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Abstract

We investigate the application of concurrency theory no-
tions as simulation relations and compositional proof rules
for verifying digital stream signature protocols. In particu-
lar, we formally prove the integrity of the Gennaro-Rohatgi
protocols in [7]. As a peculiarity, our technique is able to
check a protocol with an unbounded number of parallel pro-
cesses. We argue also that our approach may be applied to
a wider class of stream signature protocols.

1. Introduction

One of the main challenges of securing multi-
cast/broadcast communication is integrity, or enabling re-
ceivers of multicast data to verify that the received data was
not modified en-route. The problem becomes more com-
plex in common settings where other receivers of the data
are not trusted and where lost packets are not re-transmitted.
Dealing with multicast/broadcast information means, in the
terminology currently present in the literature, dealing with
digital streams, i.e. long (potentially infinite) sequence of
bits. Applications that deal with streams are typically live-
broadcasts, digitized audio and video, data feeds, applets,
multi-party video games, multi-party video conferences.
For successful developments, these applications could re-
quire security properties to be verified (i.e., confidentiality
and integrity).

The use of formal techniques to analyze stream signa-
ture protocols represents an interesting challenge because

�Work partially supported by a grant of Microsoft Research Europe
(Cambridge); by MIUR project “Formal Methods for Security and Time
(MEFISTO)” and by a CSP grant for the project “SeTAPS II”.

of the diversity of such protocols from standard crypto-
graphic schemes. Indeed, two peculiarities are: i) a sender
broadcasts a continuous (and possibly unbounded) stream
of messages to a possibly unbounded set of receivers; ii) re-
ceivers use information retrieved in earlier packets to legit-
imate later packets or vice-versa. Some particular scenarios
may include mobility, i.e participants through the protocol
can move and change dynamically. Currently, the success-
ful outcome of formal techniques applied to these classes
of protocols is in question. In [2] Archer states a formal
analysis based on model checking techniques is not feasible
and exploits theorem proving techniques to analyze a well
known stream authentication protocol (the TESLA protocol
[14]). On the other hand, Broadfoot and Lowe show their
successful results derived applying model checking tech-
niques on [14], motivating, even though informally, several
steps of the analysis, [3].

The aim of this paper is to apply compositional proof
rules to verify integrity in digital streams, where integrity
means, informally, that the information accepted by a re-
ceiver is exactly what the sender has intended. The com-
positional rules were first discussed in [10] for the GNDC
schema of properties, defined in [5, 6]. In turn, the schema
is based on the notion of non-interference, [8].

A compositional proof rule for checking a property �
works as follows: in order to check if a system � �� satis-
fies � it is enough to check whether both � and� satisfy � .
(Notation � �� represents the parallel composition of sub-
systems � and �). The compositional reasoning is useful
in many cases. For instance, the state-space of the system
� �� is usually considerably bigger than those for � and
�. Hence, formal verification techniques as model check-
ing benefit of such compositional rules. Another field of
application is the analysis of systems with an unbounded
number of equal components. Let us consider the parallel
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composition of equal processes � :

�
� �� �

� � � � � ��

To prove that this system enjoys � (for whatever �) it is
sufficient to prove that � enjoys � .

The main target of our (compositional) analysis is
the Gennaro-Rohatgi protocol, developed to sign digital
streams, [7]. It is our opinion that the protocol should
be considered paradigmatic, being essentially, in its 1997
version, one of the first proposals to efficiently solve the
problem to sign digital streams. Efficient cryptographic so-
lutions (i.e. fast to be computed and verified) have been
adopted in the protocol to allow the entities at stage to min-
imize their communication and computation overhead. Pro-
tocols dealing with the problem of securing streamed data
over channels with packet loss have been recently proposed,
[9, 13, 15]. They all can be basically considered as valuable
extensions of the Gennaro-Rohatgi constructions.

The main contributions of this paper are the following:
i) the Gennaro-Rohatgi stream signature protocol has been
formally analyzed with compositional proof rules and the
results are reported in this paper. To the best of our knowl-
edge this is the first attempt to prove the integrity of digi-
tal streams by means of compositional rules; ii) our anal-
ysis aims in allowing the modeling and formal validation
of a set of multicast/broadcast protocols, embracing the ba-
sic schemes of [7] as well as further extensions regarding
a scheme of stream signature dealing with packet loss; iii)
contrary to previous work in the area, [2, 3], we are able
to check a system with an unbounded number of receivers.
(The target of our analysis however being different from
TESLA.)

