
Logical Specification and Analysis of

Fault Tolerant Systems

Through Partial Model Checking

S. Gnesi, G. Lenzini2 ,1

Istituto di Scienze e Tecnologie Informatiche - C.N.R.
Via G. Moruzzi 1, I-56100 Pisa, Italy

F. Martinelli3

Istituto di Informatica e Telematica - C.N.R.
Via G. Moruzzi 1, I-56100 Pisa, Italy

Abstract

This paper presents a framework for a logical characterization of fault tolerance and its formal
analysis based on partial model checking techniques. The framework requires a fault tolerant
system to be modeled using a formal calculus, here the CCS process algebra. To this aim we
propose a uniform modeling scheme in which to specify a formal model of the system, its failing
behaviour and possibly its fault-recovering procedures. Once a formal model is provided into our
scheme, fault tolerance - with respect to a given property - can be formalized as an equational
µ-calculus formula. This formula expresses, in a logic formalism, all the fault scenarios satisfying
that fault tolerance property. Such a characterization understands the analysis of fault tolerance as
a form of analysis of open systems and, thank to partial model checking strategies, it can be made
independent from any particular fault assumption. Moreover this logical characterization makes
possible the fault-tolerance verification problem be expressed as a general µ-calculus validation
problem, for solving which many theorem proof techniques and tools are available. We present
several analysis methods showing the flexibility of our approach.

Keywords: Fault Tolerant Systems, Formal Verification, Partial Model Checking.

1 Gnesi and Lenzini are partially supported by the MIUR-CNR project SP4. Martinelli
is supported by MIUR project “Tools, techniques and methodologies for the information
society”.
2 Email: {stefania.gnesi, gabriele.lenzini}@isti.cnr.it
3 Email: fabio.martinelli@iit.cnr.it

Electronic Notes in Theoretical Computer Science 118 (2005) 57–70

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.09.032

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37832206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
file:stefania.gnesi,gabriele.lenzini@isti.cnr.it
file:fabrio.martinelli@iit.cnr.it
http://www.elsevier.com/locate/entcs

1 Introduction

Following a general direction pointing out that it exists a beneficial inter-
actions between strategies of analysis in security and fault tolerance (e.g.,
see [14,19,24]), this paper inquires about the analogy between fault tolerance
and a particular strategy for computer security analysis i.e., partial model
checking [3,17,18].

As in many approaches using formal methods in the specification and val-
idation of fault tolerant system (e.g., see [8,5]), this paper first requires a
system, its failing behaviour (with respect to fault occurrences) and its fault-
recovering procedures to be formally specified as a finite state term in some
process algebras, for example the CCS [20]. Then this paper requires de-
sired properties to be formalized in logical formalism, here a variant of the
µ-calculus [6]. A property expressed in such a logic can be formally checked
over a formal model of the system under analysis, which is typically expressed
by means of a state machine or transitions system.

The validation framework we propose falls into the open system paradigm,
where a system is considered acting in an environment able to interact with
the system. Anyway, the fact of considering a “general environment” able
to invoke, in any order, any action of the system’s interface, usually brings
unpleasant drawbacks. The first is the well-known state space explosion, and
the second is that unrealistic situations may arise during the analysis [9].

As a solution in this paper we are interested to verify a system P in a well-
characterized environment FF . This latter, by acting as a fault-injector, is able
to interact with the system only through the specified set F of fault actions.
Moreover, differently to the usual strategies requiring the fault-injector to
be specified (e.g., see [26]), we treat FF as a unspecified component of the
system. In this way we mean to check the reliability of a system model with
respectively to any potential occurrences of faults.

Moreover by using partial model checking strategies [3], the fault toler-
ance analysis problem can be reduced to a validity problem in the µ-calculus.
Briefly the idea is the following: proving that (P ‖ FF) \ F satisfies a fault
tolerant property e.g., a µ-calculus formula ϕ, is equivalent to prove that FF
satisfies a modified formula ϕ//P , where //P is the partial evaluation for the
parallel composition and restriction operators. In this way ϕ//P characterizes
exactly the scenarios of faults the system is resilient to. As a consequence, by
considering the characteristic formulas ϕF of all the possible fault scenarios,
checking if P is fault tolerant is equivalent to check the validity of ϕF ⇒ ϕ//P .

