

C

Consiglio Nazionale delle Ricerche

Packet Classification via Improved Space
Decomposition Techniques

FF.. GGeerraaccii,, MM.. PPeelllleeggrriinnii,, PP.. PPiissaattii,, LL.. RRiizzzzoo

IIT TR-10/2004

Technical report

Novembre 2004

Iit

Istituto di Informatica e Telematica

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37832156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Packet Classification via Improved Space
Decomposition Techniques

Filippo Geraci, Marco Pellegrini, Paolo Pisati
Istituto di Informatica e Telematica,
Consignlio Nazionale delle Ricerche

Pisa, Italy
Email: {filippo.geraci,marco.pellegrini,paolo.pisati}@iit.cnr.it

Luigi Rizzo
Dip. Ingegneria dell’Informazione

Universit́a degli studi di Pisa
Pisa, Italy

Email: rizzo@iet.unipi.it

Abstract— Packet Classification is a common task in modern
Internet routers. The goal is to classify packets into “classes” or
“flows” according to some ruleset that looks at multiple fields
of each packet. Differentiated actions can then be applied to the
traffic depending on the result of the classification.

Even though rulesets can be expressed in a relatively compact
way by using high level languages, the resulting decision trees can
partition the search space (the set of possible attribute values) in
a potentially very large (106 and more) number of regions. This
calls for methods that scale to such large problem sizes, though
the only scalable proposal in the literature so far is the one based
on a Fat Inverted Segment Tree [1].

In this paper we propose a new geometric technique calledG-
filter for packet classification ond dimensions. G-filter is based
on an improved space decomposition technique. In addition to
a theoretical analysis showing that classification in G-filter has
O(1) time complexity and slightly super-linear space in the
number of rules, we provide thorough experiments showing that
the constants involved are extremely small on a wide range of
problem sizes, and that G-filter improve the best results in the
literature for large problem sizes, and is competitive for small
sizes as well.

I. I NTRODUCTION

The problem of packet classification has received much
attention in recent years, due to its widespread application
to different types of network equipment. In a nutshell, the
problem is to classify packets into “classes” or “flows”
(depending on the granularity) by looking at one or more
packet attributes. This is normally done by routers (doing
a next-hop lookup), firewalls (filtering traffic), shapers and
policers (to enforce traffic limitations), NAT boxes, and queue
management systems.

The classification is done according to aruleset, which
can be specified in different languages[2], [3], [4], [5], [6],
as shown in Section II-A. Because classification is done
for many different purposes, and on different sets of packet
attributes, it is unclear that any single approach can suit all
purposes. Sec. II-B, shows some of the solutions proposed in
the literature, with different areas of applicability.

One possible approach is to map the problem into a ge-
ometric point location problem in a multi-dimensional space.
The space is partitioned into a number of possibly overlapping
regions, each associated with an integer indicating its priority.
The number of regions can become very large, up to106

and more, resulting from the number of possible paths in the
decision tree generated by the specification of the ruleset. In
this formulation, the problem then becomes finding the region
with highest priority to which a point belongs. Theoretical
results by [7] show how to do classification through point
location for a 2-D space inO(1) time using slightly super-
linear storage. These results have been extended in [8] to
handle d-dimensional rules, for any arbitrary, but constant,
value ofd. But probably more important than the asymptotic
complexity, in a practical implementation, the constants hidden
in the O() notation become of fundamental importance.

The contribution of this paper is a novel geometric algo-
rithm, called G-filter, for multidimensional packet classifica-
tion. By theoretical analysis we show that G-filter hasO(1)
classification time and slightly superlinear space in the number
of rules. More interestingly from a practical point of view,
through extensive simulations on datasets with different prop-
erties, we show that G-filter outperforms the best published
results in the literature [1] on large datasets, and remains
competitive also for small datasets.

The paper is structured as follows. In Sec. II we formalize
the problem of packet classification. In Sec. II-A we briefly
discuss filter specification languages. Sec. II-B presents the
most relevant related work. Section III presents the G-filter
algorithm, followed in Sec. III-C by a theoretical analysis of
its worst case performance. Sec. IV shows, through simulation,
that G-filter is practical and improves other proposals in the
literature.

II. PROBLEM DEFINITION AND RELATED WORK

We can state the packet classification problem as follows:
given a packetq (the “query point” in our representation of the
problem) made of a set of attributesq1, ..qd (eachqi mapped
to an integer in the rangeU = [0 . . . 2w − 1]), and a setH
of rules specifying a partition of the attribute spaceUd into
different regions (classes), we want to associate the packet to a
classdepending on the value of its attributes. Typical attributes
can be source and destination addresses, protocol type, port
numbers (together, these attributes are called the “5-tuple”),
protocol flags, and possibly other attributes such as packet size
and even meta-attributes (e.g. source or destination interface,
etc.).

The classification result is typically associated to the action
to be performed on the packet. For a firewall, it could be
as simple as accept or deny a packet; for a more complex
system, the classification result might be used to aggregate the
packet into logicalflows(to be passed to separate queues, or be
subject to shaping or policing) or simply to collect statistics.

