-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by PUblication MAnagement

©

%ﬂd@'yﬁb Neviionale detle Ficerche

Packet Classification via Improved Space
Decomposition Techniques

F. Geraci, M. Pellegrini, P. Pisati, L. Rizzo

IIT TR-10/2004

Technical report

Novembre 2004

H /B

Istituto di Informatica e Telematica

https://core.ac.uk/display/37832156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Packet Classification via Improved Space
Decomposition Techniques

Filippo Geraci, Marco Pellegrini, Paolo Pisati Luigi Rizzo
Istituto di Informatica e Telematica, Dip. Ingegneria dell'Informazione
Consignlio Nazionale delle Ricerche Universita degli studi di Pisa
Pisa, Italy Pisa, Italy
Email: {filippo.geraci,marco.pellegrini,paolo.pisg@iit.cnr.it Email: rizzo@iet.unipi.it

Abstract—Packet Classification is a common task in modern and more, resulting from the number of possible paths in the
Internet routers. The goal is to classify packets into “classes” or decision tree generated by the specification of the ruleset. In
“flows” according to some ruleset that looks at multiple fields this formulation, the problem then becomes finding the region

of each packet. Differentiated actions can then be applied to the . . L . - .
traffic de%ending on the result of the classification. with highest priority to which a point belongs. Theoretical

Even though rulesets can be expressed in a relatively compactesults by [7] show how to do classification through point
way by using high level languages, the resulting decision trees canlocation for a 2-D space i®(1) time using slightly super-
partition the search space (the set of possible attribute values) in |inear storage. These results have been extended in [8] to
a ‘?IOt?“tia"yr:’eéy I%rge (10|6 and m?ﬁ) numbetr)lof regions. Jh's , handle d-dimensional rules, for any arbitrary, but constant,
calls for methods that scale to such large problem sizes, thoug : .
the only scalable proposal in the literature so far is the one based value Of_d' BUt proba_bly more |mport§mt than the asymp_totlc
on a Fat Inverted Segment Tree [1]. complexity, in a practical implementation, the constants hidden

In this paper we propose a new geometric technique calleG- in the O() notation become of fundamental importance.
filter for packet classification ond dimensions. G-filter is based The contribution of this paper is a novel geometric algo-
on an improved space decomposition technique. In addition to jthm called G-filter, for multidimensional packet classifica-

a theoretical analysis showing that classification in G-filter has . . : P
O(1) time complexity and slightly super-linear space in the tion. By theoretical analysis we show that G-filter hagl)

number of rules, we provide thorough experiments showing that classification time and slightly superlinear space in the number
the constants involved are extremely small on a wide range of Of rules. More interestingly from a practical point of view,
problem sizes, and that G-filter improve the best results in the through extensive simulations on datasets with different prop-
literature for large problem sizes, and is competitive for small grties we show that G-filter outperforms the best published
sizes as well. results in the literature [1] on large datasets, and remains
competitive also for small datasets.

The paper is structured as follows. In Sec. Il we formalize
The problem of packet classification has received mughe problem of packet classification. In Sec. 1I-A we briefly
attention in recent years, due to its widespread applicatidiscuss filter specification languages. Sec. II-B presents the
to different types of network equipment. In a nutshell, thenost relevant related work. Section 1l presents the G-filter

problem is to classify packets into “classes” or “flowsalgorithm, followed in Sec. llI-C by a theoretical analysis of
(depending on the granularity) by looking at one or mores worst case performance. Sec. IV shows, through simulation,
packet attributes. This is normally done by routers (doingat G-filter is practical and improves other proposals in the
a next-hop lookup), firewalls (filtering traffic), shapers antiterature.
policers (to enforce traffic limitations), NAT boxes, and queue
management systems. Il. PROBLEM DEFINITION AND RELATED WORK
The classification is done according toraleset which We can state the packet classification problem as follows:
can be specified in different languages|[2], [3], [4], [5], [6]given a packey (the “query point” in our representation of the
as shown in Section II-A. Because classification is dorm@oblem) made of a set of attributes, ..q; (eachq; mapped
for many different purposes, and on different sets of packet an integer in the rang& = [0...2* — 1]), and a setH
attributes, it is unclear that any single approach can suit all rules specifying a partition of the attribute spadé into
purposes. Sec. |I-B, shows some of the solutions proposediifferent regions (classes), we want to associate the packet to a
the literature, with different areas of applicability. classdepending on the value of its attributes. Typical attributes
One possible approach is to map the problem into a gean be source and destination addresses, protocol type, port
ometric point location problem in a multi-dimensional spac&wumbers (together, these attributes are called the “5-tuple”),
The space is partitioned into a number of possibly overlappipgotocol flags, and possibly other attributes such as packet size
regions, each associated with an integer indicating its priorignd even meta-attributes (e.g. source or destination interface,
The number of regions can become very large, upl@ etc.).

I. INTRODUCTION

The classification result is typically associated to the actidh Related work

to be performed on the packet. For a firewall, it could be The packet classification problem has been extensively
as simple as accept or deny a packet; for a more compl§ydied recently. The naive approach to packet classification
system, the classification result might be used to aggregate {he; scan sequentially the rule list until a match is found. The
packet into logicaflows(to be passed to separate queues, or Bga|ability of this solution is generally poor, as the search time
subject to shaping or policing) or simply to collect statisticsis proportional to the length of the longest path in the rule list.

