

C

Consiglio Nazionale delle Ricerche

TToowwaarrddss aann iinntteeggrraatteedd ffoorrmmaall aannaallyyssiiss ffoorr
sseeccuurriittyy aanndd ttrruusstt

FF.. MMaarrttiinneellllii

IIT TR-08/2004

Technical report

Agosto 2004

Iit

Istituto di Informatica e Telematica

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37832158?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Towards an integrated formal analysis for
security and trust?

Fabio Martinelli

Istituto di Informatica e Telematica - C.N.R., Pisa, Italy
e-mail: Fabio.Martinelli@iit.cnr.it

Abstract. We aim at defining an integrated framework for the (auto-
mated) analysis for security and trust in complex and dynamic scenarios.
In particular, we show how the same machinery used for the formal verifi-
cation of security protocols may be used to analyze access control policies
based on trust management.

1 Introduction

Computer security is a research area that is increasingly receiving the
attention of researchers. Just to mention a very relevant topic, consider
some security issues in ubiquitous computing systems: These consist of
different entities that have to cooperate and share resources to achieve a
certain goal. Cooperation is often enabled by trust relationships among
entities. There is clearly a tight connection between the security mecha-
nisms used to guarantee the confidentiality and integrity of information
and mechanisms used to establish, manage and negotiate trust, reputation
and recommendation among the different entities (e.g., see [8, 12, 23]).

In this paper we focus on the integrated formal modeling and analysis
of security and trust. In particular, we uniformly model security protocols
and some form of access control mechanisms based on trust management.

Formal languages for modeling distributes systems have been applied
in the last decade to the analysis of cryptographic protocols. In this frame-
work, cryptography is usually modeled by representing encryptions as
terms of an algebra, e.g., E(m, k) may represent the encryption of a mes-
sage m with a key k (also denoted as {m}k). Usually, the so-called perfect
encryption abstraction is adopted: encryptions are considered as injective
functions which can be inverted only by knowing the correct information,

? Work partially supported by MIUR project COVER; by CNR project “Tecniche e
Strumenti Software per l’Analisi della Sicurezza delle Comunicazioni in Applicazioni
Telematiche di Interesse Economico e Sociale” and by a CREATE-NET grant for
the project “Quality of Protection (QoP)”.

i.e. the decryption key. For instance, common inference rules for modeling
the behavior of the encryption and decryption (in a shared-key schema)
are the followings:

m k

E(m, k)
E(m, k) k

m
(1)

which should be read as: from a message m and a key k we can build the
encryption E(m, k); from an encryption E(m, k) and a decryption key k
we can obtain the encrypted message m.

The long standing tradition of modeling the specific features of cryp-
tographic functions as term-rewriting rules met the powerful verification
techniques developed for process algebras. As a matter of fact, several for-
mal languages for describing communication protocols, for instance CSP
[13], have been exploited for representing cryptographic protocols with-
out changes in syntax or semantics: the inference rules have been given at
the meta-level of the verification. Instead others, like the π–calculus [1]
and the CCS [16, 14], have been effectively refined: the π–calculus have
been equipped with two pattern matching constructs for modeling mes-
sage splitting and shared-key decryption, respectively; the CCS has been
equipped with an inference construct that permits to infer new messages
from others, i.e.:

[m1 mn `r x].P

which denotes a process that tries to deduce a message m from the mes-
sages in m1, . . . ,mn and when it succeeds it substitutes this message for x
in the process specification P . The language is called Crypto-CCS ([16]).

The inference relation could be defined in many ways. Often, we will
consider the transitive closure of the entailment relations used in each
process. This would give a a complex inference system. Such inference
systems allow us to cope with the variety of different crypto-systems that
can be found in the literature.

However, when one analyzes a security protocol, usually assumes pub-
lic keys, digital certificates, and generally speaking credentials are already
given, and does not check how these are formated/negotiated/managed.
Such a limited view seems not completely appropriate for dynamic, fully
interconnected systems, where access control policies may change and
typically may also depend on credentials presented by users.