A. Ruleset specification

The ruleset that partitions the attribute space into classes can
be specified in different ways. A common approach is to use a
sequential list ofn rulesof the form< class, r1, r2, . . . , rd >
where r1, . . . , rd are ranges specifying ahyper-rectangular
region in the attribute space, andclass is the result of the
classification. The classifier will scan the list, in textual order,
against incoming packets stopping the search at the first rule
whose region contains the packet’s attributes. This is the
approach used by Cisco’s ACLs [5], and in the basic format
of Juniper [6] or ipfw [2] rules. Basic ipfilter [3] rules are
similar, but there the search always continues to the end1 and
the classifier returns the last matching rule.

The fixed rule search ordering is equivalent to associating
a priority field to each rule; this formulation of the ruleset
makes it possible to approach the problem with more efficient
algorithms than the linear scan of the ruleset, which hasO(n)
time complexity.

In practice, however, ruleset specification languages tend to
be a lot more complex than the simple list of rules described
above.

First, we could have negations on the ranges of some or all
the attributes (e.g.src-port 0-1023 not dst-port
0-1023). Some techniques can easily deal with negations,
other may not, or will suffer a severe space overhead.

Second, some classifiers (e.g. those used in stateful fire-
walls) can generate or remove rules dynamically. Fortunately
these tend to have a uniform format (e.g. because they are
generated from a specific template) and so they can be dealt
with separately from the static part of the ruleset.

Finally, the independent rules described so far tend to be
very redundant – e.g. many rules will use the same protocol
and port ranges, and differentiate on other attributes.

If rulesets are generated manually (as it is often the case), it
is extremely convenient to use a structured ruleset specification
language, which allows partial evaluation of the attributes to
be performed. This is supported e.g. by Juniper [6] or ipfw [2]
rules, where after a match the classification may continue by
jumping to a different point in the ruleset (e.g. in ipfw syntax,
skipto 1000 proto tcp src-port 80).

It is still possible to transform a structured ruleset into a
flat one (where rules can be evaluated independently), but at
the price of a (possibly large) increase in the ruleset size. On
the other hand, this transformation can be worthwhile as it
can open the way to the use of more efficient classification
algorithms. So this calls for packet classification algorithms
that can work efficiently on very large rulesets.

1unless the rule contains a “quick” keyword to terminate the search early.

B. Related work

The packet classification problem has been extensively
studied recently. The naive approach to packet classification
is to scan sequentially the rule list until a match is found. The
scalability of this solution is generally poor, as the search time
is proportional to the length of the longest path in the rule list.

The main solutions to improve the search times use various
combinations of one or more of the following: (a) hardware-
based solutions [9], (b) specialized data structures [10], (c)
geometry-based algorithms [7], and (d) heuristics [11].

Hardware-based solutions using CAMs can be used to
exploit the parallelism in the hardware to look up multiple
rules in parallel. They are limited to small rulesets because
of cost, power and size limitations of CAMs. Other hardware
based solutions are described in [12], but still limited to a
small number of rules.

If the rulesets language allows jumps, one can structure the
ruleset as a trie, with a classification timeO(B) whereB is
the total number of bits on all dimensions. This value can still
be exceedingly large (e.g. for the 5-tuple in IPv4,B = 104,
and this motivates the research on algorithms that have lower
complexity with typical rulesets.

Aggregated Bit Vector(ABV)[13] solves the problem with
d independent lookups on one dimension, followed by a
combining phase. For each dimension, a lookup is done using
a trie, and returning a list of all matching rules on that
dimensions. The final result is then computed by finding the
rule with highest priority which is present in all lists. Because
the amount of memory consumed for storing the lists can be
extremely large, ABV devotes a lot of effort in reducing the
memory overhead, by representing the list using a compressed
bit vector.
Unfortunately, just navigating the tries still requiresO(B)
time, and the compression of the rule lists is not as effective
as one would like.

A geometry-based algorithm was proposed by Feldmann
et al. [1], introducing a data structure called FIS Tree (Fat
Inverted Segment Tree). Here, the problem is approached one
dimension at a time. FIS partitions the first dimension with
the endpoints of the projection of the rules on that dimension.
Each of the segments is then partitioned, according to the
remaining dimensions of the rules covering each segment,
into a number of a(d − 1)−dimensional regions. These can
be looked up using a(d − 1)−dimensional version of the
algorithm.
To avoid anO(N2) explosion of the storage requirements, the
d−1 dimensional regions are linked in a Fat Inverted Segment
Tree (FIS tree, which gives the name to the algorithm) of
bounded depth, and the common partitions of the regions are
pushed up in the FIS tree. So, the(d−1)−dimensional lookup
is repeated (but only a bounded number of times) on each of
the nodes of the FIS tree from the leaf to the root.
To date, FIS tree is the algorithm that scales best with the
number of rules.

Gupta and McKeown[14] proposed a heuristic approach
called RFC (Recursive Flow Classification). The main idea is

that packet classification involves mappingS bits in the packet
header toT ¿ S bits of action identifier (this is done via
a lookup table). These partial identifiers are then combined,
and the reduction process continues until the final result is
reached. The depth of the structure is an input parameter of the
algorithm, and influences the classification time. An advantage
of RFC is that the various lookup stages can be pipelined, so
in a hardware implementation, the classifier can have a very
high throughput. Scalability to medium or large rulesets is still
an issue though.

III. G-F ILTER

Our proposal falls in the category of geometry-based so-
lutions, and it is based on a novel recursive partitioning of
the search space which has constant depth and modest space
overhead.

