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Abstract. A novel fingerprint matching algorithm is proposed in this
paper. The algorithm is based on the minutiae local structures, that
are invariant with respect to global transformations like translation and
rotation. Match algorithm has been implemented inside a smartcard over
the Java Card� platform, meeting the individual’s need for information
privacy and the overall authentication procedure security, since the card
owner biometric template never leaves the private support device and the
match is computed inside a secure environment. The main characteristic
of the algorithm is to have an asymmetric behaviour between correct
positive matches (between two same fingerprint samples) and correct
negative matches (between two different fingerprint images): in the first
case, the match procedure stops as it finds that images belong to the same
fingerprint, gaining high speed efficiency, while in the second case the
verification process lasts longer, exploring all the minutiae pairings. The
performances in terms of authentication reliability and speed have been
tested on the databases from the Fingerprint Verification Competition
2002 edition (FVC2002) by taking in account the different hardware to
run the algorithms. Moreover, our procedure has showed better reliability
results when compared on a common database with a related algorithm
developed specifically for Java Card � .
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1 Introduction

The term “biometrics” is commonly used today to refer to the authentication
of a person by analyzing thr physical characteristics (like fingerprints) or the
behavioral characteristics (like the voice or the gait).

Since these characteristics are unique to an individual, their measurement
provide a more reliable system of authentication than ID cards, keys, passwords
or other traditional systems while accessing restricted areas in office buildings
and factories, or controlling the security of computer networks, electronic com-
merce and banking transactions. The reason is that all these secret keys can



be easily stolen or cloned to steal the personal identity, or they can be even
forgotten by the owner preventing the whole identification process; biometric
characteristics are instead generally more difficult to be duplicated and they
naturally “follow” always the owner.

Most common biometric techniques are signature verification, retinal analy-
sis, facial analysis, fingerprint verification, hand geometry and voice verification.
These technologies are comparable by the aid of several indicators, like perma-
nence (measurement should be invariant with time), uniqueness (different values
for different persons), universality (everyone should have this trait), acceptability
(if people is willing to accept this technology), performance (achievable recogni-
tion accuracy and system requirements) and circumvention (how easy is to fool
the system).

Fingerprint matching is one of the most diffused biometric techniques used
in automatic personal identification because of its strong reliability and its low
implementation cost; moreover, it represents also the most mature and, con-
sequently, explored technology among the others. There are two main applica-
tions involving fingerprints: fingerprint verification and fingerprint identification.
While the goal of fingerprint verification is to verify the identity of a person, the
goal of fingerprint identification is to establish his or her identity. In the rest
of the paper we will focus our attention only on verification, since identification
cab be generally seen as a 1 to N verification.

Implementing a biometric verification inside a smart card is notoriously dif-
ficult, since the templates tend to eat-up a large part of the card’s memory,
while the biometric verification algorithms are nearly beyond the processing ca-
pabilities of standard processors. With Match On Card (MOC) technology the
fingerprint template is stored within the card, unavailable to the external ap-
plications and the outside world. In addition, the matching decision is securely
authenticated by the smartcard itself: in this way, the card has only to trust
in itself for eventually unblocking stored sensitive information, such as digital
certificates or private keys. Our fingerprint verification MOC algorithm has been
developed to work in this very strict-bounded environment.

The algorithm is based on some minutiae characteristics (ridge pattern micro-
characteristics) and more precisely on their local structure information, so there
is no need to pre-align the processing fingerprint templates, that would be a
difficult task to be implemented inside a smartcard. Moreover, it shows on the
average asymmetric execution time between correct positive match (same fin-
gerprint) and correct negative match (two different fingers), and this because
the match procedure stops immediately when few minutiae pairs result in a pos-
itive match. If this check doesn’t succeed, for example if the two fingerprints
are different or if the two acquisitions of the same finger are very disturbed, the
procedure is fully executed (lasting longer) and the match decision is taken only
at its end.

Formerly the algorithm has been written in Java� and later has been ported
on Java Card� platform; experimental results show that the performances (speed



and security) of the proposed algorithm are really good and allow the algorithm
to be used in real-time verification applications.

1.1 Paper structure

This paper is organized as follows: in Section 2 we present some general back-
ground information about fingerprints, like their use through history, their for-
mation process and uniqueness (Section 2.1), and their appearance (Section 2.2);
from 2.3 to 2.6 we respectively explore the background about systems for finger-
print automatic treatment, common fingerprint matching problems and a clas-
sification in literature about the algorithms to solve these problems, the Java
Card� platform characteristics and finally some comments about the fingerprint
matching implementation on a smartcard.

Section 3 features an overview of our fingerprint matching algorithm devel-
oped expressly for the Java Card� platform: in 3.1 we describe the information
chosen to represent and match two fingerprints, in 3.2 we describe the matching
procedure and in 3.3 we show the implementation problems and solutions.

Section 4 presents the fingerprint image databases used during the tests
(Section 4.1), the typical performance indicators for matching algorithms (Sec-
tion 4.2) and the performance evaluation of our algorithm in terms of speed and
reliability (Section 4.3).

Section 5 draws final conclusions and the intents about future works.

2 Background

2.1 Fingerprint history

Fingerprints are graphical flow-like ridge patterns present on the human tips of
fingers and they are fully formed at about seven months of fetus development.
Like physical appearance, they are a part of an individual’s phenotype: the genes
determine the pattern general characteristics, while the flow of amniotic fluids
around the fetus changes the microenvironment around the skin; the fingerprint’s
finer details are determined by this changing microenvironment [1]. This process
leads to the uniqueness of fingerprints even between homozygotic twins, and
therefore their help can be used to securely distinguish the individual identity
among others.

In history, even if thumb prints were used on clay seals in China to sign docu-
ments in 3rd century B.C., we can conveniently assume that modern fingerprint
science started in the 16th century [6–8]. English plant morphologist Nehemiah
Grew published a paper in 1684 reporting his systematic study on fingerprint
structures, which is believed to be the first scientific paper about them [2].

After him, in 1788 Mayer theorised that the arrangements of friction ridges
were unique [9].

In 1823 Purkinje proposed the first fingerprint classification [2] into nine
categories according to the global ridge configurations. He recognized the classi-
fication element of friction ridge formations but he did not associate the friction
ridges to a means of personal identification.



