
Analysis of Integrity Policies using Soft Constraints

Stefano Bistarelli�

Dipartimento di Scienze, Universitá di Pescara , Italy
bista@sci.unich.it

IIT, CNR, Pisa, Italy
stefano.bistarelli@iit.cnr.it

Simon N. Foley�,
Department of Computer Science,

Cork, Ireland.
s.foley@cs.ucc.ie

Abstract

An integrity policy defines the situations when modifi-
cation of information is authorized and is enforced by the
security mechanisms of the system. However, in a com-
plex application system it is possible that an integrity policy
may have been incorrectly specified and, as a result, a user
may be authorized to modify information that can lead to
an unexpected system compromise. In this paper we outline
a scalable and quantitative technique that uses constraint
solving to model and analyze the effectiveness of applica-
tion system integrity policies.

1 Introduction

The 2001 Computer Crime and Security Survey [8] re-
ported that 196 of the respondents to the survey could quan-
tify their losses due to unauthorised use of computer sys-
tems at a total of US$378 million in the previous year.
While access-control mechanisms, firewalls and so forth
may help counter such losses, we can never be confident
about security unless we are provided with some assurance
of their effectiveness. Such assurance may be achieved, in
part, by analysing whether a formal description of the sys-
tem upholds certain security properties.

Conventional security models such as [3, 7, 14, 16] are
operational in nature in that they define how to achieve in-
tegrity but do not define what is meant by integrity. For ex-
ample, the Clark-Wilson model [7] recommends that well-
formed transactions, separation of duties and auditing be
used to ensure integrity. However, the model does not at-
tempt to define whether a particular security policy config-
uration actually achieves integrity: evaluating a system ac-

�Supported in part by MIUR project “Constraint Based Verification of
Reactive Systems” (COVER), and by MIUR project “Network Aware Pro-
gramming: Object, Languages, Implementation” (NAPOLI).

�Support received from Science Foundation Ireland under Grant
00/PI.1/C075

cording to the Clark-Wilson model gives a confidence to the
extent that good design principles have been applied. How-
ever, when we define a complex separation of duty policy,
we cannot use the model to assure that a user of the sys-
tem cannot somehow bypass the intent of the separation via
some unexpected circuitous route.

In [9] it is argued that to provide such assurances it is
necessary to model the behavior of both the system (with
its protection mechanisms) and the infrastructure in which
the system operates. Infrastructure is everything that serves
the system requirements: software, hardware, users, and
so forth. Even if a system is functionally correct, the in-
frastructure is likely to fail: software fails, users are dis-
honest, do not follow procedures, and so forth. The sys-
tem and its security mechanisms must be designed to be re-
silient to these infrastructure failures. Only when a system
is characterized in this way can it become possible to an-
alyze whether a particular system configuration (including
security policy) ensures integrity.

The approach in [9] provides a formal trace based se-
mantics for integrity that requires detailed formal specifi-
cations to be provided for the system and its infrastructure.
This requires considerable specification effort and the cost
of such in-depth specification and subsequent analysis may
be justified for small critical security mechanisms. How-
ever, we conjecture that such integrity analysis would not
scale well to the configuration of a large and/or complex ap-
plication system because it would be necessary to formally
specify and reason about the potential behavior of every in-
frastructure component, user and so forth. Furthermore, [9]
does not consider any approach to mechanizing the analysis
and formal verification process.

In this paper we outline a more abstract and complemen-
tary approach to [9] that requires less semantic detail about
the operation of the system and its infrastructure. Rather
than attempting to model the complete behavior of the sys-
tem and infrastructure (as in [9]), we model only those com-
ponents that are considered relevant to the security policy
and configuration. This is done by modeling the system

1

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37832214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and infrastructure in terms of the constraints that they im-
pose over security relevant components of the system. This
results in a definition of integrity consistency that can be
solved as a constraint satisfaction problem [12].

An advantage to expressing integrity analysis as a con-
straint satisfaction problem is that there exists a wide body
of existing research results on solving this problem for large
systems of constraints in a fully mechanized manner, for ex-
ample, [13]. Constraints have been used in many practical
analysis tools, such as Concurrent Engineering and Com-
puter Aided Verification, for example, [6]. Thus, the re-
sults in this paper provide a direction for the development
of practical tools for integrity analysis of complex applica-
tion system security policies.

