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Abstract— Neighborhood-based topology control has
been proven to be very effective in reducing energy con-
sumption and increasing network capacity in ad hoc net-
works. In this paper, we present a practical realization
of this approach that does not rely on distance estimation.
Instead, the protocols presented in this paper leverage a
feature typical of current wireless cards, namely that dis-
crete power levels can be used for transmission. Ours are
the first discrete-power-level protocols that do not require
changing the power level on a per-packet basis. We demon-
strate, through simulation, that the excellent performance
of neighborhood-based topology control is maintained in
this more practical setting. We also show that significant
energy savings can be obtained if the power levels are op-
timized for topology control, rather than chosen in an ad
hoc manner. Finally, we extend our approach to provide a
neighborhood-based topology control protocol that is suit-
able for mobile networks.

Index Terms—system design, simulations, graph theory.

I. INTRODUCTION

The topology control problem in wireless ad hoc net-
works is to choose the transmit power of each node in
such a way that energy consumption is reduced and some
property of the communication graph (typically, connec-
tivity) is maintained. Besides reducing energy consump-
tion, topology control increases the capacity of the net-
work, due to reduced contention to access the wireless
channel. In fact, in [6] it has been shown that it is more
convenient, from the network capacity point of view, to
send packets along several short hops rather than using
long hops. Given the limited availability of both energy
and capacity in ad hoc networks, topology control is thus
considered as a major building block of forthcoming wire-
less networks.

� The work of this author was supported in part by the National
Science Foundation under Grant ECS–0225417.

� The work of this author was funded in part by CNR-NATO under
grant 215.34.

Ideally, a topology control protocol should be asyn-
chronous, fully distributed, and localized (i.e., nodes
should base their decisions only on information provided
by their neighbors). Furthermore, it should rely on infor-
mation that does not require additional hardware on the
nodes, e.g. to determine directional or location informa-
tion. A final requirement of a good topology control pro-
tocol is that it generates a connected and relatively sparse
communication graph. These latter features, besides re-
ducing the expected contentions at the MAC layer, ease
the task of finding routes between nodes.

Although several recent papers have addressed the
problem of topology control in ad hoc networks [1], [2],
[4], [7], [8], [9], [10], [11], [13], [14], [16], none of them
meet all of the requirements described above.

In [2], we proved that the neighborhood-based ap-
proach to topology control has a number of desirable
properties, including excellent energy efficiency relative
to the best previously-known protocol. The approach
consists of maintaining a symmetric version of the k-
neighbors communication graph, for some value of � that
guarantees connectivity with high probability. However,
the �-NEIGH protocol of [2] is based on distance esti-
mation capabilities, which require additional hardware on
the nodes, thus not fulfilling one of the requirements for
“ideal” topology control.

In this paper, we present a practical realization of
neighborhood-based topology control, which leverages
the fact that current wireless transceiver technology en-
ables the choice of discrete transmit power levels, as in
case of both IEEE 802.11 cards (see, for example, the
CISCO Aironet cards [5]) and sensor nodes (e.g., the
Medusa II node described in [12]). This fact is often not
considered in current approaches to topology control, in
which it is implicitly assumed that any value of the trans-
mit power level can be chosen by the nodes. This obser-
vation applies, for instance, to the protocols presented in
[2], [4], [13], [14]. On the contrary, in this paper we as-
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sume that nodes can only choose between a finite number
of different power levels. In this respect, our approach
is similar to that of [8], [11]. A qualitative performance
comparison of our protocols and those of [8], [11] is re-
ported in Section VII.

Contrary to the CLUSTERPOW protocol of [8], in this
paper we assume that power level of a node is set peri-
odically, and that in the interval between two checks the
node uses the same power level on every packet. This
choice it motivated by the fact that, as observed in [8],
changing the transmit power level incurs a considerable
cost with the current transceiver technology, both in terms
of latency (on the order of 100ms) and energy consump-
tion. Further, it is reported in [8] that frequent changes in
the power level are likely to crash the wireless card. For
these reasons, we believe that periodic topology control
is preferable to per-packet topology control with current
transceiver technology.

II. PRELIMINARIES AND WORKING ASSUMPTIONS

The protocols presented in this paper are based on the
following assumptions:

– nodes can transmit messages at different power lev-
els, denoted ��� � � � � ����, which are the same for all
the nodes;

– the wireless medium is symmetric, i.e., if node � can
receive a message sent by node � at power ��, then �
is able to receive a message sent by � using the same
power ��.

For the sake of brevity, in the following we will say that a
node is at level i if its current transmit power is set to ��.
Also, we will let �� denote the radio coverage area of a
given node at level �, � � �� � � � ��	
. Note that the as-
sumptions above only guarantee that �� � ����, without
imposing any particular shape to the surface covered by a
node at level �; in particular, the surface is not necessarily
circular, as assumed in many papers.

Let�����
� be the directed graph denoting the com-
munication links in the network, where � is the set of
nodes, with �� � � �, and 
 � ���� ��: � is within �’s
transmitting range at the current power level� is the (di-
rected) edge set. Clearly, as the nodes may be at different
levels, ��� �� � 
 does not imply ��� �� � 
.

For every node � in the network, we define the follow-
ing neighbor sets:

– the incoming neighbor set, denoted �����, where
�������� � � � ��� �� � 
�.

– the outgoing neighbor set, denoted �����, where
�������� � � � ��� �� � 
�.

– the symmetric neighbor set, denoted �����, where
������ �����

�
�������� � � � ��� �� � 
 and

��� �� � 
�.

Clearly, the neighbor sets of node � change as �’s level
and the levels of nodes in its vicinity vary. The ultimate
goal of �-NEIGHLEV is to cause ����� to contain � (or
slightly more than �) nodes, where � is an appropriately
chosen parameter1. Motivations for our interest in the
number of symmetric neighbors of a node can be found
in [2].

