attack can be summarized
as follows: the agent A starts a run of the protocol with the agent X ; then the agent X
can simulate A in a run of the protocol with the agent B. The agent B sends to X (A)
the message E(PK(A); (Na; Nb)), which contains the fresh nonce Nb, encrypted with the
public key of A. Now, the intruder cannot directly decrypt the message, but can send
the message to the agent A. The agent A correctly decrypts E(PK(A); (Na; Nb)) and
resends the nonce Nb to X , encrypted with the public key of X , since it thinks it is
the second message of its run with X . Eventually, X discovers Nb and sends it to B.

We corrected the protocol as done [27] (see Table 12) and checked that there are no
:aws. Indeed, the second message encodes also the name of the sender, i.e. B. Thus,
the presented attack is no more possible, because A would receive from X a message
whose sender is B. At that point, A should quit the session with X .

Note that, in our analysis, we can guarantee there are no attacks only in the system
con.guration we analyzed, i.e. only a session between a single sender and a single
receiver. In principle, we cannot extend the results to systems consisting of more users
and sessions. Moreover, it is interesting to remark that the Lowe’s attack is possible
only in the presence of a legitimate user which acts maliciously against the other users
of the system. Indeed, if we consider the agent X as an external one, i.e. a legitimate
agent does not start a session with it, then the attack is not possible.

5.2.1. Experimental results with PaMoChSA
The current implementation of our veri.cation tool PaMoChSA is in the ocaml v3.0

language. The tool receives as inputs: the description of the system under investigation,
the intruder’s initial knowledge, and a predicate on the knowledge of the intruder,

1090 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

Table 15
Experimental results about Needham–Schroeder public key protocol with PAMOCHSA

Spec name Signi.cant stored nodes User time (s) Attack?

NSPK-:awed 18623 3.58 YES
NSPK-correct 267 659 58 NO
NSPK-:awed-no-gen 319 0.06 YES
NSPK-correct-no-gen 793 0.19 NO

e.g., if a message may be deduced from it. The tool looks for possible attacks on
the speci.cation, i.e. if an intruder, by interacting with the system, is able to reach a
con.guration where its knowledge satis.es the predicate. If the tool discovers a possible
attack, then it outputs its description.

In Table 15, we report the experimental results about the veri.cation of the
Needham–Schroeder Public Key protocol (NSPK, for short) on a Pentium III (750MHz,
772Mb) with Red-Hat 6.2 operating system. The .rst column lists the name of the .le
with the Crypto-CCS protocol speci.cation, the intruder initial knowledge and the pred-
icate to be checked; the second column lists the number of the stored nodes of the
formula obtained during the partial model checking phase; the third column reports the
user time for the whole analysis and .nally the fourth column reports the results of
the analysis (if the system is not correct, then a successful attack sequence is given).
The last two lines list the cases where intruders cannot generate any new names.

6. Concluding remarks and related work

We proposed a novel approach for modeling and checking the security properties
of cryptographic protocols. This relies on the observation that security protocols may
be naturally described as open systems, i.e. systems which may have some unspeci.ed
components. These may be used to represent a hostile intruder whose behavior cannot
be predicted or else a malicious agent which may not follow its program to obtain an
advantage for itself. The veri.cation phase consists of checking that, for any instance of
the unknown component, the resulting system satis.es a property expressed in a formula
of a suitable temporal logic. We argue this paradigm is .t for specifying and analyzing
both network and system security. As a matter of fact, we have currently applied partial
evaluation techniques to the analysis of such properties as non-interference [36], timed
non-interference [15], secrecy [35] and authentication [30]. All the results rely on the
following schema:
(1) design suitable languages for system description and property speci.cation;
(2) develop corresponding partial evaluation techniques;
(3) develop a satis.ability procedure for the logic used.
The application of the previous steps to a speci.c setting requires some e2orts (just
like in the secrecy analysis of this paper). Nevertheless, this method has a wide range
of applications, because the techniques used are general and :exible. In particular,

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1091

partial model checking has been de.ned for expressive temporal logics, e.g. 7-calculus
[22], and for a class of system description languages based on certain formats of SOS
[5,25,34].

Partial evaluation functions ideally describe the behavior and abilities of the unknown
component, i.e. the enemy. This is a main feature of our method: when you assume
that the enemy may be a process de.nable in the calculus, then enemy’s abilities
are directly inferred. It is interesting to note that this also provides a sort of formal
justi.cation of the enemy’s abilities in the so-called most powerful intruder method
by Dolev and Yao (e.g., see [11]). The idea is to consider a .xed intruder which can
eavesdrop, tap into and fake messages exchanged in a network. Table 7 shows that
our intruders have precisely these abilities.

The main contributions of this paper can be summarized as follows:
• Security properties can be naturally described as properties of open systems. Our

method provides a uniform approach for the de.nition of both network and system
security. We used a single context, i.e. S‖LX , since several security properties can
be de.ned using a similar context (see [17]). However, the same ideas may apply
to more complex contexts (open systems) as well.

• Partial model checking techniques are :exible and may be applied to several
analysis frameworks. These techniques might also be used to formally infer
potential intruders’ abilities also for other computational models and analysis sce-
narios (e.g., di2erent contexts).

• We provide a decidability result for the secrecy analysis of protocols with a .nite
number of sessions. In particular, we allow intruders to guess new random values
but we consider messages of bounded size.

• A suitable process calculus for describing security protocols has been proposed. This
calculus is equipped with a construct to model in which way messages can be inferred
from other messages. The presence of this construct is justi.ed by the observation
that, in the description of security protocols, we need to model several di2erent
cryptographic functions. These might have speci.c algebraic features which can be
conveniently encoded in an inference system. Our analysis theory is completely
parametric with respect to the given inference system, provided this relies on some
(mild) assumptions.

We can highlight (at least) two limitations of our technique:
• We consider only protocols with a limited number of parties and sessions. (Note that

the secrecy analysis for general protocols is undecidable because it can be reduced
to the halting problem.) However, in [28,47], preliminary results have been obtained
about how, for a large class of protocols, the correctness with an unbounded number
of participants and sessions can be inferred from the results of the analysis of a
system with a .nite number of parties and sessions. Hopefully, the combination of
this method with ours may contribute to the development of fully automated analysis
approaches for a large class of security protocols.

• We consider communications over typed channels, i.e. processes cannot receive mes-
sages unless they do comply with the type imposed on the channel. Hence, our ap-
proach does not take into account the so-called type Caw attacks which are based
on a misunderstanding of the structure of the received messages. In [19], however,

1092 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

under some mild assumptions on the protocols, it has been shown that, if a system
is secure against attacks which do not exploit-type :aws, then that system is se-
cure also against type :aw attacks. This result has been obtained by considering the
strand spaces [48] as security protocol models. Whether this holds in our framework
will require further study.

We plan also to extend our approach by admitting a restricted form of recursion and
adopting a method to symbolically represent the knowledge that the intruders would
obtain during the computation with an unlimited system. (Such symbolic techniques
could be also useful to avoid bounds on the message size, e.g., see [4].) Moreover,
we believe that the security analysis method explained in this paper is :exible and
may be suitable for other languages and analysis contexts as well, e.g. for such mobile
languages as ambient calculus [9] or 8-calculus [39] (for some preliminary results
see [32]).