A further advantage to using a constraint based frame-
work is that it becomes possible to carry out a quantitative
analysis of integrity using soft constraints [4,5] A quantita-
tive analysis provides a fine-grained measure of how secure
a system is, rather the simple coarse-grained false/true pro-
vided by the conventional ‘crisp’ constraints.

2 Introduction to Constraint Solving

Constraint Solving is an emerging software technology
for declarative description and effective solving of large
problems. Many real life systems are analized and solved
using constraint related technologies.

Constraints have been sucessfully used in the analysis of
a wide variety of problems ranging from network manage-
ment, for example [10], to complex scheduling such as [2].
They have also been used to analyze security protocols [1]
and in the development of practical security administration
tools [11]. In [11] constraints are used to help the System
Administrator to easily describe network configurations and
relations among servers, firewalls and services for the final
users. Constraints are used to represent, in a declarative
manner, the relations among network objects. This permits
the use of local propagation techniques to reconfigure the
network when hardware/software changes occur (particu-
larly in a wireless environment). Such automatic reconfig-
uration would not be possible if the network policy was en-
coded using conventional shell scripts.

The constraint programming process consists of the gen-
eration of requirements (constraints) and solution of these
requirements, by specialized constraint solvers. When the
requirements of a problem are expressed as a collection
of boolean predicates over variables, we obtain what is
called the crisp (or classical) Constraint Satisfaction Prob-
lem (CSP). In this case the problem is solved by finding any
assignment of the variables that satisfies all the constraints.

Sometimes, when a deeper analysis of a problem is re-
quired, soft constraints are used instead. Soft constraints
associate a qualitative or quantitative value either to the

entire constraint or to each assignment of its variables.
More precisely, they are based on a semiring structure � �
����������� and a set of variables � with domain �. In
particular the semiring operation� is used to combine con-
straints together, and the � operator for projection.

Technically, a constraint is a function which, given an
assignment � � � � � of the variables, returns a value of
the semiring. So � � � � � is the set of all possible con-
straints that can be built starting from �, � and � (values
in � are interpreted as level of preference or importance or
cost). Using the the levels, we can order constraints: to say
that �� is better then �� we will write �� � ��.

When using soft constraints it is necessary to specify, via
suitable combination operators, how the level of preference
of a global solution is obtained from the preferences in the
constraints. The combined weight of a set of constraints is
computed using the operator� � ��� � � defined as ����
���� � ����� ���. Moreover, given a constraint � � � and
a variable � � � , the projection of � over � � 	�
, written
� �������� is the constraint �� s.t. ��� �

�
��� ���� �� ��.

3 Integrity Analysis with Crisp Constraints

In [9] functional requirements are expressed as proper-
ties over traces of actions at an interface of a system. We
take a more abstract approach by describing requirements
in terms of constraints on variables that are invariant over
the lifetime of the system. In this section we re-cast the
example in [9] in terms of these constraint variables.

Consider a simple enterprise that receives shipments, and
generates associated payments for a supplier. Requirements
Analysis identifies the actions shipnote and payment, corre-
sponding to the arrival of a shipment (note) and its associ-
ated payment, respectively. For the purposes of integrity,
the analysis has identified a requirement that the system
should not pay its supplier more than the stated value of
goods shipped.

Let the constraint variables ship and pay represent the
total value of goods shipped to date and the total value of
payments made to date, respectively. Constraint Probity de-
scribes the requirement as an invariant over variables ship
and pay. Probity � pay ship

Consider the implementation depicted in Figure 1 that
uses separation of duties [7] to ensure that Probity is met.
When a shipment arrives a clerk verifies the consignment at
goods-inwards (entering consign into the system). When an
invoice arrives, a different clerk enters details into the sys-
tem, and if the invoice matches a consignment, a payment
is generated. So long as the operations are separated then a
single clerk entering a bogus consignment or invoice can be
detected by the system.

Let variables inv and con represent the total value of
invoices and consignments, respectively, received to date.