Let U = [0 . . . 2w − 1] be the set of possible values of
the packet’s coordinates, andUd a d−dimensional spaceUd

called theuniverseand representing all possible values of the
packets’ attributes. Given a setH of n rules, in our algorithm
we map rulesh ∈ H to hyper-rectangular regionsR(h) =<
R1(h), . . . , Rd(h) >∈ Ud, regionsx of the search space to
hypercubesI(x) =< I1(x), . . . , Id(x) >∈ Ud, and packets to
be classified to points< q1, . . . , qd >∈ Ud. The result of the
classification is the rule with the highest priority among those
containing the query point.

The algorithm is made of two parts: construction of the
search data structure for a given region of the search space,
and the actual packet classification. In the latter, once we have
determined that a packet belongs to a given region (initially
the entire universe), we use the data structure associated to
that region to perform the classification.

A. Construction of the data structure

The input for the algorithm that constructs the search data
structure is a regionx of the search space, and a listH(x)
of rules potentially interesting the regionx. The output is a
pointer to a data structureD(d)(x,H(x)) constructed by the
algorithm. Initially, the algorithm starts with the entire ruleset
(H(root) = H) on the entire universe (I(root) = Ud).

The first step of the algorithm is to partition rulesh ∈ H(x)
in the following sets, with each rule belonging to only one set:

1) if h does not intersectx, it is discarded (a query point
in regionx will never match the rule);

2) otherwise, ifh covers the entire regionx, it becomes
part of the setcover(x) of cover rules;

3) otherwise, if the projectionRj(h) of h on axisj entirely
covers the projectionIj(x) of the regionx on the same
axis,h becomes part of the setFBj(x) of fallback rules
on axisj (if h satisfies this property for more than one
axis, we arbitrarily pick one);

4) otherwise, ruleh becomes part of the setcross(x) of
cross rules, which intersectx (i.e. have at least one
vertex inx) but do not fall in any of the other categories.
the setcross(x) of crossrules.

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

a

b

c

d

e f

Axis 2

Axis 1
x

Fig. 1. An example of the construction process in a 2-d space. For the main
region x, c ∈ cover(x), a, b ∈ FB1(x), e ∈ FB2(x), d, f ∈ cross(x).
Of these, for the central subregiony, d ∈ cover(y), f ∈ cross(y).

The partition reflects the relation of rules with query points
q belonging to regionx. Fig. 1 shows a 2-d example of the
relation between rules and regions.

Cover rules have the property that any packetq ∈ x
matches all rules incover(x). The only information we need
to remember from this set is the ruleg(x) with the highest
priority in cover(x), as this will be a potential result for the
classification.

For fallback rules, we know that ifq ∈ x, then thej−th
coordinate ofq is within the rangeRj(h) of all the rules in the
setFBj(x). Soq will match a ruleh ∈ FBj(x) if and only if
its remainingd−1 coordinates are contained in the remaining
d− 1 ranges of the rule. This is equivalent to finding whether
the projection ofq along2 axis j, Pj(q) (which is contained
in the projectionPj(x)) matches the projectionPj(h) of the
rule along axisj. So the problem reduces to a classification
problem in a(d− 1)−dimensional region.

Finally, for cross rules, the fact thatq ∈ x does not tell us
anything about its possible matching with cross rules. So we
need to refine the search, and we do that by by partitioning
region x into m regions of uniform size and shape, and
recursively constructing the structuresD(d)(yi, cross(x)). For
the proof of efficiency we exploit heavily the fact shown in
Fig. 4.

With this in mind, if after the rule partitioning the region
has no cross, cover or fallback rules, then the construction is
complete and the algorithm returns a NULL pointer. Otherwise
the algorithm creates (and returns a reference to) a root
nodeof the data structureD(d)(x, H(x)) with the following
information:
• a reference to ruleg(x), the rule with highest priority in

cover(x);
• d references to the(d − 1)−dimensional structures

D(d−1)(x, FBj(x)), recursively constructed for the fall-
back regions;

• m references to the (recursively constructed) structures
D(d)(yi, cross(x)).

2Note that a projectionalongaxis j of a d−dimensional region produces a
(d− 1)−dimensional region with all coordinates but the one on axisj. This
is different from the projectionon axis j that we have used to determine if
a rule belongs to the fallback set – in the latter, the projection produces a
1−dimensional range which corresponds to the coordinates of the object on
axis j.

K

Crossed regions

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

K

Rule

Fig. 2. In ak × k grid a rule can cross at most4k of the k2 regions. In
general dimensiond only 2dkd−1 of kd regions are crossed by a rule.

y
m

FB
1

FB
d

y
j

y
1

...
......

......

g(x) d−dimens. node

......

(d) dimensional structure (d−1) dimensional structures

last

...

i+1

i

i+2

Level:

Fig. 3. The content of each node and its references to other nodes and
fallback data structures.

The construction terminates when a region has size 1, because
any rules intersecting such a region must be a cross rule. As
an optimization, if the total number of fallback and cross rules
is smaller than some thresholdt, we can avoid the recursive
construction and instead store the highest covering rule and
the fallback/cross rules into an array. Storagewise, this is
effective if t < m. In terms of classification times,t should
be reasonably small.

Note that G-filter is not restricted to hyper-rectangular rules.
We can use rules representing arbitrarily shaped regions, even
non connected ones, as long as the rule classification procedure
is able to correctly process them. This is extremely useful
in practice, as it is often the case, in a ruleset, that rules
have negations on individual dimensions or possibly even
on the entire region (e.g.not (src-ip 10.0.0/8 and
not dst-ip 10.0.0.0/8).

