
 

C
 

Consiglio Nazionale delle Ricerche 
 
 
 
 
 

 
 

 

Anonymous crypt P2P 
A model for a secure and private 

communication 
  

FF..  DDiiaannddaa,,  VV..  DDii  SStteeffaannoo,,  EE..  PPrraattii  
 
 
 
 
 

IIT B4-03/2003 
 

Nota Interna 
 
 
 
 

Marzo 2003 
 
 
 
 

 
 

 
 

 

Iit 
 

Istituto di Informatica e Telematica  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37832192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1

Summary 
 
1 Introduction..................................................................................................................................2 

1.1 Scope and contents...............................................................................................................2 
1.2 Knowledge, References and Activities ................................................................................2 

2 A brief survey of the p2p models.................................................................................................3 
2.1 Searching and retrieving ......................................................................................................4 
2.2 Communication and message routing..................................................................................5 

2.2.1 Centralized model ........................................................................................................5 
2.2.2 Pure peer to peer ..........................................................................................................6 
2.2.3 Hierarchical model.......................................................................................................9 

2.3 Comparing p2p models ........................................................................................................9 
3 Diffuse Existing Protocols .........................................................................................................10 

3.1 Napster ...............................................................................................................................10 
3.2 Gnutella..............................................................................................................................12 
3.3 Message Format .................................................................................................................12 
3.4 Gnutella and firewalls ........................................................................................................13 

4 General Architecture of a New Model.......................................................................................14 
4.1 Requirements .....................................................................................................................14 
4.2 Matching procedure scheme ..............................................................................................14 

5 The user client application specifications ..................................................................................17 
5.1 Architecture........................................................................................................................17 
5.2 Actions of the UIC and UIC-LS protocol ..........................................................................18 
5.3 Actions of the LS and LS-LS protocol...............................................................................18 
5.4 UIC Requirements and Specifications ...............................................................................19 
5.5 User local database.............................................................................................................19 

6 The client-to-server communication ..........................................................................................20 
7 Scalability to distributed server network ...................................................................................21 
8 References..................................................................................................................................22 



 2

1 Introduction 
 
In the recent years there has been a lot of interest in the research of the distributed software agents 
and in particular, since the late ’90, the de facto communication model has been indicated as “peer 
to peer” (p2p). Instead of the canonical client-server model, in the p2p model every communication 
entity is able to perform the tasks of client  (the requester, the consumer) and the tasks of server (the 
responder, the producer) at the same time.  
 
One of the most popular p2p working fields has been the sharing of files between different users; 
this activity is so widespread to become one of the source of major dispute in the information 
society: on one hand the copyright holders of such files and on the other the users that prefer to 
obtain a copy without the licence to save money.  
 
Another interesting area of activity in the p2p area is the distribution of information, in the client-
server model, the server is generally the only source to obtain a given information, increasing the 
interest in a particular resource, the server owner has to install and pay for new computing resources 
(servers, storage, bandwidth...) to maintain an acceptable quality of service. In the p2p environment, 
every node that obtains a resource is theoretically able to give it to others requesters, without the 
assistance of the server.  
 
Lastly, we’d wish to spend some words about a niche area of p2p computing that has increased is 
importance after September 11th, named the free but secret speech: many people are still interested 
in the ability to express their opinions in such way that anyone is able to ban it. 
 
As anyone can easily image, every model of p2p needs to address some basic security functions to 
avoid a misuse of the systems. This ranges from the basic integrity insurance of the resources from 
complex trust and no repudiation management of the communications, to the grant of full user 
anonymity at every network layer. 
 

1.1 Scope and contents 
The aim of this work is to contribute to the modelling of a peer-to-peer protocol in order to fill a 
lack that still remains in the wide panorama of developed model, i.e. .e. a deterministic anonymous 
and crypt peer-to-peer communication system. This work considers first the most important model 
confirmed by the diffusion and the reliability for their purposes, presenting an overview that focuses 
on the main characteristics. Than an analysis of the requirements is done and two different 
strategies are analysed, building two models for different anonymity and security levels. The two 
models are discussed and a communication protocol for a minimal user client interface is described. 
Finally the scalability problem is discussed. 
 
 

1.2 Knowledge, References and Activities 
Discovering and monitoring of architectures: This function will produce the appropriate 
knowledge basis to obtain and maintain a snapshot of the state of the art of the running p2p 
application, where running means those proposes that has been coded in a computer executable 
form. Testing of this software and understanding of their pros and contras, certainly present, will be 
one important activity.  
 



 3

Developing a running code: This function will focus on the developing not only of yet another 
new p2p software, but where possible to participate to the efforts of an already existed software. 
This could cover not only coding activity but could, for example, be represented in a debugging 
activity or a testing activity.  
 