2

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

invinvoice
verify

P2 STATUS

generate
cheque

P4

Supplier

consign
verify

P1

consign
update

P3

Application System
Infrastructure

Enterprise

shipnote

payment

consign

invoice

V

ship

pay

con

Figure 1. Supporting separation of duties

Specifications Clerk1, Clerk2 and Appl define the con-
straints on the system variables, reflecting invariants that
are expected to be upheld by the clerks and the application.

Clerk1 � con � ship

Clerk2 � inv � ship

Appl � pay � ����con� inv�

The supplier’s interface � to the system is modeled in
terms of the variables ship and pay. Constraints between
these variables are used to characterize our requirements for
the system. We want to ensure that the implementation up-
holds probity through this interface, that is, the combined
constraints across Impl � Clerk1� Clerk2� Appl ensure
Probity:

�Impl������������ � Probity
We are unconcerned about the possible values of the ‘in-
ternal’ variables inv and con and thus the constraint rela-
tion Impl����������� describes the constraints in Impl that
exist between variables ship and pay. By definition, the
above equation defines that all of the possible solutions of
Impl����������� are solutions of Probity, that is, for any as-
signment � of variables then

Impl����������� � �� Probity �

The implementation must ensure that even in the pres-
ence of failures within the infrastructure (clerks), then it
can still support the Probity requirement at it’s external in-
terface with the supplier. The behaviour of a failing (dis-
honest) clerk is not constrained by specifications Clerk1 or
Clerk2. Thus, the constraints of the implementation where
one clerk fails (constraint ���) are �Clerk2 � Appl� or
�Clerk1� Appl� and we have

�Clerk2� Appl������������ � Probity

�Clerk1� Appl������������ � Probity

This means that implementation can still ensure Probity
even when a single clerk fails and we have verified that this
particular separation of duty configuration is actually effec-
tive. As expected, the system is not resilient to the failure
of both clerks:

Appl����������� �� Probity

4 Quantitative Integrity Analysis

The previous section uses crisp constraints to describe
system requirements and implementations. When a quanti-
tative analysis of the system is required then it is necessary
to represent these properties using soft constraints.

Consider again the Probity requirement and suppose that
we aim not only to have a correct implementation, but, if
possible, to have the ”best” possible implementation. To do
this we consider a soft constraint between variables ship
and pay that assigns to the configuration ship � � and
pay � � the preference level represented by the integer
� � �1. If we are looking for the best implementation for
the buyer, then we will try to maximize this level. In this
way, different instances of the same system can be com-
pared, and different implementations can be checked and
analyzed.

Soft constraints also provide a basis for evaluating and
comparing less resilient implementations that cannot up-
hold the intended requirement. For example, if an accept-
able implementation Imp cannot be found to satisfy

Imp����������� � Probity

then one might be satisfied (in some sense) by selecting
the best of the less resilient, but acceptable implementa-
tions. Given insufficiently resilient implementations Imp

�

and Imp
�

then their corresponding semiring levels provide
a relative ordering that allow the selection of the ‘best’ of
the less resilient implementations.

Probabilistic based reasoning can also be done within
the soft constraints framework. For example, consider an
implementation Imp3 that ensures that the number of pay-
ments is never more than 3, regardless of the number of
shipments received. This is represented as:

Imp3 � pay � �

1This value represent how much pay differs from ship. Our goal is to
have pay=ship, but sometimes this is impossible and our goal will be to
minimize the �� � difference.

3

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

Assume that there is a constraint on variable ship that spec-
ifies the probability of the possible number of shipments
made at a certain time. If the nature of the probability dis-
tribution is such that it is generally more likely that the
value of ship is greater than �, then Imp3 is a not unrea-
sonable implementation (despite Imp3����������� � Probity
not holding).

5 Discussion and Conclusion

By modeling the system and its infrastructure only in
terms of abstract constraints, we argue that it becomes more
realistic (than [9]) to consider modeling large complex ap-
plication systems. Constraint solving can be done for large
problems and, therefore, the proposed integrity analysis (as
a constraint satisfaction problem) should scale up to simi-
larly large/complex application systems configurations.

In [15] a policy analysis technique is proposed for detect-
ing possible conflicts between separation of duty, user role
assignment and role inheritance rules. This can be thought
of as providing an analysis on, what is, in effect, the con-
straints on user role assignments. While useful, it is limited
since it does not consider any further semantic information
about the system and/or infrastructure. It would be inter-
esting to apply the integrity analysis techniques proposed in
this paper to extend the results in [15] for RBAC models.