The main solutions to improve the search times use various
combinations of one or more of the following: (a) hardware-

The ruleset that partitions the attribute space into classes @ai3ed solutions [9], (b) specialized data structures [10], (c)
be specified in different ways. A common approach is to usey@ometry-based algorithms [7], and (d) heuristics [11].
sequential list of: rulesof the form< class, ry,ra, ..., 74 > Hardware-based solutions using CAMs can be used to
where ry,...,rq are ranges specifying hyper-rectangular exploit the parallelism in the hardware to look up multiple
region in the attribute space, amtnss is the result of the rules in parallel. They are limited to small rulesets because
classification. The classifier will scan the list, in textual ordesf cost, power and size limitations of CAMs. Other hardware
against incoming packets stopping the search at the first rilgsed solutions are described in [12], but still limited to a
whose region contains the packet’s attributes. This is tkenall number of rules.
approach used by Cisco’s ACLs [5], and in the basic format If the rulesets language allows jumps, one can structure the
of Juniper [6] or ipfw [2] rules. Basic ipfilter [3] rules areruleset as a trie, with a classification tini§ B) where B is
similar, but there the search always continues to thé and the total number of bits on all dimensions. This value can still
the classifier returns the last matching rule. be exceedingly large (e.g. for the 5-tuple in IP&,= 104,

The fixed rule search ordering is equivalent to associatisgd this motivates the research on algorithms that have lower
a priority field to each rule; this formulation of the rulesetomplexity with typical rulesets.
makes it possible to approach the problem with more efficientAggregated Bit Vector(ABV)[13] solves the problem with
algorithms than the linear scan of the ruleset, which®&s) d independent lookups on one dimension, followed by a
time complexity. combining phase. For each dimension, a lookup is done using

In practice, however, ruleset specification languages tendaotrie, and returning a list of all matching rules on that
be a lot more complex than the simple list of rules describeimensions. The final result is then computed by finding the
above. rule with highest priority which is present in all lists. Because

First, we could have negations on the ranges of some or tle amount of memory consumed for storing the lists can be
the attributes (e.gsrc-port 0-1023 not dst-port extremely large, ABV devotes a lot of effort in reducing the
0-1023). Some techniques can easily deal with negationgiemory overhead, by representing the list using a compressed
other may not, or will suffer a severe space overhead. bit vector.

Second, some classifiers (e.g. those used in stateful fitgafortunately, just navigating the tries still requir€y B)
walls) can generate or remove rules dynamically. Fortunatélyne, and the compression of the rule lists is not as effective
these tend to have a uniform format (e.g. because they assone would like.
generated from a specific template) and so they can be dealf geometry-based algorithm was proposed by Feldmann
with separately from the static part of the ruleset. et al. [1], introducing a data structure called FIS Tree (Fat

Finally, the independent rules described so far tend to bwerted Segment Tree). Here, the problem is approached one
very redundant — e.g. many rules will use the same proto(ﬂjmension at a time. FIS partitions the first dimension with
and port ranges, and differentiate on other attributes. the endpoints of the projection of the rules on that dimension.

If rulesets are generated manually (as it is often the case)Efch of the segments is then partitioned, according to the
is extremely convenient to use a structured ruleset specificati@maining dimensions of the rules covering each segment,
language, which allows partial evaluation of the attributes t6t0 a number of ad — 1)—dimensional regions. These can
be performed. This is supported e.g. by Juniper [6] or ipfw [4e looked up using dd — 1)—dimensional version of the
rules, where after a match the classification may continue Bigorithm.
jumping to a different point in the ruleset (e.g. in ipfw syntax]0 avoid anO(N?) explosion of the storage requirements, the
skipto 1000 proto tcp src-port 80). d—1 dimensional regions are linked in a Fat Inverted Segment

It is still possible to transform a structured ruleset into aree EIS tree which gives the name to the algorithm) of
flat one (where rules can be evaluated independently), butogunded depth, and the common partitions of the regions are
the price of a (possibly large) increase in the ruleset size. ®Hshed up in the FIS tree. So, the-1)—dimensional lookup
the other hand, this transformation can be worthwhile asi repeated (but only a bounded number of times) on each of
can open the way to the use of more efficient classificatidfe nodes of the FIS tree from the leaf to the root.
algorithms. So this calls for packet classification algorithmE date, FIS tree is the algorithm that scales best with the

that can work efficiently on very large rulesets. number of rules. o
Gupta and McKeown[14] proposed a heuristic approach

Lunless the rule contains a “quick” keyword to terminate the search ear§alled RFC (Recursive Flow Classification). The main idea is

A. Ruleset specification

that packet classification involves mappifidits in the packet AXis2

header toT" < S bits of action identifier (this is done via

a lookup table). These patrtial identifiers are then combined, a // //

and the reduction process continues until the final result is -

reached. The depth of the structure is an input parameter of the v LA /

algorithm, and influences the classification time. An advantage / d & =7 /

of RFC is that the various lookup stages can be pipelined, so c/ X i : s 1

in a hardware implementation, the classifier can have a very e t 1

high throughput. Scalability to medium or large rulesets is still

an issue though. Fig. 1. An example of the construction process in a 2-d space. For the main

regionz, ¢ € cover(z), a,b € FBy(x), e € FBa(x), d, f € cross(z).