Later, in 1880 Henry Fauld scientifically suggested their individuality and
uniqueness [2]; few weeks after, William Herschel wrote “Skin Furrows of the
Hand” asserting he had used fingerprints officially as “sign-manuals” or signa-
tures, sanctioning the idea’s practicality [2]. In 1888 Sir Francis Galton, after
conducting extensive study, introduced the minutiae features for single finger-
print classification [2]. Sir Edward Henry, starting from Galton’s works and
consulting with him, set out to solve the problem of fingerprint classification
and them fingerprints for criminal identification (dactyloscopy) in England and
Wales in 1901. At the time, an alternative to fingerprints was the Bertillonage
system, also known as Anthropometry. Developed by Alphonse Bertillon in 1879,
Bertillonage consists of a meticulous method of measuring body parts to identify
the criminals [10].

All the classification schemes currently used by police agencies are variants
of the so-called Henry’s classification scheme. The five most common classes of
Galton-Henry classification scheme are arch, tented arch, left loop, right loop and
whorl and nearly all of the human fingerprints can fall into one of this sets based
on global ridge flow pattern (see Figure 1).

Fig. 1: Fingerprint pattern classes.
Arch (a), Tented Arch (b), Whorl (c), Left Loop (d), Right Loop (e).

New guidelines for the admission of scientific evidences were established in
1993 by the United States Federal Court ruling in Daubert vs. Merrill Pharma-



ceutical Company [13]. These rules require scientists to address the reliability
and validity of the methods used in their analysis.

The two fundamental premises on which fingerprint identification is based
are: (i) fingerprint details are permanent, and (ii) fingerprints of an individual
are unique. The validity of the first premise has been established based on the
anatomy and morphogenesis of friction ridge skin (except due to accidents such
as bruises and cuts on the finger tips). The notion of the fingerprint individuality
has been widely accepted, based on manual inspection (by experts) of millions
of fingerprints, and there are several mathematical models which describe the
probability of a same particular fingerprint configuration [3], but it still clearly
remains an empirical observation and not an established fact.

2.2 Fingerprint appearance and minutiae

The most evident structural characteristic of a fingerprint is the pattern of in-
terleaved ridges and valleys that often run in parallel. Ridges vary in width from
100 µm to 300 µm and typically the period of a ridge/valley cycle is about 500
µm. If analyzed at global level, almost all of the patterns exhibit one or more
regions characterized by distinctive shape and called singular regions; these re-
gions can be classified into three typologies according to the shape: loop, delta
and whorl are characterized respectively by shape _, ∆ and O. Particular pres-
ence of singular regions define whole fingerprint class: for example, whorl class
can be identified by two loop zones or one whorl zone and two delta regions
(see Figure 2); the natural proportion of fingerprints in classes arch, tented arch,
left loop, right loop and whorl is respectively 3.7%, 2.9%, 33.8%, 31.7% and
27.97% [11]. Furthermore there are some “ambiguous” fingerprints, whose ex-
clusive class affiliation cannot be reliably stated even by human experts.

This classification can be used to speed up the identification process by re-
ducing the number of comparisons and analyzing only fingerprints of the same
type. Automated fingerprint classification is a very difficult pattern recognition
problem due to the small inter-class variability and the large intra-class variabil-
ity among ridge patterns.

At local level, other important features called minutiae refer to the ridges
discontinuities. Minutiae are sometimes called “Galton details”, in honor of the
first person who categorized them and observed that they remain unchanged
over the individual’s entire life. Most frequently the minutiae types can be indi-
viduated by the terminations, where a ridge line ends, and bifurcations, where
a ridge bifurcates forming a “Y” (see Figure 3).

Most important minutiae characteristics are the location coordinates inside
the image, their form type (e.g. termination, bifurcation, island, etc) and the
ridge orientation (in degree) respect to the minutia point in the image.

While singular regions can aid in the classification, the minutiae can be used
in fingerprint matching since they represent some of the unique details of the
ridge flow and are considered as singularity evidences. The type, direction and
location of the minutiae are also the features used in individuality studies [3].



Fig. 2: Singular regions in whorl class.
In the two whorl fingerprint images, the whorl, loop and delta regions are highlighted

respectively by a square, a triangle and a circle.

Minutiae matching is certainly the most well-known and adopted method for
fingerprint automated matching, thanks to its strict analogy with the way foren-
sic experts compare the fingerprints and its acceptance as a proof of identity
in courts of law in almost all the countries. For this reason, many recognition
automated systems, like FBI IAFIS [14] (Integrated Automated Fingerprint Iden-
tification System), use these details in their computation (see Section 2.3).

Although have been observed several types of different minutiae described by
their shape, like dot, island, hook, lake, ridge crossing and multiple bifurcations,
simply a coarser classification based on the ridge termination and bifurcation
can be adopted during the automated comparison.

Fig. 3: Minutiae details.
The circle highlights a ridge termination, while the square shows a bifurcation.



2.3 Automated Fingerprint Identification System (AFIS) steps

An Automated Fingerprint Identification System (AFIS) is a biometric identi-
fication methodology that uses the digital imaging technology to obtain, store,
and analyze the fingerprint data. The most “famous” of these systems, the FBI
Integrated AFIS (IAFIS) [14, 15], maintains the largest biometric database in
the world, containing the fingerprints and the corresponding criminal history
information for more than 46 million subjects [43] (one ten-print card for each).

The most important services offered by AFIS are the “enrollment”, used to
insert a new person biometric measurement inside the system database, and the
“verification”/“identification” phase, used to control the identity of a person by
the aid of previously stored enrollment information.

AFIS first step of computation is known as image acquisition: in this part
of the process, a user places his or her finger on an appropriate sensing device
like a Charge-Coupled Device (CCD) scanner, a capacitative or a ultra-sound
sensor [4], which captures the biometric raw data (live-scan fingerprint sensing).
Nowadays, most civil and criminal AFIS accept the digital images acquired by
directly sensing the finger surface with an electronic fingerprint scanner, although
is still possible to find ink-techniques where the subject’s finger is spread with
black ink and then pressed against a paper card; later the card can be digitally
scanned obtaining the final digital image to be used directly by the AFIS (off-line
fingerprint acquisition).

The second step consists in the location and determination of the unique char-
acteristics of the processed fingerprint raw image (feature extraction), like the
minutiae details; the extracted features are then used in the biometric template
creation. The template, in its generic definition, is a mathematical representation
of fingerprint “uniqueness” to be used later during the matching phase.

High reliability systems often implements some sub-modules for this phase:
in order to ensure that the performance of an automatic fingerprint verification
system will be robust, it can be helpful to incorporate a fingerprint enhancement
algorithm at the beginning of the feature extraction module [17, 19]). Moreover,
the presence of a quality checker module can later check for the enrolling tem-
plate quality, and consequently reject it if states that the template has a too low
number of distinctive characteristics, or if their quality is too bad, forcing the
user to re-enroll himself one more time; this check can be avoided during the
matching phase, which clearly needs to be quick.