The paper is organized as follows. In Section 2, we
present the formal language we use for the description of
cryptographic protocols. In Section 3, we describe the
Gennaro-Rohatgi stream signature protocol in more detail.
Section 4 recalls two general schemes for defining secu-
rity properties, first introduced in [5, 6] and illustrates some
compositional results to establish if a system enjoys secu-
rity properties defined by means of the general schemes.
Section 5 shows how to apply the compositional results to
successfully prove the correctness of the Gennaro-Rohatgi
off-line solution in terms of packets’ integrity. The com-
positional analysis can be efficiently extended to the case
of a scenario with an unbounded number of receivers, as
Subsection 5.1 shows. In Section 6 we outline our ongoing
research regarding the extension of this kind of analysis to
a class of protocols dealing with packet loss.

2. A formal language for the description of pro-
tocols: Crypto-CCS

A language, a slight modification of CCS process alge-
bra [12], is adopted for the description of cryptographic pro-
tocols. It makes use of cryptographic-modeling constructs
and deals with confidential values, hence the name Crypto-
CCS [6]. Other languages have been developed in the past
for the description of cryptographic protocols, e.g. [1]. The
Crypto-CCS model consists of a set of sequential agents
able to communicate by exchanging messages. The data
handling part of the language consists of messages and in-
ference systems.

Messages are the data manipulated by agents, they form
a set Msgs of terms possibly containing variables. The set
Msgs is defined by the grammar:

� ��� � � � � � ����� � � � ����� � � � � � �
����� � � � ����

�

where � � (for � � 	 � 
) are the constructors for messages,
� � � , a countable set of variables, � � �, a collection
of basic messages, and �, for � � 	 � 
, gives the num-
ber of arguments of the constructor � �. Messages without
variables are closed messages.

Inference systems model the possible operations on mes-
sages. These systems consist of a set of rules �:

� �
�� � � � ��

��

where ��� � � � ��� is a set of premises (possibly empty)
and �� is the conclusion. An instance of the applica-
tion of the rule � to closed messages �� is denoted as
�� � � � �� �� ��. Given an inference system, we
can define a deduction function � s.t. if � is a finite set
of closed messages, then ���� is the set of closed messages
that can be deduced starting from � by applying instances
of the rules in the system.

In Table 1 we show a suitable inference system we are
going to use for the formalization of digital streams’ proto-
cols. Rule ���	�� builds the pair of two messages � and �;
rules ����� and ����� are used to obtain the components of
a pair; rule ��	��� allows message � to be digitally signed
by applying the secret key ���� of agent � (talking about
digital signatures, we assume the use of asymmetric algo-
rithms like the one proposed in [16]); rule ����� allows
a digital signature �������� to be verified by applying the
public key of signer �, ����; rule ������ allows an agent
to apply a one-way hash function to message � and obtain
digest ����. Throughout the paper, hash functions enjoy the
following assumptions: i) they map arbitrarily long binary
strings into strings of a fixed length; ii) they are “collision
resistant”, i.e. only with negligible probability it is possible
to obtain the same output from two different inputs; iii) they
are not reversible (with high probability).
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Table 1. A simple inference system.

The control part of our language consists of compound
systems, basically sequential agents running in parallel.
The terms of our language are generated by the following
grammar:

COMPOUND SYSTEMS: � ��� � � � � ��� ���� � ��

SEQUENTIAL AGENTS: � ��� � � ��� � ��� � � ��� �� ���
� �� � ���� � ����� � � � � ���

PREFIX CONSTRUCTS: � ��� ��� � ���

where�������� � � � ��� are closed messages or variables,
�� ��� � � � � �� are message variables, � � ��, a finite set of
channels, � is a finite set of closed messages, � is a subset
of ��. The informal semantics of sequential agents and
compound systems is as follows:

� � is the process that does nothing.

� ��	 is the process that can perform an action according
to the particular prefix construct � and then behaves as
	:

– ��� denotes a message � sent on channel �;

– ��� denotes the receiving of a message � on
channel �. The received message replaces the
variable �.