Similarly, when one wishes to formally analyze (e.g., see [3]) access
control systems, the authentication mechanisms (usually a security pro-
tocol) is given for “secure”, without further specification.

While separation of concerns is often desirable, this is not always pos-
sible. The interplay between security protocols and access control mecha-

2

nisms/policies is crucial. Moreover, a good specification, validation, anal-
ysis and management framework should take an holistic point of view.

As a matter of fact, we show that the idea proposed by CryptoCCS
of using inference constructs is also useful to model access control mech-
anisms based on credentials in distributed systems (e.g., see [19, 5]).

Example 1. Indeed, consider a set of credentials, e.g. (signed) messages
containing information about access rights. Assume that {A, ob1,+}pr(C)

means that the user C (via the signature with its private key pr(C))
asserts A has the right to access the object ob1 and may grant this access
to other users (this is denoted through the symbol +). A rule like:

{A, ob1,+}pr(C) pr(C) {grant B, ob1}pr(A)

{B, ob1,+}pr(C)
(accC)

may be used by the controller C to issue other access right credentials, af-
ter receiving an indication by A, i.e. the signed message {grant B, ob1}pr(A).

Thus, we may consider the inference rules as an abstract mechanism to
express security policies usually defined using other mathematical models
and logics (e.g., see [6, 19]).

In this paper we will deal in particular with the RT trust manage-
ment system [12]. However, it should be noticed how the approach is very
general. In particular, we will show also how to encode with inference
systems the mechanisms for reasoning about trust proposed in [8].

Having a unique language will allow us to model the interplay between
security protocols that use the trust relationships among different users,
and the ways in which these relationships are created (that often rely on
security/interaction protocols).

The fact that we can both model cryptography and some form of
credential/trust management with the inference construct of CryptoCCS
allows us to use the software tools and methodologies already developed
for security protocols analysis to the more general case where credentials
are explicitly managed. In particular, in [15] a software tool for automated
security protocols analysis has been defined an in [17] has been extended
to cope with a huge class of inference systems.

It is worthy noticing that the CryptoCCS has been previously defined
to set up a uniform framework for the analysis of security properties and
information flow (non-interference) with the same machinery (e.g., see
[4]).

To sum up, the flexibility of the inference construct as a modeling
tool may allow us to study and analyze uniformly several aspects of net-
work/system security and trust.

3

The paper is organized as follows. Section 2 recalls the CryptoCCS
language and some basic concepts about security protocol analysis. Sec-
tion 3 shows how trust management specification and analysis may be
performed using a similar machinery of the one for security protocols.
Finally, Section 4 concludes the paper.

2 Crypto-CCS

Crypto-CCS [16, 14]is a slight modification of CCS process algebra [18],
adopted for the description of cryptographic protocols.

The CryptoSPA model consists of a set of sequential agents able to
communicate by exchanging messages.

The data handling part of the language consists of a set of inference
rules used to deduce messages from other messages. We consider a set of
relations among messages as: `r⊆Mir+1, where r is the name of the rule
and ir the number of premises. For the sake of simplicity, we assume that
`r (for each r ∈ R) is decidable.

2.1 The Language Syntax

CryptoSPA syntax is based on the following elements:

– A set Ch of channels, partitioned into a set I of input channels (ranged
over by c) and a set O of output channels (ranged over by c, the output
corresponding to the input c);

– A set V ar of variables, ranged over by x;
– A setM of messages, defined over a certain signature, ranged over by

M,N , m, n

The set L of CryptoSPA terms (or processes) is defined as follows:

P,Q ::= 0| c(x).P | cM.P | τ.P | P |Q | P\L |

A(M1, . . . ,Mn) | [〈M1, . . . ,Mr〉 `rule x]P ;Q

where M,M ′,M1, . . . ,Mr are messages or variables and L is a set of
channels. Both the operators c(x).P and [〈M1 . . .Mr〉 `rule x]P ;Q bind
variable x in P .