Enrollment phase ends with this second step and, in this way, the assured
individual identity is assigned to the extracted template, which is then stored in
the memory of the chosen storage device, like a smartcard, a central database,
or within the fingerprint scanner itself.

The template acquired during enrollment is defined as the “reference tem-
plate” and it is in some way associated with the system user identity, while the
template acquired for verification phase, and compared with the database stored
one, is defined as the “candidate template”.

The last step in automated systems, executed only during verification or
identification phase, is represented by template matching, discussed better in



Section 2.4. Concerning the identification service, the candidate template is typ-
ically compared with more than one reference template to assure the person
identity among others. Vice versa, during the verification service the candidate
template is compared only with that corresponding to the claimed identity.

All these steps are graphically reassumed in Figure 4.

Fig. 4: Typical AFIS architecture.
Double arrows are used only for the identification/verification phase.

2.4 Fingerprint matching problems and solutions

In an AFIS, the fingerprint verification phase needs a further step after the first
two discussed in Section 2.3: the third and final step of fingerprint recognition
is the template matching. Here is where the system will attempt to verify the
identity, by comparing the enrollment template corresponding to the claimed
identity against the verification template real-time obtained. The response of
a matcher in a fingerprint recognition system is typically a matching score s
that quantifies the similarity or the difference between candidate and reference
templates; the system decision is then regulated by applying a threshold t on
this score: for example, if s < t the fingerprints are considered as matching.
Threshold t can be also defined as the “operating point” of matching algorithm.

Matching the fingerprint templates represents an extremely difficult prob-
lem because of the variability in different impressions of the same fingers; most
important “noisy” factors introduced during image acquisition or fingerprint
feature extraction are:

– Displacement depending on the different positioning of the finger on the
acquisition sensor. It results in a global fingerprint area translation.

– Rotation depending on the different rotation in positioning the finger on the
sensor between different acquisitions. It results in a global fingerprint area
rotation.



– Partial overlap. Still because of the imperfect positioning of the fingerprint
on the sensor, a part of the fingerprint can fall outside of the acquisition area
and therefore different samples of the same finger could correspond only on
a smaller area.

– Non-linear distortions due to skin plasticity. Forces non-orthogonal to the
sensor surface can cause the finger image to be distorted in some zones: the
ridges can be stretched or compressed.

– Pressure on the sensor surface can result in a different thinning of the ridge
pattern; samples can present also different scaling factor due to the pressure.

– External factors. Other external factors, not depending from the finger po-
sitioning on the sensor surface, can be represented by skin conditions as
dryness, sweat, dirt, grease, or possible skin disease or consumption in man-
ual workers or old persons. Even the atmospheric factors, like the humidity
in the air, can negatively influence the image acquisition.

– Feature extractor errors. During the features extraction stage, the processing
software can introduce some errors by adding some “false” minutiae (not
really present in the fingerprint) or by not detecting true existing features.

Concerning about the algorithms to resolve fingerprint matching, the ap-
proaches can be classified in three main branches [4]:

Correlation-based matching: In this class, match is accomplished by super-
imposing two fingerprint images and computing the correlation between cor-
responding pixels [32, 33]; in this case the template is directly the finger
image. Some problem could derive from non-linear distortions that make the
impressions of the same finger significantly different in terms of global struc-
ture. Even the skin condition and pressure cause the image brightness and
contrast to vary across different impressions;

Minutiae-based matching: Theory behind this algorithm class is fundamen-
tally the same as for manual fingerprint examiners. Matching essentially
consists in finding the maximum number of corresponding minutiae between
the two templates (read the following discussion in this section);

Ridge feature-based matching: The approaches belonging to this family com-
pare fingerprints in terms of ridge pattern features other than the minutiae
or pixels intensity: some examples can be the shape features [31], spatial rela-
tionship and geometrical attributes of the ridge lines [30] (like the frequency
and shape), texture information [28] and sweat pores [29]. In principle, the
first two methods could be seen as subsets of this, since even the minutiae
and pixels intensity can be considered as ridge features.

The minutiae extraction can be difficult in very low-quality fingerprint images
and, in this case, other ridge features may be extracted more reliably than the
minutiae, even if their discrimination efficacy is generally lower; sweat pores are
instead very discriminatory, but require a high-resolution scanner during the
image acquisition.

The minutiae matching problem can be addressed also as a more general point
pattern matching problem, even if the presence of the ridge direction associated



with each minutia adds some information respect to this classic problem. Point
pattern matching has been extensively examined because of its importance in
many pattern recognition tasks; for example, Hough transform-based approach
are quite popular for resolving the fingerprint match: the transformation pa-
rameters space that can relate two sets of points is firstly discretized, then the
correct parameters can be derived by accumulating evidences in this space, and
finally it will be chosen the most “voted” transformation [34]. The use of an
algebraic technique for point pattern matching is instead described in [54].

Focusing only on the minutiae based algorithms, we can subdivide them
in two more classes. Global minutiae matching (example in FBI IAFIS [15])
requires a first fingerprint alignment phase that subsequently admits to match
the aligned template; the alignment can be absolute if each fingerprint is pre-
aligned independently from the others, and relative if the input fingerprint is pre-
aligned with respect to the database template to be compared together. Relative
pre-alignment is generally more effective because the features in stored template
can finely help the process; an interesting approach based on minutiae ridge
registering, that exploits ridge features for relative pre-alignment, is proposed
in [26]: the minutiae representation is converted into a symbolic string and then
the two strings are matched with a dynamic programming technique [50] finding
their edit distance, and at last comparing this distance with a threshold.

In local minutiae matching, two fingerprints are compared according to their
local minutiae structures, which are characterized by attributes invariant with
respect to global transformations as translation or rotation; it is consequently
appropriate for matching without any a priori alignment. The local matching
supplies simplicity, low computational complexity and higher distortion toler-
ance, while a global matching grants high distinctiveness. This algorithm class
typically is based on a neighboring concept, for which the local structure is rep-
resented by the nearest minutiae characteristics: some examples are in [20–22].
Other solutions are based on grouping minutiae inside a bounding box [23, 24],
or by the triangular matching proposed in [25].