Use of existing p2p software: In order to understand what p2p means, it could be very useful to 
become daily user of such software. In this way it is possible to find what particular software: 

• Is offering 
• Is not offering 
• Will be able to offer (with some improvements, patch etc this software could offer this and 

that too) 
• Will not be able to offer (this sw will never be able to offer this and that) 
 

 

2 A brief survey of the p2p models  
 
It is possible to distinguish between two broad classes of problems in the design and analysis of 
peer-to-peer networks: 
 
 Searching and retrieving of data 
 Communication and message routing  
 
In both the areas there has been a proliferation of proposals very different one from the other, that is 
not possible to summarize in few pages; we limit our attention to those with major impact in the 
security area and those that have received popularity.  
It is worth while to introduce some nomenclature to deny confusion or misunderstanding: with the 
peer to peer we refer in “ a class of applications that take advantages of resources put together at 
the edges of the Internet”[5]. Where edges of the Internet could be defined as decentralized 
resources built and accessible by way of the standard tcp - ip network protocols. So to be more 
concise we could think of peer-to-peer networks as application level networks build on the top of 
the Internet.  
The study of the peer to peer has much in common with the others distributed systems models, so it 
could be necessary to distinguish which are the main differences between these models. 
Mobile agents are very similar in terms of searching and navigation; they could be defined as a 
computational entity that moves around the network to perform a task on behalf of an owner. They 
propagate small pieces of software through the network and not requests like peer to peer so they 
need a strong and complex security model to grant the receivers from malicious code. Every node 
must also have a good amount of resources because sending code requires more bandwidth than 
receiving messages.  
Push systems has gained a good acceptance at the end of the `90 due to their capabilities to 
distribute huge amount of data like multimedia contents. Often the paradigm is depicted as 
broadcast system where exists two figures, the producers and the consumers; consumers subscribe, 
often pay for, a particular service and at a given time this service will be sent across the network. 
It is important to note that in the models the communication is asymmetric, only the producers are 
able to send something through the network; moreover the binding between consumers and 
resources is static and predetermined (first pay then receive). 
Lastly it is interesting to note the similar problems that regards distributed databases and peer to 
peer network: both need to perform the retrieving of data through a different nodes, so they need an 
efficient method to discover the location of these resources. But in distributed database it is also 
important to have a consistent management system that could satisfy the requirements of scalability 
and consistency needed. So very often some sort of central coordination is involved.  



 4

2.1 Searching and retrieving 
 
Searching a resource on a network means holding some information about it and querying for a 
match of this information, which can be expressed in various forms, range from an assertion on 
some properties (like RDF) to calculated hash values.  It possible to summarize this type of 
metadata as: 
 
 Document calculated: metadata obtained from applying an operation on the resource, the 
final value of this calculus is considered the keyword used to retrieve the information. Two 
important examples of this are the digesting through one-way hash function and term frequency 
inverse document frequency (TFID) 
   
 Document assigned: metadata associated with a resource by way of a central authority or 
from an owner. For example a description of the resources or an RDF assertion about this. 
 
 

 Pro Contr 
Document calculated Easy to calculate and associate 

Uniqueness (depends from the 
operation 

Semantic not related 

Document related Semantic related 
 

Difficult to manage (owner 
choice assigned) 

 
Once established a method to mark the resources, it is possible to use this information to perform 
the queries, but it is also possible to use the results of such queries to maintain ad update the 
network topology or the routing tables needed.  
  
 Semantic routing: the queries are routed according to the meta data contained in the queries 
themselves, this implies that every network node has to maintain a routing table or a similar data 
structure that correlates the discovered associations between meta data and the nodes. 
 
 Reputation learning: the queries results are dependent from the answers to similar queries. 
Reputation informations are maintained locally from each peer and are based from the already 
established interactions between peers, so they are useful only for it and cannot infer anything about 
the global network. 
 
 Query spaces: the idea behind this technique is to limit the number of possible receivers of 
a legitimate query; the queries can be classified and send to limit number of nodes able to satisfy the 
query. 
 
 Trust metrics: this approach can be subdivided in  
  Scalar trust metrics: where given a directed graph G, a starting node s, and a target 
node t, we say that t is trustworthy and so reachable by s if and only if it exists a path between s and 
t in graph G. 
  Group trust metrics: where given a directed graph G, and a target node t, the 
decision about t reachability is based on the performing of some random walks from a set of starting 
nodes to t. It is worthwhile to note that this is the approach behind the Google search engine. 
 
 Query forwarding: queries are passed from node to node if and only if a node is not able to 
satisfy it: this approach differs from normal message routing because in the latter queries and 
forwarded from a requestor to a specific, often pre-established destinations.  
 This is the approach gnutella networks are based on. 



 5

 
 Distributed hash table: the position of a resource in the network is determined by applying 
a function on the resource itself, the obtained value  (the metadata to match) are then stored in 
particular network location. Peers maintain a section of a global data structure and are able to 
perform the function to calculate the location of the resource. 
An example of this approach is the Chord system [14], where the network is modelled as in a circle; 
resources are indexed by keys of m bits applied to the node identifier (for example the IP address). 
A peer p stores all the keys that fall in the interval:   

( ]pprpredecesso ),(
In practice every peer p stores a table of successor S such that: 
 

( ){ } mkpsuccessorS k ..12 1 =∀+= − 
 
In this way searching can be achieved in O(log n), where n is the number of nodes of the network, 
for example if there are 100 nodes in the network it is possible to locate the a resource in 2 hops. 
 
 

2.2 Communication and message routing 
 
After discovering the location of resource there are various approach to task of obtaining that 
resource. One of the main concerns is the network topology, or as the peers are organized and 
interact; it is possible to distinguish three models. This section describes the architecture and the 
main features of such principal existing p2p models. 

2.2.1 Centralized model 
The first model that has gained popularity in the p2p area has been the hybrid model, where the peer 
relationship is relative to the communication but neither the discovery of the peer node nor to the 
routing tasks necessary to bring together the network topology. 
 
 
 

  
 
 
 
 
 
 
  

X => 1

K=> 13

Node 1  
 
 
 
     Figure 2.