Once such a logical characterization of fault tolerance is given, several
analysis techniques may be adopted. Some of them may also lead to efficient

S. Gnesi et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 57–7058

analysis methods for certain properties. In particular, we identify a class of
µ-calculus formulas for which the analysis is very efficient.

2 Modelling Fault-Tolerant Systems

This section presents a uniform scheme where a fault tolerant system may
be specified as a process algebra term. To specify a system we will use the
CCS [20], but our framework is completely general and it can be easily restated
for other process algebras as well (e.g., CSP [12] or π-calculus [22]).

2.1 CCS

We briefly remind some notation and concept about CCS that will be used in
the following. CCS assumes a set of L of actions. Each action to represent
emitted signals or (if over-lined) received ones. Actions a and a (i.e., comple-
mentary send and receive actions) are called co-actions. The operator − is a
bijection with a = a. The special symbol τ is used to model any, unobservable
to the environment, internal action. Let Act = L ∪ L be the set of visible
actions, and Act τ = Act ∪{τ} denotes the full set of possible actions. In CCS
syntax, processes are defined by the following grammar:

P, Q ::= 0 | a.P | P + Q | P ‖ Q | P\A | P [f] | X

Informally 0 is the process that does not perform any action; a.P is the
action prefix operator with a ∈ Act τ ; P +Q can, non deterministically, choose
between the behaviour the process P or that of the process Q; ‖ is the parallel
operator; P\A is the action restriction operator over the set of action A ⊂ Act ,
meaning that actions a ∈ A cannot be performed. This operator is used
to specify processes which must synchronize on actions a and a. P [f] is
the re-naming operator, renaming each a into f(a). Additionally we assume

that every process identifier X has a defining equation of the form X
def
= P

describing its behavior.

The semantics of CCS is given operationally over labeled transition systems
(LTS) (see [20]). A LTS is a tuple (Q, Q0, Actτ ,−→), whose transition relation
−→ defines the usual concept of derivation in one step: P

a−→ P ′ means that
process P , by executing action a, evolves in one step in the process P ′, while
we write P

a−→ to underline that P can perform action a to evolve in some
process. Finally, we write −→∗ the obvious transitive and reflexive closure of⋃

a∈Actτ

a−→. In the following we let Der(P) = {P ′|P −→∗ P ′}, Sort(P) =

{a : a ∈ Act τ , ∃P ′ ∈ Der(P), P ′ a−→}, and EH = {X : Sort(X) ⊆ H}, where
H is a set of actions.

S. Gnesi et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 57–70 59

2.2 Specifying a System

Talking about formal models of fault-tolerant systems we will refer to the
following notation, which is a model-oriented version of the concepts defined
in [15]:

• A System is modelled as a finite state CCS process P , composed by a set of
processes communicating each other and interacting with the environment
through the execution of actions.

• A Failing System is modelled as a CCS process PF obtained by extending the
processes in P with the possibility of executing particular external actions
from a set F of fault actions. In other words each kind of fault is modelled
explicitly as an action f ∈ F . The execution of an action f corresponds
to the occurrence of a fault. The specification Pf of the failing system is
obtained by introducing occurrences of the possible fault action f in the
model of the system P . If the action f is executed in a state of a system,
then the failure mode of the system is exhibited, otherwise, the system goes
on with its behaviour. For instance, Pf = P +f.P ′ denotes the process that
can behave as P ′ in the case of occurrence of fault f .

• A Fault Tolerant (Candidate) System is modelled as a process P #
F , obtained

by extending the failing model PF with additional processes realizing error-
recover strategies, in accordance to some fault tolerant design strategy (e.g.,
replication of component, triple modular redundancy, voting etc.). Gener-
ally speaking, the application of tolerance techniques in modelling leads to
a process P #

F that, described in the CCS notation, have the indicative form:

P#
F = (P

(1)
F ‖ · · · ‖ P

(n)
F ‖ Q)\A

where (a) P
(i)
F is the i-th replica of PF , with eventually an appropriate

renaming of actions; (b) Q is the process modelling the extras components
e.g., a voter; (c) A = {a1, · · · , ah}, ai 	∈ F , are the label of synchronisation

actions between P
(i)
F ’s and Q.