� ��� � � ��� �� ��	 is the inference construct1. If,
by applying an instance of rule 
 with premises
�� � � ���, a message � can be inferred then the pro-
cess behaves as 	 (where � replaces �). This is the
message-manipulating construct of the language. For
instance,

�� ���� ����� ��	

is the process that uses the rule ���� to obtain a digi-
tally signed message from � and ���� and then be-
haves like 	.

� �� � ���	 is the match construct to check message
equality, i.e. the if � � �� then it behaves as 	 other-
wise it gets stuck.

� 	���� � � � ���� is a constant process whose be-
havior is defined through a constant definition
	���� � � � � ��� ���� � where all the free variables of
� are in ���� � � � � ���.

1The symbol �� is syntactic sugar for recording which rule is used.

� A compound system � � � allows only visible actions
whose channel is not in �.

� A compound system �� ��� denotes the parallel exe-
cution of �� and ��. �� ��� performs an action � if
one of its sub-components performs �. A synchroniza-
tion or internal action, denoted by the symbol � , may
take place whenever �� and �� are able to perform two
complementary actions, i.e. send-receive actions on
the same channel.

� The term 	� is a single sequential agent whose knowl-
edge, i.e. the set of messages which occur in its term,
is described by �. The agent’s knowledge increases
either when it receives messages (see rule (�) in Tab.
2) or infers new messages from the messages it knows
(see rule � in Tab. 2). For every sequential agent 	�,
we require that all the closed messages that appear in
	 belong to its knowledge �.

2.1 Operational semantics and auxiliary notions.

The agents’ activities are described by the actions they
can perform. The set 	�� of actions which may be per-
formed by a compound system is defined as: 	�� �
����� ���� � � � � ��� � ������ closed�� As usual,
we use a Labeled Transition System (LTS) to assign se-
mantics to our language. The semantics of closed terms is
given by the least set of action relations induced by the rules
shown in Tab. 2. For notational convenience, we some-
times use ���

�
� instead of �� �����. As a notation we

also use � �� �� for denoting that � and �� belong to the
reflexive and transitive closure of

	
	
; �



�� �� if � is a

finite sequence of actions ��� � � � � � s.t. �� �� � and
�

	
��

��	
�� � � � ��
��	


	
�� ��.

As behavioral relations among Crypto-CCS terms, in the
following we will be mainly interested in trace inclusion
(equivalence) and (weak) simulation.

Definition 1 We say that the traces of � are included in
the traces of � (� ����� �) whenever, if �



�� �� then

�



�� ��. We write that �������
� iff � ����� � and

� ����� � .

Definition 2 We say that a relation  among Crypto-CCS
processes is a (weak) simulation whenever if ����� � 

and �

	
�� then �


�� �� and ���� ��� � .

The union of all weak simulations is a weak simulation
and it is denoted by �.

As usual, it holds that if � � � then � ����� �.
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�
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����
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�
����

���� � � � � ����
�
����

Table 2. Operational semantics, where the symmetric rules for ��� ��� �� are omitted.

3. The Gennaro-Rohatgi Protocol

In [7], Gennaro and Rohatgi developed a mechanism to
sign digital streams, i.e. long (potentially infinite) sequence
of bits. They aim at assuring a receiver that the informa-
tion he received is exactly what the sender has intended.
Applications that deal with streams are typically digitized
audio and video, data feeds, applets. This kind of applica-
tions requires the user to consume the data he receives at
almost the input rate, without excessive delay. For this rea-
son, signing digital streams represents a different problem
compared with the signature of finite messages. Traditional
digital signature schemes do not fit properly because they
require the receiver to process the entire message in order
to verify the signature.

The authors present two solutions to the problem, dis-
tinguishing two cases: i) a finite stream which is entirely
known to the sender (e.g. a movie); ii) a potentially infi-
nite stream not known in advance to the sender (e.g. a live
broadcast).

We discuss both the proposed schemes below. Both
the schemes rely on the basic idea to divide the stream
into blocks and to add cryptographic information in each
block such that receivers use information retrieved in ear-
lier blocks to legitimate later blocks.

We first use an intuitive notation usually found in litera-
ture. We consider a set of agents able to receive messages.
Basically we represent the sending and reception of a mes-
sage ��� from a sender � to a receiver � in the following
way:

���	� 
� �� � � ���

where��� is the exchanged message, 
� is the j-th commu-
nication channel, over which the exchange takes place. �

and � are the sender and the receiver of ��� and ���	� is
the name of ���.

