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Abstract
Freuder in (1991) de£ned interchangeability for clas-
sical Constraint Satisfaction Problems (CSPs). Re-
cently (2002), we extended the de£nition of inter-
changeability to Soft CSPs and we introduced two no-
tions of relaxations based on degradation δ and on
threshold α (δneighborhood interchangeability (αNI )and
αneighborhood interchangeability δNI ).
In this paper we study the presence of these relaxed version of
interchangeability in random soft CSPs. We give a descrip-
tion of the implementation we used to compute interchange-
abilities and to make the tests. The experiments show that
there is high occurrence of αNI and δNI interchangeability
around optimal solution in Fuzzy CSP and weighted CSPs.
Thus, these algorithms can be used succesfully in solution
update applications. Moreover, it is also showed that NI in-
terchangeability can well approximate full interchangeability
(FI ).

Introduction
Interchangeability in constraint networks has been £rst pro-
posed by Freuder (1991) to capture equivalence among the
values of a variable in a discrete constraint satisfaction prob-
lem. Value v = a is substitutable for v = b if for any so-
lution where v = a, there is an identical solution except
that v = b. Values v = a and v = b are interchange-
able if they are substitutable both ways. Full Interchange-
ability considers all constraints in the problem and checks
if a values a and b for a certain variable v can be inter-
changed without affecting the global solution. The local-
ized notion of Neighbourhood Interchangeability considers
only the constraints involving a certain variable v. Inter-
changeability has since found other applications in abstrac-
tion frameworks (Haselbock 1993; Weigel & Faltings 1999;
Choueiry 1994) and solution adaptation (Weigel & Faltings
1998). One of the dif£culties with interchangeability has
been that it does not occur very frequently.

In many practical applications, constraints can be violated
at a cost, and solving a CSP thus means £nding a value as-
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signment of minimum cost. Various frameworks for solving
such soft constraints have been proposed (Freuder & Wal-
lace 1992; Dubois, Fargier, & Prade 1993; Ruttkay 1994;
Schiex, Fargier, & Verfaille 1995; Bistarelli, Montanari, &
Rossi 1997). The soft constraints framework of c-semirings
(Bistarelli, Montanari, & Rossi 1997) has been shown to ex-
press most of the known variants through different instan-
tiations of its operators, and this is the framework we are
considering in this paper.

In (Bistarelli, Faltings, & Neagu 2002) we extended the
notion of interchangeability to Soft CSPs. The most straight-
forward generalization of interchangeability to soft CSP
would require that exchanging one value for another does
not change the quality of the solution at all. Nevertheless,
this generalization is likely to suffer from the same weak-
nesses as interchangeability in hard CSP, namely that it is
very rare.

Fortunately, soft constraints also allow weaker forms of
interchangeability where exchanging values may result in
a degradation of solution quality by some measure δ. By
allowing more degradation, it is possible to increase the
amount of interchangeability in a problem to the desired
level. The δsubstitutability/interchangeability concept en-
sures this quality. This is particularly useful when inter-
changeability is used for solution adaptation. Another use of
interchangeability is to reduce search complexity by group-
ing together values that would never give a suf£ciently good
solution. In αsubstitutability/interchangeability, we con-
sider values interchangeable if they give equal solution qual-
ity in all solutions better than α, but possibly different qual-
ity for solutions whose quality is ≤ α.

In this paper we present a java implementation to deal
with soft CSPs on top of the Java Constraint Library
(JCL) (Bruchez & Torrens 1996). We develop some ba-
sic solution search strategies and a module to compute
δ/αsubstitutability/interchangeability. The behavior of NI

sets in the Soft CSP frameworks is still unexploited. For this
motivation we study and evaluate here how NI behaves in
soft CSPs frameworks (mainly fuzzy and weighted CSPs).