6.1. Related work

The literature on security properties analysis and veri.cation of cryptographic proto-
cols is wide. For an impressive overview of cryptographic protocols and cryptographic
systems, see [44]. Here, we brie:y recall some approaches related to process algebra
and logic theory.

The most powerful intruder approach has been recasted in the process algebra setting
by many authors, e.g. Lowe [27], Roscoe [43] and Schneider [45]. The idea is to
analyze the system under investigation only against a single process which describe
the behavior of the most powerful intruder. Marrero et al. [31] use a model with
sequential agents where the intruder’s behavior is implicitly assumed. Although it is
not necessary to give an explicit description of the intruder’s behavior, yet this is .xed
a priori through some axioms that represent its capabilities. It is worthy noticing that,
at least for the trace properties used here (also called safety properties), our approach
based on the universal quanti.cation over possible intruders and the one based on the
most powerful one are equivalent (see [17]). However, there are more complex security
properties which mix several aspects as, e.g., deadlock detection, branching points,
liveness and=or fairness, where the most powerful intruder approach is not directly
applicable and the quanti.cation over all possible intruders seems unavoidable. For
instance, see the discussions in [12,36] about the BNDC property, i.e. a non-interference
property based on the notion of bisimulation, and about non-repudiation [17,23]. Note
that our veri.cation method has been useful to check BNDC-like properties [36].

In [13,16,17], an attempt is proposed to analyze information Cow and cryptographic
protocols within the same conceptual framework. A general schema for de.ning security
properties is given [17]. This schema is called Generalized NDC and it is a suitable
extension of a non-interference property, i.e. NDC, de.ned in [12]. The main idea is
that a system is secure whenever its normal execution behavior cannot be “signi.cantly”
altered even in the presence of an intruder (or a malicious agent). The schema relies
on the quanti.cation over any possible enemy as ours, but the speci.cation of the
“correct” behavior is given through a process. The analysis method is the most general
intruder approach and a systematic way of constructing such intruder is proposed.

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1093

A suBcient condition (see [17]) is given that shows how considering only this process
is enough for a large class of security properties. One of the main goals of such
approach is to provide a uniform framework for the comparison of security properties
(e.g., see [14]).

Some authors found the 8-calculus [39] suitable for describing security protocols.
This is mainly due to its management of names, some of which can be seen as secret
messages. In [2], Abadi and Gordon proposed an approach based on proof theoretic
tools for a variant of the 8-calculus, namely the spi-calculus, which embodies some
constructs for modeling cryptography. The innovative idea was to model the intruders
using the testing equivalence theory for 8-calculus (e.g., see [7]). In [1], Abadi pro-
posed a type system for secrecy properties for the spi-calculus; Boreale et al. (e.g.,
see [8]) provided a compositional proof system for equivalence testing which may be
used to deal with both secrecy and authenticity properties. Another approach relies on
control :ow analysis techniques of the 8-calculus [6]. By controlling how the informa-
tion is exchanged along channels, con.nement properties can be studied, i.e. whether
the information is sent via a particular channel or remains enclosed in a system. This
approach has also been extended to mobile ambients [9] (possibly with an unbounded
number of states) by Nielson and Nielson [41].

Other approaches are based on proof theoretic methods (e.g., see [2,3,18,21,42,45]).
Some of them use temporal and modal logic concepts and make it possible to prove that
a system, even without a .nite behavior, enjoys security properties. In general, these
methods are not fully automated and need non-trivial human e2orts to analyze systems,
while counter-examples are not directly feasible. An interesting exception is the work
by Kindred and Wing [21], where the authors propose a fully automated approach
for checking that a protocol enjoys some properties expressed in a logical language L
(which has to satisfy some requirements). The protocol is represented through a set of
formulas P. From this set P, by using the rules and axioms of the logic, it is possible
to infer all formulas which the protocol enjoys (the “theory” of P). This set is .nitely
representable and the membership problem is decidable. Thus, the veri.cation that the
protocol satis.es a property expressed by a formula F corresponds to check whether
the formula F belongs to the “theory” of P.

In [23], Kremer and Raskin analyze the non-repudiation properties of security pro-
tocols using ATL logic. This logic has been speci.cally developed to describe the
properties of open systems, so this approach and ours are somehow related to each
other. However, both the computational model and the solution methodology di2er.
(Nevertheless, it would be very interesting to extend our framework for the treat-
ment of non-repudiation properties and then compare the eBciency of the two
approaches.)

Acknowledgements

We would like to thank the anonymous referees for their helpful comments. Thanks
are also due to Marinella Petrocchi for checking our speci.cation of the NSPK protocol
with PaMoChSA.

1094 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

This work has been partially supported by Microsoft Research Europe (Cambridge);
by MIUR project “MEFISTO”; by MURST project “Tecniche e strumenti software
per l’analisi della sicurezza delle comunicazioni in applicazioni telematiche di interesse
economico e sociale”; by CNR project “Strumenti, ambienti ed applicazioni innovative
per la societVa dell’informazione” and .nally by CSP with the project “SeTAPS”.

Appendix A. Proofs

Lemma 3.1. Consider a formula F ∈L, which consists only of the logical constants,
disjunctions and the possibility modality, and a ;nite set of closed messages �. It is
decidable if there exists a sequential agent X� s.t. X� |=F .

Proof. We prove the thesis by structural induction on F ; furthermore, if F is satis.able,
we construct a model XF for such a formula.
• F =F. Then, no sequential agent models F , and thus F is not satis.able.
• F =T. Then, every sequential agent models F . Let (XF)� be (0)�.
• F =F1 ∨F2. Then, F is satis.able i2 F1 is satis.able or F2 is satis.able. If both F1

and F2 are not satis.able then also F is not satis.able. Otherwise, suppose that F1

(or F2) is satis.able. Then, by structural induction, there is (XF1)� which models F1.
Let (XF)� be (XF1)�.

• F = 〈a〉F1. By inspection of the action a:
◦ c!m. If m =∈D(�) then F is not satis.able. (Recall that whenever an agent sends

a message, then this message must deducible from its knowledge.) Otherwise,
assume m∈D(�). If F1 is not satis.able then also F is not satis.able. On the
other hand, by structural induction, let (XF1)� be a model for F1. Then, let (XF)�
be (c!m:XF1)�, if m∈�, otherwise let (XF)� be (p:c!x:X ′

F1
)�, where: 1) p is a

proof of m from � whose root is an assignment to the variable x; 2) x is a variable
that does not appear in XF1 ; 3) X ′

F1
is the term XF1 where m is replaced with x.

◦ c?m. If F1 is not satis.able by a sequential agent whose knowledge is �∪{m}
then also F is not satis.able. Otherwise, by structural induction, let (XF1)�∪{m}
be a model for F1. Then, let (XF)� be (c?x :T:X ′

F1
)�, where: 1) T is the type of

m, 2) x is a variable that does not occur in XF1 ; 3) X ′
F1

is the term XF1 where the
message m is replaced with x.