Modern high-security verification applications typically adopt multimodal
biometric systems, using in addition other fingerprint features beside the classical
minutiae or even other biometric characteristics, like fingerprints from different
fingers of the same person or one fingerprint and face of the same person (chang-
ing therefore also the biometric technology). The match result is derived from
multiple sub-matcher modules working on the different biometric measurements,
like the algorithm in [27] which uses the minutiae plus the texture information:
these results are then merged in one single final decision (fusion of the matchers).

2.5 Java Card�

A smartcard [36] resembles classic a credit card in the size and the shape, but
inside may contain an embedded 8-16 bit microprocessor (microprocessor card)
under a gold contact pad on one side of the card, which grants computational
power and enforces the access to the on-card data; the smartcards with memory



only (memory card) offer simply a protection for data storing. Common smart-
cards may have up to 1kbyte of RAM, more than 64kbytes of ROM, 16-32kbytes
of programmable EEPROM and a microprocessor running at 5-10MHz; in the
ROM memory is usually masked the card operating system and other perma-
nent data, while the EEPROM can be used to store applications or personal
information on the card. The smartcard uses a serial interface and receives its
power from external sources like a card reader, more generally defined as the
“Card Acceptance Device” (CAD).

Java Card� technology [37] adapts the Java� platform for the use on smart-
cards or devices like USB tokens, whose environments are highly specialized, and
whose memory and processing constraints are typically more severe than those of
a PC. This adaptation produces a global reduction of the platform functionalities
and its result is a substantial decreasing of the expressive capacity. Java Card�

technology is described in Figure 5, which shows the different architectural layers
present on the smartcard: the native smartcard operating system supports the
entire on-card side of this technology. Each layer offers an interpretation service
to the immediately above one.

The Java Card� Runtime Environment (JCRE) specification defines the
life-cycle of the Java Card� Virtual Machine, the card application (in this tech-
nology called “applet”) life-cycle, how the applets are selected and isolated from
each other, the transactions and the object persistence and sharing. The JCRE
provides a platform-independent interface to the services presented by the card’s
operating system. It consists in the Java Card� Virtual Machine, Java Card�

API, and any vendor-specific extensions (see Figure 5).
The Java Card� Virtual Machine (JCVM) is divided in two different parts:

the on-card section interprets the bytecode and manages classes and objects,
while the on-Pc section loads, verifies and further prepares the Java� classes in
a card applet for the successive on-card execution. JCVM specification defines a
subset of the Java programming language (for example, it supports only boolean,
byte and short primitive types) and additional constraints on many program
attributes, like the maximum number of classes in a single package [37]. The
Java Card� API specification defines a small subset of the traditional Java
programming language API: for example, there is no support for String class
or for multiple threads. There are no wrapper classes like Boolean and Integer,
and no Class or System classes [37]. In addition, the Java Card � Framework
defines its own set of core classes specifically created to support the Java Card�

applications.
The JCVM’s lifetime coincides with that of the card itself: it begins some time

after the card is manufactured and before it’s issued to the cardholder; it ends
only when the card is discarded or destroyed. The JCVM does not stop when
power is removed from the card, as its state is retained in the card’s non-volatile
memory.

The Java Card� platform is a multiple-application environment, as one or
more Java Card� applets may reside on the same card. An applet behaves
as a server and it’s passive, since it works only “on-demand”. After a card is



powered up, each applet remains inactive until its selection, and at that time
the initialization may be done. The applet can be activated only when an external
message has been dispatched to it (read the following APDU description).

Applet objects are created in the EEPROM persistent memory and so their
state is saved between different CAD sessions, but it’s a thousand times slower
to write to the EEPROM than to RAM due to their different technology. Since
a garbage collector is not always available in a Java Card� implementation (it
is not mandatory in the specification), an application may never reclaim the
storage allocated to the objects that are no longer referenced and, consequently,
it’s essential to reuse the same objects during several CAD sessions, otherwise
the memory space will be sooner or later saturated.

Different applets can safely coexist in the same card, since each applet is
assigned to a particular execution context (whose boundary is called firewall)
that controls the access to its objects. Java Card� platform supports also a
secure object sharing mechanism across the firewalls.

The “Application Protocol Data Unit” (APDU) is the logical data packet
that is exchanged between the CAD and the Java Card� Framework: the Frame-
work receives and forwards to the appropriate applet any incoming command
APDU sent by the CAD, then the applet processes the command APDU and
finally returns a response APDU after having computed the result.

In conclusion, the Java Card� is an open platform that can be used to de-
velop applications on smartcards without considering the underlying proprietary
operating system or hardware. Java Card� is certainly less expressive than Java,
but it’s still a high level programming language. One drawback can be repre-
sented by the additional bytecode interpretation layer that could slow down the
computation, with respect to compiled applications.

For more exhaustive information about Java Card� see [35, 44].

2.6 Smartcards and fingerprint matching algorithms

To make the biometric verification secure, it is important to store the biometric
data in a secure way. To be able to keep the biometric information in a closed
environment, it’s essential to perform the match in the same environment where
the data is stored. One possible solution is to store the private biometric tem-
plate on a smartcard and to perform the verification algorithm directly on it; this
realizes the description of Match On Card (MOC) technology, in which security
is significantly improved respect to the Template On Card (TOC), where only
the template is saved on the card and has to be extracted every time during
the verification process, mostly executed outside in the connected PC. In MOC,
candidate template has to be sent every time to the smartcard where the card-
owner reference template is stored. The System On Card (SOC) technology, in
which the card is further enhanced with the fingerprint scanner and the fea-
ture extraction function (so achieving the best security), is still far to be easily
realized.

While TOC technology is today fully realizable since the card memory is
usually wider than a typical template space occupation (a few Kbytes), imple-



Fig. 5: Java Card� architecture.

menting a matching algorithm on it (MOC) is a difficult task due to the still
limited smartcard computational power, and since this type of computation usu-
ally demands some relatively complicated calculations. Moreover, often a smart
card realizing the MOC technology is mainly used for resource or building ac-
cess, and so the verifying procedure has to be relatively quick, avoiding in this
way to frustrate the card-owner with a long waiting.

Actually many companies announces their proprietary MOC solutions in the
smartcard market: some examples are given by smartcard issuers like Gemplus or
Schlumberger, which implement two matching algorithms on their cards, devel-
oped respectively by Veridicom and Precise Biometrics. Precise BioMatch� is an
hybrid fingerprint matching algorithm combining both the traditional minutiae
and the pattern comparison to derive the final match decision. It can be provided
as an integrated function of Java Card� operating system (native support), or
as a normal Java Card� library to be downloaded on the card; these functions
are offered with Java Card Forum� API methods (see Section 3.3). In terms of
accuracy and speed, the matching performances are told to be comparable to
those of PC-like systems [46].