In the following we £rst remind some details about In-
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terchangeability and soft Constraint Satisfaction Problems.
Then, we discuss the implemented system we use to com-
pute (δ/α)interchangeability. A section describing the re-
sults of the tests follows. A conclusions and possible future
work section conclude the paper.

Soft CSPs
A soft constraint may be seen as a constraint where each
instantiations of its variables has an associated value from
a partially ordered set which can be interpreted as a set of
preference values. Combining constraints will then have to
take into account such additional values, and thus the for-
malism has also to provide suitable operations for combina-
tion (×) and comparison (+) of tuples of values and con-
straints. This is why this formalization is based on the con-
cept of c-semiring S = 〈A,+,×,0,1〉, which is just a set A
plus two operations1.

Constraint Problems. Given a semiring S =
〈A,+,×,0,1〉 and an ordered set of variables V over
a £nite domain D, a constraint is a function which, given
an assignment η : V → D of the variables, returns a value
of the semiring.

By using this notation we de£ne C = η → A as the set of
all possible constraints that can be built starting from S, D
and V . Consider a constraint c ∈ C. We de£ne his support
as supp(c) = {v ∈ V | ∃η, d1, d2.cη[v := d1] 6= cη[v :=
d2]}, where

η[v := d]v′ =

{

d if v = v′,

ηv′ otherwise.

Note that cη[v := d1] means cη′ where η′ is η modi£ed
with the association v := d1 (that is the operator [ ] has
precedence over application).

Combining soft constraints. Given the set C, the combi-
nation function ⊗ : C × C → C is de£ned as (c1 ⊗ c2)η =
c1η ×S c2η.

In words, combining two constraints means building a
new constraint whose support involve all the variables of the
original ones, and which associates to each tuple of domain
values for such variables a semiring element which is ob-
tained by multiplying the elements associated by the original
constraints to the appropriate subtuples.

Interchangeability. In soft CSPs, there are not any crisp
notion of consistency. In fact, each tuple is a possible solu-
tion, but with different level of preference. Therefore, in this
framework, the notion of interchangeability become £ner: to
say that values a and b are interchangeable we have also to
consider the assigned semiring level.

More precisely, if a domain element a assigned to variable
v can be substituted in each tuple solution with a domain el-
ement b without obtaining a worse semiring level we say that
b is full substitutable for a (that is b ∈ FS v(a) if and only
if
⊗

Cη[v := a] ≤S

⊗

Cη[v := b]). When we restrict this

1In (Bistarelli, Montanari, & Rossi 1997) several properties of
the structure are discussed. Let us just remind that it is possible to
de£ne a partial order ≤S over A such that a ≤S b iff a + b = b.

notion only to the set of constraints Cv that involve variable
v we obtain a local version of substitutability (that is b ∈
NS v(a) if and only if

⊗

Cvη[v := a] ≤S

⊗

Cvη[v := b]).
When the relations hold in both directions, we have the

notion of Full/Neighborhood interchangeability of b with a.
This means that when a and b are interchangeable for vari-
able v they can be exchanged without affecting the level of
any solution.

Degradations and Thresholds. In soft CSPs, any value
assignment is a solution, but may have a very bad pref-
erence value. This allows broadening the original inter-
changeability concept to one that also allows degrading the
solution quality when values are exchanged. We call this
δinterchangeability, where δ is the degradation factor.

When searching for solutions to soft CSP, it is possible
to gain ef£ciency by not distinguishing values that could in
any case not be part of a solution of suf£cient quality. In
αinterchangeability, two values are interchangeable if they
do not affect the quality of any solution with quality better
than α. We call α the threshold factor.

Both concepts can be combined, i.e. we can allow both
degradation and limit search to solutions better than a certain
threshold (δαinterchangeability). By extending the previous
de£nitions we obtain thresholds and degradation version of
full/neighbourhood substitutability/interchangeability:
• we say that b is δFull Substitutable for a on v (b ∈

δ
FS v(a)) if and only if for all assignments η,

⊗

Cη[v :=
a]×S δ ≤S

⊗

Cη[v := b];
• we say that b is αFull substitutable for a on v (b ∈

αFS v(a)) if and only if for all assignments η,
⊗

Cη[v :=
a] ≥ α =⇒

⊗

Cη[v := a] ≤S

⊗

Cη[v := b].