◦)g. This case is similar to the previous one, with the appropriate pre.x construct
genx; iT .

◦ &c;m. This case is similar to the previous one, with the appropriate pre.x construct
&xc; T .

Proposition 4.1. Given a system S, an agent X and a logical formula F ∈L, then

S‖X |= F i@ X |= F==S:

Proof. The proof is performed by structural induction on the formula F . We describe
only one case, the others are similar.

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1095

• F = 〈a〉F ′, with a 	=)c;m;)g. We have S‖X |= 〈a〉F ′ i2 S‖X a→ S ′‖X ′ and S ′‖X ′ |=F ′.
Since, a 	=)c;m;)g, the unique rules to derive the transition S‖X a→ S ′‖X ′ may be
‖1 and the symmetric of ‖1. So, S‖X a→ S ′‖X ′ i2 either S a→ S ′ for some S ′ and
X ′ =X or X a→X ′ and S ′ = S. By, induction hypothesis, we have that S ′‖X |=F ′ i2
X |=F ′==S ′, and S‖X ′ |=F ′ i2 X ′ |=F ′==S. So, we eventually obtain that S‖X |= 〈a〉F ′

i2 X |=∨S′:S a→ S′ F
′==S ′ or X |= 〈a〉(F ′==S) and the thesis follows.

Proposition 4.2. Given a set of channels L and a logical formula F ∈L, we have

(S)\L |= F i@ S |= F==L:

Proof. The proof is performed by structural induction on the formula F . We describe
only one case, the others are similar.
• F = 〈a〉F ′. We have that S\L |= 〈a〉F ′ i2 S\L a→ S ′\L and S ′\L |=F ′. Note that
S\L a→ S ′\L, for some S ′, only if channel(a) =∈L and, in this case, by induction hy-
pothesis, we have that S ′\L |=F ′ i2 S ′ |=F ′==L. So if channel(a) =∈L then S\L |= 〈a〉F
i2 S |= 〈a〉(F ′==L). When channel(a)∈L, for no S we may have S\L |= 〈a〉F , or
equivalently, S |=F.

Lemma 4.1. Given a system S and an initial message m, suppose that there exists
a sequential agent X� s.t. Sort(S‖X)⊆L and S‖LX� |=∃. :m∈K�

X; .. Then, a well-

behaved agent X ′
� exists s.t. S‖LX ′

� |=∃. :m∈K�
X ′ ; ..

Proof. Assume that S‖LX .′
→ and m∈K�
X; .′ , i.e. m∈D(�∪msgs(.)) where .′ ↓X = a1 : : :

aj = .. We must have X�
.
→. Thus, the formula 〈a1〉 : : : 〈an〉T is satis.able by an agent

whose knowledge is �. Then, by the proof of Lemma 3.1, we can .nd a process Y�
s.t. Y�

.
→, and whose structure is as follows:

Y = pc1:pc2: : : :

p︷ ︸︸ ︷
[: : :] : : : [: : : � x]pci : : : :pcj−1:pcj:0;

where pci are pre.x constructs and p represents a proof of x. Note that each pre.x
construct pci corresponds to action ai in .. Deduction constructs may only appear
before a sending action. Moreover, note that the pre.x construct which immediately
follows the end of a proof must be the sending of the inferred value, e.g., pci = c!x.

We will build a well-behaved agent X ′ s.t S‖LX ′ |=∃. :m∈K�
X ′ ; .. The agent X ′ is

obtained by iteratively reordering the pre.x constructs of X , until we obtain a well-
behaved agent. In particular, we move each generation action just before the .rst place
where the generated value is necessary, i.e. before the proof of the .rst sent message
m′ s.t. g occurs in m′.

Let X0 be X . We construct a sequence of agents Xk s.t. S‖LXk .′k
→, .′k ↓X = .k and
msgs(.k) =msgs(.). Moreover, the relative order between communication actions with
S is never changed. Thus, also Xk is a successful attacker of S.

1096 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

Assume that in Xk we can .nd a pre.x construct pci = genx; iT , whose corresponding
action in .k = a1 : : : aj is ai =)g and:
• pci+1 = &yc; T ; c?y :T , then we simply let Xk+1 be the agent Xk where pci and pci+1

are swapped. Note that the generation action ai has no in:uence on the action ai+1,
thus the agent Xk+1 executes a computation .k+1 where ai and ai+1 are inverted with
respect to the sequence .k .

• We have that al = c!m′ and g does not occur in m′, where l¿i is the smallest
index s.t. al = c!m′, for some m′, and ah =)gh , for all h s.t. i¡h¡l. Note that
m′ can be deduced by �∪msgs(a1 : : : al−1). Note also that g does not appear as
submessage of �∪msgs(a1; : : : ; ai−1) since it is newly created and it cannot be re-
ceived (or eavesdropped) as submessage in every action in ah with 1¡h6i − 1
since it is never sent as submessage and the other processes cannot deduce it.
(Indeed, g is a random value of basic type which can be only guessed by Xk
and by Assumption 4.2 this message cannot be deduced by no other agent in
S.) Note also that g =∈msgs(ai+1 : : : al−1) since these are guessing actions of new
random messages. Thus, we have that m′ ∈D(�∪msgs(a1 : : : al−1)), and g does
not occur in �∪msgs(a1 : : : ai−1ai+1 : : : al−1). We can thus apply Assumption 4.1,
and we get m′ ∈D(�∪msgs(a1 : : : ai−1ai+1 : : : al−1)). Let p′ a proof of m from
�∪msgs(a1 : : : ai−1ai+1 : : : al−1) whose root is an assignment to the variable x. Note
that g does not appear in p′. Thus, its guessing it is not necessary in the proof p′.
Note also that the generation action ai has no in:uence on the successive generation
action ah, for i¡h¡l− 1. So, let Xk+1 be the process Xk where each construct pch,
with i¡h6l, is shifted left of one position, the proof p, that precedes pcl in Xk , is
replaced with p′ and furthermore the pcl construct of Xk+1 is pci of Xk .

Finally, we obtain an agent whose guessing actions are grouped together and inserted
just before the sending of a message which contains the guessed values as submessages.
Actually, it is also possible that the tail of the agent consists of a sequence of guessing
actions followed by the 0 term. We can safely remove them and we obtain a well-
behaved agent. Call this agent X ′ and the result follows.