Let us observe that, differently from other approaches, for example the one
in [5], we will not assume any specific fault assumption in P #

F . Precisely we
did not express, in P , any assumption about the possibility of occurrence of
faults, but we let fault assumptions to be characterised by the environment.

2.3 Fault Assumption Models

We now consider fault tolerant analysis as the analysis of an open system
acting in a general and unspecified faulty environment. This approach has
been widely applied in system security analysis (e.g., see [17,18]) and we will

S. Gnesi et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 57–7060

show how it could be successfully applied in fault tolerance analysis too.

In our case the environment FF , acting as a fault injector, is able to induce
any fault in the system via actions in F . So, if we assume that the occurrence
of the fault is always induced by a process FF , the schenario we are proposing
is the following:

(P #
F ‖ FF)\F (1)

where P #
F is a model of a candidate fault tolerant system. Again we

underline that the way we model the faulty behaviour differs from [5] where, in
turn, the fault-injector could also exhibit part of the system behaviour. This
clear separation between the process and the fault-injector makes the usage of
partial model checking (see Section 3) feasible. Before going on it is worth to
observe that in (1) fault actions are hidden (i.e., restricted). This implies that
PF and FF could synchronize only on fault events and that faults are indeed
internal (i.e., not observable) actions of the failing systems. This means that
our analysis lays at the abstraction level where what it is really observable, in
a failing system, is only its behaviour. In practice, a failing systems should be
either resilient to faults or the presence of faults should be highlighted by its
subsequent behaviour.

In such a framework, then the set of all the possible fault-injector processes
represents our set of all possible fault assumptions:

Definition 2.1 [Fault Assumption Models] The set EF of fault assumption
models is given by definition:

EF = {F : Sort(F) ⊆ F}

In other words, EF is the set of all CCS processes whose alphabet of actions
is in F .

Generally speaking a fault tolerance system is expected to behave correctly
despite faults. Anyway different meaning of fault tolerant behaviour may be
defined. For example a system may be required to be: fail safe, when failures
cause transition in a state in which no catastrophic event can occur; fail stop
when failures cause a stop in delivering a service, or fail silence when failures
provide only a temporarily interruption of the services.

2.4 Equational µ−calculus

Equational µ-calculus is a process logic which extends HML [10] with fix-
point equations in order to reason directly about recursive definitions of prop-
erties. It permits us to analyse non terminating behaviour of systems. It

S. Gnesi et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 57–70 61

is a powerful temporal logic which subsumes several other state based logic
such as CTL, CTL∗ and ECTL∗ [7], as well as action based logic as ACTL,
ACTL∗ [23]. Equational µ-calculus is based on fix-point equations that substi-
tute recursion operators. Let X be a variable ranging over a set V of variables,
then a minimal (maximal) fix-point equation is X =µ φ (X =ν φ), where φ
is an assertion, that is a simple modal formula without recursion operators.
The syntax of the assertions (φ) and of the lists of equations (ϕ) is given by
the following grammar:

assertion φ := X | tt | ff | φ ∧ φ′ | φ ∨ φ′ | 〈a〉φ | [a]φ

equations list ϕ ::= (X =ν φ) ϕ | (X =µ φ) ϕ | ε

It is assumed that variables appear only once on the left-hand sides of the
equations of the list, the set of these variables will be denoted as Defs(ϕ). A
list of equations is closed if every variable that appears in the assertions of the
list is in Defs(ϕ).