Related work. Regarding scientific literature, in [47] is briefly explained a very
simple O(n2) (where n is the number of the minutiae in one single template)
matching algorithm that can be implemented inside a smart card. For a given
minutia in reference template, it finds all the minutiae in the reference template
for which the distance between position coordinates and the difference in ori-
entation angles, are below the predefined thresholds; however it considers only
the minutiae of the same type (bifurcation or termination). If more than one



minutia in the candidate template could be matched with the same reference
minutia, the conflict is resolved by choosing the geometrically nearest. Matched
minutiae are deleted from the successive comparisons.

In [48] is reported an algorithm developed for embedded devices, which usu-
ally offer greater computational resources than a traditional smartcard. Even
this algorithm is based on the minutiae local information, and more precisely
is based on the neighbor features like the distance from central minutia and
the orientation respect to the central minutia: minutiae neighborhood similarity
is computed by finding the feature distances and successively controlling them
with the aid of a delimiting bounding box; if the checks are positive, the corre-
sponding neighbors are then matched. The compared minutiae are considered as
matched if the total number of matching neighbors, in relative neighborhoods,
is above a certain predefined value. The final decision regarding the two entire
templates is taken by deriving from the number of total minutiae matched in
this way.

One specific algorithm for fingerprint matching on the Java Card� platform,
using a feature extraction environment identical to ours, is described in [51];
it uses two distinct algorithms on different feature types (hybrid matcher) like
Precise BioMatch� , and at the end the overall score is calculated as a linear
combination of the two independent sub-scores. The first algorithm is based on
the minutiae features and a graph structure is built starting from the core point
position and then visiting the neighbor minutiae; the matching procedure has
been inspired from the point-pattern matching algorithm in [52] and its purpose
is to find a spanning ordered tree touching as many nodes as possible in the two
graphs. The second algorithm is ridge feature-based and has been implemented
exactly as described in [28], by computing the euclidean distance between the
fingerprint feature vectors called “Fingercode” (the templates for this specific
situation). Performance tests have been executed on a proprietary database and
show an ERR point at 0.8%.

3 Our Matching Algorithm

3.1 Features

In our algorithm implementation, the image processing stage used to extract a
minutiae set from the fingerprint is based on the NIST Fingerprint Image Soft-
ware [5], an open source toolkit which includes the MINDTCT minutiae data
extractor (written in the C programming language) used to extract the minutiae
from a given fingerprint image. From the result of the minutiae detection step, in-
formation such as x and y coordinates, local ridge direction, type (found between
ridge ending or bifurcation classes) and reliability derived from fingerprint image
zone quality, are available for each minutia. Moreover, for every such singularity
point is returned a list of neighbor minutiae, that are the nearest minutiae to the
considered one. Also an estimation of ridge count between central and neighbor
minutiae is found. Given two points a and b, the ridge count between them is
the number of ridges intersected by the segment ab: forensic experts and latent



fingerprint examiners have often used the ridge count to increase the reliability
of their analysis [12].

We have used this information extracted by MINDTCT to derive additional
features, directly used in our fingerprint matching algorithm; these features are
calculated from each minutia in respect to its neighbors, so each neighbor is
described by the following four features graphically described in Figure 6, where
D is the segment linking central minutia A and its neighbor minutia B, θ1 and
θ2 are the minutia orientation angles and α is the angle between D and central
minutia orientation θ1:

– the euclidean distance between central minutia and its neighbor minutia
(segment D in Figure 6). In the rest of this article we will refer to this
feature as euclideanDistance.

– the angle between segment D and the central minutia ridge direction (angle
α in Figure 6); referred as distanceRelativeAngle.

– the difference angle between central minutia and neighbor ridge orientation
angle (θ1 − θ2 in Figure 6); referred as orientationDifferenceAngle.

– the ridge count between central and neighbor minutia (in the example in
Figure 6, segment D intersects only one ridge, so ridge count value is 1);
referred as ridgeCount.

Fig. 6: Features graphical description.

The selection of the neighbors number is very important for the system per-
formance in reliability terms (but even for the matching speed), and so we have
chosen to increase the maximum neighbor number to be found, from the default
MINDTCT value (5) to the new value of 8. We have also modified the MINDTCT
C source code to consider only the neighbors with a minimum reliability thresh-
old: the modified MINDTCT finds for every minutia its eight nearest neighbors
respect to the euclidean distance, with a good reliability estimation given by a
predefined threshold value. If the number of neighbors for a minutia found in



this way is low (i.e. less than 5), then the neighbors are searched again with
a lower reliability threshold (the reliability evaluation is found by MINDTCT).
We have introduced all these changes to build a good neighborhood with more
information, enough to face the possible lack of some minutiae in the template
due to a highly disturbed image or a finger misplacement on the scanner.

We have decided not to use the minutiae type information (bifurcation and
ridge ending) since sometimes MINDTCT fails to correctly identify them because
of disturbed ridge zones.

Given a minutia, the collection of all of its neighbors features describes its
neighborhood view, a sort of minutia “panorama” of its surrounding neighbor
minutiae.

3.2 Algorithm description

Our proposed matching algorithm computes how much the neighborhood of a
minutia in the candidate template is similar to the neighborhood of each minu-
tia in the reference template. When two minutiae are “enough” similar, then
they are considered as matched; the same algorithm is repeated for each candi-
date template minutia. The sum of the similarity measures obtained from the
matching minutiae pairs is computed during the process, and then the match-
ing algorithm can decide by applying a threshold on this score. Our procedure
is based on the minutiae local structures and has tolerance over translation,
rotation and small non-linear distortions.

As said before, matching on smartcard environment is bounded by the low
computational complexity due to the hardware simplicity (CPU limitations first
of all), and thus waiting for a complete minutiae match could lead to a too long
waiting time for the user. In our algorithm we solve this problem by stopping
the computation as soon as it’s possible to assert, with satisfactory confidence,
that the considered templates belong to the same fingerprint. To realize this
improvement, our algorithm stops as soon as it finds some minutiae pairs (i.e.
a number between 2 and 5) matching with a very good similarity measure, or
even promptly when only the last examined minutiae pair has a matching value
less than a very rigourous threshold; otherwise, if these two conditions are not
fulfilled, the algorithm explores all the minutiae pairings space. This relaxation
showed a very good security performance in our tests and provided evident speed
improvement in the matching decisions regarding positive matches (Section 4).
The delay for unsuccessful matches scanning all the minutiae list is not of much
interest, because it’s clearly more important to gain a high execution speed while
verifying the true card-owner identity than quickly rejecting an impostor!