Fig. 3 gives a pictorial representation of the search data
structure, showing the content of each node and its references
to the fallback data structure and to nodes at the next level. We
can think of the entire data structure as a main tree with one
node per region constituting thed−dimensional data structure,
and references to(d−1)−dimensional fallback structures from
each node.

B. Classification

As a result of the previous construction, the classification
can be performed as a recursive process on the data structure

D(d)(root, H). At each node (initially the root), we perform
d recursive queries on the(d − 1)−dimensional fallback
structures, one recursive query on the regionyi|q ∈ yi, and
return the highest priority rule amongg(x) and the rules
returned by thed + 1 recursive queries. In practice, the
recursive query on regionyi can be easily transformed into an
iterative one with trivial tail-recursion elimination techniques,
so it is convenient to think of the classification process as a
walk on thed−dimensional tree, visiting one node per level.

C. Theoretical analysis

In this Section we investigate the asymptotic time and space
complexity of our algorithm. To simplify the analysis, we have
used a single parameterk to control the splitting of the region
in the recursive construction, so all regions are always parti-
tioned intom = kd hypercubes. In an actual implementation
of the algorithm, however, one would changem depending on
the number of rules, the number of dimensions, and the size
of the regions, to achieve the best space/time tradeoff. In the
experimental Section we have studied these tradeoffs.

We recall that we cast the problem in a general geometric
setting, and the problem we analyze is the following:

Given an input setH of n hyper-rectangles in
Ud, build a data structureD(d)(Ud,H) to com-
pute efficiently argmaxh∈Hq

priority(h) (max pri-
ority query) whereHq = {h ∈ H|q ∈ h}.

1) Main result: The main theoretical result is the following
Theorem:

Theorem 1:For an integerw, let U = [0, .., 2w − 1] be
the set of binary numbers ofw bits. Let H be a set ofn
hyper-rectangles inUd and k a parameter,1 ≤ k ≤ n.
We can build a data structureD(d)(Ud, H) using storage
O(nkf(d) logd

k |U |), answering max priority queries in time
O(logd

k |U |). The constants hidden in the big-Oh notation
depend ond.
Remarks:
1) The parameters of the analysis are only the attribute size,
w, the decomposition parameter,k, and the number of rules,
n. d is considered a constant, although an arbitrary one.
2) The functionf(d), which will be specified later, grows
roughly asd2/2.

Proof: The proof is by induction on the dimensions.
The algorithm to buildD(d)(Ud,H) is the one described in
Sec. III, with no arrays (they do not change the asymptotic
time-space complexity of the algorithm), and a uniform parti-
tioning of the search region inm = kd cells at each level of
algorithm. Hence, from the description at the end of Sec. III-
A, and remembering that in this analysisd is considered a
constant, the storage required at each node of the data structure
is O(kd).

Because of the uniform decomposition of the tree, the
recursion depth (levels) of the classification algorithm on the
d−dimensional structure islogkd(|U |d) = logk |U |.

The next regionyi to visit in the d−dimensional data
structure can be determined inO(d) (i.e. constant) time by
computing the indexes(qj − start(Ij(x))) div k of the

Lev.1

Lev.2

Lev.3

Lev.4

Lev.0

Fig. 4. A one-dimensional example of the relation between cross rules and
vertices of the rules inH. The white rectangles represent the regions, at each
level, for which a certain rule (the shaded rectangle) ends up in the cross set.
There are at most 2 such regions per level (or2d in thed−dimensional case),
and fewer when one of the vertices coincides with a boundary between two
regions.

d−dimensional array where the pointer to the data structures
are stored.

Finally, we will use the following properties of cross rules
(see Fig. 4): i) at any level, a vertex of a [hyper-rectangle
associated to a] cross rule must correspond to a vertex of a rule
in H, and ii) a vertex of a rule inH can correspond to at most
one vertex of a cross rule at each level. Remembering that a
hyper-rectangle ind−dimensions has2d vertices, we can have
at mostn2d active regions (i.e. those for which a recursive
decomposition is required) at each level in thed−dimensional
data structures.

We are now ready to complete the proof for the cased = 1,
d = 2 and then for the generic case.

One-dimensional case: here there are no fallback sets, so the
data structure is ak−ary tree with at mostlogk |U | levels.
Query time. At each level of the tree the algorithm takes
constant time, so the query time isO(logk |U |).
Storage. The main tree has at most2n active nodes per level,
each requiringO(k) storage. The total storage then becomes
O(nk logk |U |).

This is essentially the starting static1−dimensional result
in [7] which we restate in a different language so to make
clearer the line of reasoning leading to the multi-dimensional
extensions.

Bi-dimensional case: (this case is only discussed for ease of
visualization, as it is already covered in the general case) here
there are two fallback sets per region.
Query time. At each level of the tree the algorithm takes con-
stant time to locateyi, plus it must compute twoO(logk |U |)
queries on the fallback data structures. The total query time
over thelogk |U | levels then becomesO(log2

k |U |).
Storage. The main tree has at most4n active nodes at each
level, each requiringO(k2) storage. So the main tree, without
the fallback data structures, requiresO(nk2 logk |U |) storage.