The Java Implementation
We implemented the soft CSP module and the interchange-
ability module as an extension of the JCL, developed at the
Arti£cial Intelligence Laboratory (EPFL) (Bruchez & Tor-
rens 1996). JCL is implemented in java which ensures porta-
bility on all the platforms. The library contain a CSP pack-
age describing constraint satisfaction problems and several
solvers. In this section, we describe brie¤y the JCL andthe
CSP module.

The Java Constraint Library. The Java Constraint Li-
brary (JCL) is a library containing common constraint sat-
isfaction techniques which provides services for creating
and managing discrete CSPs and applying preprocessing and
search algorithms.

We developed two new packages on top of JCL: the £rst
one models and solve soft constraint satisfaction problems;
the second one computes interchangeabilities for crisp and
soft CSPs, see Figure 1.

The Soft CSP Module. The Soft CSP package extends
the CSP class in order to support softness. We imple-
mented the scheme from (Bistarelli, Montanari, & Rossi
1997) where preferences levels are assigned both to vari-
ables values (implemented as soft unary constraints by
the class SoftUnaryConstraint) and to tuples of
values over the constraints. In particular, in the actual



Java Constraint Library (JCL)

Classes for Search Algorithms 

Classes for CSP Modeling 

Classes for Soft CSP Modeling

Classes for Search 
Algorithms in Soft CSPs

Classes for Interchangeability  
Algorithms in Soft CSPs

Classes for Interchangeability 
Algorithms in CSPs 

Soft CSP Package Interchangeability Package

Figure 1: Soft CSP and Interchangeability Modules on top of Java
Constraint Language(JCL).

implementation we only consider binary constraints (by
SoftBinaryConstraint), but the class can be easily
extended in this direction.

The Soft CSP package supports classical, fuzzy, proba-
bilistic and weighted CSPs by using appropriate semirings
as showed in Figure 2. The semiring class parameterizes the
type of the CSP and the respective operations of constraints
combinations (and projection).

Semiring

SoftCSP

CSP

SoftBinaryConstraint SoftUnaryConstraint

CSPDomainCSPVariable BinaryConstraint
UnaryConstraint

variable

dom
binary 

unary 

soft unary 
soft binary 

semiring

JCL library

SoftCSP module

subclass

contains

Figure 2: The Soft CSP module.

The Interchangeability Module. After reading the Soft
CSP from a data £le (we use to describe problem SCSPDL
an extension of the CSP Description Language (Bruchez &
Torrens 1996)) a Soft CSP java object is constructed. Each
CSP domain and variable is represented as an object. After
this, unary and binary constraints are created.

The next step is to give the SoftCSP object as input to
DeltaInterchangeability class (possibly with the
desired α and δ a tolerance factor) as shown in Figure 3.

Figure 4 describe the classes implementing the Neigh-
bourhood Interchangeability algorithms implemented by the
Interchangeability Module. By now, this module supports
computation of NI sets for crisp CSPs and δ/αNI sets for
soft CSPs.

They are implemented in a way to ensure an easy exten-
sion to several interchangeability approximation and algo-
rithms. For this motivation we implemented the abstract
class InterchangeabilityFinder which is extended

Data Parser
Data file = CSP 
written in CSP 
Description 
Language

Delta Value

Alpha Value

JCL CSP 
Class

JCL 
Delta Interchangeabiltiy 
Finder Class

JCL 
Alpha Interchangeability 
Finder Class

JCL 
Neighborhood 
Interchangeability 
Finder Class 

Input

Output 
 
Classes of  
 Delta/Alpha/NI 
Interchangeable 
Values

Figure 3: Interchangeability computation ¤ow.

for the speci£ed Delta and Alpha.