As input, the matching procedure receives both the neighbor features in-
formation for the one by one candidate minutia to be matched and the entire
reference template. The algorithm scans sequentially the minutiae of the refer-
ence template until a good match for the input minutia is found (reference 1
in Fig 7). Both candidate and reference minutiae list are stored accordingly to
the increasing minutia reliability value: in this way we try to stop the procedure
more quickly by scanning a reduced portion of the template minutiae lists, since



a minutia with a high reliability in a given template, if not cut away from par-
tial overlapping (Section 2), will have probably a high reliability also in other
templates obtained from the same finger. So the stopping conditions can be met
before than in a casual disposition of the minutiae in the list. Moreover, it’s
obviously better to prematurely stop the procedure with few but “good” minu-
tiae than with low quality ones. The chosen matching minutia in the reference
template is then marked as “already matched” and it’s not considered in the
successive match iterations.

To compute the dissimilarity between two minutiae in different templates,
the algorithm uses the information about of neighbor features and executes the
following four steps (4 in Fig 7):

1. To find the difference in absolute value between corresponding features:
EdDiff =| Ed1−Ed2 |, rcDiff =| Rc1−Rc2 |, draDiff =| Dra1−Dra2 |
and odDiff =| Oda1 −Oda2 |.

2. To check that every feature difference value is below the corresponding accep-
tance threshold; if only one difference value exceeds the relative threshold,
the two neighbors cannot correspond in the two neighborhoods (edDiff
must not be greater than edDiffThr, rcDiff than rcThr, edDiff than
draThr and odDiff than odThr). The set of the four feature difference
thresholds can be globally defined as the features bounding box, which makes
the algorithm tolerant to small non-linear distortions.

3. To multiply each feature difference for the relative weight value: edWghtDiff
= edDiff ∗ edWght, rcWghDiff = rcDiff ∗ rcWght, odWghtDiff =
odDiff ∗odWght and draWghtDiff = draDiff ∗ draWght. The differ-
ent weight values are necessary to attribute more importance to the features
that match better, for example the euclidean distance. To obtain each weight
value, we have also divided for the respective feature difference bounding box
threshold, since we want these differences to be normalized and homogenous.

4. To sum together all the four weighted differences to represent the global dis-
similarity between the two neighbors: NeighDissimilarity = edWghtDiff+
rcWghtDiff + draWghtDiff + odWghtDiff .

Following these steps, the algorithm finds for the first neighbor (in the ca-
sual neighborhood order) of the reference minutia, the most similar neighbor in
the input minutia among those satisfying the bounding box checks; the most
similar is the one for which the algorithm finds the lowest NeighDissimilarity
value. The chosen most similar neighbor in the reference minutia is then marked
and not considered while matching other neighbors. The obtained NeighDissim-
ilarity value is then added to the global similarity score between the minutiae,
MinDissimilarity. The procedure is repeated exactly for all the other neighbors
(excluding the already marked ones, 3 in Fig 7) or until the required minimum
number N (i.e. 4) of neighbors is matched. At the end of the two neighborhoods
scanning (at the end of the for, 2 in Fig 7), if the procedure has found less than N
matching neighbor pairs between the two minutiae (6 in Fig 7), then these two
minutiae are not considered as matching because their neighborhoods agree on



too few evidences to be a reliable matching minutiae pair, even if the NeighDis-
similarity value is very low. At the same time, this procedure stops immediately
as we match the previous N threshold value of neighbors (5 in Fig 7), because
we have seen that stopping before the whole neighborhood scan is sufficient to
grant a good reliability and, meanwhile, the match time is considerably speeded
up.

The MinDissimilarity score between the minutiae is finally divided by the
number of matched neighbor pairs and then added to the global dissimilarity
value between the candidate and reference templates (7 in Fig 7): the TemplDis-
similarity ; the same algorithm is then executed for the next candidate template
minutia in reliability order. When all of the input minutiae have been processed,
this global TemplDissimilarity value on templates is divided by the number of
matched minutiae MinutiaeNMatched, finding in this way the mean. A compari-
son between a match threshold and this mean value can consequently be used to
decide if the two templates belong to the same fingerprint (if the mean is below
the threshold): lower TemplDissimilarity expresses more affinity.

That just explained is the full algorithm description, but as said before,
the matching procedure will probably end before the complete minutiae list of
the candidate template has been processed by the algorithm: if at the end of the
minutiae matching routine the dissimilarity value between two matched minutiae
is “very good”, that is below a tightening threshold OptValue), the counter
OptMinNumber is incremented and as soon as it reaches a predefined constant
value corresponding to the threshold OptNumberThreshold, the whole matching
procedure can be stopped with a positive result (8 in Fig 7). The algorithm can
be positively stopped also as soon as it finds only one minutiae pair with an
“exceptionally good” MinDissimilarity value below the VeryOptValue threshold
(9 in Fig 7), which is intended to be much stricter than the previous OptValue.

The described algorithm complexity is O(n2), where n is the number of the
minutiae in a single template, even if in practical case, the approach of stopping
the computation with few minutiae shows a significant speed improvement.

3.3 Algorithm implementation

The fingerprint matching algorithm described in Section 3.2 has been fully devel-
oped, debugged and tested on a PC with a Pentium4 CPU (2.66Ghz), a RAM
of 512Mb and using JDK1.4.3. Then the same algorithm has been ported on
Java Card� using the Java Card� 2.1.2 API and finally deployed on a Cy-
berflex Access 32Kb Java Card� with the Cyberflex Access SDK (version 4.3).
Chosen smartcard has 32Kbyte of EEPROM, about 1Kbyte of RAM memory
distributed between the transaction mirror, stack and transient space, 8 bit CPU
micro-controller at about 8Mhz clock frequency, supports cryptographic oper-
ations and the garbage collector is not present; the transmission protocol used
with the smartcard reader is the T=0 at 9600 bit/sec.