Note that, when a node � changes its level, only the set
����� can vary; i.e., a node has only partial control on its
set of symmetric neighbors. Furthermore, the only neigh-
bor set that a node can directly measure is �����, which
is not impacted by an increase in �’s power level. Thus, to
increase the sizes of ����� and �����, some nodes in the
vicinity of �must increase their transmit powers. This fact
points out a flaw in some existing neighborhood-based
protocols, which do not use explicit control messages.

Consider, for example, the MobileGrid protocol of Liu
and Li [10]. MobileGrid is based on a parameter called
the contention index (CI). The goal of MobileGrid is to
achieve an “optimal” value of CI at each node. For any
given node �, CI is defined as the number of nodes within
�’s transmission range (including �). However, CI is es-
timated as the number of nodes whose messages can be
overheard by �. Using our terminology, CI at node � is
defined in terms of �����, but it is estimated in terms of
�����. If the estimated CI is too low at node �, the proto-
col prescribes that �’s transmit power be increased. This
may increase the number of nodes within �’s transmis-
sion range, but it definitely does not increase the estimated
value of CI and might actually decrease it due to other
nodes’ responses to �’s increase. Since the estimated CI
does not increase, � will increase its power level again at
the next period and it is possible that this repeats until �
reaches the maximum power.

Another neighborhood-based protocol which does not
require explicit control messages is the LINT/LILT pro-
tocol of Ramanathan and Rosales-Hain [13]. However,
in [13], the authors assume that a symmetric set of neigh-
boring nodes is available as a result of the underlying rout-
ing protocol, which is left unspecified. In a certain sense,
the problem incurred by MobileGrid is thus overlooked.

In order to avoid the problem mentioned above, our
�-neighbors protocols make use of explicit control mes-
sages.

III. STATIONARY NETWORKS

The �-NEIGHLEV protocol implements the following
idea. By circulating short control messages, nodes can

�This requirement will be slightly weakened in the mobile version
of the protocol.
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let neighbors know their current power level. Based upon
this information, and knowing its own level, a node can
determine its symmetric neighborhood. If the number of
symmetric neighbors is too low, a node can then send one
or more control messages (of a different type) and trigger
a power level increase in nearby nodes that are potential
neighbors. This process continues until there are at least
� symmetric neighbors or the node reaches the maximum
power setting. In Section V, we will discuss how to set
the value of the fundamental parameter �.

The protocol uses two types of control messages: bea-
con and help messages. Both types of messages contain
the sender’s ID and current power level. Beacon messages
are used to inform current (outgoing) neighbors of the
power level of the sender, so that their symmetric neigh-
bor sets can be properly updated. On the contrary, help
messages are used to trigger some of the receivers to in-
crease their transmit power level, so that the symmetric
neighbor count of the help sender is (possibly) increased.

Initially, all nodes set their powers to level 0, and send
a beacon message. After node � has sent this initial mes-
sage, it waits for a certain stabilization time ��, during
which it only performs interrupt handling routines in re-
sponse to the messages received by other nodes. The main
goal of these routines, which are described in detail be-
low, is to update �’s symmetric neighbor set. After time
��, node � checks whether it has at least � symmetric
neighbors. If so, it becomes inactive, and from this point
on it participates in the protocol by simply responding (if
necessary) to the control messages sent by other nodes.
Otherwise, it remains active, and it enters the Increase
Symmetric Neighbors (ISN) phase. During the ISN phase,
node � sends help messages at increasing power levels,
with the purpose of increasing the size of its symmetric
neighbor set. This process is repeated until ������� � �,
or the maximum transmit power level is reached.

The routines that are executed upon the reception of
control messages are as follows.

When node � receives a beacon message ��� ���, it first
checks whether � � �����. If so, � has already received
a control message from �, and the current beacon is sim-
ply ignored. Otherwise, � stores in a local variable �����
the level �� , which represents the minimum power level
needed for � to reach node �2. Furthermore, node � in-
cludes � in its list of incoming neighbors and, if �� � ��
(here, �� denotes �’s current power level), also in the list
of symmetric neighbors.

When node � receives a help message ��� ���, it checks
whether this is the first control message received by �. If
so, it sets the ����� variable and the set of incoming and

�Here, the symmetry assumption of the wireless medium is used.

symmetric neighbors as described above. Furthermore,
node � compares its power level to �� and, if �� � �� ,
it increases its power level to �� , so that �’s symmetric
neighbor set will eventually be increased in size. As a
side effect, node � is included in �����. In increasing
its power from level �� to �� , node � sends a sequence of
beacons, one at each power level from �� � � to �� . By
doing so, we guarantee that when the variable ����� is set
at node �, it actually stores the minimum power required
for � to reach node �.

If the help message ��� ��� is not the first control mes-
sage from � that is received by �, then � � �����, and
node � knows the minimum power level needed to reach
� (which is stored in the variable �����). Thus, node �
simply checks whether � � �����; if so, � is already a
symmetric neighbor of �, and the help request from � is
ignored. Otherwise, �� � �� , and the power level of � is
increased to ����� (which is the minimum level needed to
render � and � symmetric neighbors), using the same one
by one power increase procedure as described above.

A pseudo-code description of the protocol �-
NEIGHLEV is shown in Figure 1. In order to improve
readability, we drop the “argument” � (which is clearly
redundant at node �) from the variables �����, �����,
and �����. Finally, we recall that when a node is at level
�, all the messages are sent at power ��.

It is easy to see that the protocol terminates in finite
time. Moreover, the following theorem, whose detailed
proof can be found in [3], shows that there exist values of
the waiting times �� such that the protocol correctly deter-
mines a symmetric communication graph, which has the
following property: the power setting of a node is greater
than the minimum necessary for it to have � symmetric
neighbors only when one of its in-neighbors requires help
in achieving its own symmetric neighbor requirement.