Consider now all active nodes at levell − 1, and let us
estimate the total size of a fallback set on one dimension at
level l. A single input hyper-rectangleh at x = parent(y)
contributes to at most2k fallback sets on one dimension

among all nodes that are children ofx. Moreover, at level
l − 1, h appears only4 times since vertices are partitioned.
Denoting withmi the cardinality of the fallback set of nodei
at levell, we have that for everyi, mi < n, moreover summing
on levell,

∑
i mi ≤ 8kn. All auxiliary data structures at level

l cost order of:

∑

i

mik logk |U | ≤ 8k2n logk |U |.

Summing over all levels we have that the total size of all
auxiliary data structures isO(nk2 log2

k |U |). So the overall
storage isO(nk2 log2

k |U |).

General case:the argument is inductive on the dimension. We
assume that the(d − 1)−dimensional structure uses storage
O(nkf(d−1)g(d − 1) logd−1

k |U |) to answer queries in time
O(h(d − 1) logd−1

k |U |), and we use that to prove the same
bounds for thed-dimensional structure. The definition of
f(), g(), andh() will be a result of the analysis.
Query time. At each level of the tree the algorithm takesO(d)
(i.e. constant) time, plusd queries on the(d−1)−dimensional
fallback structures, each requiringO(h(d − 1) logd−1

k |U |)
time. The total query time is then

logk |U | × d×O(h(d− 1) logd−1
k |U |) = O(h(d) logd

k |U |)
when we define recursivelyh(1) = 1, h(d) = dh(d−1). Thus
we geth(d) = d!.
Storage. We have at most2dn active nodes at each level, each
requiring O(kd) storage, for a total size of the main tree of
O(nkd logk |U |).

Consider now all active nodes at levell − 1, and let us
estimate the the total size of the input sets at levell. A single
input hyper-rectangleh at x = parent(y) contributes to at
most 2dkd−1 sets among all nodes that are children ofx.
Moreover, at levell−1, h appears only2d times since vertices
are partitioned. Denoting withmi the cardinality of the input
sets of nodei at level l we have that, for everyi, mi < n.
Summing on levell:

∑
i mi ≤ 2d+1dkd−1n. All auxiliary data

structures at levell cost order of:

∑

i

mik
f(d−1)g(d− 1) logd−1

k |U | ≤

≤ 2d+1dkd−1nkf(d−1)g(d− 1) logd−1
k |U |

Now defining f recursively asf(1) = 1, f(d) = f(d −
1) + d − 1, and g(1) = 1, g(d) = d2d+1g(d − 1) we have
a bound:O(nkf(d)g(d) logd−1

k |U |). Summing over all levels
we have that the total size of all auxiliary data structures is:
O(nkf(d)g(d) logd

k |U |).
Asymptotically f(d) = O(d2) and g(d) = O(d!2O(d2)).

However, we would like to point out that the factorg(d),
depending only ond, should not be considered as predicting
actual behavior on actual data, since the worst case situation
it is based on is rather extreme for the target applications.

2) How to reach constant query time:Now, considering
constants terms depending only ond, and choosingk =
nε/f(d), for a small valueε > 0 and using the additional
assumptionn > |U |1/C , which is justified in practice, we
have the following corollary:

Corollary 1: For an integerw, let U = [0, .., 2w − 1] be
the set of binary numbers ofw bits. Let H be a set ofn
hyper-rectangles inUd, andn ≥ |U |1/C . We can build a data
structureD(H) using storageO(n1+ε) answering max priority
queries in timeO(1).
The constants hidden in the big-Oh notation depend ond, ε
andC, but not onw andn.

IV. EXPERIMENTAL RESULTS AND COMPARISON WITH

OTHER SCHEMES

The theoretical analysis of the previous section only tells
us that we can achieve constant query time with slightly
superlinear storage.

The purpose of this section is to investigate, through sim-
ulation, what are the constants involved in theO() notation
for both query and storage, for some representative rulesets,
and to compare the performance of our scheme with other
significant proposals in the literature.

A. Selected algorithms

For our tests, we have compared G-filter with 3 other
algorithms, which are thought to be representative of the state
of the art, and already illustrated in Sec. II-B:

ABV is the algorithm proposed in [13]. We used the
code from the authors of the algorithm to run the
experiments on our rulesets.

RFC is a heuristic approach proposed in [15]. Once again,
we used the code supplied by the authors of the
algorithm to run the experiments on our rulesets.

FIS tree is a geometric approach proposed in [1]. Be-
cause neither the code nor the rulesets used for the
experiments were made available by the authors,
we have implemented the algorithm ourselves, and
validated our implementation against the published
results using synthetic rulesets (see Sec. IV-C) with
the same features.
Table I compares the memory and time performance
of our implementation with the one in [1] on rulesets
of the same size. The results are reasonably close.
Therefore we consider our code as a valid imple-
mentation of the FIS tree algorithm.

Note that while G-Filter has good scalability properties with
the number of dimensions and ruleset sizes, this is not the
case for some of the other algorithms we compare it to. As a
consequence, in this paper we limited our experiments to the
2−dimensional case. Furthermore, our focus was on storage
and time used at query time, so we did not investigate the cost
of the rule preprocessing phase to compute the data structures
used at query time.