Soft constraints can be used to provide a quantitative
analysis of integrity. Section 4 outlines how soft constraints
might be used to provide a measure of integrity to compare
the effectiveness of different system configurations. If it is
not possible to develop a resilient system configuration that
fully meets the set of system requirements, then one may
wish to consider the best of the less resilient, but accept-
able (in some sense) configurations. For example, if it is
not possible to configure a system that is resilient to all in-
ternal fraud, then an acceptable alternative might be to keep
the fraud within some limit. Section 4 sketches a simplistic
example of this; further research is required to develop this
in general.

Another application of soft constraints to the analysis of
integrity is that it allows the use of quantitative information
in modeling the system and infrastructure configuration. By
associating probability measures with component failures,
we have used (elsewhere) soft constraints to validate that a
system configuration/policy achieves integrity within some
degree of probability.

In [1] soft constraints are used to represent confidential-
ity and authentication properties of security protocols. This
approach is not unlike the strategy taken in this paper. The
solution of the resulting constraint system gives a measure
of the confidentiality/authentication of the system. In [1] a
protocol run is compared with an ”ideal” run without spies,
When the solutions differ an attack to the protocol is iden-

tified. The proposed integrity analysis must consider vari-
ous ‘spy’s, each characterizing the threats that a protection
mechanism must withstand.

References

[1] G. Bella and S. Bistarelli. Soft constraints for security
protocol analysis: Confidentiality. In Proc. PADL’01, vol-
ume 1990 of Lecture Notes in Computer Science (LNCS).
Springer, 2001.

[2] J. Bellone, A. Chamard, and C. Pradelles. Plane - an evo-
lutive planning system for aircraft production. In Proc. 1st
Interantional Conference on Practical Applications of Pro-
log (PAP92), 1992.

[3] K. Biba. Integrity considerations for secure computer sys-
tems. Technical Report MTR-3153 Rev 1 (ESD-TR-76-
372), MITRE Corp Bedford MA, 1976.

[4] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based
Constraint Solving and Optimization. Journal of the ACM,
44(2):201–236, Mar 1997.

[5] S. Bistarelli, U. Montanari, and F. Rossi. Soft concurrent
constraint programming. In Proc. ESOP, April 6 - 14, 2002,
Grenoble, France, LNCS. Springer-Verlag, 2002.

[6] J. Bowen and D. Bahler. Constraint-based software for con-
current engineering. IEEE Computer, 26(1):66–68, Jan.
1993.

[7] D. D. Clark and D. R. Wilson. A comparison of commer-
cial and military computer security models. In Proceedings
Symposium on Security and Privacy, pages 184–194. IEEE
Computer Society Press, Apr. 1987.

[8] Computer Security Institute/US Federal Bureau of Investi-
gation. Computer Crime and Security Survey, 2001.

[9] S. Foley. A non-functional approach to system integrity.
IEEE Journal on Selected Areas in Commications, 2003.
forthcoming.

[10] T. Frühwirth and P. Brisset. Optimal planning of digi-
tal cordless telecommunication systems. In Proc. PACT97,
London, UH, 1997.

[11] A. Konstantinou, Y. Yemini, S. Bhatt, and S. Rajagopalan.
Managing security in dynamic networks. In Proc. USENIX
Lisa’99, 1999.

[12] A. Mackworth. Constraint satisfaction. In S. Shapiro, editor,
Encyclopedia of AI (second edition), pages 285–293. John
Wiley & Sons, 1992.

[13] J. Puget. A c++ implementation of clp. In Proceedings of
the 2nd Singapore International Conference on Intelligent
Systems, 1994.

[14] R. Sandhu et al. Role based access control models. IEEE
Computer, 29(2), 1996.

[15] A. Schaad and D. Moffett. The incorportation of control
principles into access control policies. In Workshop on Poli-
cies for Distributed Systems and Networks, Bristol, UK,
2001.

[16] U. S. Department of Defense. Integrity-oriented control ob-
jectives: Proposed revisions to the trusted computer sys-
tem evaluation criteria (TCSEC). Technical Report DOD
5200.28-STD, U. S. National Computer Security Center,
Oct. 1991.

4

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