3.1 The off-line solution

We consider a set ���� � ���� 2 of meaningful pay-
loads, � � �    �. The protocol for the off-line case can be
formalized as follows3 4:

Block �
�

� 
� � � � � ����
�

��������
Block �

�

� 
� � � � � ��� ���
�

���� � � �� � �

Block �
�

� 
� � � � � ��

The protocol exploits the technique of embedding the
hash of the following block in the current block. Bootstrap-
ping integrity of the digital stream is obtained by applying a
single traditional signature in combination with hash chain-
ing.

The notation has to be intended in the following way:
���� is the digest of � after applying the hash function;
�������� is message � digitally signed by the sender’s pri-
vate key �����.

The protocol works as follows. The sender � first di-
vides the stream to be sent in � blocks. He then generates
the digital signature on the hash of the first block (Block
�

�

�). After verification of the signature the receiver knows
what the hash of the first block should be and then starts
receiving the full stream (blocks �

�

�). When the receiver re-
ceives the first block �

�

�, he computes its hash and checks
the hash against what the signature was verified upon. The
other blocks consist of an authentication chain, in which

2We assume that the sender’s private key ���	� does not occur in the
set ��
�.

3In the original paper [7], the first block contains an encoding of the
length of the stream. The structure of the first block is here simplified
(without however affecting the results of our analysis). We assume the
receiver knows in advance the number of blocks in which the stream is
divided.

4To avoid replay attacks when executing multiple runs of the protocol
one can simply include nonces in the digitally signed block.
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each block contains the hash of the subsequent block. Em-
bedding the hash of the subsequent block implies that the
sender knows the stream in advance, hence the non feasibil-
ity of this construction for applications like live broadcasts.

We present the Crypto-CCS specifications of the given
protocol. The sender and receiver nodes are modeled as
Crypto-CCS processes. They can perform sendings and re-
ceptions according to the protocol original specifications.
The Crypto-CCS representation is very flexible: checks
about the received blocks are explicitly represented.

Each conclusion of an inference construct is a message
variable. With notation �� we mean “variable � should
contain message �”.

�������
�
� ��

�

� ����� �����
�
��

��
���

�

�
� �	��� ����� �

�
�

�

�


�����
�

��������

�������
�
� ��

�

��� ����� �����
���

��

��� �
���

�

���
� �	��
 ���

�

�


�����
�

����������

�������
�
� 
������

The sender initially builds the initialization block �
�

� (more
precisely, he builds a variable containing �

�

�) to bootstrap
the chain: by means of inference rules ��� and ���� in
Table 1 he computes block �

�

�, sends it on communication
channel 
� and travels to the next state �������. The sender
can now send significative payloads �� together with hashed
blocks ���

�

���� until he reaches the last state �.
The receiver process is parameterised by the hashed

blocks he receives from the sender (more precisely, vari-
ables that should contain the hashed blocks).

��
������������
�
� 
�����

�

���
�
�

�

�	��� ��
 �����
�
��

��
������������
�
��

��
������������
�
��

�
� 
�����

�

���
�
�

�

����� �
���

�

�� �
��

��
���

�

�
� � �

���
�

�� �
������

�

���� ��� �


���� ���� �����
�

���� �����
���

��

��
��������������
���

��

��
������������
�
��

�
� 
�����

�

�����
�

����� �����
�� �

��

��
���

�

�
� � �

���
�

�� �
��
���� ����� ��

In the initial state the receiver aims at verifying the digital
signature (we assume he has previously retrieved the pub-
lic key �	��� corresponding to the private key of the sup-
posed sender). After verifying the correctness of the sig-
nature he travels to the next state ��
������������

�
�� main-

taining history of the (supposed) next hashed block ���
�

��.
The receiver has now reached the phase in which he can
receive meaningful payloads ��. Acceptance of the subse-
quent blocks is conditioned to the successful outcome of the

equality tests between the hash he maintains as a parameter
and the hash he computes from what he has presently re-
ceived, respectively �

���
�

�
� and �

���
�

�� �
�. The successful

outcome of the equality test is here modeled imaging the
receiver sends the meaningful payload contained in ��� to
his application level to consume it. This is modeled by a
sending action over channel 
���� . He then extracts the sup-
posed hash of the block to be received immediately later.
The mechanism is repeated until the reception of �-th block.
Whether the verification of the signature in the initial state
or the equality tests in subsequent states do not succeed the
receiver should abort. (The inference construct of Section 2
takes implicitly into account this last possibility).