I1l. G-FILTER Of these, for the central subregign d € cover(y), f € cross(y).

Our proposal falls in the category of geometry-based so-
lutions, and it is based on a novel recursive partitioning afhe partition reflects the relation of rules with query points
the search space which has constant depth and modest spaelonging to regione. Fig. 1 shows a 2-d example of the
overhead. relation between rules and regions.

Let U = [0...2¥ — 1] be the set of possible values of Cover rules have the property that any packetc =z
the packet's coordinates, aréf’ a d—dimensional spac&? matches all rules imover(x). The only information we need
called theuniverseand representing all possible values of theo remember from this set is the rulgz) with the highest
packets’ attributes. Given a sét of n rules, in our algorithm priority in cover(z), as this will be a potential result for the
we map rulesh € H to hyper-rectangular region8(h) =< classification.

Ri(h),...,Ra(h) >€ U, regionsz of the search space to For fallback rules, we know that if € z, then thej—th
hypercubed (z) =< I1(z),...,Is(x) >€ U?, and packets to coordinate of; is within the rangeR; (h) of all the rules in the
be classified to points q,...,qs >€ U?. The result of the setF'B;(z). Sog will match a ruleh € FB;(x) if and only if
classification is the rule with the highest priority among thodes remainingd — 1 coordinates are contained in the remaining
containing the query point. d — 1 ranges of the rule. This is equivalent to finding whether

The algorithm is made of two parts: construction of thtéhe projection ofq along axis j, P;(q) (which is contained
search data structure for a given region of the search spaoethe projectionP;(x)) matches the projectio®;(h) of the
and the actual packet classification. In the latter, once we hawe along axisj. So the problem reduces to a classification
determined that a packet belongs to a given region (initialproblem in a(d — 1)—dimensional region.
the entire universe), we use the data structure associated tBinally, for cross rules, the fact thatc = does not tell us

that region to perform the classification. anything about its possible matching with cross rules. So we
need to refine the search, and we do that by by partitioning
A. Construction of the data structure region z into m regions of uniform size and shape, and

The input for the algorithm that constructs the search dd@cursively constructing the structurB8? (y;, cross(x)). For -
structure is a region: of the search space, and a ligt(z) th_e proof of efficiency we exploit heavily the fact shown in
of rules potentially interesting the regian The output is a FI9- 4.~ o .
pointer to a data structur®@ (z, H(z)) constructed by the With this in mind, if after the rule partitioning the region

algorithm. Initially, the algorithm starts with the entire rulese}@s no cross, cover or fallback rules, then the construction is
(H(root) = H) on the entire universel (root) = U4). complete and the algorithm returns a NULL pointer. Otherwise

the algorithm creates (and returns a reference to) a root
gpodeof the data structurd(¥)(z, H(x)) with the following
information:

« a reference to rulg(x), the rule with highest priority in
cover(x);

o d references to the(d — 1)—dimensional structures
D=1 (x FB;(z)), recursively constructed for the fall-
back regions;

« m references to the (recursively constructed) structures
D (y;, cross(x)).

The first step of the algorithm is to partition ruless H(x)
in the following sets, with each rule belonging to only one s

1) if h does not intersect, it is discarded (a query point
in regionz will never match the rule);

2) otherwise, ifh covers the entire region, it becomes
part of the setover(x) of coverrules;

3) otherwise, if the projectio; (k) of h on axis; entirely
covers the projectiod; () of the regionz on the same
axis, h becomes part of the sétB,(x) of fallbackrules
on axisj (if h satisfies this property for more than one
axis, we arbitrarily pick one); 2Note that a projectiomlong axis j of a d—dimensional region produces a

4) otherwise, ruleh becomes part of the setoss(z) of (d— 1)—dimensional region with all coordinates but the one on gxihis

cross rules. which intersect: (i.e. have at least one is different from the projectioron axis j that we have used to determine if
' a rule belongs to the fallback set — in the latter, the projection produces a

vertex inz) but do not fall in any of the other Categories'l—dimensional range which corresponds to the coordinates of the object on
the setcross(x) of crossrules. axis 5.

D@ (root, H). At each node (initially the root), we perform

d recursive queries on théd — 1)—dimensional fallback
structures, one recursive query on the regigly € y;, and
return the highest priority rule among(z) and the rules
returned by thed + 1 recursive queries. In practice, the
recursive query on regiog, can be easily transformed into an
iterative one with trivial tail-recursion elimination techniques,
so it is convenient to think of the classification process as a
walk on thed—dimensional tree, visiting one node per level.