Theorem 1: The �-NEIGHLEV protocol satisfies the
following properties:
(a) the total number of control messages exchanged is

��� ��	
�;
moreover, there exists values ��, � � �� � � � ��	
, of the
waiting times such that, with high probability:

(b) at the end of the protocol execution, node � � �����
if and only if node � � �����;

(c) node � sends the help message at level � only if the
number of nodes in ���� is smaller than �, � � �	
.
Proof: (Sketch) By simple code inspection, it is

easy to see that a node (either active or inactive) sends at
most one beacon and one help message per level. Hence,
the total number of control messages sent is at most
����	
� ��, which proves (a).

If the waiting times �� are properly set (see [3] for de-
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– Main:
– set � � �, �� � �� � ��;
– send beacon ��� ��;
– set � � �; /* Remark: remember the level before

sleeping */
– wait (for a stabilization time) ��;
– repeat

- if ������ exit; /* ... and starts operating */
- set � � �� �; /* Go up one level (if no

power increase has been forced by interrupt
handling routines) */

- send help message ��� ��;
- set � � �; /* Remark: (again) remember the level

before waiting */
- wait ��;

– until � � ��	
– start node operations;

– Upon receiving a beacon message �
� ��:
– if 
 �� ��

- �� � �;
- �� � ��

�
�
�;

- if � � �� then �� � ��

�
�
�;

– Upon receiving a help message �
� ��:
– if 
 � �� and 
 �� �� stepwise-increase(�� �� ��);
– if 
 �� ��

- �� � �;
- �� � ��

�
�
�;

- if � 
 �� stepwise-increase(�� �� ��);
else �� � ��

�
�
�;

– Procedure stepwise-increase ��� ��;
– for � � �� � � � � � , do:

- set � � �;
- send beacon ��� ��;
- �� � ��

�
���, for any � � �� s.t. � � ��;

Fig. 1. Algorithm �-NEIGHLEV performed by node �.

tails on how these times must be set), all the messages
triggered by a help request sent by node � are received by
� before the node checks its neighbor count again. This
implies that: (1) if node � becomes symmetric neighbor
of � in response to the help message, then � will include �
in its symmetric neighbors set after the stabilization time,
and (b) is proved; (2) denoting with ���� the number of
nodes in the coverage area ���� centered at �, node � will
have symmetric neighbors count at least ���� after send-
ing the help message at power � � � and waiting for the
stabilization time; thus, node � sends the help message at
power � only if ���� � �, and (c) is proved.

IV. OPTIMIZATIONS: THE �-NEIGHLEVU PROTOCOL

The �-NEIGHLEV presented in the previous Section
leaves room for some optimization.

A first simple optimization is the following. Suppose
that there is a node � having fewer than � neighbors in its
���� vicinity, and such that the surface ���� � �	 cen-
tered at � is empty, for some � � �	
. This circumstance
can be easily detected: all that is required is one additional
variable ���� storing the last level at which � has added to
its symmetric neighbor set. When node � eventually sets
its level to �	
, and verifies that ������� is still less than
�, it can safely backtrack to power level ����.

A second and more serious opportunity for optimiza-
tion is motivated by the observation that a help message
in the �-NEIGHLEV protocol causes all the nodes that
receive it to become symmetric neighbors of the sender,
if they are not already so. This mechanism might be
quite inefficient, forcing unnecessary power increases in
the vicinity of the help sender. For example, suppose the
surface ���� of node � contains �� � nodes, and that the
surface �� � ���� contains � � � potential symmetric
neighbors. In this case, �-NEIGHLEV would force all the
nodes in������� to increase their power levels, increas-
ing �’s symmetric neighbor set size to � � � � �. On the
other hand, a single power increase among the nodes in
�� � ���� would have been sufficient for � to meet its
requirement on �����.

Another potential inefficiency of �-NEIGHLEV is illus-
trated in Figure 2. Suppose � � � and nodes �, �, and �
are at levels 2, 1, and 4, respectively. Assume also that
������� � � and ������� � �. Finally, suppose that
the levels correspond to the following transmit power set-
tings: 1mW, 5mW, 20mW, 30mW, 50mW, and 100mW
(these are the power levels used in the Cisco Aironet card
[5]). Now, node � has at least two choices for reaching
the desired number of neighbors:

– “selfish” behavior: since ������� � �, send a help
request at level 2, thus forcing node � to increase its
power level;

– “unselfish” behavior: use the information stored in
�����, which lists �, and increase the level to �
���.

In case of selfish behavior, which corresponds to the ba-
sic protocol implementation, the overall power increase in
the vicinity of � is 10mW+25mW, due to node � stepping
up one level and � two levels. In case of unselfish behav-
ior, the increase is 30mW, due to � stepping up two lev-
els. Hence, unselfishness is preferable in this case. Note
that the opposite conclusion would be drawn if the node
powers in Figure 2 were all scaled up by one level. In
that case, the power increases would change to 50mW
(20mW+30mW) for the selfish approach and 70mW for
the unselfish one.

This example, with its opposite conclusions depending
on the node power levels, along with the �-NEIGHLEV
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Fig. 2. Example in which the “unselfish” behavior of node � generates
a more energy efficient local solution.

inefficiency described above, motivates the design of an
“unselfish” variation of the basic protocol, which we call
�-NEIGHLEVU, where the U stands for unselfish.

Suppose node � has ended its �� � ��th round and still
has fewer than � symmetric neighbors. Its behavior is now
modified according to the following rules.

– Instead of sending a help control message at level �,
which would trigger blind power increases, node �
sends an enquiry control message, carrying the same
data as the help request.