Proposition 4.3. Given a system S and a well-behaved sequential agent X� where �
is ;nite and Sort(S‖X)⊆L, then if m is an initial message we have

S‖LX� |= ∃. : m ∈ K�
X;. i@ X� |= ∃. : m ∈ K�

X;.==S:

Proof. By induction on the max length of the computations of S.
Base case: S =̇Nil. We observe that X can only guess new random messages during

its future behavior. But, by Assumption 4.1, this does not signi.cantly improve its
capabilities for the deduction of initial messages. Thus, X is a successful attacker i2
m∈D(�).
Induction step:

S‖LX� |= ∃. : m ∈ K�
X;. i2

∃. : S‖LX� |= m ∈ K�
X;. i2

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1097

S‖LX� |= m ∈ K�
X;- ∨

∃.; . = a.′ ∧ S‖LX� |= m ∈ K�
X;. i2

X� |= m ∈ K�
X;- ∨

(1) ∃a∃S ′; X ′ : S‖LX� a→ S ′‖LX ′
�′ ∧ S ′‖LX ′

�′ |= ∃.′ : m ∈ K�′

X ′ ;.′ ∨
(Interactions between X and S through rules ‖2; ‖& and symm:)

(2) ∃a∃S ′ : S‖LX� a→ S ′‖LX� ∧ S ′‖LX� |= ∃.′ : m ∈ K�
X;.′ ∨

(S only acts through rule ‖1)
(3) ∃a∃X ′ : S‖LX� a→ S‖LX ′

�′ ∧ S‖LX ′
�′ |= ∃.′ : m ∈ K�′

X ′ ;.′

(X only acts through rule ‖1 symm:)

Condition (1) takes into account every possible synchronization between S and X ;
these are (from the point of view of X agent):

• Receiving a typed message on a channel c. Because only a .nite set of messages
can be sent from S on every channel and the number of channels is .nite, we can

consider only a .nite number of actions a. So we have that X�
c?m′
→ X ′

�∪{m′:T ′} and

S ′‖LX ′
�∪{m′:T ′} |=∃.′ :m∈K�∪{m′:T ′}

X ′ ; .′ . By induction hypothesis we have that

X ′
�∪{m′:T ′} |=∃. :m∈K�∪{m′:T ′}

X ′ ; . ==S ′. So considering all the possible a actions of this
kind we obtain∨

S
c!m′→ S′

〈c?m′〉(∃. : m ∈ K�∪{m′:T ′}
X ′ ;. ==S ′):

• Sending of a typed message. By induction hypothesis, the following disjunction takes
in account these cases:∨

(c;m′ ;S′)∈Send(S)
〈c!m′〉(∃. : m ∈ K�

X ′ ;.==S
′);

where Send(S) = {(c; m′; S ′) | S c?m
′

→ S ′ and m′ ∈D(�)}.
• Eavesdropping of a communication internal to the system S. Such communications

can be in a .nite number, and hence by induction hypothesis these cases can be
treated as∨

S
)c;m′→ S′

〈&c;m′〉(∃. : m ∈ K�∪{m′:T ′}
X ′ ;. ==S ′):

Condition (2) takes in account actions performed by the system S without interaction
with the agent X , by induction hypothesis these actions can be taken into account using
the following formula:∨

S
a→ S′(a=)c;m;)g)

(∃. : m ∈ K�
X;.==S

′):

The last condition (3) is more diBcult to translate than the previous ones. As a matter
of fact, this formulation does not directly permit us to use the induction hypothesis on S.

1098 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

However, our restriction to the analysis of well-behaved processes and our requirements
on the Sort of S and X help us. In particular, we will prove that the unique interesting
possibility, for this condition, is that the initial part of the successful computation .
between S and X consists of a sequence of guessing actions by X , followed by an
internal action which corresponds to the sending of a message m′ from X to S.

First, note that a=)g1 for some random message g1. Next, let .∗ be . ↓X ; then, since
X is well behaved, .∗ = a.′1c!m

′.′′1 , where .′1 =)g2 : : :)gn ; moreover, the random values
gi occur in m′. By de.nition of well-behaved process, we have that

X�
a.′1
→X 1

�∪msgs(a.′1)
c!m′
→ X ′

�∪msgs(a.′1)
.′′1
→ :

Now, consider the computation . of S‖LX�. We can re-write it as .1)c;m′.2 where in
a.1 there are no interactions between S and X . So, we have

S‖LX� a.1
→ S1‖LX 1)c;m′→ S2‖LX ′ .2
→ :

The sequence a.1 must be the interleaving of two sequences of actions: the ones of X ,
i.e. a.′1, and the ones of S, say .S . We may have two cases depending on .S empty
or not:
• If .S is not empty, then we have also the following computation:

S‖LX� .S
→ S1‖LX�
a.′1)c;m′ .2
→

and m∈K�
X; .Sa.′1)c; m′ .2

. Thus, we can now apply the induction hypothesis, and we get

X� |=∃. :m∈K�
X; .==S1. But, note that ∃. :m∈K�

X; .==S1 is a disjunct of ∃. :m∈K�
X; .==S,

which is already taken into account by condition (2) because actions in .S may be
only internal or guessing ones.

• If .S is empty, then

S‖LX�
a.′1)c;m′
→ S ′‖LX ′

�∪msgs(a.′1)

and

S ′‖LX ′
�∪msgs(a.′1) |= ∃. : m ∈ K�∪msgs(a.′1)

X ′ ;. :

We can now apply induction hypothesis and so we obtain

X ′
�∪msgs(a.′1) |= (∃. : m ∈ K�∪msgs(a.′1)

X ′ ;. ==S ′)

and .nally

X� |= 〈)g1〉 : : : 〈)gn〉〈c!m′〉(∃. : m ∈ K�∪msgs(a.′1)
X ′ ;. ==S ′):

By the other hand, if

X� |= 〈)g1〉 : : : 〈)gn〉〈c!m′〉(∃. : m ∈ K�∪msgs(a.′1)
X ′ ;. ==S ′)

then it can be proven that a computation . exists s.t. S‖LX� |=m∈K�
X; ..

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1099

So, by considering all possible initial sequences of random generation actions we
have ∨

(c;m′ ;〈〈gi〉〉i∈I ;S′)∈RSend(S)
〈〈)gi〉〉i∈I 〈c!m′〉(∃. : m ∈ K�′

X ′ ;.==S
′);

where �′ =�∪ 〈〈gi〉〉i∈I and

RSend(S) = {(c; m′; 〈g1; : : : ; gn〉; S ′) | ∃X� s:t: X�
)g1 ;:::;)gn
→ X ′

�′ ; S
c?m′
→ S ′;

m′ ∈ D(�′); {gi}i∈{1;:::;n} ⊆ SubM (m′)\(SubM (�)
∪ rand(S))}:

Lemma A.1. Consider a system S and assume that 〈〈gi :Ti〉〉i∈I ≡4 〈〈g′i :T ′
i 〉〉i∈I . As-

sume also that in S there is no subterm genx; kT s.t. RTT (k) is equal to gi :Ti or g′i :T ′
i

for some i∈ I . Then we have

S a→ S1 ⇒ 4(S)
4(a)→ 4(S1):

Proof. By structural induction on S and by inspection on the rules used to infer the
transitions of S.

First, we consider that S is a sequential agent. Then we may have the following
cases:
• S = 0. Trivial.
• S =pc:A. Then we may have the following cases depending on pc:

◦ pc= c!m. Thus S c!m→ A and similarly 4(S) = c!4(m):4(A)
c!4(m)→ 4(A).