3.2 Extending the model to multiple receivers

The Crypto-CCS specifications in the previous subsec-
tion do not reflect exactly a typical multicast/broadcast sce-
nario, as it does not take into account a set of multiple, po-
tentially unbounded receivers. Along with one sender and a
set of multiple receivers we could extend the model to the
treatment of multicast and broadcast applications by adding
a new process �� responsible for potentially sending each
block an unbounded number of times in order to simulate
a one-to-many (one-to-all) sending typical of a multicast
(broadcast) environment. The new process is parameterized
by the block the sender is to multicast (or broadcast).

�������
�

�
�
� 
�����

�

��������
�

�

In the light of this new process, the sender’s specifications
of subsection 3.1 can be re-written as follows:

�������
�
� ��

�

� ����� �
���

�

�
��

������
�
� �	��� ����� ���

�

�

�������� ��������
�

��

�������
�
� ��

�

��� ����� �
���

�

���
��

��� �
���

�

���
� �	��
 ���

�

�

���������� ��������
�

��

�������
�
� �������

The receiver specifications remain the same.

3.3 The on-line solution

When the sender does not know the entire content of the
stream in advance, the protocol makes use of 1-time signa-
ture schemes, a special kind of signature scheme introduced
in [11], faster to compute and verify than regular signatures.
These schemes can be used to sign only one packet. The
protocol formalization follows5:

5We assume that the sender’s private key ����� and the sender’s 1-time
secret keys ����

�
do not occur in the set ���� of meaningful payloads.
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����� �
�

� �� � � � � ��� ������
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�

� � �

Notation ����� and �	��� indicates the i-th 1-time public and
private key of the sender; notation �
	������

�

means: “msg
is signed with the private key corresponding to the i-th 1-
time public key of the sender.

Bootstrapping integrity of digital streams is obtained by
applying a single traditional digital signature in combina-
tion with 1-time signatures. The digital stream is divided
into blocks and each block carries a 1-time public key,
which is used in a 1-time signature scheme to verify the sig-
nature over the following block. Only the first block needs
to be signed with a traditional signature scheme.

4 Towards compositional analysis within
GNDC

In this section we present the general schema General-
ized Non Deducibility on Compositions (GNDC for short)
for the definition of security properties given in [5, 6] and
some compositional proof rules for such a schema. The
schema is based on the notion of non-interference. The
main idea is the following: a system � is ����

�
iff for

every enemy � the composition of the system with � satis-
fies a specification ����. Basically, ���� denotes the “cor-
rect” behavior of the system. ����

�
guarantees that the

property identified by � is satisfied (with respect to � rela-
tion) even when the system is composed with any possibly
hostile enemy (or malicious user).

Analyzing cryptographic protocols involves to specify
the set of messages known by the enemy at the beginning
of the computation. We impose some constrains on this ini-
tial knowledge. Given a system �, we call ����� the set
of closed messages that syntactically appear in �. This set
contains all the messages that are initially known by �. Let
� � �	�	 be the initial knowledge that we would like to
give to the enemy.

For a certain enemy � , we want ����� being consistent
with �. This can be obtained by simply requiring that all the
messages in ����� are deducible from �.

The set �� of processes that can communicate on a sub-
set of � and have an initial knowledge bound by � can be
thus defined as follows:

�� � �� � � � 	������ � � and ����� � 	����

where � is the set of all the ���	�� terms in the language
and 	������ is the set of all the channels that syntactically
occur in the term � . We consider as hostile processes only
the ones belonging to �� . We define the property ����

�

as follows:

Definition 3 � is ����
�

iff 
� � �� � ���
�

� � ����
where� is a relation between processes and � is a function
between processes.

This definition is natural but difficult to be checked due
to the universal quantification. A way to avoid universal
quantification over all the admissible enemies is to show the
equivalence between ��� and Strong Nondeterministic
Non-Interference (�� , for short).