 
 
As showed in the figure 2.1, every announ
central server whose main task is to record t
the others. In this way every search perform
Central
Node 2 

46.48.65.1 
. . . . . 
1.114.20.1 

1 Centralized model general architecture 

ce about the joining of the network is announced to a 
he information that every new peer wishes to share with 
ed by another node could be served looking up in the 

f.d
linkare




 6

server repository, like a query on a remote database. After obtaining the search results a peer can 
contact the other beginning the real communication. 
 
The most famous software that used this model was Napster, a project started from the efforts of a 
computer science student named Shawn Fanning, which gained a lot of popularity at the end of the 
’90. After receiving an huge fame due to the its sharing ability, Napter inc., a company funded by 
Fannig himself whose business plan was to run the central server, had to shut down after the legal 
problems caused by the recording and motion associations. 
 
In the next table we summarize the pros and the contrs 
 
 
Pro: 

 Easy: most of the logic needed to perform discovery and routing are on the bulk of the 
central server 

 Light (for the peers): every peer runs is not involved in the global network infrastructure, 
it doesn’t perform message routing, so it is focused only on its conversations with other 
peers. 

 Deterministic searching: due to the presence of a central repository, every search is 
similar to those performed on a database and is completely independent from network 
topology 

Cons: 
 Scalability: the central server is the fulcrum; the peers notifies his reach ability to the 

server once started, so it has to be well-equipped in terms of hardware and bandwidth; an 
increase of the peers brings to an increase of the costs for the central server. This brings 
to the need of replicate and redound the database at various network locations with a 
well-equipped set of clustering and load balancing appliances. 

 Single point of failure: a successful attack exploited against the central server brings to 
collapse of the whole network in a short time. System redundancy has proved to be not 
so easy to achieve and maintain in the client server model. 

 

2.2.2 Pure peer to peer 
In this model peers not only perform the tasks needed to communicate with each other, but they are 
involved in the network topology maintenance. Every peer announces to the neighbours the 
contents that wishes to share, so every node has a local knowledge of the whole network; in this 
way every node could be contacted for two different tasks: searching and communication.  
Pro: 

 Completely decentralized: it does not exist a central point of failure 
Fault tolerance and scalability: due to its decentralized nature, the networks is hardly to 
break down, it can pass over failure quite well, but it must be clear, every peer needs to 
maintain and manage its availability 

 
Contrs: 

Topology is unknown: it is not possible to determine a upper bound for the search time, or 
better searching results are not determistic, because are influenced by the status of the 
network 
Bandwidth hungry: the peers must route the queries on behalf of the peers they are 
connected to, so resources and in particular bandwidth are used not only for communication, 
but are directly used to maintain the network up and running. 

 
 

 B > node 2 
A > node 1 



 7

 
 
 

 
 
 
 
 
 
 
 
 
     
 
 
 
 

Figure 2.2: The general architecture of the pure peer to peer. 
 

 
Existing software that uses this approach is Gnutella: in the first version of the Gnutella protocol, a 
peer (called a servant) broadcasts, to any other servant connected to him, every request that it 
cannot fulfil. To avoid the flooding of the network, a TTL has been introduced to split the horizon 
of a request, in this way the number of reachable nodes is given by this relation: 
 

• n= number of connected servant  
• TTL= number of hops performed so far 
• Reachable nodes = n TTL 
 

It is important to note that increasing n and TTL: 
 

• Allow to reach a major number of nodes 
• Increase exponentially the number of messages exchanged 

 
Due to its broadcast communication and TTL settings, the Gnutella model has proved to be not very 
scalable; notice that for two times Gnutella network has been out of service because the number of 
connected user was too high.  
 

2.2.2.1 Freenet 
We would spend some words about one the most interesting project currently on going in the p2p 
area, named Freenet. The key topics in this project are a little different from other p2p projects and 
could be summarized as: 
 

• Anonymity of producer and of consumer of a given information 
• Dynamic routing of the messages 
• Adaptive network topology 
• Decentralization of all the network functions 

 
It is important to note that there is no guarantee that a particular resource could be permanently 
stored and retrievable in the network; in short there is no upper bound to the lifetime of a resource. 



 8

Otherwise, as showed after, if enough nodes join the network, Freenet could be modelled as a 
distributed anonymous file system. 
It is also important to note that Freenet is built on the top of an existing network stack and assumes 
the existence of a secure – cryptographed - channel, so the anonymity concerns are about Freenet 
messages, not about network usage. 
 
The main concepts in Freenet could be so summarized: 
 

• Resources are indexed and retrieved through keys that are location independent, and 
assigned through the SHA1 digest value. To be rigorous, there are three types of keys all 
derived by a very sophisticated user of public key cryptography:  

 
• KSK (Keywork signed key): this type of keys are generated from a short string chosen by 

the user when inserting a resource in the network, this string is used to generate a key pair 
whose use in showed in the next figure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Resource Description 

Key Generator 
Sha1

Public 
K

Private 
Ke

Sign(Resource, Private Key) 

Figure 2.3: Freen
 

With the signature of the resource with the gen
integrity of a resource against its description. 
description, a short string easy to remember and t
searching in the Freenet network. It is important to
so this method is not sufficient to avoid fakes
malicious or not, the same string for two diffe
namespaces’ problem. 

 
• SSK (Signed Subspace Key): This type of 

namespace, the main flow is depicted in the nex
Encrypt( 
Resource,Description)
K
S
K

_Digest 

et: KSK . 

erated private key it is possible to provide 
Subsequently, the user publishes only the 
o process, this would be the primary key for 
 note that descriptions are chosen by the user, 
 or key squattering: everyone can choose, 
rent resources, this is indicated as the flat 

keys permit the establishment of personal 
t figure. 