___________ C. Theoretical analysis

oo 5 In this Section we investigate the asymptotic time and space
Crossed regions complexity of our algorithm. To simplify the analysis, we have

used a single parametgrto control the splitting of the region
in the recursive construction, so all regions are always parti-
tioned intom = k% hypercubes. In an actual implementation
of the algorithm, however, one would changedepending on
“”f"”"‘”"’”””““”“““’”\ (d=1) dimensional siructures the number of rules, the number of dimensions, and the size
[0] d-imens.noae 7, of the regions, to achieve the best space/time tradeoff. In the
experimental Section we have studied 'these tradeoffs. .
I — We recall that we cast the problem in a general geometric
setting, and the problem we analyze is the following:

Given an input setH of n hyper-rectangles in

U4, build a data structureD®(U? H) to com-

pute efficiently argma,g%quriority(h) (max pri-

ority query) whereH, = {h € H|q € h}.
Fig. 3. The content of each node and its references to other nodes andl) Main result: The main theoretical result is the following
fallback data structures. Theorem:

Theorem 1:For an integerw, let U = [0,..,2* — 1] be

The construction terminates when a region has size 1, becatig set of binary numbers af bits. Let / be a set ofn

any rules intersecting such a region must be a cross rule. per-rectangles ir/* and k a parameterl < k < n.

an optimization, if the total number of fallback and cross ruléd/e can build a data structur®¥) (U, H) using storage

is smaller than some thresholdwe can avoid the recursive O(nk!(? logj |U|), answering max priority queries in time

construction and instead store the highest covering rule afdlogi |U]). The constants hidden in the big-Oh notation

the fallback/cross rules into an array. Storagewise, this 4§pend ond.

effective if t < m. In terms of classification times, should Remarks:

be reasonably small. 1) The parameters of the analysis are only the attribute size,
Note that G-filter is not restricted to hyper-rectangular rule), the decomposition parametér, and the number of rules,

We can use rules representing arbitrarily shaped regions, eterfl is considered a constant, although an arbitrary one.

non connected ones, as long as the rule classification procedfird he function f(d), which will be specified later, grows

is able to correctly process them. This is extremely useftfughly asd?/2.

in practice, as it is often the case, in a ruleset, that rules Proof: The proof is by induction on the dimensions.

have negations on individual dimensions or possibly evdie algorithm to buildD(®¥ (U, H) is the one described in

on the entire region (e.giot (src-ip 10.0.0/8 and Sec. lll, with no arrays (they do not change the asymptotic

not dst-ip 10.0.0.0/8). time-space complexity of the algorithm), and a uniform parti-
Fig. 3 gives a pictorial representation of the search ddigning of the search region im = k¢ cells at each level of

structure, showing the content of each node and its referendgorithm. Hence, from the description at the end of Sec. Il

to the fallback data structure and to nodes at the next level. We @nd remembering that in this analysisis considered a

can think of the entire data structure as a main tree with of@nstant, the storage required at each node of the data structure

node per region constituting the-dimensional data structure,iS O(k%). _ N

and references tol—1)—dimensional fallback structures from Because of the uniform decomposition of the tree, the

Fig. 2. In ak x k grid a rule can cross at mogk of the k2 regions. In
general dimension only 2dk?~1 of k¢ regions are crossed by a rule.

each node. recursion depthlg¢velg of the classification algorithm on the
- d—dimensional structure i®g,.(|U|?) = log, |U|.
B. Classification The next regiony, to visit in the d—dimensional data

As a result of the previous construction, the classificatistructure can be determined i(d) (i.e. constant) time by
can be performed as a recursive process on the data strucaanmputing the indexegq; — start(I;(x))) div k of the

among all nodes that are children of Moreover, at level

o | l : . . o
L0 ' [— 1, h appears onlyl times since vertices are partitioned.
Levl ! i ! Denoting withm; the cardinality of the fallback set of node
at levell, we have that for every; m; < n, moreover summing

Lev.2 ! (3 ’

EE‘ ‘E:‘ on levell, . m; < 8kn. All auxiliary data structures at level
Lev3 Eﬁ E [cost order of:
levs | H H

Zmiklogk. U| < 8k*nlog |U|.

Fig. 4. A one-dimensional example of the relation between cross rules and
vertices of the rules irf. The white rectangles represent the regions, at ea®umming over all levels we have that the total size of all

level, for which a certain rule (the shaded rectangle) ends up in the cross i i 2 2
There are at most 2 such regions per level26in the d—dimensional case), %‘ﬁxmary data structures i&)(nk"logj, |U]). So the overall

and fewer when one of the vertices coincides with a boundary between waorage iSO(nk2 logi ‘UD
regions.
General casethe argument is inductive on the dimension. We
assume that théd — 1)—dimensional structure uses storage
d—dimensional array where the pointer to the data structurggni/(*-Vg(d — 1)logi " |U|) to answer queries in time
are stored. O(h(d — 1)logi~* |U]), and we use that to prove the same
Finally, we will use the following properties of cross rulesounds for thed-dimensional structure. The definition of
(see Fig. 4): i) at any level, a vertex of a [hyper-rectanglg(), g(), and k() will be a result of the analysis.
associated to a] cross rule must correspond to a vertex of a rg@lgery time. At each level of the tree the algorithm takesd)
in H, and ii) a vertex of a rule it/ can correspond to at most(i.e. constant) time, plug queries on théd — 1)—dimensional
one vertex of a cross rule at each level. Remembering thafafiback structures, each requiring(h(d — 1) 10%2_1 |U)
hyper-rectangle in—dimensions hag“ vertices, we can have time. The total query time is then
at mostn2? active regions (i.e. those for which a recursive
decomposition is required) at each level in thedimensional logy, |U| x d x O(h(d — 1) log}~* |U]) = O(h(d) log}. |U)
data structures.
We are now ready to complete the proof for the cése 1,
d = 2 and then for the generic case.

when we define recursively(1) = 1, h(d) = dh(d—1). Thus
we geth(d) = d!.
Storage We have at mos2?n active nodes at each level, each