We assume the usual conditions about closed and guarded processes,
as in [18]. We call P the set of all the CryptoSPA closed and guarded
terms. The set of actions is Act = {c(M) | c ∈ I} ∪ {cM | c ∈ O} ∪ {τ}
(τ is the internal, invisible action), ranged over by a. We define sort(P)

4

to be the set of all the channels syntactically occurring in the term P .
Moreover, for the sake of readability, we always omit the termination 0
at the end of process specifications, e.g. we write a in place of a.0. We
give an informal overview of CryptoSPA operators:

– 0 is a process that does nothing.
– c(x).P represents the process that can get an input M on channel c

behaving like P [M/x]).
– cm.P is the process that can send m on channel c, and then behaves

like P .
– τ.P is the process that executes the invisible τ and then behaves like

P .
– P1 |P2 (parallel) is the parallel composition of processes that can pro-

ceed in an asynchronous way but they must synchronize on comple-
mentary actions to make a communication, represented by a τ .

– P\L is the process that cannot send and receive messages on channels
in L; for all the other channels, it behaves exactly like P ;

– A(M1, . . . ,Mn) behaves like the respective defining term P where all
the variables x1, . . . , xn are replaced by the messages M1, . . . ,Mn;

– [〈M1, . . . ,Mr〉 `rule x]P ;Q is the process used to model message ma-
nipulation as cryptographic operations. The process [〈M1, . . . ,Mr〉 `rule

x]P ;Q tries to deduce an information z from the tuple 〈M1, . . . ,Mr〉
through the application of rule `rule; if it succeeds then it behaves
like P [z/x], otherwise it behaves as Q. The set of rules that can be
applied is defined through an inference system (e.g., see Figure 1 for
an instance).

2.2 The Operational Semantics of CryptoCCS

In order to model message handling (and so cryptography in an abstract
way) we use a set of inference rules. Note that CryptoCCS syntax, its
semantics and the results obtained are completely parametric with respect
to the inference system used. We present in Figure 1 an instance inference
system, with rules: to combine two messages obtaining a pair (rule `pair);
to extract one message from a pair (rules `fst and `snd); to encrypt a
message m with a key k obtaining {m}k and, finally, to decrypt a message
of the form {m}k only if it has the same key k (rules `enc and `dec,
respectively).

In a similar way, inference systems can contain rules for handling
the basic arithmetic operations and boolean relations among numbers, so
that the value-passing CCS if-then-else construct can be obtained via
the `rule operator.

5

m m′

(m, m′)
(`pair)

(m, m′)

m
(`fst)

(m, m′)

m′ (`snd)

m k

{m}k
(`enc)

{m}k k

m
(`dec)

Fig. 1. An example inference system for shared key cryptography.

(input)
m ∈M

c(x).P
c(m)−→ P [m/x]

(output)
cm.P

cm−→ P
(internal)

τ.P
τ−→ P

(\L)
P

c(m)−→ P ′ c 6∈ L

P\L c(m)−→ P ′\L
(|
1

)
P1

a−→ P ′
1

P1 |P2
a−→ P ′

1 |P2

(|
2

)
P1

c(x)−→ P ′
1 P2

cm−→ P ′
2

P1 |P2
τ−→ P ′

1 |P ′
2

(Def)
P [m1/x1, . . . , mn/xn]

a−→ P ′ A(x1, . . . , xn)
.
= P

A(m1, . . . , mn)
a−→ P ′

(D)
〈m1, . . . , mr〉 `rule m P [m/x]

a−→ P ′

[〈m1, . . . , mr〉 `rule x]P ; Q
a−→ P ′

(D1)
6 ∃m s.t. 〈m1, . . . , mr〉 `rule m Q

a−→ Q′

[〈m1, . . . , mr〉 `rule x]P ; Q
a−→ Q′

Fig. 2. Structured Operational Semantics for CryptoCCS (symmetric rules for |1, |2
and \L are omitted)

Example 2. Natural numbers may be encoded by assuming a single value
0 and a function S(y), with the following rule: x

S(x) inc. Similarly, we

can define summations and other operations on natural numbers.