◦ pc= c?x :T . For whatever m∈Tmsgs(T) we have S c?m→ A[m=x]. Since 4(S) = c?x :

T:4(A), we have that 4(S) c?m→ 4(A)[m=x] for whatever m∈Tmsgs(T). Thus, also

4(S)
c?4(m)→ 4(A)[4(m)=x] = 4(A[m=x]).

◦ pc= &xc; T . Similar to the case above.

◦ pc= genx; iT . We have that S
)g→A[g=x], where g=RTT (i), and 4(S) = genx; iT :

4(A). Due to our hypothesis, g is di2erent from the random messages in {gi :Ti}i∈I
∪{g′i :T ′

i }i∈I . Hence, 4(g) = g (by our assumptions on 4) and 4(S)
)g→ 4(A)[g=x]

= 4(A[g=x]).
• S =A1 + A2. If S a→A′ it means that either A1

a→A′ or A2
a→A′. In both cases, by

structural induction, the thesis follows.
• S = [m=m′]A1;A2. We have that 4(S) = [4(m) = 4(m′)]4(A1); 4(A2). If S a→A′, it

must be that either m=m′ and A1
a→A′ or m 	=m′ and A2

a→A′. Now, if m=m′ then
also 4(m) = 4(m′) and by structural induction the thesis follows. If m 	=m′ then we
have also 4(m) 	= 4(m′) and once again the thesis follows by structural induction.

• S = [〈〈mi〉〉i∈I �IS x :T]A1;A2. We have that 4(S) = [〈〈4(mi)〉〉i∈I �IS x :T]4(A1);
4(A2). If S a→A′, it must be that either 〈〈mi〉〉i∈I �IS m :T and A1[m=x] a→A′ or for
no m :T we have 〈〈mi〉〉i∈I �IS m :T and A2

a→A′. Now, if 〈〈mi〉〉i∈I �IS m :T then,
by Assumption 4.4, we have 〈〈4(mi)〉〉i∈I �IS 4(m); by structural induction the thesis
follows since 4(A)[4(m)=x] = 4(A[m=x]). Analogously, if for no m :T we have that

1100 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

〈〈mi〉〉i∈I �IS m :T then for no 4(m) we have 〈〈4(mi)〉〉i∈I �IS 4(m :T) and the result
follows by structural induction.

The case where S is S ′\L is trivial. Now consider that S = S1‖S2.
• If S a→ S ′ by means of the operational rule ‖1 (or its symmetric) the result trivially

follows.
• If S

)c; m→ S ′ by means of the rule ‖2 (communication) then it means that S1
c?m→ S ′1 and

S2
c!m→ S ′2. By structural induction, we get 4(S1)

c?4(m)→ 4(S ′1) and 4(S2)
c!4(m)→ 4(S ′2). Thus

the thesis follows since, by the operational rule ‖2, we have 4(S)
)c; 4(m)→ 4(S ′). The

symmetric case is similar.
• If S a→ S ′ by means of the rule ‖& (or its symmetric) the result similarly follows as

above.

Lemma 4.2. Consider a system S and assume that 〈〈gi :Ti〉〉i∈I ≡4 〈〈g′i :T ′
i 〉〉i∈I . As-

sume also that in S there is no subterm genx; kT s.t. RTT (k) is equal to gi :Ti or g′i :T ′
i

for some i∈ I . Then, we have

S
.
→ S1 ⇒ 4(S)

4(.)
→ 4(S1):

Proof. By induction on the length of the computation . and by exploiting Lemma A.1.

Lemma 4.3. Let 〈〈gi :Ti〉〉i∈I ≡4 〈〈g′i :T ′
i 〉〉i∈I ; consider a system S and a sequential

agent X , with Sort(S‖X)⊆L, and let no subterm genx; kT in S‖X be s.t. RTT (k) is
equal to gi :Ti or g′i :T ′

i for some i∈ I ; furthermore, assume SubM (�)∩ ({gi :Ti}i∈I ∪
{g′i :T ′

i }i∈I) = { }. If m :T is an initial message, then:

S‖LX�∪{gi :Ti}i∈I |= ∃. : m ∈ K�∪{gi :Ti}i∈I
X;.

i2

4(S)‖L4(X)�∪{g′i :T ′
i }i∈I |= ∃. : m ∈ K�∪{g′i :T ′

i }i∈I
4(X);. :

Proof. If S‖LX�∪{gi :Ti}i∈I |=∃. :m∈K�∪{gi :Ti}i∈I
X; . then there exists . such that

(S‖LX�∪{gi :Ti}i∈I
.
→) ↓X = X.

with m :T ∈D(�∪{gi :Ti}i∈I ∪msgs(X.)). We are in the hypothesis of Lemma 4.2 so

we have 4(S)‖L4(X)�∪{g′i :T ′
i }i∈I

.′
→ with .′ = 4(.). Hence, we can see that (4(S)‖L
4(X)�∪{g′i :T ′

i }i∈I
.′
→) ↓4(X) = .′ = 4(X.). So we have

m : T ∈ D(� ∪ {gi : Ti}i∈I ∪ msgs(X.)) i2 (Assumption 4:4)

4(m : T) ∈ D(4(� ∪ {gi : Ti}i∈I ∪ msgs(X.))) i2

4(m : T) ∈ D(4(�) ∪ 4({gi : Ti}i∈I) ∪ 4(msgs(X.))) i2
m : T ∈ D(� ∪ {g′i : T ′

i }i∈I ∪ msgs(.′)):

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1101

Finally, we have 4(S)‖L4(X)�∪{g′i :T ′
i }i∈I |=∃. :m∈K�∪{g′i :T ′

i }i∈I
4(X);. . The other direction can

be proved by using a symmetric reasoning.

Lemma 4.4. RSend(S)=≡e is a ;nite set.

Proof. Consider two tuples t; t′ ∈RSend(S), i.e.

t = (c; m : T; 〈〈gi : Ti〉〉i∈I ; S ′); t′ = (c′; m′ : T ′; 〈〈g′i : T ′
i 〉〉i∈I ′ ; S ′1):

Assume that c= c′, T =T ′, I = I ′ and that the sequences of the types of the random
values guessed, i.e. 〈〈Ti〉〉i∈I and 〈〈T ′

i 〉〉i∈I , are equal up to permutations (they represent

the same multi-set of basic types). Moreover, assume that S c?m→ S ′, because in S there

is an agent A= c?x :T:A′, which performs the action A c?m→ A′[m=x], and S ′1 is equal to
S ′ where A′[m=x] is replaced with A′[m′=x]. (Roughly, the two derivatives S ′ and S ′1
are due to the same sequential agent which performs a receiving action.)

Note that, if two messages, say m and m′, with the same type di2er, it means that
at least an occurrence of a basic value of m is replaced in m′ with an occurrence of a
di2erent basic value (but with the same type).

Now, we decorate the term representing the type T (T ′) of m (m′) as follows:
• We color blackb each basic type in the term of T , whose corresponding message of

basic value b in m (m′) is not in {gi}i∈I ({g′i}i∈I).
• We color whitei each basic type in the term of T , whose corresponding message in
m (m′) is the basic value gi (g′i) in {gi}i∈I ({g′i}i∈I).