3 d s .
One-dimensional casehere there are no fallback sets, so thequInng O(k?) storage, for a total size of the main tree of

d
data structure is &—ary tree with at mostog,, |U| levels. 8(gk 1(.)(;5’“ UD- I acti d t level 1 d let
Query time. At each level of the tree the algorithm takes -onsider now afl active nodes at fev , anc 1et us
constant time, so the query time @(log, |U]). estimate the the total size of the input sets at lévél single

. : input hyper-rectanglé: at x = parent(y) contributes to at
Storage The main tree has at moat active nodes per level, most 2dk4-! sets among all nodes that are children of

each requiringD (k) storage. The tofal storage then becomq\ﬁoreover at level — 1, h appears onl2? times since vertices
O(_?r]f.lo.g’“ UD- tially the start tatic_di ional it are partitioned. Denoting wit; the cardinality of the input
IS 15 essentially he starting statie-dimensional TesUlt ¢ of node at level ! we have that, for every, m; < n.

|r|1 [7] Wtk;]lchl_we ;estate n aldlf;e_ren;[I?Eguagﬁ_ ZO to ma mming on level: ", m; < 2¢F1dk4~1n. All auxiliary data
clearer the line of reasoning leading to the multi-dimensiong]. . o< " | et cost order of-

extensions.

L fd=1) 7 d—1
Bi-dimensional case (this case is only discussed for ease of Zmlk g(d—1)logy " U] <
visualization, as it is already covered in the general case) here !
there are two fallback sets per region. _ < 2d+1dkd71nkf(d71)g(d —1) logi‘l U]
Query time. At each level of the tree the algorithm takes con-
stant time to locatey;, plus it must compute tw@(log,, |[U|) Now defining f recursively asf(1) = 1, f(d) = f(d —
queries on the fallback data structures. The total query timg+ d — 1, andg(1) = 1, g(d) = d2¢*1g(d — 1) we have

over thelog, |U| levels then become®(log? |U]). a bound:O(nkf (@ g(d)logi—" |U]). Summing over all levels
Storage The main tree has at mogt active nodes at eachwe have that the total size of all auxiliary data structures is:
level, each requiring)(k2) storage. So the main tree, withoutO(nk/(® g(d) logé |U). i

the fallback data structures, requir@$nk?log, |U|) storage. Asymptotically f(d) = O(d?) and g(d) = O(d!20(),
Consider now all active nodes at level 1, and let us However, we would like to point out that the factg(d),
estimate the total size of a fallback set on one dimensiond#pending only oni, should not be considered as predicting
level I. A single input hyper-rectanglé at x = parent(y) actual behavior on actual data, since the worst case situation
contributes to at mosRk fallback sets on one dimensionit is based on is rather extreme for the target applications.

2) How to reach constant query timeow, considering
constants terms depending only ah and choosingk =
n</f(@ for a small valuee > 0 and using the additional
assumptionn > |U|'/€, which is justified in practice, we

TABLE |
COMPARISON FOR LARGE DATASET. ABOVE: OUR FIS CODE, BELOW:
ORIGINAL FISDATA. m IS THE MEMORY FACTOR s, IS THE NUMBER OF
ACCESSES IN THE WORST CASEl /¢, IS THE NUMBER OF ELEMENTARY
INTERVALS.

have the following corollary:

Corollary 1: For an integerw, let U = [0,..,2"¥ — 1] be
the set of binary numbers af bits. Let H be a set ofn
hyper-rectangles i/?, andn > |U|'/€. We can build a data

structureD(H) using storagé (n'*¢) answering max priority o8 | 13| o011 | 27| 14
queries in timeO(1). 67 | 45| 11 | 031 | 41 | 12
The constants hidden in the big-Oh notation dependion 42 | 14| 031 38| 15
and C, but not onw andn. 78 | 44 | 13| 036 | 39 | 15
41| 13| 030 | 31| 16

IV. EXPERIMENTAL RESULTS AND COMPARISON WITH 135 | 42 | 12 061 | 38 | 14
OTHER SCHEMES 69 | 16 | 072 | 43| 17

The theoretical analysis of the previous section only tells
us that we can achieve constant query time with slightly

superlinear storage. 42| 16| o067 37| 17
The purpose of this section is to investigate, through sim- 200 | 35| 14| 090 | 30| 17
ulation, what are the constants involved in) notation 29 | 15| 062 | 26| 18
for both query and storage, for some representative rulesets, 212 | 40 | 16 | 092 | 31 | 15
and to compare the performance of our scheme with other 44 | 16| 092 | 36 | 21
significant proposals in the literature. 460 | 45 131 1971 314 17
4.1 15 1.84 35 18

A. Selected algorithms 540 | 30 | 16 | 226 | 26 | 19
For our tes’Fs, we have compared G-filter _with 3 other 1090 22 1: :iz i:z 22
algorithms, which are thought to be representative of the state 20| 16| 438 | 32| 21
of the art, and aIready illustrated in Sec. II-B: 1150 | 2.6 17 454 | 5.0 16
ABV is the algorithm proposed in [13]. We used the 52 | 16 | 494 | 36 | 18
code from the authors of the algorithm to run the 1180 | 6.2 | 14| 472)| 48 | 17

RFC

Rules 2 levels 3 levels
x 1000 my tm Teiem my tm
34 4.9 12 0.16 4.8 11

149 4.3 12 0.69 3.3 15
4.7 14 0.64 35 16
150 4.1 14 0.69 3.3 15

6.2 16 5.86 4.1 18
1310 5.4 15 5.18 18 22
4.6 17 5.70 3.6 22

experiments on our rulesets.

is a heuristic approach proposed in [15]. Once again,
we used the code supplied by the authors of the
algorithm to run the experiments on our rulesets.