– In response to an enquiry, a node at level less than �
does not immediately step up; rather, it sends a reply
control message at (temporary) level �, whose pur-
pose is to let � know that it is a potential helper. The
reply message contains the sender’s ID and current
power level. By gathering this information from all
the potential helpers, node � is able to identify the
locally “optimal” solution in its vicinity.

– Node � schedules one of several possible actions,
whose aim is to satisfy the constraint on the symmet-
ric neighbor set (or to get closer to it) at the minimum
energy cost: (i) simply increase �’s current power,
if there are enough elements in ����� � ����� to
reach the threshold �; (ii) send a generalized help
(i.e., the old-style help request); (iii) send a selective
help, asking a subset of the nodes in �� to increase
their power levels.

Note that in �-NEIGHLEVU some nodes perform tem-
porary power increases, thus partially impairing our pe-
riodic approach to topology control. However, these
changes in the power level occur only during the network
setup phase, and not during the network operational time,
as is the case with per-packet topology control.

Selective help requests call for a decision in order to
choose the target nodes. This can be done by again us-
ing energy considerations, and ties can be broken ran-
domly. In any case, we remark that, because of full asyn-

chrony and in absence of a global coordination, a solution
which is locally optimal at a certain time might become
sub-optimal later (e.g., because a certain node in the �’s
vicinity would have increased its transmit power later, in
response to another help message). Unfortunately, pre-
dicting transmit power increases is impossible in practice,
and the optimizations performed by �-NEIGHLEVU can
be regarded only as heuristics.

With respect to �-NEIGHLEV, �-NEIGHLEVU al-
lows a finer control of the symmetric neighbor set, so
a better energy efficiency is expected. On the other
hand, �-NEIGHLEVU in general exchanges more con-
trol messages as compared to �-NEIGHLEV, due to up to
three phases of interaction (enquiry–reply–help) between
nodes. Thus, only simulation can help us to understand
the relative overall performance of the two protocols.

Before ending this section, we remark that the opti-
mizations described in [2] can be applied to the final com-
munication graphs produced by both �-NEIGHLEV and
�-NEIGHLEVU. In order to apply these optimizations,
which are aimed at identifying edges in the communica-
tion graph that can be pruned without impairing connec-
tivity and symmetry, it is sufficient that every node, at the
end of the protocol execution, sends a message containing
its list of symmetric neighbors.

V. SETTING THE VALUE OF �

The desired number of symmetric neighbors � is clearly
a fundamental parameter of our protocol: small values
of � are likely to induce disconnected communication
graphs, while large values force the majority of the nodes
to end protocol execution at larger than necessary levels.
In this section, we characterize the “ideal” value of � both
analytically and through simulation.

Note that, in [2], we already studied the problem of de-
termining the ideal number of neighbors. However, in [2]
the focus was on the number of nodes a node could reach,
rather than on symmetric neighbors. Moreover, the proto-
col in [2] was distance based, and we assumed that each
node could set its transmitting range to any value between
0 and the maximum range. As a consequence, it was pos-
sible to set the nodes’ ranges so that each node had exactly
� (outgoing) neighbors. Here we are interested in sym-
metric neighbors and have the availability of only a small
number of power settings, which makes it infeasible to
obtain exactly � neighbors in all cases. Nonetheless, the
results in [2] can be used to prove the following theorem,
which holds under the assumption that the radio coverage
area is circular.

Theorem 2: Let � nodes be placed uniformly at random
in 	�� �
� and assume that maximum power is sufficient for
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each node to reach at least � other nodes. Let �� be the
actual communication graph generated by �-NEIGHLEV

with parameter �, and let ��� be the graph obtained by ��
by removing the asymmetric links. If � � ���
� ��, then
��� is connected w.h.p.

Proof: By property (c) of Theorem 1 and the above
assumption on maximum power, every node � at the end
of the protocol execution has a power level sufficient to
reach at least its � closest neighbors. This means that ��
is a super-graph of the �-closest neighbors graph ��, and
also that ��� is a super-graph of the symmetric sub-graph
��� of ��. Hence, the proof follows immediately by The-
orem 2 of [2].

It can be seen that the same result of Theorem 2
holds also for the communication graph generated by �-
NEIGHLEVU.

Note that the result stated in Theorem 2 is weaker than
than that stated in Theorem 2 of [2], since the reverse im-
plication (� � ���
� �� neighbors are necessary for con-
nectivity) might not hold. In fact, graph ��� in general
contains more edges than ��� .

The characterization of the ideal value of � given in
Theorem 2 is of theoretical interest, but it cannot be used
in practice. Thus, we have evaluated the value of � to
be used in the �-NEIGHLEV and �-NEIGHLEVU proto-
cols by simulation. For different values of �, we have
performed 1000 experiments with increasing values of �,
recording the percentage of connected graphs generated
at the end of the protocol execution. The ideal value of
�, which will be used in the subsequent set of simula-
tions aimed at evaluating the performance of our proto-
cols, is the minimum value such that at least 98% of the
graphs generated by the �-NEIGHLEV protocol are con-
nected. Note that, in general, the graphs generated by �-
NEIGHLEV and �-NEIGHLEVU are different, so different
values of � could be used. We have verified through our
experiments that the graphs generated by �-NEIGHLEVU
are relatively less connected than that generated by �-
NEIGHLEV with the same value of �. However, with the
value of � chosen (which guarantees at least 98% of con-
nectivity with �-NEIGHLEV), also the graphs generated
by �-NEIGHLEVU show good connectivity on the aver-
age: at least 95% of the nodes are in the largest connected
component, and in about 90% of the cases the graph is
fully connected. For this reason, in the simulations re-
ported in Section VI we have used the same value of � in
both protocols.