We say that two colored terms T , T ′ representing the same type are compatible i2
• Black condition: If t1 is a term of a basic type occurring in T , which is colored
blackb for some b, then the corresponding term in T ′ is colored blackb, and vice-
versa;

• White condition: If two occurrences t1; t2 of terms of basic types have the same
color in T then the corresponding occurrences t′1; t

′
2 in T ′ have also the same color

(even if it could be di2erent from the one of t1; t2), and vice-versa;
The black condition ensures that the two messages m;m′, which originate the coloring
of the two terms T; T ′ of the same type, agree on basic values which are not in
{gi; g′i}i∈I . The white condition ensures that equal random values in m correspond to
equal random values in m′.

Eventually, under the previous assumptions and by assuming also that the colored
terms of T and T ′ are compatible, we can .nd a bijection 4, s.t.
(1) 〈〈gi :Ti〉〉i∈I ≡4 〈〈g′i :T ′

i 〉〉i∈I ;
(2) 4(m) =m′;
(3) 4(S1) = S ′1.

We build 4 as follows. For g∈{gi}i∈I let 4(g) = g′ if g′ is the corresponding value
of g in m′. For g′ ∈{g′i}i∈I let 4(g′) = g if 4(g) = g′. Let 4(g) be g if g =∈{gi; g′i}i∈I .
Clearly, 4 is a type preserving function. We can also prove that 4 is injective. In
particular, consider gk ; gh ∈{gi}i∈I , with k 	= h, then clearly, whitek is di2erent from
whiteh. (Recall that the sequence of guessing consists of distinct random values.) Thus,

1102 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

since T and T ′ are compatible, the color of the term corresponding to 4(gk) and the
one of 4(gh) are not equal, but this means that 4(gk) 	= 4(gh). This proves the .rst
of the above points. To show that (2) holds, note that m′ is the term m where each
occurrence of g is replaced with 4(g), thus 4(m) =m′. To show that (3) holds, note
that S1 and S ′1 di2er because there is an agent is S1 which is A′[m=x] whereas the
corresponding agent in S ′1 is A′[m′=x]. The random values in {gi; g′i}i∈I do not occur
in S, by construction. Thus, 4(S ′) is S ′ where m is replaced with 4(m) =m′, and so
4(S ′) = S ′1. From the previous facts we get t≡e t′.

On the other hand, if t≡e t′ then it is possible to prove that the colorings of the
type of the exchanged messages, say m and m′, are compatible.

From this follows that, in order to establish if two tuples in RSend(S) are equivalent,
we simply need to establish that, the channels, the type of the messages, the multi-sets
of basic types guessed are the same in the two tuples. Moreover, the derivatives of S
are obtained through an action of the same sequential agent; .nally, the colored terms
of the type of the exchanged messages m and m′ are compatible.

Note that the channels and types in S are .nite. Fix a channel c and the corresponding
type T . Now, we may have only a .nite number of possible multi-sets of basic types
which represents the occurrences of newly guessed random values in the message m
with type T . Fix a sequence, and so the index set I is .xed. Then, we may have only
a .nite number of ways of coloring the term of the type T , with colors in blackb, with
b basic value and b∈D(�), and whitei, with i∈ I and I .nite, because the term of
T is .nite and the possible colors are .nite. (Recall that, even though not explicitly
represented, the set RSend(S) depends on �. This set is .nite by Assumption 4.3;
moreover, by Assumption 4.2, it is not possible to deduce basic values which are
not in �.) Thus, the compatibility relation among colorings of types, which is an
equivalence relation, may have only a .nite set of equivalence classes. Thus, it follows
that we may have only a .nite number of equivalence classes in RSend(S)≡e .

Lemma 4.5. Under the hypothesis of Proposition 4.3, let F =∃. :m1 ∈K�
X; .==S. Then,

we have

∃X� s:t: X� |= F i@ ∃Y� s:t: Y� |= F̃ :

Proof. By induction on the depth of the nesting of in.nitary disjunctions in F .
(⇒) If ∃X� |=F then either X models a formula in the .nite part of F and, in

this case, also of F̃ , or there exists t= (c; m :T; 〈〈gi :Ti〉〉i∈I ; S1)∈RSend(S) :X� |=Ft ,
where Ft is

〈〈)gi〉〉i∈I 〈c!m〉(∃. : m1 ∈ K�∪〈〈gi :Ti〉〉i∈I
X;. ==S1):

This fact implies that there exists X� s.t.

X�
)g1 ;:::;)gn
→ X ′

�′
c!m→ X ′′

�′ ∧ X ′′
�′ |= ∃. : m1 ∈ K�′

X;.==S1

with S c?m→ S1, �′ =�∪{g1 :T1; : : : ; gn :Tn}, m :T ∈D(�′) and {gi :Ti}i∈I ⊆ SubM (m :T).

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1103

There must be the case for some t′ = (c′; m′ :T; 〈〈g′i :T ′
i 〉〉i∈I ; S ′1)∈ [t]≡e that Ft′ ap-

pears as a disjunction in F̃ . Thus, we will show that there exists a process X 1
� s.t.

X 1
� |=Ft′ and consequently X 1

� |= F̃ .
Let 4 be a type preserving bijection between s.t. 〈〈gi :Ti〉〉i∈I ≡4 〈〈g′i :T ′

i 〉〉i∈I , with
I = {1; : : : ; n} (such bijection must exist by construction, since t′ ≡e t). Hence it is
possible to construct a process X 1

� such that

X 1
�

)g′
1
;:::;)g′n
→ X ′1

�′
1

and X ′1
�′

1
= 4(X ′

�′). By Lemma 4.1 we can freely assume that X is in the form

genv1 ;i1
T1
: : : : :genvn;inTn :Z:

We simply consider X 1
� as

genv
′
1 ;i

′
1

T ′
1
: : : : :genv

′
n;i

′
n

T ′
n
:Z;

where RT ′
k (i′k) = g′k and v′k = vj when 4(gj :Tj) = g′k :T ′

k .

Since, X ′
�′

c!m→ X ′
�′ and X ′1

�′
1
= 4(X ′

�′) it must be that for some X ′′1
�′

1
we have X ′1

�′
1

c!m′
→ X ′′1

�′
1
,

with X ′′1
�′

1
= 4(X ′′

�′). We also have 4(S1) = S ′1, 4(m) =m′ and 4(〈〈gi〉〉i∈I) = 〈〈g′i 〉〉i∈I .
The hypothesis of Lemma 4.3 are ful.lled and so S1‖X ′′

�′ |=∃. :m1 ∈K�′
X; . implies

S ′1‖LX ′′1
�′

1
|=∃. :m1 ∈K�′

1
X; . and by Proposition 4.3 we get X ′′1

�′
1
|=∃. :m1 ∈K�′

1
X; .==S

′
1. The

depth of the nesting of in.nitary disjunctions in the latter formula is smaller than
in the formula ∃. :m1 ∈K�

X; .==S, hence by applying the induction hypothesis, we get

∃Y ′
�′

1
|= ˜∃. :m1 ∈K�′

1
Y ′ ;.==S

′
1. Finally, the thesis follows by considering Y� as

genv
′
1 ;i

′
1

T ′
1
: : : : :genv

′
n;i

′
n

T ′
n
:p:c!y:Y ′′;

where p is a proof of m′ from �∪{g′i :T ′
i }i∈I whose root is an assignment to the

variable y, and each value g′i is replaced with v′i ; similarly, Y ′′ is the process Y ′, where

each value g′i is replaced with v′i and m′ is replaced with y. Note that Y�
)g′

1
:::)g′

1
c!m′

→ Y ′
�′

1
.