The algorithm has been developed by implementing the Java Card� Bio-
metric API [42] realized by Java Card Forum� [45] (JCF): this application pro-
gramming interface (approved by the Java Card Forum Biometric Task and



{MINUTIAE MATCHING PROCEDURE}

- Input:* one candidate template minutia m1;

* minutiae list of the reference template;

1 For each minutia m2 in reference template not yet matched{

2 For each neighbor n2 of minutia m2 {

- MinDiff = upperLimit;

- ChosenNbr= null;

3 For each not already matched neighbor n1 of m1 {

4 - Executes the four steps between the n1-n2

corresponding features (directly processes next n1

if the bounding box rejects the controls);

If (NeighDissimilarity < MinDiff) {

- MinDiff = NeighDissimilarity;

- ChosenNbr = n1; }

}

If (ChosenNbr != null) {

- ChosenNbr is marked as "matched";

- MinDissimilarity += MinDiff;

- number of matched neighbors NM= NM + 1; }

5 If (NM > N)

- m1 and m2 are "matched": break from this For;

}

6 If (NM < N)

- Continue with the next minutia m2

else {

7 - m1 and m2 are "matched": TemplDissimilarity+=

(MinDissimilarity \ NM);

- break from this For;

}

}

- m1_m2_MatchCost = MinDissimilarity \ NM;

If (m1 and m2 are "matched") {

- MinutiaeNMatched++;

- Mark reference minutia m2 as "matched";

8 If (m1_m2_MatchCost < VeryOptValue)

- STOP: the match is accepted;

If (m1_m2_MatchCost < OptValue)

- OptMinNumber++;

9 If (OptMinNumber == OptNumberThreshold)

- STOP: the match is accepted;

}

- Process another minutia m1 if no stopping condition

has occurred or if m1 and m2 are not "matched";

Fig. 7: Matching core function: text reference is in the first column.



the NIST Biometric Consortium Working Group) ensures the interoperability
of many biometric technologies with Java Card� and allow multiple indepen-
dent applications on a card to access the biometric functionalities (like identity
verification); this is ideal to secure digital signature, storing and updating ac-
count information, personal data (health information) and even monetary value.
Clearly, our application manages even the enrollment and match requests com-
ing from the external PC applications through several CAD sessions. The other
AFIS phases like the image manipulation and feature extraction are executed
on the PC.

We have chosen to adopt the Java Card� technology to implement our
matching algorithm since this platform offers a good security and a high-level
programming language, close to classic Java � . Benefits and drawbacks of this
platform are identical to those of its “mother technology”: high portability and
programming/developing quickness, but also a reduced execution speed due to
the additional bytecode interpretation layer.

In this case the difficulty consists not only in improving the verification time
by simplifying the algorithm steps, but even adapting the code to this very
restricted environment: for example, since the garbage collector is not present
in our smartcard, all the data structure objects have to be instantiated at the
beginning of the applet life-cycle and have to be reused every time, because
the on-card space of the dereferenced objects is lost forever and new repeated
allocations would quickly consume the entire EEPROM memory: the objects
lifetime coincides with that of the card itself and they can’t be explicitly deleted.
Moreover, when possible it’s always better to move the data memorization from
objects (stored in EEPROM) to transient space in RAM, because it’s about 1000
times faster to write in RAM than in EEPROM memory. Furthermore it has to
be remembered that the card processor supports only fixed point arithmetic
and the Java� math API are totally absent, so the possible operations are very
simple.

Aside this global simplification, the verification reliability performance has
to be kept as high as possible.

For these reasons, due to the Java Card� environment constraints we have
limited the maximum number of the minutiae (forming the card-owner reference
template) to be stored in the EEPROM: only the 20 most reliable minutiae are
stored inside the card in our implementation. We have limited also the maximum
number of the candidate template minutiae to be sent during the matching phase:
the decision is taken anyway after the 20th one is received. For the same reason of
speed improvement and memory occupation contraction, the maximum number
of neighbors per minutia has been limited to 8.

The neighbor feature values must be sampled to be then stored in the low
capacity Java Card� primitive data types like byte, preferring its use respect to
other types like short, that has a size of 16 bits instead of 8. Nearly all the feature
values have been sampled to entirely fit in the byte type, which has a maximum
value limit of 127. Features euclideanDistance, distanceRelativeAngle and ori-
entationDifferenceAngle have been normalized in order to fit in the interval [0,



127], while ridgeCount never exceeds the byte maximum value. This sampling
also prevents the feature differences sums (stored into a short) to exceed the
capacity of the Java Card� data types.

To test our algorithm (Section 4.3) we have not imposed a minimum number
for the minutiae in the templates to be matched, since we decided to have no
rejected fingerprints during the enrollment or match phases, but in the real world
applications is surely fundamental to require a minimum initial information.

We have set the VeryOptValue value to the half of the OptValue threshold,
OptNumberThreshold is set to 2 and N to 4; MinutiaeNMin threshold is instead
set to 3. These and other parameters like final threshold MT can be configured
basing on the desired speed and security performance. The configuration above
has provided the best security results for FAR100 and FAR1000 and also the
best match speed time, as described in Section 4.3.

The EEPROM allocation space to be reserved on the card for our MOC
algorithm is about 6Kbyte, while additional EEPROM memory has to be used to
store the reference template minutiae, depending from their predefined maximum
number: for a maximum of 20, the total space requested is about 10Kbyte, about
one third of the whole EEPROM memory. Every minutia is stored as a Java
Card� object.

4 Performances

4.1 Fingerprint test database

Usually the performances of fingerprint matching algorithm are tested with a
proprietary fingerprint database and most of times it’s impossible to compare
the systems results with uniform operating conditions. An algorithm can achieve
good performance for its chosen image acquisition system, and so certifying
the overall (acquisition plus matching) system performance, but it can also be
useful to test the functioning over a common reference. We have decided to use
the Finger Verification Competition 2002 [38] edition (FVC2002) fingerprint
databases, since, as we know, is the only public benchmark (aside FVC2000 [39]
and FVC2004 [40] editions of the same contest3) allowing the developers to
unambiguously compare their algorithms.

Each of the four databases is 110 fingers wide and 8 impressions per fin-
ger deep (880 fingerprints in all); the benchmark is then constituted by fingers
numbered from 1 to 100 (set A), since the fingers from 101 to 110 (set B) have
been made available to the competition participants to allow a parameter tuning
before the submission of their algorithms.

The four database images have been collected respectively using the optical
sensor “TouchView II” by Identix, optical sensor “FX2000” by Biometrika, ca-
pacitive sensor “100 SC” by Precise Biometrics and the Synthetic Fingerprint
Generator software [49] (SFINGE).

3 In our tests we have used the databases from FVC2002, since the use of FCV2004
databases has been granted to us only a few weeks ago.



Regarding fingerprints, the only other large public domain databases are
National Institute of Standards and Technology (NIST) collections, but they
are not totally appropriate for automated systems working on live-scan images:
for example the NISTDB 4 [41] contains images scanned from enrolled inked
impressions.