Let be M = (Q, Q0, Actτ ,−→) a LTS and ρ an environment function that
assigns subset of Q to the variables appearing in the assertion of ϕ out of
Defs(ϕ). As notation, we use in the following � to represent union of disjoint
environments. Let σ be in {µ, ν}, then σU.f(U) represents the σ fix-point of
the function f in one variable U . The semantics [[ϕ]]ρ of the equation list is
an environment which assigns subsets of Q to variables in Defs(ϕ):

[[ε]]ρ = []

[[(X =σ φ)ϕ]]ρ = [[ϕ]](ρ�[U ′\X]) � [U ′/X]

where U ′ = σU.[[φ]]′(ρ�[U/X]�ρ′(U)), and ρ′(U) = [[ϕ]](ρ�[U/X]). The semantics

[[φ]]′ρ of an assertion φ is the same as for the µ-calculus:

[[tt]]′ρ = Q, [[ff]]′ρ = ∅, [[X]]′ρ = ρ(X), [[X]]′ρ = ρ(X)

[[φ1 ∧ φ2]]
′
ρ = [[φ1]]

′
ρ ∩ [[φ2]]

′
ρ, [[〈a〉φ]]′ρ = {Q|∃Q′ : Q

a−→ Q′ and Q′ ∈ [[φ]]′ρ}

[[φ1 ∨ φ2]]
′
ρ = [[φ1]]

′
ρ ∪ [[φ2]]

′
ρ, [[[a]φ]]′ρ = {Q|∀Q′ : Q

a−→ Q′ implies Q′ ∈ [[φ]]′ρ}

Informally [[(X =σ φ)ϕ]]ρ says that the solution to (X =σ φ)ϕ is the σ fix-
point solution U ′ of [[φ]]′ρ where the solution to the rest of the list of equations ϕ
is used as environment. We write Q,M |= ϕ ↓ X as notation for Q ∈ [[ϕ]](X)
when the environment ρ is evident from the context or ϕ is a closed list (i.e.,
without free variables); furthermore X must be the first variable in the list ϕ.

S. Gnesi et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 57–7062

3 Logic Characterisation of Fault Tolerance

This section explains how the fault tolerance verification problem can be char-
acterised as a validation problem of logic formulas. This characterisation
is prevalently based on a technique called partial model checking [3], while
the automatic verification is possible afterwards by theorem proving. It is
worth noticing that the same approach has been proposed for security analy-
sis [17,18].

3.1 Partial Model Checking

This technique relies upon compositional methods for proving properties of
concurrent processes specified in terms of a process algebra. It has been pre-
sented in this formulation by Andersen [3]. In the following we use P‖AQ as a
short cut for (P ‖ Q)\A. The intuitive idea underlying the partial evaluation
is the following: proving that P‖AQ satisfies ϕ is equivalent to prove that Q
satisfies a modified formula ϕ//AP , where //AP is the partial evaluation func-
tion for the parallel composition operator (see [3]). In Fig. 1 we will describe
the partial evaluation function for the CCS operator ‖A where A ⊆ Act .

In [1,3,16], we can also find the proofs of the following lemma:

Lemma 3.1 Given a process P‖AQ (where P is finite-state) and an equa-
tional specification ϕ↓X we have:

P‖AQ |= (ϕ↓ X) iff Q |= (ϕ↓ X)//AP

The size of the formula obtained after the partial model checking procedure
is polynomial in the size of the process and the formula. Remarkably, this
function is exploited in [3] to perform model checking efficiently i.e., both P
and Q are specified. In our setting, the process Q will be not specified.

3.2 Fault Tolerance Analysis Through Partial Model Checking

This section shows how to formalize fault tolerance using partial model check-
ing. We start considering a system model P and its fault-tolerant version
P#
F . Let us suppose ϕ be an equational µ-calculus formula expressing some

desirable behaviour of a system even in presence of faults. In a fault toler-
ance analysis we are interested in understanding in which fault assumption
FF , the specification P #

F preserves ϕ. The set of such fault assumption can
be formalized as:

FP
ϕ = {FF : (P #

F ‖ FF)\F |= ϕ} (2)

S. Gnesi et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 57–70 63

Supposing M = (Q, Q0,Actτ ,→} be a finite state LTS , where Q = {Q0, . . . , Qn}:

(ϕ↓ X)//AM = (ϕ//AM)↓ Q0,

ε//AM = ε

(X =σ φ)ϕ//AM = ((XQ =σ φ//AQ)Q∈{Q0,...,Qn})(ϕ)//AM
X//AQ = XQ

〈a〉φ//AQ = 〈a〉(φ//AQ) ∨ W
Q

a−→Q′ φ//AQ′, if a �= τ ∧ a �∈ A
〈a〉φ//AQ = ff, if a ∈ A
〈τ 〉φ//AQ = 〈τ 〉(φ//AQ) ∨ W

Q
τ−→Q′ φ//AQ′ ∨ W

Q
a−→Q′〈a〉(φ//AQ′)

ff//AQ = ff

Fig. 1. The partial evaluation function for ‖A. We have left out the cases for [a]φ, ∧ and tt. They
are immediate duals of 〈a〉φ, ∨ and ff.

The previous set may be considered a characterization of the Fault Tolerance
of P #

F . Indeed 4 , if EF = FP
ϕ then it means that no fault assumption is able to

force P #
F not to satisfy ϕ.

Definition 3.2 [Logic Characterisation of Fault Tolerance 1] A process P #
F

is fault tolerant w.r.t. the logical property ϕ if and only if EF = FP
ϕ .

However, due to its implicit definition, Def. (2) has not a practical usage.
Here, we exploit the partial model checking techniques to find a more suitable
characterization for (2). In fact, we can write:

FP
ϕ = {FF : FF |= ϕ//FP#

F } (3)

where ϕ//FP#
F is obtained by using partial model checking of ϕ w.r.t. P #

F .

Such a definition of FP
ϕ is easier to be managed since corresponds to com-

mon representation of sets and permits to define as a validity checking problem
the fault tolerance of a process w.r.t. a formula. At this point we can formulate
our logic characterization of fault tolerance.

Definition 3.3 [Logic Characterisation of Fault Tolerance 2] We say that a
process P #

F is fault tolerant w.r.t. the logical property ϕ if and only if ϕ//FP#
F

is a valid formula w.r.t. processes in EF .

It is easy to prove that:

Proposition 3.4 A process P #
F enjoys Definition 3.2 if and only if it enjoys

Definition 3.3.

4 Here EF is the set of all fault assumption, see Definition 2.1.

S. Gnesi et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 57–7064

4 Analysis techniques

We have shown how the fault tolerance of P #
F w.r.t. the property ϕ may

be expressed as a validity statement in the µ-calculus. Thus one could use
either the standard validity checking algorithms (e.g., see [25]) or the proof
system developed in [27]. Clearly, the complexity of checking fault tolerance
of a system P #

F w.r.t. a formula ϕ in any fault assumption turns out to be
exponential in the size of the formula obtained after the partial evaluation,
which is in turn polynomial in the size of the system P #

F and ϕ.

4.1 Fault Tolerance Analysis as Theorem Proving

This complexity cost has however the advantage of making very simple the
analysis of a system P #

F w.r.t. a wide class of fault assumption scenarios. In
particular, such scenarios could be denoted by another µ-calculus formula ϕF .
The verification problem is still a validity checking one with respect to the
formula ϕF ⇒ ϕ//FP#

F . Formally:

Definition 4.1 [Logic Characterisation of Fault Tolerance 3] Let ϕF to be
the characteristic formula for a set of fault scenarios. We say that a process
P#
F is fault tolerant w.r.t. the logical property ϕ if and only if ϕF ⇒ ϕ//FP#

F
is valid.

4.2 Fault Tolerance against a fixed Scenario

We recall that partial model checking has been advocated as an efficient
method for performing model checking by Andersen. Assume to have a given
fault scenario corresponding to a finite-state CCS process. Now let us assume
that P #

F is indeed a parallel composition of k processes P1‖ . . .‖Pk ‖ 0, and
testing if it satisfies a formula ϕ′ is easy by applying several times the partial
model checking function.

In fact we obtain a formula ϕ′
1 that P2 ‖ . . . ‖ Pk ‖ 0 must satisfy. Here, one

could apply some logical simplifications on the formula ϕ′
1, in order to obtain

a smaller and so more tractable formula. After k applications of the partial
model checking, we obtain that the stuck process 0 must satisfy a formula
ϕ′

k. The model checking of a formula w.r.t. the stuck process is usually very
efficient. Thus, the model checking of a system which consists of k parallel-
running processes is reduced, through partial model checking, to the model
checking of the stuck process 0.