 9

 
 
            

             
             
             
             
             
             
             
             
             
  

Resource 

Sha1_Digest 

Description 

Sing(Resource, 
private Key) 

Key 
Generato
r

Encrypt(Resource, 
Description)

Sha1_Digest 

SSK 

Pub 
 key 

Xor 

Figure 2.4: Freenet: SSK . 
 
The user distributes the description of the resource and the subspace public key, note that this key is 
randomly generated, in this way signature of the resource is a less insecure compared to the KSK 
scheme. The procedure allows simulating a directory like a structure that is managed through the 
publishing of the personal, randomly generated namespace. 

 

Encrypt 

• CHK  (Content Hash Key): this type of key is useful for implementing updating and splitting 
of a given resource.  

 
 

 
 
         

          
             
    

 

CHK Sha1_Digest 
Resource 

Key 
Genetor 

Figure 2.5: Freenet: CHK . 
 

The user publishes the content hash and decryption key; CHK is used in conjunction with 
SKS to allow the splitting and resuming of resources as described in [7]….  

 
 

2.2.3 Hierarchical model  
 
In this model there are some special nodes, called super peers, that are able to satisfy particular 
tasks, such as routing and maintenance of network topology.  
 
 

2.3 Comparing p2p models 
 
The comparison between the presented models has to deal principally with three aspects, that have 
to be considered to develop a new model. The aspects concern: 
 

• Centralization of the information 
• Privacy 



 10

• Probability to find some peer/resource 
 
A hybrid model guarantees the deterministic search of a resource, but depends strongly from a 
system administration; a pure peer to peer depends from the number of the users and the topology 
of the resources but is virtually impossible to damage it. There is not a definitive answer: the best 
depends on the user needs. 
The following table resumes the main characteristics of the principal model of peer to peer 
considered. 
 

Model Centralization Privacy Finding a resource 
Centralized Users announce on 

server 
Depends on server 

admin 100% 

Pure  Local announce to 
peers 

Dependent on the trust 
on peers 

Dependent on the 
number of users and 

the topology 
Hierarchical Local announce to 

peers Crypt communications 
Dependent on the 

number of users and 
the topology 

 
Table I: Comparing different p2p models. It is impossible to define the best communication system: 

it depends on the needs and the requirements of the 
 

3 Diffuse Existing Protocols 

3.1 Napster 
Napster protocol has never been published; its knowledge is based on a reversing engineering 
process under the name of openap.  

 
Transport Protocol : TCP for the communication between peers and central servers  
Application Protocol format: 

 
  

 
 

 Length: the length of the data portion 
 Type: the type of the message 
 Data: the data been transferred (generally encoded as pure ASCII text) 

Messages and types: 
 

Type Sender Description Format 
0 Server Error message <message> 
2 Client Login <nick><passwd><port> 

<client info><link type> 
3 Server Login ack <user’s email> 
5 Server Auto-upgrade <new version> 

<http-hostname:filename> 
6 Client New user login <nick><pwd><port><client 

info><speed><email 
address> 

100 Client Client notification of a 
shared file 

“<filename>”<md5><size>
<bitrate><freq.><time> 

200 Client Search request [Filename contains “artist”] 

DataTypeLength  



 11

Max_Results <max> 
[Filename contains “song”] 
[Linespeed <comp><link 
type> 
[Bitrate <comp> “bitrate”] 
[Freq <comp> “freq”] 
….. 

201  Server Search response  “<filename>” 
<md5><size><bit 
rate><frequency><length> 
<nick><ip> 

202 Server End of search response  
 

    
203 Client  (to client) Download request <nick>”<filename>” 
204 Server(to client) Download ack <nick><ip><port>” 

<filename”><md5> 
<linespeed> 

500 Client Push file to me (firewall 
problem) 

<nick>”<filename”> 

501 Server Push ack <nick><ip><port> 
”<filename>”<md5> 
<speed> 

 
 
Anatomy of a download (A download from B) 

• A send a 203 to the server 
• A receives a 204 message from client 
• A connect (tcp) to ip/port contained in the previous message 
• B accept and respond with ASCII char “1” 
• A sends the string “GET filename nick offset” 
• B answers with the file length or an error message 
• (If the download is started) A notifies to the server a 218 message 
• (Likewise) B notifies the server a 220 message 
• (When the download finished) A notifies the server a 219 message 
• (Likewise) B notifies the server a 221 message 

 
Anatomy of a download behind a firewall (A download from B who is behind a firewall) 

• A sends a 500 message to the server, witch sends a 501 message to B (with A ip – port) 
• B connects to A according to the data in the previous 501 message 
• A sends the ASCII char “1|” 
• B sends the string “SEND mynick filename size 
• A returns the byte offset where to start or an error message 
• (If the download started) A notifies the server a 218 message 
• (Likewise) B notifies a 220 message 
• (When the download finished) A notifies a 219 message 
• (Likewise) B notifies a 221 message 

 
 
 
 
 
 
 
 
 



 12
 

3.2 Gnutella 
Type Payload 

descriptor 
Description Contained Information 

Ping 0x00 Announce viability and probe for others peers None 

Pong 0x01 Response to a ping Ip – port of the responding peer; number and 
total kb of the shared files 

Query 0x80 Search request Minimum network bandwidth of the responding 
peer and search criteria 

Query hit 0x81 Returned by peers that have the requested file Ip port abd network bandwidth of the 
responding peer; number of results and result set