Interchangeability Finder
abstract class

Neighborhood Partial 
Interchangeability Finder

Neighborhood 
Interchangeability 
Finder

Alpha  
Interchangeability 
Finder

Soft Neighborhood  
Interchangeability Finder

Delta Neighbourhood 
Interchangeability Finder

Alpha Neighborhood  
Interchangeability Finder

Delta 
Interchangeability 
Finder

- interchangeability classes pour classical CSP based on Discrimination 

- interchangeability classes pour soft CSP based on Discrimination Tree

- interchangeability classes pour soft CSP based on definition

- subclass

Figure 4: Classes structures of Interchangeability Algorithms.

Test Evaluation
Occurrence of NI in classical CSP have been already stud-
ied to improve search (Benson & Freuder 1992), for resource
allocation application (Boi Faltings 1995) and for con£gu-
ration problems (Neagu & Faltings 1999). One of the main
result is that in problems of small density the number of NI

sets increases with the domain size.
The behavior of NI sets in the Soft CSP frameworks is

still unexploited. For this motivation we study and evaluate
here how NI behaves in the Soft CSP framework.

We have done our experiments for fuzzy and weighted
CSP representing the important class of Soft CSPs deal-
ing with an idempotent and non-idempotent times oper-
ation respectively. The motivation for considering both
classes come from the fact that solving Soft CSP when
the combination operation is not idempotent is extremely
hard (Bistarelli, Montanari, & Rossi 1997).

Usually the structure of a problem is characterised by four
parameters:
• Problem Size: This is usually the number of its variables;
• Domain Size: The average of the cardinality of the domain

of the variables;
• Problem Density: This value (measured on the interval

[0,1]) is the ratio of the number of constraints relatively



to the minimum and maximum number of allowed con-
straints in the given problem; Considering the constraint
problem as a constraint graph G = (V,E) where V repre-
sents the vertices (variables) (with n := |V |) and E edges
(constraints) (with e := |E|); the density is computed as
denscsp = e−e min

e max−e min
, where e min = n − 1 and

e max = n(n−1)
2 ;

• Problem tightness This measure is obtained as the average
of tightness of all the constraints. For soft constraints we
consider it as the ratio between the sum of the semiring
values associated to all the tuples in all the constraints,
and the value obtained by multiplying the 1 element of
the semiring (that is the maximum) for the number of all
possible tuple (that is the constraintnumber×domain-
size.

(δ/α)NI in Fuzzy and Weighted CSPs
For both fuzzy and weighted CSPs we observed that the den-
sity and number of variables do not in¤uence much occur-
rence of interchangeable values. There is instead a (weak)
dependency from the domain size: the number of inter-
changeabilities increases with the resources. This result
from the test is obvious when dealing with crisp CSPs, but
for soft problems this could be not so obvious.

We followed the model of measuring NI sets developed
in (Boi Faltings 1995) with some adaptation needed in order
to deal with soft constraints. We report here the results for
problem sizes n = 10 and n = 20, while varying the density
dens − csp ∈ {0.1, 0.2, . . . , 1} and the maximum domain
size dom − size = { n

10 ,
2n
10 , . . . ,

9n
10 , n}. For each case,

ten random problems were generated and then graphically
represented by considering the measures described below.

In all the graph we highlight where is the position of the
optimal solution. In fact, when dealing with crisp CSP there
is not any notion of optimality, but for soft CSP each solu-
tion has an associated level of preference. It is important to
study NI occurrence around optimal solutions because we
are often interested to discard solutions of bad quality.
δ/αNI Occurrency in Fuzzy CSPs. In Figure 5 and in
Figure 6, we represent αNI and δ

NI occurrency in Fuzzy
CSPs.
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Figure 5: Occurrence of αinterchangeability around optimal solu-
tion in fuzzy CSP.