FIS tree is a geometric approach proposed in [1]. Be-

cause neither the code nor the rulesets used for twas the case, we have tried a number of different values, but
experiments were made available by the authorg'e omit in our graphs and tables tld®minatedpoints, i.e.

we have implemented the algorithm ourselves, artiose for which both space and time are worse than for some
validated our implementation against the publisheether experiment.

results using synthetic rulesets (see Sec. IV-C) with .

the same features. B. Metrics

Table | compares the memory and time performance The two main metrics we computed are the storage used
of our implementation with the one in [1] on rulesetgy the data structures, and th@rst caseclassification time.

of the same size. The results are reasonably cloSorage is simply expressed as the occupation, in bytes, of the
Therefore we consider our code as a valid impletata structures used by the classification algorithm.
mentation of the FIS tree algorithm. The time metric requires a more detailed discussion. In

Note that while G-Filter has good scalability properties withll the algorithms we compare the classification reduces to

the number of dimensions and ruleset sizes, this is not thenavigation on a linked data structure or searches in a hash

case for some of the other algorithms we compare it to. Astable. So the classification time is essentially dominated by

consequence, in this paper we limited our experiments to ttiee number and type of memory accesses. As a consequence,

2—dimensional case. Furthermore, our focus was on storag¢her than measuring times, we express the classification

and time used at query time, so we did not investigate the cpsrformance in terms of thevorst casenumber of memory

of the rule preprocessing phase to compute the data structuaesesses.

used at query time. Especially for large data structures, or for software based
Finally, some of the algorithms have some tunable parammplementations, one can reasonably assume that if the algo-

eters resulting in different storage-time tradeoffs. When thikhm accesses a small number of adjacent memory location,

the access time is dominated by the latency of the first access

(e.g. to start a burst transfer from a DRAM, or fill a cache s2
line) and the remaining accesses (within the size of a cache
line) come at almost no cost. This assumption is made by

several authors (e.g. [1]) in evaluating the performance of their

schemes.

Then, to make a fair comparison of the results, we count
the number of accesses in two ways: one is the number
of 32-bit words accessed by the classification algorithm, the
other is the number of “cache line” accesses, where we count
multiple accesses to the same 32-byte cache line as a single
memory access. Although there are more characteristics of
the access pattern that influence performance (e.g. whether
accesses can be pipelined or parallelised, etc.), these two 0) 16 24 32
numbers give reasonable bounds for the performance of the Mask length for source
various algorithms.

1) Determining the worst-case number of accessasunt-
ing the worst-case number of memory access is relatively
simple in RFC (where it is a structural parameter set at build Small rulesets are derived from actual firewall rulesets
time), and ABV (where it corresponds to the longest paths Heployed by organizations of moderate size. They are typically
the tries, and can be derived via static analysis). constructed by hand, with an original size of 50-100 of

The task is slightly harder for FIS Tree, and especially foules (which expand to a few hundreds in the goto-less rule
G-filter where at each level we need to perform recursifermat supported by the classifiers in the literature). These
queries on the fallback data structures. Just summing the makesets include a large number of rules with wildcards on
number of accesses at all levels and for all fallback structurese dimension, which are commonly used to allow or deny
would yield too pessimistic results, as it would not take intall access to specific machines or subnets, irrespective of the
account the correlations between the search paths of a singtleer endpoint of the communication.
guery. Thus we resort to a more refined methodology, whichLarge rulesets are instead meant to be representative of the
consists in identifying, for each algorithm, a setof "repre- classifiers installed in large ISP routers, and the goal is to
sentative queries” for a given data structure, with the propemyaluate the performance of the algorithm when dealing with
that all combinatorially different queries are represented up to a million rules. Clearly, such large rulesets cannot be
S. Determining the worst case number of accesses requiresnstructed by hand, so we synthesized them using a technique
executing those queries, measuring the number of memaiynilar to the one used in [1], which is meant to resemble the
accesses, and returning the largest value. structure of a ruleset used for flow classification. This approach

In the 2-dimensional version of the G-filter data structureyas also necessary to validate our implementation against the
we have a collection of 2D grids (the search space partitioningblished results for the FIS tree, for which neither the code
and a collection of input rectangles. We compute all intenor the experimental rulesets were available.
section points of all the grids with the boundaries of all the The approach used to generate a large (upofoand more
rectangles, all vertices of the grids, and all intersections afles) ruleset is to create rules with source and destination
the boundaries of two input rectangles. This constitutes thenges corresponding to prefixes taken from a large routing
representative set of queriésfor G-filter. To prove it we use table (in our case a 74k snapshot of MAE West). In addition
a continuity argument: consider a generic 2D query pgantd to this table, the ruleset generator takes as input the desired
move it without crossing any grid line or any rule boundaryuleset size, and a histogram of the source and destination
until it touches two lines. During such move the combinatorigirefix length distribution, similar to the one shown in Fig. 5
path of the nodes of the data structure visited for solving tiferhich in turn resembles the one used in [1]). As a result of
guery do not change and the final position of the query is otf@s process, we have generated rulesets that range from a few
of the points inS. Note thatS depends both on the rulesethousands to over a million rules used in our experiments.
and on the specific data structure. D. Parameter tuning