Push 0x40 File request for peers behind a firewall Peer identifier; index of the requested file; Ip 
port where to send 

 
 

 
Gnutella packets are modelled according to a general pattern showed below 
 
Description header: it appears in front of every message  
   

Payload 
length 

Hops TTL Payload 
descriptor 

Descriptor Id  
 
 
Descriptor id : an unique identifier of the packet 
Payload descriptor: the type of the message (es: 0x81) 
TTL: number of times the message will be forwarded before being discarded  
Hops: number of hops performed so far 
Payload length: length of payload area of the message 
 

3.3 Message Format 
 
Ping: Description header + payload with a value of  “0x00” 
Pong: Description header  (payload description 0x01) + 
   
 Number of kb 

shared 
Number of shared 
files 

IP address port  
 
 
 
Port: port where the responding peer is able to accept connection 
IP address: the responding peer ip’s address 
Number of shared file: number of resources shared 
Number of kb shared: dimension of the shared files 
 
 Query: Payload descriptor +  
 
   Search criteria Minimum speed  
 
Minimum speed: the minimum network bandwidth (in kb/s) of the responding peer 
Search criteria: a string indicating the required matching  
 
 Query hit descriptor: Payload descriptor + 
 



 13

  Peer identifier Result set speed port IP Number of 
hits  

 
Number of hits: number of the matchings found and indicated in the result set 
Port: the port where the responding peer is able to accept connection 
IP address: the IP address of the responding peer 
Speed: bandwidth of the responding peer 
Peer identifier: unique identifier of the peer 
Result set: number of hits record of this structure 
   
  File nameFile size File index 

 
• File index: a number assigned by the responding peer to correlate a query and a response 
• File size: size of the file 
• File name: the name of the file 

 
Gnutella download are performed by using the http protocol (get operation) at the ip address and 
port indicated in a query hit message. Response and status code are communicated through 2xx, 4xx 
status code. 
 

3.4 Gnutella and firewalls 
 
If a peer cannot be contacted directly, the peer receiving the a push message starts the file transfer 
and send a particular message to the other peer 
   
     port IP address File index Peer identifier 
 
 
Peer identifier: unique identifier of the peer 
File index: unique identifier of the file to push 
IP address: IP address of the peer, which the file should be pushed 
Port: port of the peer, which the file should be pushed 
 
This system does not work if either the peers are behind a firewall 



 14

 

4 General Architecture of a New Model 

4.1 Requirements 
As seen, none of the most developed communication systems covers both the deterministic search 
of another user and the security/anonymity needs. This section defines what exactly are the 
important simultaneous requirements that remain uncovered by the existing models. 
 
The amount of security a user may need ranges from the simple certification of the identity of 
another user to the complete anonymity about himself and the partner the user is looking for and 
communicating with. At the maximum degree of privacy, provided that some information are 
mandatory to be sent if the search of a friend passes through a central server, the use and security 
needs to be assured are the following: 
 

• Finding friends on the internet to communicate with them. This problem is especially due to 
dynamical IP addressing; in fact this work is though to be a step toward a good answer to 
defend the privacy when the search of a friend in the internet is not trivial; 

 
• Making accessible the information that a user is available only to the friends specified from 

that user; this requirement is a purely privacy problem, that the model has to satisfy; 
 
• Forbidding to anyone to identify the user that is looking for another one; this also is a 

privacy problem, that preserves the anonymity of a couple of user that are looking for each 
other; 

 
• Guaranteeing that an available user can be found in the 100% of the searches; this is a strong 

requirement from an organisational point of view, concerning the server apparatus when the 
system scales on a large ensemble of users; 

 
• Certifying the identity of a user available for another; this is not a trivial point, and it 

depends on the specific needs of a user; a certification of a user requires trust in the 
administrator of the system, but sometimes this is not suitable; in any case the total blind 
server problem has to be solved for ones requiring this high level of privacy and security. 

 
These requirements obviously suggest the implementation of a central server application to let the 
research deterministic, but constraint to a special strategy to preserve the anonymity, the 
certification of the identity and the availability only to allowed friends (invisibility). 
 

4.2 Matching procedure scheme 
This section contains the description to the logics of the procedure that allows two users to match 
and connect. The first choice is to guarantee the security and the certification of a communication 
by use of two asymmetric keys. In order to build the matching scheme by assuring the requirements 
let’s check two opposite strategies and find different solutions and security/privacy compromises. 
 



 15

 
Figure 4.1: The general architecture for the matching of two users. 

 
Suppose the user A wants to communicate with the user B. To match, they: 
 

• Need to recognize each other and  
• This must happen under encryption. 

 
Suppose that A connect first. He has to send its identification code (let’s call it ID) and its IP 
address. 
 

 ID.IP 
 
Two functions must be applied to this couple of strings to verify the required properties:  
 

1) Only user B must read it, so they have to be signed by the public key of B 
2) The user B must be assured that the communication really comes from A, so they have to be 

signed by the public key of A. 
 
The choice of the order of application of these two functions has to be applied is not trivial and 
needs at least a short discussion. Three models are discussed in the following. 
 

Model a 
Suppose that the string is signed first by the private key of A and then by the public key of B. This 
can be represented in this way: 
 
 [IP(A)]Pr(A)] Pu(B)
 
The ID string disappears because the identity is now provided directly by the signature of A. In this 
case the priority is that only the user B may read the content of that string, and has to verify that the 
communication really comes from A. This has the following advantage: 
 

i) Nobody except B knows that A is online and the server is completely blind to the 
search. 