Example 3. We do not explicitly define equality check among messages in
the syntax. However, this can be implemented through the usage of the
inference construct. E.g., consider rule x x

Equal(x, x) equal. Then [m =

m′]A (with the expected semantics) may be equivalently expressed as
[m m′ `equal y]A where y does not occur in A. Similarly, we can define
inequalities, e.g., ≤, among natural numbers.

The operational semantics of a CryptoCCS term is described by means of
labeled transition relations, P

a−→ P ′, with the informal meaning that the
process P may perform an action a evolving in the process P ′. More for-
mally, we consider a labelled transition system (lts, for short) 〈P, Act, { a−→
}a∈Act〉, where { a−→}a∈Act is the least relation between CryptoCCS pro-
cesses induced by the axioms and inference rules of Figure 2.

6

2.3 Security protocol analysis

The security protocol analysis proposed in [16, 14] is based on the checking
of following property:

∀X s.t. S |X satisfies F

where F is a logical formula expressing the desired property. Often, when
secrecy properties are considered, F models the fact that a given message,
i.e. the secret to be verified, is not deducible from a given set of messages,
i.e. the knowledge of the intruder X acquired during the computation with
S. The verification of such property requires the ability of computing the
closure of a inference systems, i.e. the possibility to iteratively apply the
inference rules. Given a setR of inference rules, we consider the deduction
relation DR ⊆ Pfin(M)×M. Given a finite set of closed messages, say φ,
then (φ,M) ∈ DR if M can be derived by iteratively applying the rules
in R. Under certain assumption on the form of the rules, we may have
that DR(φ) is decidable.

2.4 Some assumptions on the inference system

Given a well-founded measure on messages, we say that a rule

r
.=

m1 . . . mn

m0

is a S-rule (shrinking rule), whenever the conclusion is a proper subterm
of one of the premises (call such premise main). The rule r is a G-rule
(growing rule) whenever the conclusion is strictly larger than each of the
premises, and all the variables in the conclusion must be in the premises.

Definition 1. We say that an inference system enjoys a G/S property if
it consists only of G-rules and S-rules, moreover whenever a message can
be deduced through a S-rule, where one of the main premises is derived
by means of a G-rule, then the same message may be deduced from the
premises of the G-rule, by using only G-rules.

Several of the inference systems used in the literature for describing cryp-
tographic systems enjoy this restriction1.

The main advantage of considering systems enjoying the G/S restric-
tion is that proofs for messages may have a normal form, i.e., either:
1 It is worthy noticing that in [9] a similar terminology has been used, and a restriction,

called S/G, has been defined. However, this is rather different from ours and it is
not well suited to model cryptographic systems.

7

– these consist of a sequence of applications of G-rules, or
– these consist of a sequence of applications of G-rules, followed by the

application of an S-rule whose main premises are in φ and possibly
followed by other applications of G-rules and S-rules.

Indeed, using G-rules for inferring the main premises of an S-rules,
is un-useful. Thus, shrinking rules may be significantly applied only to
messages in φ and to messages obtained by S-rules. However, since the
measure for classifying the S-rules is well-founded then such a shrinking
phase would eventually terminate when applied to a closed set of messages
φ. After, only growing rules are possible. Thus, if the inference system
enjoys the G/S restriction then DR(φ) is decidable when φ is finite. We
may note that the inference system in page 1 enjoys the G/S restriction
and so its deduction relation is indeed decidable.