Finally, some of the algorithms have some tunable param-
eters resulting in different storage-time tradeoffs. When this

TABLE I

COMPARISON FOR LARGE DATA-SET. ABOVE: OUR FIS CODE, BELOW:

ORIGINAL FIS DATA . mf IS THE MEMORY FACTOR, tm IS THE NUMBER OF

ACCESSES IN THE WORST CASE, Ielem IS THE NUMBER OF ELEMENTARY

INTERVALS.

Rules 2 levels 3 levels

×1000 mf tm Ielem mf tm

34 4.9 12 0.16 4.8 11

2.8 13 0.11 2.7 14

67 4.5 11 0.31 4.1 12

4.2 14 0.31 3.8 15

78 4.4 13 0.36 3.9 15

4.1 13 0.30 3.1 16

135 4.2 12 0.61 3.8 14

6.9 16 0.72 4.3 17

149 4.3 12 0.69 3.3 15

4.7 14 0.64 3.5 16

150 4.1 14 0.69 3.3 15

4.2 16 0.67 3.7 17

200 3.5 14 0.90 3.0 17

2.9 15 0.62 2.6 18

212 4.0 16 0.92 3.1 15

4.4 16 0.92 3.6 21

460 4.5 13 1.97 3.1 17

4.1 15 1.84 3.5 18

540 3.0 16 2.26 2.6 19

3.6 16 1.86 2.9 20

1090 2.3 18 4.36 1.9 21

4.0 16 4.36 3.2 21

1150 2.6 17 4.54 5.0 16

5.2 16 4.94 3.6 18

1180 6.2 14 4.72 4.8 17

6.2 16 5.86 4.1 18

1310 5.4 15 5.18 1.8 22

4.6 17 5.70 3.6 22

was the case, we have tried a number of different values, but
we omit in our graphs and tables thedominatedpoints, i.e.
those for which both space and time are worse than for some
other experiment.

B. Metrics

The two main metrics we computed are the storage used
by the data structures, and theworst caseclassification time.
Storage is simply expressed as the occupation, in bytes, of the
data structures used by the classification algorithm.

The time metric requires a more detailed discussion. In
all the algorithms we compare the classification reduces to
a navigation on a linked data structure or searches in a hash
table. So the classification time is essentially dominated by
the number and type of memory accesses. As a consequence,
rather than measuring times, we express the classification
performance in terms of theworst casenumber of memory
accesses.

Especially for large data structures, or for software based
implementations, one can reasonably assume that if the algo-
rithm accesses a small number of adjacent memory location,

the access time is dominated by the latency of the first access
(e.g. to start a burst transfer from a DRAM, or fill a cache
line) and the remaining accesses (within the size of a cache
line) come at almost no cost. This assumption is made by
several authors (e.g. [1]) in evaluating the performance of their
schemes.

Then, to make a fair comparison of the results, we count
the number of accesses in two ways: one is the number
of 32-bit words accessed by the classification algorithm, the
other is the number of “cache line” accesses, where we count
multiple accesses to the same 32-byte cache line as a single
memory access. Although there are more characteristics of
the access pattern that influence performance (e.g. whether
accesses can be pipelined or parallelised, etc.), these two
numbers give reasonable bounds for the performance of the
various algorithms.

1) Determining the worst-case number of accesses:Count-
ing the worst-case number of memory access is relatively
simple in RFC (where it is a structural parameter set at build
time), and ABV (where it corresponds to the longest paths in
the tries, and can be derived via static analysis).

The task is slightly harder for FIS Tree, and especially for
G-filter where at each level we need to perform recursive
queries on the fallback data structures. Just summing the max
number of accesses at all levels and for all fallback structures
would yield too pessimistic results, as it would not take into
account the correlations between the search paths of a single
query. Thus we resort to a more refined methodology, which
consists in identifying, for each algorithm, a setS of ”repre-
sentative queries” for a given data structure, with the property
that all combinatorially different queries are represented in
S. Determining the worst case number of accesses requires:
executing those queries, measuring the number of memory
accesses, and returning the largest value.

In the 2-dimensional version of the G-filter data structure,
we have a collection of 2D grids (the search space partitioning)
and a collection of input rectangles. We compute all inter-
section points of all the grids with the boundaries of all the
rectangles, all vertices of the grids, and all intersections of
the boundaries of two input rectangles. This constitutes the
representative set of queriesS for G-filter. To prove it we use
a continuity argument: consider a generic 2D query pointq and
move it without crossing any grid line or any rule boundary
until it touches two lines. During such move the combinatorial
path of the nodes of the data structure visited for solving the
query do not change and the final position of the query is one
of the points inS. Note thatS depends both on the ruleset
and on the specific data structure.

For the FIS tree the set of representative queriesS is given
by simply extending the sides of all rectangular rules into full
lines and taking the intersections of pairs of such lines.

C. Rulesets

We have conducted our experiments with two types of
rulesets: small rulesets and large rulesets.

 0

 8

 16

 24

 32

 0 8 16 24 32

M
as

k
le

ng
th

 fo
r

de
st

in
at

io
n

Mask length for source

Fig. 5. Prefix length distribution (log scale).

Small rulesets are derived from actual firewall rulesets
deployed by organizations of moderate size. They are typically
constructed by hand, with an original size of 50-100 of
rules (which expand to a few hundreds in the goto-less rule
format supported by the classifiers in the literature). These
rulesets include a large number of rules with wildcards on
one dimension, which are commonly used to allow or deny
all access to specific machines or subnets, irrespective of the
other endpoint of the communication.