 
This choice shows also this critic point: 
 

ii) The server system is not able to certify that all the user connected are who they say 
they are; furthermore it is not able to select which is the information useful for B, so 
B is devoted to find it. 

 
 
 

Model b 



 16

Suppose now the opposite situation, that the string is signed first by the public key of B and then by 
the private key of A. This can be represented in this way: 
 
 [[IP(A)]Pu(B)] Pr(A)
 
Now the priority is that the user A is a reliable user. This has the following advantage: 
 

iii) No users are somebody else from what they say 
 
The critic point is now that: 
 

iv) The system could be enforced in a nasty way to tell which connection is associated 
with that reliable user so the privacy is violated 

 
What happens after the connection of the first user A is that the server stores the information in a 
database, and this information is visible only for the user B. When the user B connects, he tries to 
open all the strings of the database, to find the user A. 
 
This search now differs significantly in the two models: in the model a the server is blind to the 
content of its database, so it has to send all the strings of the connected users to the user B to let it 
find friends (for instance the user A) by opening the strings one by one. The amount of traffic can 
be significantly high if many users are announced in the same server. In the model b, the user B 
remains anonymous but announces to the server that it is looking for A, so the server sends the 
string certified by A. 
This second solution (model b) should save a big amount of time and let the transmission between 
the server and the users very little. Unfortunately the second model is intrinsically weak, especially 
for an uncovered privacy violation: if a user C is looking for A but A does not want to be found 
except that from B, the model b is not confidential enough, unless each user defines a public/private 
key pair for each friend. 
A little more complicated solution is required, that partially extends the model b. 
 

Model c 
Suppose that the string transformed by the model b is associated to a second string such that: 
 
 [PIN(AB),[IP(A)]Pu(B)]Pr(A)
 
Where PIN(AB) is an identification code known only by A and B. In this case, when B connects, it 
sends the request for the connection PIN = xyz and the crypt IP of A is sent by the server. 
 
The differences between the models b and c are recalled in Table II. From many points of view, the 
second is preferable. There are still risks due to the fact that the server is not blind (contrarily to 
model a), but this choice represents the only way to avoid an enormous amount of traffic. In any 
case this ability of the server may be used to preserve the invisibility of the users for the users they 
do not want to match. 
In the latter, the worst thing that may happens, even in a strong nasty way, is the determination by 
an exploit of the server that the user with public key of A is looking for the user with public key of 
B.  

 
 
 

Model A B c 
Server Blind Smart Smart Smart 



 17

Privacy Level High Insufficient Medium Medium 
Number of 
Private Key 

Pairs Per User 

 
n 

 
1 

 
n 

 
1 

Covers Total 
Anonymity 

Large Scalability Good Scalability Large 
Scalability 

Limiting factors Large amount  
of traffic 

Privacy risks, trust in 
admin 

Key pair multi-
plication, trust. 

Trust in admin

 
Table II: comparing the main features of the model  a, b and c. 

 
 
There is a main difference between the models a and the model c (b). The model c requires trust in 
the administrator of the server, while the model a does not. In conclusion, for a private and limited 
number of users, the model a configuration is the only suitable, while for a non-paranoid generic 
user the c is the most versatile. Furthermore, the models b and c require that the users send their 
public key too. 

 
Figure 4.2: The general architecture of the UIC and the LC. 

 
To avoid an exploit based on the brute force reproduction of the string containing the IP together 
with the known PIN, by trying all the IP and comparing the obtained string with the transmitted 
one, an additional string can be attached, for instance the port number, or something else [16]. 
 

 

5 The user client application specifications 

5.1 Architecture 
The client has to be split in two logical layers. They correspond to two different applications. One is 
the User Interface Client (UIC), one is the Local Server (LS). The logical architecture is the 
following: 
 

• The P2P socket links the LS of two users to manage the start-up of a session. 
 
• A LS is delegated to the opening of the connection with a remote LS, to crypt/decrypt the 

messages to certify and recognize the session. 



 18

 
• Each user communicates by the UIC to its own LS. The UIC is the interface to manage the 

‘friends’, the permissions and the I/O of the messages. 
 
• Once the session is started, a new window of the client manages separately each 

conversation 
 

• A management of the certificates is provided: any friend may be contacted by any of the 
available certificates, or new certificates may be created. 

 
A secure text database is required to maintain the association between the local nicks (LN) given by 
the user to identify the friends and their public key. The friends are also dynamically associated to 
an IP, which can also be stored in the database. 
 

5.2 Actions of the UIC and UIC-LS protocol 
The UIC provides the following actions: 
 

• Manages the local server by an opportune protocol 
• Pops-up windows to communicate with other remote clients after the session has been 

solved and established by the local server 
 
The protocol the LS supports when the UIC communicates with it is as follows: 
 

1. [iptemp \LN\ \IP\] Manual association of a LN to an IP 
 
2. [ipstatic \LN\ \IP\] Store a static IP in the database 
 
3. [friend \LN\ \key\] Associate an to a public key in the database  
 
4. [delete \LN\]  Delete a LN 
 
5. [allow \LN\]  Allow the connection with LN  
 
6. [forbid \LN\]  Forbid the connection with LN  
 
7. [createkeys]  Create a public and private key  

 
8. [setpin]  In the model c, this function is required to match friend through a 

central remote server 
 

5.3 Actions of the LS and LS-LS protocol 
Notice that this section concerns the communication with another LS and or with the eventual 
central remote server (CRS) to match the research of other users. 
The LS provides the following actions: 
 

• May connect to a CRS 
• Communicates with another LS 
• It establishes the connection once the IP and eventually communication PIN (model c) are 

known. 