In particular, we introduce the hiding operator ���� that
is used to model a process in a context where there is an
intruder. Let us call this intruder � ��, whose knowledge is
� and that is willing to receive on each channel he is able
to communicate over , i.e. �, each messages he can deduce
from his knowledge, i.e. �. � �� is also able to receive each
message sent over channels �, so his knowledge increases.
The defining rules are the following:

�
�
��� �

����
�
��� ����

�� �� ��

�
��	
��� � � � �

����


��� �����	��

�
��	
��� � � � � 
 � 	���

����


��� ����

A Crypto-CCS process � is ���� if ��, i.e. process
� where all actions in � are forbidden, behaves like the
system � where all the actions in � are hidden through the
hiding operator.

Definition 4 A process is ���� if �� ����� ����.

Basically, the hiding operator embodies the so-called most
powerful enemy. We are able to prove that by using this op-
erator we can avoid using the universal quantification on
checking ���, at least for properties based on trace
equivalence. (For a deeper discussion see [6].)

Proposition 1 ����
������

� ����

where � � ��.

4.1 Compositional results

We illustrate some compositional proof rules for estab-
lishing if a system enjoys a ����

�
property and in par-

ticular ���� .
The property �� is compositional, i.e. if �� � �

�� then �� ��� � �� . This holds within the usual
non-interference theory in a setting without cryptography
modeling (e.g., see [4]). The same does not hold when con-
sidering enemies with limited knowledge, as for ���� .
Consider the processes:

� � ���
� ���! �! � 
�����
� �
� � ���
� ���! �! � 
�����
� �
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Assuming � � ���� ��� and � � �, we have that ��� �

������ . However, � �� 	� ������ . �� ����� is equiv-
alent to �, while �� ���	�� may perform both ���
� and
���
�. The intruder can indeed add to his knowledge mes-
sages 
��
� received over channel �� and send them later
over channel ��.

To get a compositional rule for establishing that a com-
position of processes belongs to ������ we strengthen our
requirements on the behavior of the processes.

Definition 5 We say that a process � is stable w.r.t. �,
whenever if �	�� �� � �	�

�

� then ���� � �����.

Basically, a process � is stable when an enemy with a cer-
tain knowledge � does not increase significantly � during
the execution of � .
The following proposition holds.

Proposition 2 Assume that ��� � ������ and that ���
are stable w.r.t. �. Then �� ��� � ������ and � �� is
stable w.r.t. �.

Using the previous result, it is possible to prove that a
similar compositional rule holds also for the �����

������

schema (under the assumption that the involved processes
are stable).

Proposition 3 Given the set of the intruder initial knowl-
edge � and the set of public channels �, assume �� �

����
������
������

, with  � �� �, and ��� �� are stable w.r.t.

�. It follows that ��� ���� � ����
������ �������
������

and
�� ��� is stable w.r.t. �.

Compositional proof rules may be used to check the correct-
ness of specifications with an unbounded number of equal
processes. (As notation we use �������� for the parallel

composition

�
� �� �

� � � � � �� .)

Proposition 4 If � is stable w.r.t. � and � �
�����

������
then for all � we have:

�������� � ����������
���	
�

5 Compositional analysis of the Gennaro-
Rohatgi protocol

For checking integrity the above compositional proof
rules can be successfully applied. In particular, we show
how to apply the compositional analysis to a class of stream
signature protocols. We start by analyzing the Gennaro-
Rohatgi off-line solution and we prove the correctness of
its construction by using the previous compositional rules.
The goal is to exploit the compositional rules to prove the

integrity of the received blocks when the presence of an in-
truder is considered.

We formally define integrity in the GNDC schema as the
ability to accept only the message �� by a receiver as the
 � �� message sent by the sender. Assume that a receiver
signals the acceptance of a block as a legitimate one, by
issuing it on a special channel ���. Thus, let ���� be �����
where ����� � ���� ����������� with � 	  	 � � �, and
����� � ���� �����.

Definition 6 A system � consisting of a sender of a stream
of messages �� and a receiver, enjoys the integrity property
whenever � � ��������

������
.

Basically, it means that the receiver accepts exactly the
blocks �� in the correct order even in presence of an intruder.