In the case the inference system has not growing rules, we have de-
cidability even in presence of a weaker form of shrinking rules. We say
that a rule is eq-shrink whenever the conclusion has an equal or smaller
size than one of the premises; moreover all the variables occurring in the
conclusion must occur in at least of of the premises. In such a case the
decision procedure simply consists of building the transitive closure of the
inference rules.

3 Modeling several trust management languages

Through process algebras, one can formally specify communicating proto-
cols and complex distributed systems. For instance, one could use Cryp-
toCCS to describe the components and the communication interface of an
access control mechanism as Policy Enforcement Point (PEP) or Policy
Decision Point (PDP), e.g. see [21]. In particular, in trust management
systems, where policies are given through credentials, this allow one to
use the inference system of CryptoCCS to model also the trust engine
used in these frameworks.

Let see how it works with two well known models.

3.1 RT0: Role-based Trust Management

We show how inference rules can be conveniently used to model RT lan-
guages for trust management [12, 22, 11, 10]. In these languages, cre-
dentials carry information on policies to define attribute of principals
starting from assertions of other principals. The notion of attribute is

8

general enough to permit to use RT languages to model Role-based Ac-
cess Control Mechanisms (RBAC), e.g. see [20]. As a matter of fact, an
attribute could be considered as a role. Then one could use RT credential
to express how principals are related to roles2. More precisely, we denote
principals with A,B, C...; we denote role names with r, u, z.... A role takes
the form of a principal followed by a role name, separated by a dot, e.g.
A.r.

RT assumes four kind of credentials that express possible policy state-
ments.

– A.r ← D (simple member)
This statement defines that D has role A.r.

– A.r ← A1.r1 (simple containment)
This statement asserts that if D has role A1.r1 then it has role A.r.
This kind of credential can be used to delegate the authentication of
attributes from A to A1.

– A.r ← A1.r1.r2 (linking containment)
This statement asserts that tf E has role A1.r1 and D has role E.r2

then D has role A.r. This kind of credential may be used to delegate
the assignment of A.r role not to specific entities but to entities of a
given role.

– A.r ← A1.r1 ∩A2.r2 (Intersection containment)
This statement asserts that D has role A1.r1 and A2.r2 then D has
role A.r.

Example 4. Consider the following set of credentials.

Univ.stud← FM
Shop.discount← Univ.stud

It follows that FM has role Shop.discount. So, the shop offers discounts
to the students of the University.

The language for credentials has been equipped with several seman-
tics. In particular, one semantics based on datalog is very similar to our
inference rules (that in this case can be seen as datalog rules). So, we
define one inference rule for each credential as follows.

2 Similarly, credentials and attributes could be used to assign permissions to roles

9

A.r ← D {D, r}A
A.r ← A1.r1

{y, r1}A
{y, r}A

A.r ← A1.r1.r2
{z, r1}A1 {y, r2}z

{y, r}A
A.r ← A1.r1 ∩A2.r2

{y, r1}A1 {y, r2}A2

{y, r}A
However, this requires a rule for each credential. We wish to fix from

the very beginning the set of inference rules. Thus, we provide a slightly
modified version of the inference system where we consider only 3 rules,
one for each kind of credential defined in RT0 (with the exception of the
first kind of credentials that are simply messages).

A.r ← D {D, r}A
A.r ← A1.r1

{y, r1}A {r, A1, r1}A
{y, r}A

A.r ← A1.r1.r2
{z, r1}A1 {y, r2}z {r, A1, r1, r2}A

{y, r}A
A.r ← A1.r1 ∩A2.r2

{y, r1}A1 {y, r2}A2 {r, A1, A2, r1, r2}A
{y, r}A

Note that, under the common measure of the size of terms, all the
previous rules are eq-shrink rules and there are no growing rules. Thus,
establishing whether a given principal, say D, has a certain role in a policy
φ, i.e. {D, r}A ∈ D(φ) is decidable. This kind of analysis3 is called Simple
Safety in [10].