S. Gnesi et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 57–70 65

4.3 Universal formulas

A way to obtain a more efficient analysis is to consider a variant of universal
µ-calculus formulas (e.g., see [11]). Here, we specify this class for the equa-
tional µ-calculus. When a universal equational is translated into the standard
one through the application of the Bekic̆ theorem in [4], we get standard uni-
versal formula. A nice feature of this class of formulas is that their validity
problem is co-NP-complete ([11]) rather than EXP-time ([25]). Moreover, a
subclass of such formulas i.e., the conjunctive ones, has a validity problem
whose complexity is linear in the size of the formula.

Definition 4.2 The set of universal formulas (∀MC, for short) is a class
of the equational µ-calculus formulas where no 〈a〉 operator is present. The
set of universal conjunctive formulas (∀cMC, for short) is the subset of ∀MC
formulas containing only conjunctions.

Several interesting properties may be written as universal formulas i.e.,
the safety ones. The key property is that partial model checking of universal
formulas w.r.t. contexts as the ones used in (3) gives again universal formulas.

Proposition 4.3 Given a universal formula φ, a fault tolerant process P #
F , a

fault injector FF then

(P #
F ‖ FF)\F |= ϕ if and only if FF |= ϕ//FP#

F

and ϕ//FP#
F is a universal formula.

The proof relies on the fact that the partial model checking of the [a]φ
operator gives a formula which consists of a conjunction of such operators. The
same proposition holds for the universal conjunctive ones. The nice feature
of these formulas is that their validity problem is the complementary one of
the satisfiability problem of the negated of such formulas that turns out to
be a disjunctive one in the sense of [13], whose satisfiability problem can be
decided in linear time in the size of the formula.

4.4 Linear time formulas

As a final consideration we can observe that, when the formula under exam-
ination ϕ is a linear time formula, i.e. that holds for a system iff it holds in
each trace of the system, we can reduce the fault tolerance problem w.r.t. such
a formula to a fault tolerance problem w.r.t. a specific fault assumption, pre-
cisely:

S. Gnesi et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 57–7066

TopF =
∑

f∈F
f.TopF + f.TopF

Consider the set Φ of linear time formulas that are true in a model if and
only if are true in each computation path take as a model. Several interesting
fault-tolerance properties are in this class.

Proposition 4.4 P #
F is fault tolerant w.r.t. ϕ ∈ Φ if and only if P #

F is fault
tolerant w.r.t. ϕ against only TopF .

5 Example

As an example, we will illustrate a CCS model of a Triple Modular Redun-
dancy (TMR) system, taken from [2]. For sake of conciseness we will write
our example in a value passing style CCS, which is knows to be a shortcut
for CCS. The basic component is a simple module implementing the identity
function, which naively returns the same value received in input. Here we
assume that values are taken from a set of binary values Val . The actions mi
and mo are used to communicate module inputs and outputs.

P
def
= mi(x).mo(x).P

In modelling the corresponding failing module we assume that in case of
fault any value from Val , it may be produced in output. In accordance to
our modelling framework, the fault is assumed to be caused by a special fault
action f triggered by the environment.

Pf
def
= mi(x).(mo(x) + f.

∑

y∈Val

mo(y)).Pf + f.(mi(x).
∑

y∈Val

mo(y)).Pf

Note that in modelling the failing behaviour we have assumed that a fault
may happen everywhere in the module. Different faulty behaviours can be
taken into consideration, for example by assuming a module to fail only after
inputs. The (candidate) fault system Pf

#
F , may be designed using the classic

solution of Triple Modular Redundancy, where three instances of the module
Pf are composed with the additional modules of a splitter S and a voter V .
We want the splitter to deliver the input value to each of the three instances
of the module Pf , respectively P

(1)
f , P

(2)
f and P

(3)
f , so we define an indexed

version of the module:

P
(i)
f

def
= Pf [mii/mi, moi/mo]

S. Gnesi et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 57–70 67

P (2)

P (1)

(ack)

P
(3)
f

f

VS

(mo1)

(mo3)(mi3)

(mi1)

(mi2) (mo2)
mi mo

Fig. 2. The flow diagram of the TMR version of P

An indexed from P can be defined as for Pf . If we chose the splitter S to
deliver the input value to the three modules in a specified order, we have

S
def
= mi(x).mi1(x).mi2(x).mi3(x).ack.S

Note that a splitter delivering the input value in an arbitrary order may
be easily modelled. The voter:

V
def
= mo(x1).mo(x2).mo(x3).(if x1 = x2 then mo(x1) else mo(x3)).ack.V

The resulting fault tolerant version P #
f of P , is its TMR version where,

for example, a single faulty module is inserted (see also Figure 2).

Pf
def

= (S ‖ P (1) ‖ P (2) ‖ P
(3)
f ‖ V) \ {mi1, mi2, mi3, mo1, mo2, mo3, ack}

The strategies illustrated in this paper, or a combination of them, can be
applied on Pf

to verify if it satisfy a property expresses as an equational
µ-calculus formula ϕ. The choise of the most suitable verification strategy
usually depends on the structure of the ϕ and on the fault scenario against
whom to check it, as explained in Section 4.

6 Conclusions

This paper first shows how a fault tolerant (candidate) system may be for-
malized using a process algebras (CCS). The formal model is built following
a uniform modeling scheme requiring both the failing behaviour (with respect
to fault occurrences) and fault-recovering procedures to be specified. Faults
are modeled as specific actions in the system model, that a fault injector pro-
cess is able to activate. Fault tolerant properties are expressed as equational
µ-calculus formulae.

This general framework makes a logical characterization of fault tolerance

S. Gnesi et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 57–7068

possible. In fact the fault tolerant verification problem (w.r.t. a property) can
be stated as a module checking problem, that is as the verification of an open
system in an environment able to inject any fault.

Moreover exploiting partial model checking strategies, the fault tolerant
verification problem (w.r.t. a formula) may be expressed as a validity problem
of a new formula obtained by partial evaluation of the system model. In this
way, general validation tools and proof techniques can be exploited. For a
more efficient (and tailored) analysis we have proposed, for example, the use
of universal and conjunctive µ-calculus formulas whose validity problem is
easier to be solved. As a future work, we are developing a semi-automated
tool which, based on an existing partial model checker (e.g., see [16]), would
be able to perform the fault tolerant analysis so far described.

References

[1] H. R. Andersen. Verification of Temporal Properties of Concurrent Systems. PhD thesis,
Department of Computer Science, Aarhus University, Denmark, 1993.

[2] G. Bruns. Distributed System Analysis with CCS. Prentice Hall, 1997.

[3] H. R. Andersen. Partial model checking (extended abstract). In Proceedings of 10th Annual
IEEE Symposium on Logic in Computer Science, pages 398–407. IEEE Computer Society Press,
1995.

[4] H. Bekic̆. Definable operations in general algebras, and the theory of automata and flow charts.
In C.B. Jones, editor, Hans Bekic̆: Programming Languages and Their Definition, volume 177
of LNCS, pages 30–55. Springer-Verlag, 1984.

[5] C. Bernardeschi, A. Fantechi, and S. Gnesi. Model checking fault tolerant systems. Software
Testing, Verification and Reliability (STVR), 12(4):251–275, December 2002.

[6] J. Bradfield and C. Stirling. Modal Logics and µ-calculi: an introduction, pages 293–332.
Handbook of Process Algebra. Elsevier, North-Holland, 2001.

[7] E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume B, pages 996–1072, Amsterdam, 1990. Elsevier Science Publishers.

[8] F. C. Gartner. Fundamentals of fault-tolerant distributed computing in asynchronous
environments. ACM Computing Surveys, 31(1):1–26, March 1999.

[9] D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. Assumption generation for software
component verification. In 17th IEEE International Conference on Automated Software
Engineering (ASE 2002), 23-27 September 2002, Edinburgh, Scotland, UK, pages 3–12. IEEE
Computer Society, 2002.