The ideal values of � for different values of � are re-
ported in Table I. The value of � � � provides at least
98% connectivity for values of � in the range 150–500,
while higher values of � are needed for smaller networks.

TABLE I
IDEAL VALUE OF � FOR DIFFERENT VALUES OF �.

� � � �
50 6 300 4
100 5 350 4
150 4 400 4
200 4 450 4
250 4 500 4

Note that these values are considerably smaller than those
needed by the �-NEIGH protocol of [2]. As discussed
above, this is due to the fact that, on the average, sev-
eral symmetric edges are added by �-NEIGHLEV and �-
NEIGHLEVU with respect to the minimum value of � re-
quired.

Before ending this section, we remark that setting the
appropriate value of � in our protocols is not a problem
in practice. In fact, the ideal value of � does not depend
on the node density, but only on the number � of nodes in
the network; furthermore, as seen from Table I, the depen-
dence of � on � is very loose, and a relatively inaccurate
knowledge of the actual number of nodes in the network
is sufficient to generate a good estimate of �.

VI. SIMULATIONS

In this section, we report the result of simulations we
have performed to evaluate the performances of our pro-
tocols. Besides the �-NEIGHLEV and �-NEIGHLEVU,
we have implemented the CBTC protocol of [16], which
has been adapted to take into account the transmit power
level actually available; i.e., the transmit power level of
any node at the end of CBTC execution is rounded up to
the next power level available. For details on CBTC, the
reader is referred to [16].

For the three topology control protocols considered, we
implemented both the basic version (called phase 1 in the
following), and the optimization that can be carried out on
the communication graph generated after phase 1 (see [2],
[16] for details on the optimization phase). The optimiza-
tion phase of the various protocols is called phase 2 in the
following.

The performance of the various protocols will be com-
pared with respect to the following metrics:

– total energy cost, defined as the sum of the power
levels of all the nodes at the end of the protocol exe-
cution;

– average logical and physical node degree. The logi-
cal degree of node � is its degree in the final commu-
nication graph, while the physical degree is the num-
ber of nodes in the radio coverage area of � at the
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Fig. 3. Energy cost of the �-NEIGHLEV, �-NEIGHLEVU and CBTC protocols as the network size increases, before (left) and after (right)
optimization. The energy cost is normalized with respect to the case of no topology control, where all the nodes transmit at maximum power.

end of the protocol execution. Due to the removal of
asymmetric links and to optimizations, the physical
is usually larger than the logical degree.

– in case of the �-NEIGHLEV and �-NEIGHLEVU
protocols, we have also evaluated the average num-
ber of message per node sent during phase 1.3

The energy cost gives an idea of the energy efficiency
of the topology generated by the protocol, while the node
degree (especially the physical degree) gives a measure of
the expected number of collisions at the MAC layer, and
thus, of the expected impact on network capacity [6].

A. Simulation results for minimum density

In the first set of simulations, we have considered net-
works of increasing size, while maintaining the node den-
sity at the minimum level required to guarantee connec-
tivity w.h.p. when all nodes transmit at maximum power.

We have considered the transmit power levels indi-
cated in the data sheets of the Cisco Aironet 350 card [5],
namely 1mW, 5 mW, 20mW, 30mW, 50mW, and 100mW.
As reported in the data sheets, the transmit range at max-
imum power is about 244 meters. According to this data,
and assuming a distance-power gradient of � � �, we
have determined the transmit range at the other power lev-
els, which are 173m, 134m, 109m, 55m and 24m, respec-
tively.

We have considered a simulation area of 1 square kilo-
meter. According to the data reported in [15], the mini-
mum number of nodes to be deployed in the simulation
area in order to generate a communication graph which is
connected w.h.p. when all the nodes transmit at maximum
power is about 100. We have then increased the number
of nodes in steps of 50, up to 500, scaling the simulation
area in such a way that the node density remains the min-
imum necessary for connectivity at maximum power. We

�We recall that phase 2 requires one further message per node sent
in both protocols.

have also considered smaller networks, composed of 50
nodes. The values of �, and the corresponding side � of
the simulation area are reported in Table II.

TABLE II
MINIMUM DENSITY SCENARIOS CONSIDERED IN THE

SIMULATIONS. THE MAXIMUM TRANSMITTING RANGE IS ����.

THE AREA SIDE � IS EXPRESSED IN ��.

� � � �
50 0.72 300 1.74

100 1 350 1.88
150 1.22 400 1.95
200 1.44 450 2.07
250 1.63 500 2.16

The results of this set of simulations are reported in Fig-
ures 3–5, and are averaged over 1000 runs. From the fig-
ures, it is seen that:

– both �-NEIGHLEV and �-NEIGHLEVU clearly out-
perform CBTC in terms of energy cost when opti-
mizations are not implemented. The relative savings
achieved by our protocols increase with the network
size, and they can be as high as 67% (�-NEIGHLEV)
and 77% (�-NEIGHLEVU).

– when optimizations are implemented, our protocols
still perform better than CBTC in terms of energy
cost. However, in this case the relative gain in per-
formance is less significant. The relative improve-
ment of �-NEIGHLEV with respect to CBTC can be
as high as 21% (when � � ���), but tends to be less
significant as � increases. On the contrary, the im-
provement achieved by �-NEIGHLEVU with respect
to CBTC tends to increase with �, and can be as high
as 30% when � � ���. The energy savings achieved
by our protocols with respect to the case of no topol-
ogy control increase with �, and can be as high as
86% for �-NEIGHLEV, and as high as 91% for �-
NEIGHLEVU.
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Fig. 4. Average logical (left) and physical (right) node degree after the optimization phase.
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Fig. 5. Average number of message per node sent during phase 1 of
the �-NEIGHLEV and �-NEIGHLEVU protocols.