3.2 Josang et al. topologies

We also show how the trust model of Josang et al. [8] can be managed in
our framework. The authors suggest trust is always linked to a purpose.
The most natural situation is when one trusts another for performing a
certain function/task. This may be expressed as A

f−→ D, i.e. A trusts
D for performing f . Moreover, it is often common that one, say A, asks
another, say D, for suggesting/reccomendating a third one for doing a
given task, i.e. f . This could be expressed by the following credential
A

r,f−→ D.
3 Actually, that work considers a dynamic set of policies. However, the analysis tech-

nique adopted is actually based on a subset of the set of prolog rules that represent
the initial problem. Thus, we are also able to manage it.

10

The main idea is that when one calculates whether a given chain
trust exists, it must always consider that the last step in the chain is a
functional trust one, while all the others are recommendation steps. Thus,
we have another kind of credential like A

r−→ B
f−→ D, , expressing the

fact that A trusts D for performing f via the recommendation of B.

A
f−→ D {f,D}A

A
r,f−→ D {r, D, f}A

A
r,f−→ B B

r,f−→ D

A
r,f−→ D

{r, B, f}A {r, D, f}B
{r, D, f}A

A
r,f−→ B B

f−→ D

A
r−→ B

f−→ D

{r, B, f}A {f,D}B
{r, B, f,D}A

As in the previous case, the deduction relation of this set of rules is
decidable. This gives us an alternative strategy w.r.t. the one presented
in [8].

As in [8], one could insert further information into the credentials,
as measure of trust. For instance, credentials could be enhanced with
such information and rules could derived the trust measure of resulting
credentials in the appropriate way. For instance, consider the following
credential enhanced with a trust measure, i.e.: A

r,f,m−→ B. Then the tran-
sitive composition rule could be the following:

A
r,f,m1−→ B B

r,f,m2−→ D

A
r,f,m3−→ D

where m3 is a function of m1,m2, for instance m3 = min{m1,m2}.
If the set of possible trust values is finite, then the deduction relation is

still decidable. More complex trust measures can be found in [7]. Clearly,
one may try to define specific strategies for each set of inference rules.
However, we argue that the mechanisms we used are general enough to
deal with common trust management systems.

4 Conclusions and future work

We have presented an approach for the analysis of security protocols
where credentials are explicitly managed. In the simplest case, such cre-
dentials are PKI certificates or XML security assertions. In more complex
scenarios, these could be statements expressing access control policies, as

11

in RT languages. Our framework is supported by an analysis tool called
PaMoChSA [15].

Our results may be considered as a step towards the creation of a
uniform and automated specification and verification framework for the
evaluation of network and system security. This would be of help for
formally measuring the quality of protection of complex architectures.
We plan to develop a full language for specifying software architectures
equipped with our analysis techniques. We plan also to integrate and
facilitate the specific analysis techniques for trust management protocols,
as given in [22], into our framework.

As a specific application, we note XML documents may be seen as
terms in a given signature and thus analyzed with our tool. Recently,
Gordon et al. (see [2]) developed an analysis for authentication properties
of web services using a similar process algebra equipped with an additional
prolog-like construct. We can see our work as an extension of theirs in
order to model also trust relationships for web services.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148(1):1–70, 1999.

[2] Karthikeyan Bhargavan, Cedric Fournet, and Andrew D. Gordon. A semantics for
web services authentication. In Proceedings of the 31st ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 198–209. ACM Press,
2004.

[3] P. A. Bonatti and P. Samarati. Logics for authorizations and security. In Logics
for Emerging Applications of Databases, LNCS. Springer-Verlag, 2003.

[4] R. Focardi, R. Gorrieri, and F. Martinelli. Non interference for the analysis of
cryptographic protocols. In Proceedings of 27th International Colloquium in Au-
tomata, Languages and Programming, volume 1853 of Lectures Notes in Computer
Science, pages 354–372, 2000.