[10] M. Hennessy and R. Milner. Algebraic laws for non determinism and concurrency. Journal of
the ACM, 32:137–161, 1985.

[11] T. A. Henzinger, O. Kupferman, R. Majumdar On the Universal and Existential Fragments
of the mu-Calculus In Proc. of TACAS, pages 49-64, LNCS 2619, 2003.

[12] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, NJ,
1985.

[13] D. Janin and I. Walukiewicz. Automata for the µ-calculus and related results. In
J. Wiedermann and P. Hájek, editors, Proceedings 20th Intl. Symp. on Mathematical
Foundations of Computer Science, MFCS’95, volume 969 of LNCS, 1995.

S. Gnesi et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 57–70 69

[14] E. Jonsson. An integrated framework for security and dependability. In Proceedings of the
New Security Paradigms Workshop, pages 22–25, Charlottesville, VA, USA, September 1998.

[15] J. C. Laprie. Dependability: Basic concepts and terminology. In J. C. Laprie, editor,
Dependable Computing and Fault-Tolerant Systems, volume 5. Springer-Verlag, 1995.

[16] J. Lind-Nielsen. Mudiv: A program performing partial model checking. Master’s thesis,
Department of Information Technology, Technical University of Denmark, September 1996.

[17] F. Martinelli. Partial model checking and theorem proving for ensuring security properties.
In Proc. of the 11th IEEE Computer Security Foundation Workshop, pages 44–52. IEEE,
Computer Society, 1998.

[18] F. Martinelli. Analysis of security protocols as open systems. TCS 290(1): 1057-1106 (2003)

[19] C. Meadows and J. McLean. Security and dependability: Then and now. In Proc. of Computer
Security, Fault Tolerance, and Software Assurance: From Needs to Solutions - Workshop II,
Williamsburg, VA, November 1998.

[20] R. Milner. Communication and Concurrency. International Series in Computer Science.
Prentice Hall, 1989.

[21] R. Milner. Operational and algebraic semantics of concurrent processes. In J. van Leewen,
editor, Handbook of Theoretical Computer Science, volume B: Formal Models and Semantics,
chapter 19, pages 1201–1242. The MIT Press, New York, N.Y., 1990.

[22] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information and
Computation, 100(1):1–77, 1992.

[23] R. De Nicola and F. Vaandrager. Action versus state based logics for transition systems. In
Lecture Notes in Computer Science, volume 469, pages 407–419. Springer-Verlag, 1990.

[24] A. Simpson, J. Woodcock, and J. Davis. Safety through security. In IEEE Computer Society
Press, editor, Proc. of the 9th International Workshop on Software Specification and Design,
pages 18–24, Ise-Shima. Japan, April 1999.

[25] R. S. Streett and E. A. Emerson. An automata theoretic procedure for the propositional
µ−calculus. Information and Computation, 81(3):249–264, 1989.

[26] H. H. Thompson, J. A. Whittaker, and F. E. Mottay. Software security vulnerability testing
in hostile environments. In ACM Press, editor, Proceedings of the 2002 ACM symposium on
Applied computing (SAC 02, pages 260–264, Madrid, Spain, 2002.

[27] I. Walukiewicz. Completeness of Kozen’s axiomatization of the propositional λ-calculus. In
Symposium on Logic in Computer Science (LICS ’95), pages 14–24, Los Alamitos, Ca., USA,
1995. IEEE Computer Society Press.

S. Gnesi et al. / Electronic Notes in Theoretical Computer Science 118 (2005) 57–7070

	Introduction
	Modelling Fault-Tolerant Systems
	CCS
	Specifying a System
	Fault Assumption Models
	Equational -calculus

	Logic Characterisation of Fault Tolerance
	Partial Model Checking
	Fault Tolerance Analysis Through Partial Model Checking

	Analysis techniques
	Fault Tolerance Analysis as Theorem Proving
	Fault Tolerance against a fixed Scenario
	Universal formulas
	Linear time formulas

	Example
	Conclusions
	References