– concerning the logical and physical node degree of
the communication graph, �-NEIGHLEVU performs
clearly better than the other protocols, especially in
terms of physical degree (which is the one that de-
termines the expected impact on network capacity).
The average physical degree when �-NEIGHLEVU
is used is as much as 26% smaller than that gener-
ated by CBTC, and as much as 12% smaller than that
generated by �-NEIGHLEV. With respect to the case
of no topology control, �-NEIGHLEVU reduces the
average physical node degree by about 75%.

– �-NEIGHLEVU always perform better than �-
NEIGHLEV, with respect to both energy cost and
node degree. In terms of messages per node sent,
�-NEIGHLEVU exchanges relatively more messages
than �-NEIGHLEV when the network size is small.
However, when the network size increases, the situa-
tion is reversed: for � � ���, �-NEIGHLEVU gener-
ates fewer messages than �-NEIGHLEV. Thus, when
the network size is large, �-NEIGHLEVU performs
better than �-NEIGHLEV in all respects.

B. Simulation results for increasing density

In the second set of experiments, we have evaluated the
effect of node density on the performance of the various
protocols. Starting with the minimum density scenario for

� � ���, we have increased the number of nodes up to
� � ��� while leaving the side � of the simulation area
unchanged (1 kilometer in all cases).

The results of this set of simulations, which are not re-
ported for lack of space, are practically identical to those
obtained in the minimum density scenario. In other words,
for a given value of �, the performance of �-NEIGHLEV,
�-NEIGHLEVU and CBTC does not change with the side
of the deployment region, i.e., with the node density. This
is due to the fact that the protocols considered rely on rela-
tive, rather than absolute, location information. In case of
�-NEIGHLEV and �-NEIGHLEVU, the information con-
sidered is relative distance, while in case of CBTC it is
relative angular displacement.

We believe this result is quite interesting, since it shows
that it is only the size � of the network that determines the
performances achieved by the various protocols, in terms
of both energy savings and increase in network capacity.

C. Optimizing the power levels

The results reported in the previous sections use power
levels typical of the CISCO Aironet 350 card, which are
not necessarily optimal for our purposes. To motivate this
statement, consider the scenario in which � � ��� nodes
are placed in a simulation area of side � � ���, and the
transmitting ranges of 244m, 173m, 134m, 109m, 55m
and 24m are used. Disregarding the border effect, the ex-
pected number of neighbors of a node at level � can be eas-
ily calculated as 
	��
 � �� � ���� , where �� is the trans-
mitting range corresponding to power level �, expressed
in kilometers. The expected number of neighbors at every
level is reported in Table III.

As seen from the Table, the values of 
	��
 using the
CISCO specification are very badly distributed. In par-
ticular, it is expected that few nodes will take advantage
of the levels 0 and 1, which potentially provide the better
savings.

In order to circumvent this problem, we have designed
the power levels according to the following criterion. The
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Fig. 6. Empirical distribution of the node power levels using the Cisco (left) and optimized (right) power levels.

TABLE III
EXPECTED NUMBER OF NEIGHBORS AT EVERY POWER LEVEL.

Cisco Optimized
� �� ����� �� �����
0 0.024 0.18 0.056 1
1 0.055 0.94 0.113 4
2 0.109 3.69 0.150 7
3 0.134 5.58 0.179 10
4 0.173 9.3 0.204 13
5 0.244 18.5 0.244 18.5

maximum power level is left unchanged, since this value
is needed for connectivity purposes. The minimum level
is determined in such a way that 
	��
 � �. The other
power levels are set so that the remaining neighbors are
evenly distributed among them. The optimized choice of
power levels is also reported in Table III. As seen in Fig-
ure 6, which reports the empirical distribution of the node
power levels obtained from 100 runs of the simulator with
� � ���, with the optimized power levels, more nodes
use smaller power levels. Thus, an overall reduction in
energy consumption is expected.

To validate this, we have re-executed our simulation ex-
periments for � � ���, and evaluated the resulting per-
formance of the various protocols. Furthermore, we have
performed the optimization process for two other values
of �, namely � � �� (small networks) and � � ���
(large networks), and repeated the experiment. The re-
sults of our simulations are summarized in Table IV. For
every protocol and performance metric, the table reports
the percentage improvement with respect to the case of the
Cisco levels. The energy cost and node degrees reported
in the table refer to the communication graphs obtained
after phase 2.

As seen from the table, optimizing power levels has
beneficial effects on the performance of �-NEIGHLEV

and �-NEIGHLEVU for � � ��� ���: the energy cost
is reduced by more than 10%, the physical degree is re-
duced by as much as 7.3%, and the number of messages
exchanged is considerably reduced. �-NEIGHLEV expe-
rienced more benefit from the optimization of the power

levels, while CBTC got only a moderate reduction in the
energy cost.

The situation is quite different for large networks (� �
���). In this case, the performance of �-NEIGHLEV and
CBTC are considerably reduced with respect to the case
of Cisco levels: the energy cost is worse by about 13%.
However, the messages exchanged by �-NEIGHLEV de-
crease by about 35%. Interestingly, �-NEIGHLEVU still
benefits from the optimized power levels: at the expense
of an increase in the number of messages exchanged, both
the energy cost and the node degree are reduced by more
than 10%.

We believe that the poor performance of �-NEIGHLEV

and CBTC with optimized power levels in large networks
is due to the fact that, when � is large, a different choice
of the power levels should be used. In particular, setting
the minimum level in such a way that 
	��
 � � is too
pessimistic when � is large, and a smaller power for the
minimum level 0 should be used. We leave a closer inves-
tigation of this point as further research.