(⇐) The other direction is trivial.

Theorem 4.1. Consider a system S, with Sort(S)⊆L, a ;nite set of typed messages
� and an initial message m :T . It is decidable if there exists X�, with Sort(X)⊆L,
s.t.

S‖LX� |= ∃. : m ∈ K�
X;.:

Proof. By using Proposition 4.3 and Lemma 4.5 we can reduce the decidability of the

existence of such X� to a satis.ability problem of the reduced formula F̃ = ˜∃. :m∈K�
X; .

==S. Note that such formula consists only of the logical constants, disjunctions and the
possibility modality. Thus, we can apply Lemma 3.1 and the result follows.

1104 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

Theorem 4.2. Consider a system S, with Sort(S)⊆L and no construct &xc; T occurring
in it, a system Y = ‖k∈{1; :::; l}Y k�k consisting of a set of sequential agents Yk with
Sort(Y k�k)⊆L for k ∈{1; : : : ; l}, and an initial message m :T . Suppose that, for some
i∈{1; : : : ; l}, we have

S‖LY |= ∃. : m ∈ K�i
Y i ;.

then there exists a sequential agent X�, with �=
⋃
k∈{1; :::; l} �k , s.t.:

S‖LX� |= ∃. : m ∈ K�
X;.:

Proof. By induction on the minimal length n of sequences ., s.t. S‖L‖k∈{1; :::; l}Y k�k
.
→

and . ↓Y i = .′, with m∈D(msgs(.′)∪�i).
• n= 0. Then, let X be Y i.
• Induction step. Then, consider .= a.1 s.t.

S‖L‖k∈{1;:::;l}Y k�k
a→ S ′‖L‖k∈{1;:::;l}Y ′k

�′
k

.1
→ S ′′‖L‖k∈{1;:::;l}Y ′′k
�′′
k

and . ↓Y i = .′, with m∈D(msgs(.′)∪�i). By induction hypothesis, we have that
there exists X ′

�′ with �′ =
⋃
k∈{1; :::; l} �

′
k , s.t. S ′‖LX ′ |=∃. :m∈K�′

X ′ ; .. We may have
di2erent cases depending on the agents involved in the execution of a.
◦ Only agents in S participated on the execution of a. Then, note that �′ =� and

let X be X ′.
◦ Only agents in ‖k∈{1; :::; l}Y k�k participated on the execution of a. We may have two

cases:
a=)g. Then, for some j∈N we have g=RT (j). Let X be (genx; jT :X1)�, where
X1 is the agent X ′ where each occurrence of the random value g replaced with x.
(We assume that x does not appear in X ′.)
a=)c;m′ . Then, note that �′ =�. So, let X be X ′.

◦ One agent of S and one of ‖k∈{1; :::; l}Y k�k , say Y l
′
, synchronize. We may have

several cases depending on the action performed by Y l
′
:

c!m′. Then, note that �′ =�. So, let X be c!m′:X ′.
c?m′ :T ′. Then, let X be (c?x :T ′:X1)�, where X1 is the agent X ′ where each
occurrence of m′ replaced with x. (We assume that x does not appear in X ′.)
&c;m′ : T ′ . Then, let X be (&xc; T ′ :X1)�, where X1 is the agent X ′ where each occur-
rence of m′ replaced with x. (We assume that x does not appear in X ′.)

References

[1] M. Abadi, Secrecy by typing in security protocols, J. ACM 46 (5) (1999) 749–786.
[2] M. Abadi, A.D. Gordon, A calculus for cryptographic protocols: the spi calculus, Inform. Comput.

148 (1) (1999) 1–70.
[3] M. Abadi, M.R. Tuttle, A semantics for a logic of authentication, in: Proc. 10th Ann. ACM Symp. on

Principles of Distributed Computing, ACM Press, New York, 1991, pp. 201–216.

F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106 1105

[4] R.M. Amadio, D. Lugiez, On the reachability problem in cryptographic protocols, in: CONCUR ’00,
Lecture Notes in Computer Science, Vol. 1877, Springer, Berlin, 2000.

[5] H.R. Andersen, Partial model checking (extended abstract), in: Proc. 10th Ann. IEEE Symp. Logic in
Computer Science, IEEE Computer Society Press, Silver Spring, MD, 1995, pp. 398–407.

[6] C. Bodei, P. Degano, F. Nielson, H.R. Nielson, Static analysis for the pi-calculus with applications
to security, Inform. Comput. 168 (2001) 68–92.

[7] M. Boreale, R. De Nicola, Testing equivalence for mobile processes, Inform. Comput. 120 (2) (1995)
279–303.

[8] M. Boreale, R. De Nicola, R. Pugliese, Proof techniques for cryptographic processes, in: Proc. 14th
Ann. Symp. on Logic in Computer Science (LICS) (Trento, Italy), IEEE Computer Society Press, Silver
Spring, MD, 1999, pp. 157–166.

[9] L. Cardelli, A. Gordon, Mobile ambients, in: Proc. Foundations of Software Science and Computation
Structures, Lectures Notes in Computer Science, Vol. 1378, Springer, Berlin, 1998, pp. 140–155.

[10] P. Degano, C. Priami, Enhanced operational semantics: a tool for describing and analysing concurrent
systems, ACM Comput. Surveys 133 (2) 135–176.

[11] D. Dolev, A. Yao, On the security of public key protocols, IEEE Trans. Inform. Theory 29 (12) (1983)
198–208.

[12] R. Focardi, R. Gorrieri, A classi.cation of security properties, J. Comput. Security 3 (1) (1995)
5–33.

[13] R. Focardi, R. Gorrieri, The compositional security checker: a tool for the veri.cation of information
:ow security properties, IEEE Trans. Software Eng. 27 (1997) 550–571.

[14] R. Focardi, R. Gorrieri, F. Martinelli, A comparison of three authentication properties, Theoret. Comput.
Sci., accepted for publication.

[15] R. Focardi, R. Gorrieri, F. Martinelli, Information :ow analysis in a discrete-time process algebra,
in: Proc. 13th IEEE Computer Security Foundations Workshop, IEEE Press, New York, 2000,
pp. 170–184.

[16] R. Focardi, R. Gorrieri, F. Martinelli, Non interference for the analysis of cryptographic protocols, in:
Proc. 27th Internat. Colloq. in Automata, Languages and Programming, Lectures Notes in Computer
Science, Vol. 1853, Springer, Berlin, 2000, pp. 354–372.