 19

 
The features of the LS are: 
 

• Manages the database of LN, public keys and IP number. 
• Obeys to the commands of the UIC 
• Maintains the connection with the other LS 
• Updates data in the CRS regularly during a session 

5.4 UIC Requirements and Specifications 
The client supports the following functions: 
 

• A main window shows a friend list. The list contains lines with the following information: 
1) The Local Nick. 2) If the IP is available at the moment 3) If the connection from that 
friends are accepted (the user is invisible for him). The name is written in Verdana (or 
Times New Roman); if the user is available it is bold; if the friends is forbidden to connect 
the color is red. 

• A new window is open by clicking on a friend with the left button of the mouse, for the 
communication. 

• Each communication window is separate in two parts: one, above, displays the 
communication by appending the lines coming from the user and from the friend; one, 
under, is needed to write the messages. A message is sent by pressing Enter (send). 

• To change the status (to invisibility and back) for a friend (allow, forbid) or delete it 
(delete), the right button is used by clicking on a friend. 

• The other functions (iptemp, ipstatic, createkeys, friend, setpin) 
 

5.5 User local database 
The database is a text file whose lines contain the information of the users. The database is saved 
when: 

• A static IP is saved (ipstat) 
• An IP is found by calling a CRS 
• A LN is saved with its public key (friend) 
• A friend is deleted (delete) 
• A pin is set (setpin) 

The format of the database is: 
 
 localnick|publickey|IPaddress 
 
The first and the second field are mandatory; is no IP address is know then the default value is 
0.0.0.0 . 
The database is crypt by a password. 
 
The data of the database are saved in an easy-to-export small size file that can be easily moved from 
a PC to another, so the user is base independent. 
 



 20

6 The client-to-server communication 
As discussed, one has to choose if the priority is the highest possible robustness of the system or the 
light amount total outgoing traffic from the CRS to the users. This obviously depends also by the 
number of users one wants to deal with. 
The communication between LS and CRS reduces to a two way reciprocal notifications, described 
as follows. In all the examples suppose that A is the test user that connects and operates. 
 
Model a 
 
The LS first requires to the CRS the full list of announced users. This allows to match the user he is 
looking for. 

• If it is, the LS finds that some messages are there for him, because it recognizes the content 
of the first square bracket [IP(B)]Pr(B)] Pu(A), so it decrypts the messages by using the public 
key of B. After that, the IP address is known so it provides to contact its LS directly. 

• If nobody is waiting for him, or the user wants to announce its on-line state to somebody, 
the LS sends a string [IP(A)]Pr(A)] Pu(B) to announce secretly to B that the user is waiting for 
him; than it wait. It has to send one for each user he is looking for. 

 
Finally, the LS may cancel an announcement, for example when the user disconnects or becomes 
invisible to some user. 
 
Model c 
 
The sessions run as follows: 

• the LS announce to the CRS a string [PIN(AB),[IP(A)]Pu(B)]Pr(A) with its public key 
separately so the server may certify the identity of the user; one string is needed for each 
friend; 

• the server stores [PIN(AB),[IP(A)]Pu(B)]Pr(A)  using the PIN(AB) as key. 
• the server sends a list of strings having some the PINs  presented by A (PIN(AB) PIN(AC) 

PIN (AD)..). 
• A can connect to users found in that list 
• when user B connects it will find the announcement of the PIN(AB) so it can connect to A. 
 

After the IP has been reached, the session starts as described before. 
 



 21

7 Scalability to distributed server network 
 
The main problem that affects central based systems is that when a large number of users, one has 
to deal with lot traffic. The high amount of traffic is principally a matter of the server, and it is not 
for the users. A distributed server network may introduce a way to light the total traffic per server. 
The proposed architecture provides a hierarchy of two layers of servers. There is a first layer of 
servers that are public and that provide the main distributed node that guarantee to a user that the 
connection is not established with a local island but with the main network. These servers provide: 
 

• (Eventually) the ordinary server functions to exchange information with the users 
• The service of listing the announced servers that are available, with their own anonymous 

users list that the requester can contact to search friends. This function is essentially 
implemented by an extremely simple database application answering the queries by a list of 
IP addresses. 

• The pinging of each announced second layer server, to certify that their connection is still 
available 

 
Notice that this function of the main servers requires a further function of the UIC, as: 
 
 
9. [frontier] Changes the flag that governs if the LS tries to contact first a main server or 

connects directly to a layer 2 server specified in list 
 
The second layer servers provide: 
 

• The ordinary server functions to exchange information with the users 
• The function to announce themselves to the first layer servers. 

 
The redundancy of the first layer servers is required to avoid single point failure troubles. In this 
scheme the advantages are due to a better distribution of the resources, in particular the amount of 
traffic does not change for the user, but from a server point of view is divided by the number of 
reachable servers. 
 

 
 
Figure 7.1: The general architecture of the three layers of the client-server hierarchy. The deepest 

level (Level 1) of servers provides to announces to the users the Layer 2 servers that store 
information. The user contacts directly them and may find a friend announced on another server. 

 



 22

If m users are distributed homogeneously between n servers, the number of users announced in each 
server if m / n. If announces are h bit long, the amount of the traffic incoming into the user segment 
is: 

T(user) = n × ( h × m / n ) = h × m bit 
 

While the traffic sent to each user from a server is: 
 

T(server) = h × m / n  bit 
 

The conclusion is that this architecture improves the sustainability of the service even in presence of 
a large amount of users, improving performances especially of the model a, that is intrinsically 
more heavy. 
 