For the FIS tree the set of representative quesiés given i . i
by simply extending the sides of all rectangular rules into full T1he Setting of the various tunable parameters in the exper-

lines and taking the intersections of pairs of such lines. IMents is the following.
For RFC we set the number of hash table accesses to 7, and

the maximum size of the hash table to 20M-entries.
ABV has no tunable parameters.
We have conducted our experiments with two types of FIS Tree can be used with a variable height of the FIS tree
rulesets: small rulesets and large rulesets. itself (a larger value saves memory but increases the number

24

16 [

Mask length for destination

Fig. 5. Prefix length distribution (log scale).

C. Rulesets

of memory accesses), and different algorithms to solve th TABLE I
y ! g %UMMARY OF EXPERIMENTAL RESULTS FOR DIFFERENT ALGORITHMS

range-lookup problem on each dimension. For the latter, our
implementation can use a variety of search trees, some with a
fixed branching factor, some with a different branching factor

RULESET SIZES AND PARAMETERS

at each node. We have run a number of simulations, with the | Rueset | Alo- Mem. | Cache | Word | Notes

best results achieved using a FIS tree of depth 2 or 3, variable FS'Z_E) e acc*' acf'

branching factor on the range lookup for the first dimension, J(L;Tgf ' i;\C/ eﬁgi 676 ;7 hash lookups

and fixed branching on the second dimension. IS 21K 14| 23 | 3-deeptree
In G-filter, we can configure the numbet of partitions Fis 20K 12 | 21 | 2-deeptree

of each region, depending on the level and the number of G-filter 16K 11 | 44

dimensions, and the threshotdbelow which we store rules ipfw RFC 320K 7+ | 7* | hash lookups

into arrays instead of performing the recursive partitioning. In | (238 | ABV 51K 66 | 67

all experiments, we use: = 87 for all levels after the first E:z zii 25 ;’; igzzz ::::

one. Unless otherwise specified, the first level is partitioned in Gofilter 31K 17 | 63

m = 10242 regions, and the threshold for the use of arrays is synth. | RFC . N —

t = 13 memory words. (34K) | ABV 300M 66 | 99
i FIS 2.2M 13 22 3-deep tree
E. Experimental results FIS 26M 10| 16 | 2-deeptree
The most significant experiments for all algorithms and G-filter 1.1M 5] 42 | m=256x256
data sets are summarised in Table IIl. The two small rulesets, Gfilter | 5.0M 3| 18 | &5
derived from real firewall rulesets, are callemhiper andipfw 2’;:; i;\f Lot o | 12
with 210 and 238 rules, respectively. For the large rulesets, Fis 4.5M 15 | 24 | 3-deeptree
we have produced synthetic ruleset ranging from 34k to IS 6.4M 11 | 19 | 2-deeptree
1.3 million rules. G-filter 2.2M 10 | 48 | m=32x32
Small RulesetsAs it can be seen, for small rulesets RFC is G-filter 2.3M 6 | 42 | m=256x256
the fastest algorithm (but with a warning — we only count the Ciilter | 67.8M 3| 18 | mdKxdK 155
number of hash table accesses — the actual number of memory ™" | RFC - o
. . . . (200K) | ABV - - —
accesses might be larger if memory f|IIs.up), but it uses 5-10 Fis 9.5M 17 | 26 | 3-deepree
times more memory than the other algorithms. For such small FIS 13.9M 12| 21 | 2-deeptree
rulesets the memory overhead is not worrysome, though. G-filter 5.9M 10 | 51 | m=32x32
FIS and G-filter are on similar performance levels, in terms G-filter 9.4M 7| 43
of both on memory usage and cache-line accesses (which is| synth. | RFC - -l =
reasonably proportional to the actual memory access time). If | (540K) | ABV - - =
we count the actual number of memory words accessed, G- FIS 20.5M 20| 29| 3deeptree
' .. . FIS 53.0M 13 22 2-deep tree
filter appears to be worse, but this is an artifact of the use of Giter | 15.8M 1| s5 | mess
arrays, widely used for small rulesets, and where each rule g v rrc Z S
uses 2 or 3 words. (1.3M) | ABV - - =
ABV tends to be largely worse than the others if we count FIS 44.3Mm 22 | 31 | 3-deeptree
cache-line accesses, mostly because the 1-bit tries used by the FIS 103.8M 14 | 23 | 2-deeptree
original implementation tend to be deep and make poor use of Giter | 29.4M S
G-filter 90.6M 8 42 m=4Kx4K

memory locality. The use of some kind of level-compressed
tries might reduce the number of accesses to smaller values.
Large RulesetsAs the ruleset size increases, RFC and ABV
start showing their severe scalability problems. In particulasptimize the parameters for memory usage or for cache-line
RFC could not complete the data structure construction phagzesses.
for any of the larger rulesets. In fact, already with a 4k ruleset, To further extend the results in the Table, Figures 6, 7 and 8
it starts using over 20MB of memory. show the space-time performance of FIS tree and G-filter for
ABV shows a memory usage explosion already with thdifferent values of the tunable parameters on the 78K, 540K
34k ruleset, due to the need to store large lists of rules, raid 1310K rulesets. As it can be seen, both algorithms can
easy to compress, for each node of the tries. implement different space-time tradeoffs, but in general, the
FIS and G-filter are the only two algorithms that can cop@-filter performance is always clearly better than the one of
with very large rulesets, while still using a reasonable amouRIS Tree.
of memory (30-40 bytes per rule in the best cases) and with
rather interesting performance in terms of classification times.
From our experiments, G-filter consistently and significantly We have presented a geometry-based algorithm for packet
outperforms FIS tree, by up to a factor of 2, whether welassification on/—dimensions that is suitable for large rule-