VII. DISCUSSION

The simulation results reported in the previous sec-
tion have shown that our protocols, and in particular �-
NEIGHLEVU, compare favorably with CBTC, both in
terms of energy efficiency and expected benefits on net-
work capacity. Further, our protocols do not require spe-
cialized hardware on the nodes, but they simply leverage
features available on standard wireless cards. This is a
major advantage over CBTC, which relies on directional
information provided by directional antennas, or other ex-
pensive devices. In terms of message overhead, our proto-
cols exchange few control messages (less than 6 messages
per node when � � ���), thus showing good scalability
performance. On the other hand, CBTC produces a con-
nected communication graph whenever possible, while
our protocols provide connectivity w.h.p.

It is also interesting to compare qualitatively the perfor-
mance of our protocols to that of other level-based topol-
ogy control protocols, such as COMPOW [11] and CLUS-
TERPOW [8].
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TABLE IV
PERCENTAGE IMPROVEMENT WITH OPTIMIZED POWER LEVELS.

�-NEIGHLEV �-NEIGHLEVU CBTC
� Cost LogD PhD Mess Cost LogD PhD Mess Cost LogD PhD
50 14.2% 1.5% 4.5% 16.6% 11.5% 0.9% 3.9% 19.4% 10.9% 0 0.2%

100 12.9% 2.3% 7.3% 24.3% 5.6% 0.3% 2.5% 28.9% 8.7% 0.3% 0
400 -13.6% -0.3% -2.7% 34.7% 11.0% 10.1% 12.8% -32.2% -13.0% 0 0

The goal of COMPOW is to determine in a fully dis-
tributed fashion a minimum common value of the trans-
mit power level such that the resulting communication
graph is connected. It is known that such level corre-
sponds to the longest edge of the MST built on the nodes
[15]. Thus, an analysis of the expected COMPOW perfor-
mance can be done by evaluating the expected length of
this edge. This has been done in [15], from which it is seen
that, when � � ���, the expected length of the longest
MST edge is about ���� (when nodes are distributed in a
square with side � � ���). Assuming the CISCO power
levels, this means that, on the average, the nodes with
COMPOW will converge to the common power level cor-
responding to the transmitting range of 173m. Comparing
the resulting energy cost with that of �-NEIGHLEVU un-
der the same conditions, we have that our protocol is about
30% more energy efficient than COMPOW.

As observed in [8], COMPOW performs poorly when
the nodes are not uniformly distributed. To circumvent
this problem, the authors of [8] presented CLUSTER-
POW. In CLUSTERPOW, every node � in the network
maintains several routing tables, one for each power level.
The routing table for level �, ���, is updated by a routing
daemon (there is one daemon for every power level), and
contains all the nodes that are reachable by node � using
transmit power level at most �. CLUSTERPOW thus in-
duces a clustering on the network nodes in a natural way:
for every node �, several clusters are defined, with the
cluster at level � formed by those nodes that � can reach
using power level at most �. When node � needs to send
a message to �, it sends the message with power level �,
where � is the minimum level such that � � ��	 .

A comparison of the CLUSTERPOW performance
with that of our protocols is not immediate. A first ob-
servation is that CLUSTERPOW, contrary to our proto-
cols, requires global knowledge, which incurs a consid-
erable message overhead. Furthermore, CLUSTERPOW
changes the transmit power on a per-packet basis. This
means the its performance heavily depends on the traffic
pattern, as illustrated by the following example.

Suppose node � wants to send a message to �, and that
50mW is the minimum power needed for � to reach �.
This means that, along every path connecting � and �,

there exists at least one link which requires at least that
power. Let us denote with  � ����� � � � � ��� � one of
such paths, and let ��� ���� be the last hop in  that re-
quires at least power 50mW. Using CLUSTERPOW, all
the nodes preceding �� in the path will use power 50mW,
while those following �� will use lower powers. Note that,
in general, node �� could have been reached using smaller
power than 50mW. Thus, CLUSTERPOW might be inef-
ficient in some situations, forcing many of the nodes to
transmit at higher powers than necessary. Clearly, the oc-
currence of such a scenario depends on the network topol-
ogy and on the traffic pattern, so predicting the overall
CLUSTERPOW performance is not easy. The authors of
[8] proposed a different version of CLUSTERPOW to ad-
dress this problem, which unfortunately cannot be easily
implemented in practice.

To some extent, our protocols solve the problem with
CLUSTERPOW outlined above. Considering the trans-
mission of a message from � to � along  , only nodes ��
and ���� (and possibly other nodes, if there exist other
50mW links in  ) will use power 50mW to transmit,
while the other nodes will use in general lower powers.
On the other hand, our protocols might be inefficient when
the communication patterns are localized: if � has power
level 100mW and needs to send a message to a node that
is within its 1mW transmitting range, the communication
is highly inefficient.

The discussion above motivates our feeling that, once
the technological problems encountered in the implemen-
tation of per-packet power control will be tackled, a com-
bination of periodic (to adjust the maximum transmit
power) and per-packet (to send messages in the vicinity
of a node) topology control will be the best choice.

VIII. DEALING WITH MOBILITY

The principal complicating factor in dealing with mo-
bility for neighborhood-based protocols is the inherently
transient nature of the neighbor set of a node. Due to this,
we can not hope to calculate �� exactly but only to es-
timate it. Consider, for example, when a node in �����
moves out of range of �. There is an unavoidable delay
before this event is detected and, during this time, �����
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Main:

� � �; �� � �; �� � �
every � seconds do

send beacon message (�, �, ��)

Upon receiving an ordinary (non-beacon) message from node 
:

�� � �� � �
�
if Timer� � � then set Timer� to expire in � seconds

Upon receiving a beacon message (
, ��, ���
�):

�� � �� � �
�
if � � ���
� then �� � �� � �
�
if ���� � �high then call decrease neighbors()

set Timer� to expire in � seconds

Upon expiration of Timer�:

�� � �� � �
�; �� � �� � �
�
if ���� 
 �low then call increase neighbors()

Fig. 7. Procedure for estimating �� performed by node �

is not accurate. One must also be careful not to adjust
power levels too quickly when topology changes occur,
lest the protocol lead to unstable behavior.