Large rulesets are instead meant to be representative of the
classifiers installed in large ISP routers, and the goal is to
evaluate the performance of the algorithm when dealing with
up to a million rules. Clearly, such large rulesets cannot be
constructed by hand, so we synthesized them using a technique
similar to the one used in [1], which is meant to resemble the
structure of a ruleset used for flow classification. This approach
was also necessary to validate our implementation against the
published results for the FIS tree, for which neither the code
nor the experimental rulesets were available.

The approach used to generate a large (up to106 and more
rules) ruleset is to create rules with source and destination
ranges corresponding to prefixes taken from a large routing
table (in our case a 74k snapshot of MAE West). In addition
to this table, the ruleset generator takes as input the desired
ruleset size, and a histogram of the source and destination
prefix length distribution, similar to the one shown in Fig. 5
(which in turn resembles the one used in [1]). As a result of
this process, we have generated rulesets that range from a few
thousands to over a million rules used in our experiments.

D. Parameter tuning

The setting of the various tunable parameters in the exper-
iments is the following.

For RFC we set the number of hash table accesses to 7, and
the maximum size of the hash table to 20M-entries.

ABV has no tunable parameters.
FIS Tree can be used with a variable height of the FIS tree

itself (a larger value saves memory but increases the number

of memory accesses), and different algorithms to solve the
range-lookup problem on each dimension. For the latter, our
implementation can use a variety of search trees, some with a
fixed branching factor, some with a different branching factor
at each node. We have run a number of simulations, with the
best results achieved using a FIS tree of depth 2 or 3, variable
branching factor on the range lookup for the first dimension,
and fixed branching on the second dimension.

In G-filter, we can configure the numberm of partitions
of each region, depending on the level and the number of
dimensions, and the thresholdt below which we store rules
into arrays instead of performing the recursive partitioning. In
all experiments, we usem = 8d for all levels after the first
one. Unless otherwise specified, the first level is partitioned in
m = 10242 regions, and the threshold for the use of arrays is
t = 13 memory words.

E. Experimental results

The most significant experiments for all algorithms and
data sets are summarised in Table II. The two small rulesets,
derived from real firewall rulesets, are calledjuniper and ipfw
with 210 and 238 rules, respectively. For the large rulesets,
we have produced synthetic ruleset ranging from 34k to
1.3 million rules.

Small Rulesets:As it can be seen, for small rulesets RFC is
the fastest algorithm (but with a warning – we only count the
number of hash table accesses – the actual number of memory
accesses might be larger if memory fills up), but it uses 5-10
times more memory than the other algorithms. For such small
rulesets the memory overhead is not worrysome, though.

FIS and G-filter are on similar performance levels, in terms
of both on memory usage and cache-line accesses (which is
reasonably proportional to the actual memory access time). If
we count the actual number of memory words accessed, G-
filter appears to be worse, but this is an artifact of the use of
arrays, widely used for small rulesets, and where each rule
uses 2 or 3 words.

ABV tends to be largely worse than the others if we count
cache-line accesses, mostly because the 1-bit tries used by the
original implementation tend to be deep and make poor use of
memory locality. The use of some kind of level-compressed
tries might reduce the number of accesses to smaller values.

Large Rulesets:As the ruleset size increases, RFC and ABV
start showing their severe scalability problems. In particular,
RFC could not complete the data structure construction phase
for any of the larger rulesets. In fact, already with a 4k ruleset,
it starts using over 20MB of memory.

ABV shows a memory usage explosion already with the
34k ruleset, due to the need to store large lists of rules, not
easy to compress, for each node of the tries.

FIS and G-filter are the only two algorithms that can cope
with very large rulesets, while still using a reasonable amount
of memory (30-40 bytes per rule in the best cases) and with
rather interesting performance in terms of classification times.
From our experiments, G-filter consistently and significantly
outperforms FIS tree, by up to a factor of 2, whether we

TABLE II

SUMMARY OF EXPERIMENTAL RESULTS FOR DIFFERENT ALGORITHMS,

RULESET SIZES AND PARAMETERS.

Ruleset Alg. Mem. Cache Word Notes

(size) usage acc. acc.

juniper RFC 320K 7* 7* hash lookups

(210) ABV 68K 66 67

FIS 21K 14 23 3-deep tree

FIS 29K 12 21 2-deep tree

G-filter 16K 11 44

ipfw RFC 320K 7* 7* hash lookups

(238) ABV 51K 66 67

FIS 23K 22 31 3-deep tree

FIS 30K 20 29 2-deep tree

G-filter 31K 17 63

synth. RFC – – —

(34K) ABV 300M 66 99

FIS 2.2M 13 22 3-deep tree

FIS 2.6M 10 16 2-deep tree

G-filter 1.1M 5 42 m=256x256

G-filter 5.0M 3 18 t=5

synth. RFC – – —

(78K) ABV 1015M 67 142

FIS 4.5M 15 24 3-deep tree

FIS 6.4M 11 19 2-deep tree

G-filter 2.2M 10 48 m=32x32

G-filter 2.3M 6 42 m=256x256

G-filter 67.8M 3 18 m=4Kx4K, t=5

synth. RFC – – —

(200K) ABV – – —

FIS 9.5M 17 26 3-deep tree

FIS 13.9M 12 21 2-deep tree

G-filter 5.9M 10 51 m=32x32

G-filter 9.4M 7 43

synth. RFC – – —

(540K) ABV – – —

FIS 20.5M 20 29 3-deep tree

FIS 53.0M 13 22 2-deep tree

G-filter 15.8M 12 55 m=8x8

synth. RFC – – —

(1.3M) ABV – – —

FIS 44.3M 22 31 3-deep tree

FIS 103.8M 14 23 2-deep tree

G-filter 29.4M 12 66

G-filter 90.6M 8 42 m=4Kx4K

optimize the parameters for memory usage or for cache-line
accesses.