[5] R. Gorrieri and F. Martinelli. Process algebraic frameworks for the specification
and analysis of cryptographic protocols. In MFCS, LNCS 2747. Springer-Verlag,
2003.

[6] Halpern and van der Meyden. A logic for SDSI’s linked local name spaces. In
PCSFW: Proceedings of The 12th Computer Security Foundations Workshop.
IEEE Computer Society Press, 1999.

[7] Audun Josang. The consensus operator for combining beliefs. Artif. Intell.,
141(1):157–170, 2002.

[8] Audun Jsang, Elizabeth Gray, and Michael Kinateder. Analysing topologies of
transitive trust. In Proc. of the 1st workshop on Formal Aspects in Security and
Trust (FAST2003), 2003.

[9] D. Kindred and J. M. Wing. Fast, automatic checking of security protocols.
In Second USENIX Workshop on Electronic Commerce, pages 41–52, Oakland,
California, 1996.

12

[10] Ninghui Li, John Mitchell, and William H. Winsborough. Beyond proof-of-
compliance: Safety and availability analysis in trust management. In IEEE Sym-
posium on Research in Security and Privacy. 2003.

[11] Ninghui Li and Mahesh V. Tripunitara. Security analysis in role-based access
control. In ACM Symposium on Access Control Models and Techniques (SACMAT
2004). 2004.

[12] Ninghui Li, William H. Winsborough, and John C. Mitchell. Distributed creden-
tial chain discovery in trust management. Journal of Computer Security, 1:35–86,
2003.

[13] Gavin Lowe. Breaking and fixing the Needham Schroeder public-key protocol
using FDR. In Proceedings of Tools and Algorithms for the Construction and the
Analisys of Systems, volume 1055 of Lecture Notes in Computer Science, pages
147–166. Springer Verlag, 1996.

[14] F. Martinelli. Analysis of security protocols as open systems. Theoretical Com-
puter Science, 290(1):1057–1106, 2003.

[15] F. Martinelli, M. Petrocchi, and A. Vaccarelli. PaMoChSA: A tool for verification
of security protocols based on partial model checking. 2001. Tool Demo at
the 1st International School on Formal Methods for the Design of Computer,
Communication and Software Systems: Process Algebras.

[16] Fabio Martinelli. Languages for description and analysis of authentication proto-
cols. In P. Degano and U. Vaccaro, editors, Proceedings of 6th Italian Conference
on Theoretical Computer Science, pages 304–315. World Scientific, 1998.

[17] Fabio Martinelli. Symbolic semantics and analysis for crypto-ccs with (almost)
generic inference systems. In Proceedings of the 27th international Symposium
in Mathematical Foundations of Computer Sciences(MFCS’02), volume 2420 of
LNCS, pages 519–531, 2002.

[18] R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

[19] P. Samarati and S. De Capitani di Vimercati. Access control: Policies, models,
and mechanisms. In R. Focardi and R. Gorrieri, editors, Foundations of Security
Analysis and Design, LNCS 2171. Springer-Verlag, 2001.

[20] Ravi Sandhu, Venkata Bhamidipati, Edward Coyne, Srinivas Ganta, and Charles
Youman. The arbac97 model for role-based administration of roles: preliminary
description and outline. In Proceedings of the second ACM workshop on Role-
based access control, pages 41–50. ACM Press, 1997.

[21] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijn, B.V. C.
de Laat, M. Holdrege, and D. Spence. RFC 2904 AAA authorization framework.
2000.

[22] William H. Winsborough and Ninghui Li. Safety in automated trust negotiation.
In IEEE Symposium on Security and Privacy. 2004.

[23] M. Winslett. An introduction to automated trust negotiation. In Workshop on
Credential-Based Access Control Dortmund, October 2002.

13

	cover8.pdf
	Consiglio Nazionale delle Ricerche
	Towards an integrated formal analysis for security and trust
	�
	F. Martinelli
	Iit