 
 
 
  
 

8 References  
 
[1] Jospeph S. Adaptive Routing in Distributed Decentralized Systems: NeuroGrid, Gnutella and Freenet" (English)  
Proceedings of workshop on Infrastructure for Agents, MAS, and Scalable MAS, at Autonomous Agents 2001, 
Montreal, Canada 
 
[2] Joseph S. (2001a)  
"NeuroGrid and P2P Networks" (Japanese)  
Software Design: Network & Systems Magazine 
 
[3] Ozalp Babaoglu, Hein Meling and Alberto Montresor Anthill: A Framework for the Development of Agent-Based 
Peer-to-Peer Systems 
In Proceedings of the 22th International Conference on Distributed Computing Systems (ICDCS '02), Vienna, Austria, 
July 2002. Also appears as Technical Report UBLCS-2001-09, University of Bologna, Italy 
 
[4] Alberto Montresor Anthill: a Framework for the Design and Analysis of Peer-to-Peer Systems 
In Proceedings of the 4th European Research Seminar on Advances in Distributed Systems, Bertinoro, Italy, May 2001 
 
[5] Karl Aberer, Manfred Hauswirth  Peer-to-peer information systems: concepts and models, state-of-the-art, and 
future systems Tutorial at the 18th International Conference on Data Engineering, February 26-March 1, 2002, San 
Jose, California. 
 
[6] Karl Aberer, Manfred Hauswirth An Overview on Peer-to-Peer Information Systems  
To be pubhlished in Proceedings of Workshop on Distributed Data and Structures (WDAS-2002), Paris, France, 2002 
 
[7] Ian Clarke, Theodore W. Hong, Scott G. Miller, Oskar Sandberg, and Brandon Wiley, "Protecting Free Expression 
Online with Freenet," IEEE Internet Computing 6(1), 40-49 (2002) 
 

[8] Amr Z Kronfol, FASD: A Fault-tolerant, Adaptive, Scalable, Distributed Search Engine, 2002  

[9] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong, "Freenet: A Distributed Anonymous 
Information Storage and Retrieval System" in Designing Privacy Enhancing Technologies: International Workshop on 
Design Issues in Anonymity and Unobservability, LNCS 2009, ed. by Hannes Federrath. Springer: New York (2001) 

[10] drscholl Napster protcol specification 2000 
 
[11] F.S. Annexstein, K.A. Berman, and M. Jovanovic. Latency Effects on Reachability in Large-scale Peer-to-Peer 
Networks. In ACM Symposium on Parallel Algorithms and Architectures, Crete Island, Greece, 2001 
 

http://lsirpeople.epfl.ch/aberer/
http://lsirpeople.epfl.ch/hauswirth/
http://lsirpeople.epfl.ch/hauswirth/papers/ICDE2002-Tutorial.pdf
http://lsirpeople.epfl.ch/hauswirth/papers/ICDE2002-Tutorial.pdf
http://www.argreenhouse.com/society/icde2002/
http://lsirpeople.epfl.ch/aberer/
http://lsirpeople.epfl.ch/hauswirth/
http://lsirpeople.epfl.ch/hauswirth/papers/WDAS2002.pdf
http://ceria.dauphine.fr/WDAS 2002/WDAS 2002 Papers.htm
http://freenetproject.org/twiki/Main/Papers/ieee-final.pdf
http://freenetproject.org/twiki/Main/Papers/ieee-final.pdf
http://freenetproject.org/cgi-bin/twiki/view/Main/FASD
http://freenetproject.org/cgi-bin/twiki/view/Main/ICSI
http://freenetproject.org/cgi-bin/twiki/view/Main/ICSI
http://link.springer.de/link/service/series/0558/tocs/t2009.htm


 23
[12] M. Jovanovic. Modeling Large-scale Peer-to-Peer Networks and a Case Study of Gnutella. Master's thesis, 
University of Cincinnati, 2001 
 
[13] M. Jovanovic, F.S. Annexstein, and K.A. Berman. Modeling Peer-to-Peer Network Topologies through "Small-
World" Models and Power Laws. In TELFOR, Belgrade, Yugoslavia, November, 2001. 
 

[14] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek, Frank Dabek, Hari 
Balakrishnan, Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications. To Appear in IEEE/ACM 
Transactions on Networking 

[15] David Liben-Nowell, Hari Balakrishnan, and David Karger, Analysis of the Evolution of Peer-to-Peer Systems. 
ACM Conf. on Principles of Distributed Computing (PODC), Monterey, CA, July 2002 

[16] A special thank to Davide Fais for this remark and for the critical reading of the whole work. 

 

 
 
 
 


	Introduction
	Scope and contents
	Knowledge, References and Activities

	A brief survey of the p2p models
	Searching and retrieving
	Communication and message routing
	Centralized model
	Pure peer to peer
	Freenet

	Hierarchical model

	Comparing p2p models

	Diffuse Existing Protocols
	Napster
	Gnutella
	Message Format
	Gnutella and firewalls

	General Architecture of a New Model
	Requirements
	Matching procedure scheme

	The user client application specifications
	Architecture
	Actions of the UIC and UIC-LS protocol
	Actions of the LS and LS-LS protocol
	UIC Requirements and Specifications
	User local database

	The client-to-server communication
	Scalability to distributed server network
	References
	cover3.pdf
	Consiglio Nazionale delle Ricerche
	F. Dianda, V. Di Stefano, E. Prati
	Iit