[17] R. Focardi, F. Martinelli, A uniform approach for the de.nition of security properties, in: Proc. World
Congress on Formal Methods (FM’99), Lecture Notes in Computer Science, Vol. 1708, Springer, Berlin,
1999, pp. 794–813.

[18] J.W. Gray III, J. McLean, Using temporal logic to specify and verify cryptographic protocols, in: Proc.
8th Computer Security Foundations Workshop, IEEE Computer Society Press, Silver Spring, MD, 1995.

[19] J. Heather, G. Lowe, S. Schneider, How to prevent type :ow attacks on security protocols, in: Proc.
13th IEEE Computer Security Foundations Workshop, IEEE Press, New York, 2000, pp. 255–268.

[20] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood Cli2s, NJ, 1985.
[21] D. Kindred, J.M. Wing, Fast, automatic checking of security protocols, in: Proc. 2nd USENIX Workshop

on Electronic Commerce, Oakland, CA, 1996, pp. 41–52.
[22] D. Kozen, Results on the propositional 7-calculus, Theoret. Comput. Sci. 27 (3) (1983) 333–354.
[23] S. Kremer, J.-F. Raskin, Formal veri.cation of non-repudiation protocols: a game approach, in: Proc.

Workshop in Formal Methods for Computer Security, June 2000.
[24] O. Kupferman, M.Y. Vardi, Module checking, in: R. Alur, T.A. Henzinger (Eds.), Proc. 8th Internat.

Conf. on Computer Aided Veri.cation, Lecture Notes in Computer Science, Vol. 1102, Springer, Berlin,
1996, pp. 75–86.

[25] K.G. Larsen, L. Xinxin, Compositionality through an operational semantics of contexts, J. Logic Comput.
1 (6) (1991) 761–795.

[26] G. Leduc, F. Germeau, Veri.cation of security protocols using LOTOS—method and application,
Comput. Comm. 23 (12) (2000) 1089–1103.

[27] G. Lowe, Breaking and .xing the Needham Schroeder public-key protocol using FDR, in: Proc. Tools
and Algorithms for the Construction and the Analysis of Systems, Lecture Notes in Computer Science,
Vol. 1055, Springer, Berlin, 1996, pp. 147–166.

[28] G. Lowe, Towards a completeness result for model checking of security protocols, in: Proc. 11th IEEE
Computer Security Foundations Workshop, IEEE, New York, 1998, pp. 96–105.

1106 F. Martinelli / Theoretical Computer Science 290 (2003) 1057–1106

[29] G. Lowe, B. Roscoe, Using CSP to detect errors in the TMN protocol, IEEE Trans. Software Eng.
23 (10) (1997) 659–669.

[30] D. Marchignoli, F. Martinelli, Automatic veri.cation of cryptographic protocols through compositional
analysis techniques, in: Proc. Internat. Conf. on Tools and Algorithms for the Construction and the
Analysis of Systems (TACAS’99), Lecture Notes in Computer Science, Vol. 1579, Springer, Berlin,
1999.

[31] W. Marrero, E. Clarke, S. Jha, A model checker for authentication protocols, in: H. Orman, C. Meadows
(Eds.), Proc. DIMACS Workshop on Design and Formal Veri.cation of Security Protocols, DIMACS
Center, Rutgers University, September 1997.

[32] F. Martinelli, About compositional analysis for (.nite) 8-calculus processes, Proceedings of Foundations
of Information Technology in the Era of Networking and Mobile Computing. IFIP 17th World Computer
Congress, TC1 Stream, Kluwer, 2002, pp. 524–536.

[33] F. Martinelli, Encoding several security properties as secrecy ones, Technical Report IAT-B4-2001-20.
[34] F. Martinelli, Formal methods for the analysis of open systems with applications to security, Ph.D.

Thesis, University of Siena, December 1998.
[35] F. Martinelli, Languages for description and analysis of authentication protocols, in: Proc. 6th Italian

Conf. on Theoretical Computer Science, World Scienti.c, Singapore, 1998, pp. 304–315.
[36] F. Martinelli, Partial model checking and theorem proving for ensuring security properties, in: Proc.

11th Computer Security Foundations Workshop, IEEE Computer Society Press, Silver Spring, MD, 1998,
pp. 44–52.

[37] C. Meadows, The NRL protocol analyzer: an overview, J. Logic Programming 26 (2) (1996)
113–131.

[38] R. Milner, Communication and Concurrency, International Series in Computer Science, Prentice-Hall,
Englewood Cli2s, NJ, 1989.

[39] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, Inform. Comput. 100 (1) (1992)
1–77.

[40] J.C. Mitchell, M. Mitchell, U. Stern, Automated analysis of cryptographic protocols using murphi,
in: Proc. Symp. on Security and Privacy, IEEE Computer Society Press, Silver Spring, MD, 1997,
pp. 141–153.

[41] H.R. Nielson, F. Nielson, Shape analysis for mobile ambients, in: Proc. POPL’00, ACM Press, New
York, 2000, pp. 142–154.

[42] L.C. Paulson, Proving properties of security protocols by induction, in: Proc. 10th Computer Security
Foundations Workshop, IEEE Computer Society Press, Silver Spring, MD, 1997.

[43] A.W. Roscoe, M.H. Goldsmith, The perfect spy for model-checking crypto-protocols, in: H. Orman,
C. Meadows (Eds.), Proc. DIMACS Workshop on Design and Formal Veri.cation of Security Protocols,
DIMACS Center, Rutgers University, September 1997.

[44] F.B. Schneider, Applied Cryptography, Wiley, New York, 1996.
[45] S. Schneider, Verifying authentication protocols with CSP, in: Proc. 10th Computer Security Foundations

Workshop, IEEE Computer Society Press, Silver Spring, MD, 1997.
[46] C. Stirling, Modal and temporal logics for processes, in: Logics for Concurrency: Structures versus

Automata, Lecture Notes in Computer Science, Vol. 1043, Springer, Berlin, 1996, pp. 149–237.
[47] S. Stoller, A reduction for automated veri.cation of authentication protocols, in: Workshop on Formal

Methods and Security Protocols (FMSP’99), Trento, Italy, 1999.
[48] J. Thayer, J. Herzog, J. Guttman, Honest ideals on strand spaces, in: Proc. 11th IEEE Computer Security

Foundations Workshop, IEEE Press, New York, 1998, pp. 66–78.

	Analysis of security protocols as open systems
	Overview
	The analysis method

	Crypto-CCS: an operational calculus for the description of protocols
	Types, typed messages and inference systems
	Agents and systems
	Operational semantics and auxiliary notions

	A logical language for the description of protocol properties
	Verification problems for security protocols

	Analysis method
	Intuition
	Well-behaved agents
	Partial evaluation functions
	Main result
	About the complexity of the procedure

	Examples
	Example 3.1
	Needham Schroeder public key protocol
	Experimental results with PaMoChSA

	Concluding remarks and related work
	Related work

	Acknowledgements
	Appendix A. Proofs
	References