To further extend the results in the Table, Figures 6, 7 and 8
show the space-time performance of FIS tree and G-filter for
different values of the tunable parameters on the 78K, 540K
and 1310K rulesets. As it can be seen, both algorithms can
implement different space-time tradeoffs, but in general, the
G-filter performance is always clearly better than the one of
FIS Tree.

V. CONCLUSIONS AND FUTURE WORK

We have presented a geometry-based algorithm for packet
classification ond−dimensions that is suitable for large rule-

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70

C
a

c
h

e
−

lin
e

 a
c
c
e

s
s
e

s

Storage MB

Storage / time − G−filter VS FIS tree − dataset 78k

G−filter

FIS tree

Fig. 6. G-filter VS FIS tree - ruleset 78k

 0

 5

 10

 15

 20

10 20 30 40 50 60 70 80 90

C
a
c
h
e
−

lin
e
 a

c
c
e
s
s
e
s

Storage MB

Storage / time − G−filter VS FIS tree − dataset 540k

G−filter

FIS tree

Fig. 7. G-filter VS FIS tree - ruleset 540k

sets, but has reasonably good performance also on very small
rulesets. On large rulesets, G-filter clearly outperforms the best
proposal in the literature (FIS tree). Furthermore, its suitability
to more than 2-dimension filtering makes it an interesting and
practical candidate to the building of larged−dimensional
packet classifiers.

The experiments presented in this paper are focused on
2-dimensional filters in order to compare G-filter with other
approaches proposed in the literature. In the future we plan to
run extensive experiments on the behaviour of our algorithm
on large multi-dimensional rulesets.

REFERENCES

[1] A. Feldmann and S. Muthukrishnan, “Tradeoffs for packet
classification,” in INFOCOM (3), 2000, pp. 1193–1202. [Online].

 0

 5

 10

 15

 20

 25

20 30 40 50 60 70 80 90 110100

C
a
c
h
e
−

lin
e
 a

c
c
e
s
s
e
s

Storage MB

Storage / time − G−filter VS FIS tree − dataset 1310k

G−filter
FIS tree

Fig. 8. G-filter VS FIS tree - ruleset 1310k

Available: citeseer.ist.psu.edu/article/feldmann00tradeoffs.html
[2] L. Rizzo, “ipfw2 manual page,” http://www.freebsd.org/cgi/man.cgi?query=ipfw.
[3] D. Reed, “Ipfilter web page,” http://www.phildev.net/ipf/.
[4] D. Hartmeier, M. Franzen, C. Berger, R. McBride, and C. E. Acar, “Pf:

The openbsd packet filter,” http://openbsd.org/faq/pf/.
[5] G. A. Held, “Working with cisco access lists,”Int. J. Netw. Manag.,

vol. 9, no. 3, pp. 151–154, 1999.
[6] “Juniper firewall filter configuration,” http://www.juniper.net/.
[7] D. Eppstein and S. Muthukrishnan, “Internet packet fileter management

and rectangle geometry,” inProceedings of the 12th Annual Symposium
on Discrete Algorithms. New York, NY, USA: ACM Press, Jan. 2001,
pp. 827–835.

[8] M. Pellegrini, “Fast internet packet filtering on any number of attributes
via multi-dimensional point stabbing,” IIT-CNR, Istituto di Informatica
e Telematica del CNR, Tech. Rep., 2001. [Online]. Available:
http://www.imc.pi.cnr.it/ pellegrini/papiri/tr-hyperboxstabbing.ps

[9] C. Matsumoto, “Cam vendors consider algorithmic alternatives,” in
EETimes, May 2002.

[10] F. Baboescu, S. Singh, and G. Varghese, “Packet classification for core
routers: Is there an alternative to cams?” inINFOCOM, 2003. [Online].
Available: citeseer.ist.psu.edu/baboescu03packet.html

[11] P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” inProc. Hot Interconnects VII, 2000, pp. 34–41.
[Online]. Available: computer.org/micro/mi2000/m1034abs.htm

[12] L. Qiu, G. Varghese, and S. Suri, “Fast firewall implementations for
software-based and hardware-based routers,” inProceedings of the
2001 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems. ACM Press, 2001, pp. 344–345.

[13] F. Baboescu and G. Varghese, “Scalable packet classification,” inPro-
ceedings of INFOCOM 2001. ACM Press, 2001, pp. 199–210.

[14] P. Gupta and N. McKeown, “Packet classification on multiple fields,” in
Proceedings of INFOCOM 1999. ACM Press, 1999, pp. 147–160.

[15] ——, “Algorithms for packet classification,” inIEEE Network,
2001, pp. 24–32, vol: 15:2, 2001. [Online]. Available:
citeseer.ist.psu.edu/gupta01algorithms.html

	cover10.pdf
	Consiglio Nazionale delle Ricerche
	Iit