Based on the discussions above, our version of �-
NEIGHLEV for mobility is based on the following two
key ideas. First, in order to estimate ��, nodes periodi-
cally send beacon messages containing their estimated ��
sets at their current power levels. If node � hears a beacon
from node � and � � �����, then � and � are symmetric
neighbors. Second, instead of trying to maintain ���� at
a value of exactly �, we set low and high water marks on
����, denoted by �low and �high, respectively. A node
initiates steps to increase its neighbor set size only when
its estimated ���� falls below �low and tries to decrease
its neighbor set size only when the estimated ���� exceeds
�high.

The details of our procedure for estimating �� are given
in Figure 7. When a node is first powered up, it initiates
this procedure. Nodes send beacon messages containing
their �� sets every � seconds, where � is a user-specified
parameter that provides a trade off between protocol over-
head and delay in detecting changes to the neighbor set.
Whenever a node � receives a message (beacon or other-
wise) from node �, � adds � to its�� set. When � receives
a beacon message from �, � also adds � to its �� set if �
appears in the �� set of � that is contained in the beacon
message. Also when receiving a beacon message from
�, � sets a timer to expire in � seconds. If the timer ex-
pires before � receives another beacon from �, then � is
no longer an in-neighbor (nor a symmetric neighbor) of �.

increase neighbors()

while (���� 
 �low) and (� 
 ��	) do
count � 0
while (���� 
 �low) and (count 
 �) do

send help message (�, �, ��)
wait ��

count � count+1
if (���� 
 �low) then �� � � �

Upon receiving a help message (
, �� , ���
�):

�� � �� � �
�
if (� 	� ���
�) then

if (� 
 ��) then � � � � �
send beacon message (�, �, ��)

if � � ���
� then �� � �� � �
�

Fig. 8. Procedure for increasing �� performed by node �

The remainder of the protocol sets forth the actions to
be taken when the size of �� falls below �low or exceeds
�high. Figure 8 shows the procedure for increasing ����,

while Figure 9 shows how a decrease in ���� is achieved.
There are two main differences in how ���� is increased

with mobility (Figure 8) compared to the stationary ver-
sion of �-NEIGHLEV. First, a node’s �� set is included
with its help message. This is to allow nodes that receive
help messages to use the most recent information to deter-
mine if the sender is a symmetric neighbor given that the
�� set is only an estimate of the actual symmetric neigh-
bor set. The second, and more important, difference is
that nodes which respond to help messages increase their
power level by only one setting when mobility is involved,
whereas in the stationary case they increase their power to
match that of the sender. Since this does not guarantee
that responders will be heard by the help requester, its ��
set might not be increased by this response. This is the
reason that help requesters send help messages multiple
times at the same power level.

While resending help messages at the same power level
might seem inefficient, we do this to avoid the following
scenario, which could be quite common in mobile net-
works. A node requires a high power level while commu-
nicating in a sparse part of the network and then moves to
a denser part where nodes are communicating with much
lower power levels. Since the node sends its help mes-
sage at its current power level, the basic �-NEIGHLEV

protocol would potentially cause many nodes in the dense
part of the network to switch to very high power levels,
which is clearly wasteful of energy. The procedure in Fig-
ure 8, while using more control messages and time, pro-
duces more graceful changes in power levels and avoids
unnecessary large increases in power by many nodes.
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decrease neighbors()

while (� � �) and (���� � �high) do

send a check reduce message (�, �)
wait ��

if stop message received then exit
otherwise � � � � �

Upon receiving a check reduce message (
, ��):

if (
 � ��) and (���� � �low) and (� � ��)
then send stop message to 


Fig. 9. Procedure for decreasing �� performed by node �

The need to decrease the number of neighbors (Fig-
ure 9) arises only when there is mobility since the basic
�-NEIGHLEV protocol ensures that nodes’ power levels
are set as small as possible in a certain sense. With mo-
bility, a node could require a high power level in one area
but that level could produce far more neighbors than nec-
essary when it moves to a new area. The ability to de-
crease levels is therefore required. We must be cautious
when power levels are decreased, however, lest we leave
another node with too few neighbors causing it to initiate
a round of help messages and possibly leading to circu-
lar behavior. Thus, before we allow a node to reduce its
level, we force it to send a “check reduce” message to
its current neighbors to make sure that the reduction will
not leave any node with too few neighbors. If any node
that hears a check reduce message from � has � as a sym-
metric neighbor, has the minimum number of symmetric
neighbors currently, and is in danger of not hearing � if
�’s power level is reduced, then it sends a stop message to
�. If � hears at least one stop message, then it does not
reduce its power level.

One remaining question is how to choose �low and
�high. A conservative approach would be to set �low to
the minimum value necessary to ensure a connected net-
work with high probability. With this setting, if nodes
operate at values higher than the low water mark most of
the time, energy is wasted. However, setting �low even
one below this minimum value could occasionally result
in disconnected networks. Hence, the low water mark
should be determined based on whether periods of dis-
connection can be tolerated or not. The high water mark
should be set as small as possible such that the protocol is
not triggered too often, thereby consuming more energy in
executing the protocol than is saved through the topology
control that results. Such an evaluation can only be done
through simulation and is a topic for future research.

Observe that most of the issues raised when dealing
with mobile networks are in common with the scenario

of dynamic networks, in which nodes enter and leave the
network at different times. Thus, the mobile version of our
protocol can also be used to deal with dynamic networks.
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