We are able to prove that ������� and �������� (Sub-
section 3.1) are stable w.r.t. the following initial knowledge
�:

� � ������� ����
��
�
�� ��� ���

�
�� �  � �� � � � � ����
����� ���

Actually, we include in the initial knowledge � the mes-
sages an intruder would be able to add to his knowledge by
eavesdropping on a run of the protocol. This implies we
arrange an intruder to have the most powerful means to act
since the beginning of the computation. If the protocol sat-
isfies the integrity property in this very hostile environment
then it means that it will satisfy this property in a less pow-
erful one (this may be formally justified).

The following set of channels is considered as channels
over which an intruder is able to communicate: � � ��� �
 � �� � � � � ��.

Lemma 1 ������� and �������� are stable w.r.t. �.

We are able to prove that ������� enjoys �����

������

and�������� enjoys��������

������
, that is to say for all�

with ����� � ���� � we have �������� ����� 	��	
�

� and ��������� ����� 	��	
� ����. This may be
done by finding a suitable weak simulation relation between
�������� ��� �� and � and between ��������� ��� ��
and �����, respectively.

Lemma 2 ������� � �����

������
.

Lemma 3 �������� � ��������

������
.

Proposition 5 ������� ��������� � ��������

���	
�.

5.1 Compositional analysis of the multiple re-
ceivers version

Compositional reasoning is powerful. The correctness
of the multiple receivers version in Subsection 3.2 can be
proved by only checking that the sender is stable w.r.t. �.
The rest follows by re-using the previous results.
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Lemma 4 ������� is stable w.r.t. � and ������� �
���	�

������.

Note that in a multi-receiver environment with one
sender, a protocol guarantees integrity whenever each re-
ceiver accepts only the stream of messages that sender
wishes to deliver. In our case, the specification for � re-
ceivers is simply the parallel composition of 
��� �-times.
The following proposition holds.

Proposition 6 The Gennaro-Rohatgi off-line solution en-
joys integrity for whatever number of receivers.

6 Further extensions
The compositional analysis can be successfully ap-

plied to formally verify integrity properties in a multi-
cast/broadcast environment. (We remind that integrity
means, from our point of view, assurance that multicast data
are not modified en-route.) In particular, we have showed
the efficiency of the analysis applied to the scheme of [7] in
its off-line solution variant. We are able to formally check
the system with an unbounded number of receivers.

We applied the compositional rules to the Gennaro-
Rohatgi on-line solution and it follows that it enjoys in-
tegrity for whatever number of receivers. With reference to
a formal Crypto-CCS specifications of the scheme in Sub-
section 3.3, (not reported in the paper), we tested the stabil-
ity condition and the fulfillment of ���	 of a sender and
an unbounded number of receivers w.r.t. the intruder ini-
tial knowledge: �� � ������ ��

�
 ����

�
� � ���

�
 �� ���

�

�
� �

� � ��. The proof proceeds essentially as in the off-line
case, apart considering a formal reasoning concerning the
verifications of 1-time signatures instead of comparing the
hashes.

One of the problems in the approach of [7] is that if a
block is missing, the authentication chain is broken and the
integrity of subsequent packets can not be verified. Effi-
cient constructions to solve the problem of authenticating
and proving the integrity of streamed data over channels
with packet loss have been recently proposed, [9, 13, 15].
In [15] the authors propose EMSS, whose basic scheme is
the following: block �� includes a hash ������� of the pre-
vious block ����. Further, a signature block is included at
the end of the stream, which contains the hash of the final
block along with a standard digital signature. To solve (in
part) the problem of packets loss each block contains multi-
ple hashes of previous blocks and the signature block signs
hashes of multiple blocks. [9] proposes a variant of EMSS,
in which hashes of previous and subsequent blocks are in-
cluded in each packet. The distribution of the hashes and the
signature blocks is deterministically chosen in [9], while in
[15] the authors also propose a random distribution.

From some preliminary investigations we argue that our
approach may be successfully extended to correctly ver-

ify the property of integrity in [9] and in the determinis-
tic schemes suggested in [15]. As future work, we plan to
i) complete the formal analysis of EMSS when a random
distribution of hashes and signatures packets is considered;
ii) apply our compositional proof rules to (erasure codes)-
based solutions like the one proposed in [13]; iii) enhance
the compositional analysis technique in order to check other
classes of protocols.
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