The parameters measureαNI (and measureδNI ) com-
putes the average number of αNI (δNI )interchangeable
pairs values over the whole problem, divided by the max-
imum potential number of relations using the formula:

measureδαNI =

∑n
k=1

αNIVk∗2
domSizeVk

∗(domSizeVk
−1)

n
,

where n represents the problem size and αNI Vk all the
αinterchangeable pairs values for variable Vk.
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Figure 6: Occurrence of δinterchangeability around optimal solu-
tion in fuzzy CSP.
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Figure 7: Occurrence of δinterchangeability around optimal solu-
tion in weighted CSP.

Similar results hold for δ/αinterchangeability when deal-
ing with weighted instead of fuzzy CSPs. In Figure 7, we
represent δNI occurrency in weighted CSPs. Notice that the
shape of the function seems the opposite to that of Figure 6
only because the order in the fuzzy semiring (max-min) is
opposite to the weighted semiring (min-sum).

Looking at Figure 5, Figure 6 and Figure 7 we notice
that the number of αinterchangeability increase with α and
that δinterchangeability decrease with δ (w.r.t. the semi-
ring order). This experimental proof support the theorems
in (Bistarelli, Faltings, & Neagu 2002).

The experimental facts show also that there is high oc-
currence of αNI and δ

NI interchangeability around optimal
solution in Fuzzy CSP and weighted CSPs. Thus, these al-
gorithms can be used succesfully in solution update applica-



tions. The use of these technique to improve search have to
be investigated.
δ
NI versus δ

FI Occurrency in Weighted CSPs. Since
NI computes a subset of FI , it is important to investigate
how many interchangeabilities we can £nd by computing
locally neighborhood interchangeabilities w.r.t. full inter-
changeabilities. In Figures 8 and in Figure 9 ratioNI/FI
represent the rate between Neighborhood and Full Inter-
changeability for fuzzy and weighted CSP respectively.
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Figure 8: Neighborhood Interchangeability relatively to Full Inter-
changeability for αinterchangeability in Fuzzy CSP.

In our experiments we used the measure:

ratioNI/FI =

∑n
k=1

δ
NIVk

∑n
k=1

δ
FIVk

where δ
NIVk represents the number of δ

NI interchangeable
values pairs for variable Vk and δ

FIVk represents the num-
ber of δ

FI interchangeable values pairs for variable Vk.
In Figures 8 and 9, we see that the ratio δ

NI /δFI stays
between 0.7 and 0.9 around optimal solution for fuzzy and
weighted CSP as well. Thus, NI interchangeability can well
approximate FI interchangeability.

0

0.2

0.4

0.6

0.8

1 0

50

100

150

200

0

0.2

0.4

0.6

0.8

1

δ 

ratio NI/FI 

optimal solution 
density 

Figure 9: Neighborhood Interchangeability relatively to Full Inter-
changeability for δinterchangeability in Weighted CSP.

Conclusions and Future Work
In this paper we presented a java based implementation able
to represent soft CSPs and to compute interchangeability.

By using this implementation, we have studied the occur-
rence of αNI and δ

NI and we have evaluated how this oc-
currence can depend on the values of α and δ, and how local
NI relies with FI . The experimental facts show also that
there is high occurrence of αNI and δ

NI interchangeability
around optimal solutions in Fuzzy CSP and weighted CSPs.
Thus, these algorithms can be used successfully in solution
update applications. Moreover, we also show that NI inter-
changeability can well approximate FI interchangeability.
The use of these technique to improve search have to be in-
vestigated.

We believe that the results prove the reliability for using
δ
αinterchangeability for solution updating and motivate for
further studying. By now, the soft CSP module implements
only a basic solver which combines all the constraints of the
CSP and then projecting them over the variables of interest.
We leave for further work implementation of more perfor-
mant solvers as the main goal of this study is analyse the
occurrence and behaviour of interchangeability in soft CSP.
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