V. CONCLUSIONS AND FUTURE WORK

Storage / time — G-filter VS FIS tree — dataset 78k
16 ‘ ‘ ‘ ‘ ‘ ‘ Available: citeseer.ist.psu.edu/article/feldmannQ0tradeoffs.html
o G-filter e [2] L.Rizzo, “ipfw2 manual page,” http://www.freebsd.org/cgi/man.cgi?query=ipfw.
4 FiStree = 4 [3] D. Reed, “Ipfilter web page,” http://www.phildev.net/ipf/.
12t o i [4] D. Hartmeier, M. Franzen, C. Berger, R. McBride, and C. E. Acar, “Pf:
o The openbsd packet filter,” http://openbsd.org/faq/pf/.
10F o , [5] G. A. Held, “Working with cisco access listsfht. J. Netw. Manag.
vol. 9, no. 3, pp. 151-154, 1999.
8] [6] “Juniper firewall filter configuration,” http://www.juniper.net/.
6l o | [7] D. Eppstein and S. Muthukrishnan, “Internet packet fileter management
and rectangle geometry,” iRroceedings of the 12th Annual Symposium
4t o on Discrete Algorithms New York, NY, USA: ACM Press, Jan. 2001,
. pp. 827-835.
29 10 20 30 40 50 60 70 [8] M. Pellegrini, “Fast internet packet filtering on any number of attributes
Storage MB via multi-dimensional point stabbing,” IIT-CNR, Istituto di Informatica
e Telematica del CNR, Tech. Rep., 2001. [Online]. Available:
Fig. 6. G-filter VS FIS tree - ruleset 78k http://www.imc.pi.cnr.it/ pellegrini/papiri/tr-hyperboxstabbing.ps
[9] C. Matsumoto, “Cam vendors consider algorithmic alternatives,” in
Storage / time — Gfilter VS FIS tree — dataset 540k EETimes May 2002.
— [10] F. Baboescu, S. Singh, and G. Varghese, “Packet classification for core
20 = Fles‘{'r‘;’; g routers: Is there an alternative to cams? INFOCOM, 2003. [Online].
o Available: citeseer.ist.psu.edu/baboescu03packet.html
z [11] P. Gupta and N. McKeown, “Packet classification using hierarchical
= intelligent cuttings,” inProc. Hot Interconnects V112000, pp. 34-41.
[Online]. Available: computer.org/micro/mi2000/m1034abs.htm
, [12] L. Qiu, G. Varghese, and S. Suri, “Fast firewall implementations for
o software-based and hardware-based routers,Piaceedings of the
° . 2001 ACM SIGMETRICS international conference on Measurement and
Sk] modeling of computer systemsACM Press, 2001, pp. 344-345.
[13] F. Baboescu and G. Varghese, “Scalable packet classificatioffan
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ceedings of INFOCOM 2001 ACM Press, 2001, pp. 199-210.
10 20 30 40 50 60 70 8 90 [14] P. Gupta and N. McKeown, “Packet classification on multiple fields,” in
Storage MB Proceedings of INFOCOM 1999 ACM Press, 1999, pp. 147-160.
)) [15] ——, “Algorithms for packet classification,” inIEEE Network
Fig. 7. Gfilter VS FIS tree - ruleset 540k 2001, pp. 24-32, vol: 152, 2001. [Online]l. Available:
citeseer.ist.psu.edu/guptaOlalgorithms.html

Cache-line accesses

Cache-line accesses
XX
n]

sets, but has reasonably good performance also on very small
rulesets. On large rulesets, G-filter clearly outperforms the best
proposal in the literature (FIS tree). Furthermore, its suitability
to more than 2-dimension filtering makes it an interesting and
practical candidate to the building of large-dimensional
packet classifiers.

The experiments presented in this paper are focused on
2-dimensional filters in order to compare G-filter with other
approaches proposed in the literature. In the future we plan to
run extensive experiments on the behaviour of our algorithm
on large multi-dimensional rulesets.

REFERENCES

[1] A. Feldmann and S. Muthukrishnan, “Tradeoffs for packet
classification,” in INFOCOM (3) 2000, pp. 1193-1202. [Online].

Storage / time — G-filter VS FIS tree — dataset 1310k

25 T T T T T T T T
G-filter ®
= FIS tree @
8 20 “s i
7 o
[0}
8
© =]
_ag) 15- o o
i .
Q
5 100 1
© L]
6] .
5[1
0

20 30 40 50 60 70 80 90 100 110
Storage MB

Fig. 8. G-filter VS FIS tree - ruleset 1310k

	cover10.pdf
	Consiglio Nazionale delle Ricerche
	Iit