Moreover, we have personally collected a smaller database using the FX2000
scanner to directly acquire some image from people poorly trained in biometric
devices and systems; our collection has 8 repetition for each of the 40 different
fingers, for a total of 320 images. Next, we will refer to this as the “Internal
Database”.

In addition to the image databases already discussed, we have analyzed our
algorithm in respect with that described in [51], using even the proprietary
database provided by the authors. This very good quality image collection is
made up of from 9 to 11 different repetitions of 55 fingers, for a total of about
550 samples; these images have been collected using the same FX2000 optical
scanner model by Biometrika [53]. After, we will refer to this as the “Hybrid
Database”.

4.2 Performance indicators

Commonly, a typical biometric verification system commits two types of errors:
mistaking the biometric measurements from two different fingers to be from the
same one (false acceptance), and mistaking two biometric measurements from
the same finger to be from two different fingers (false rejection); the probability
of these happenings are respectively defined as the False Acceptance Rate (FAR)
and False Rejection Rate (FRR).

A further performance description can be given by the Equal-Error Rate
(EER), which denotes the error rate for which FAR and FRR are identical at
some operating point t (the matching threshold). Although it’s an important
indicator, rarely the biometric verification systems are used with a threshold
corresponding to the EER, because is generally preferred to achieve improved
security with a more stringent operating point, therefore reducing the FAR and
consequently increasing the FRR. The trade-off curve associated with fingerprint
authentication systems is known as the Receiver Operating Characteristic (ROC)
curve. The ROC curve plots the FAR (on x axis) against the FRR (on y axis)
for the same match threshold value, and can be generated by obtaining FAR
and FRR values under many different operating points on a given system.

Another important factor to be considered for MOC algorithms is the average
matching time, clearly because of the hardware limitations. The average enroll-
ment time is instead less important for our purposes, because the enrollment is
executed only once at the smartcard personalization phase.

Even the maximum template size has its significant importance, because the
smartcard EEPROM memory is usually limited to 16-32Kb and is used also to
store the matching applet code and other applications.

Other interesting performance indicators can be derived by increasing or
decreasing the matching threshold (or generally changing some execution pa-



rameters), to show the algorithm’s behaviour for application that need more or
less security: for example the FAR100 (the lowest achievable FRR for a FAR ≤
1%), FAR1000 (the lowest FRR for FAR ≤ 0.1%), ZeroFAR (the lowest FRR
for FAR = 0%) and finally ZeroFRR (the lowest FAR for FRR = 0%). For ex-
ample, configuring the operating point to work under the FRR1000 conditions
characterizes applications with rigourous security requisites (like airport build-
ings access), while for forensic purposes it’s better to operate under ZeroFRR
conditions to include all the possible crime suspects in the identity research.

Other measurements that can be observed are REJENROLL or REJMATCH ,
which respectively quantify the number of rejected fingerprints during the en-
rollment and match.

All of these performance result indicators can be substantially altered in our
algorithm by modifying the algorithm parameters such as the matching threshold
(FAR in spite of FRR) or the maximum number of minutiae and neighbors
in the template (security in spite of speed); this can be useful to adapt the
algorithm for the chosen application environment. It can be clearly deduced that
a simple performance results report is always relative to a particular parameters
configuration and so it cannot describe completely the algorithm behaviour, but
only one of its aspects.

4.3 Results on our algorithm

The test distribution between positive and negative matches can greatly influence
the declared performances. For this reason we have decided to run the same tests
as the FVC2002 competition (see [38] for more information): 2,800 iterations to
find the FRR and 4,950 to find the FAR, for a total number of 7,750 match tests
executed between the same exactly fingerprint images as in the international
competition.

We have tested our algorithm using the configuration exposed in Section 3.3
and here we reassume some of the results obtained from the FVC2002 database
collected with the FX2000 optical scanner, which has showed some of the best
global performances among the others:

– EER 8.5%.
– FAR100 10.6%.
– FAR1000 12.5%.

In Figure 8 and Figure 9 are showed respectively the ROC curve and the
FAR-FRR curves for that configuration, with EER point at their intersection.
The strange shape of the graph lines (respect to classic ones) comes from the
decision to stop the algorithm as soon as possible, even with few but “very good”
minutiae pairs: this decision is independent from the final matching score and
so setting the match threshold to a low or a high value doesn’t correspondingly
lead to have a FAR or a FRR of 0% or 100%; in particular the zones in the
graph near FAR or FRR at 100% or 0% cannot be represented. Consequently
some indicators like the ZeroFRR and ZeroFAR cannot be correctly measured,



because the FAR and the FRR curves don’t intersect that areas. However, all the
thresholds and constants present in the algorithm description (changing those
proposed in Section 3.2) can be simply adapted to fulfill other different goals:
for example, another parameters configuration adopted can improve EER at
about 7%, while another more has reached even ZeroFAR zone at 15.6%. For
our main parameters configuration, we were essentially interested in giving the
best FAR1000 performance.

Fig. 8: ROC curve for FVC2002 FX2000 database.

These security performance results have been obtained running the tests on
a PC to reduce the experiment time, thanks to the fact that the algorithm is ex-
actly the same as the one implemented directly on the smartcard (where therefore
the same results are completely achievable). The performance showed can com-
pete only with those of the last classified algorithms of FVC2002 (see [38]), but
they are realized without the smartcard environment restrictions. In FVC2002
the performance have been calculated on a PentiumIII at 933Mhz, which is about
120 times faster than our smartcard CPU, without considering other architec-
ture gaps like the system bus, memory speed and the external transfer rate at
only 9600 baud. Confronting our architecture with the FVC2002 test environ-
ment, we can see that our algorithm is faster than all the FVC2002 algorithms.



Additionally our results can be greatly improved using a good enrollment image,
as exposed later in this section.

Fig. 9: FAR and FRR curves for FVC2002 FX2000 database.
EER is at the intersection point.

The execution time of matching phase has been tested directly for the smart-
card realization: we have noticed that a minimum time of about 1 seconds is
needed for the entire procedure and this result can be achieved frequently using
a good enrollment fingerprint image, thanks to the algorithm option to exit de-
ciding only from few minutiae pairs. Maximum time is instead about 45 seconds,
but this result, unfeasible for real time smartcard verification, is performed only
in circumstances where the two acquisitions belong to different fingerprints (not
interesting for our purposes), or when the image acquired at the verification
phase is very disturbed: these premises often prevent the algorithm to quickly
stop without exploring all the minutiae pairings. Nearly all of the correct positive
matches are resolved in 1-8 seconds, depending from the quality of the candidate



template, and obviously of the corresponding fingerprint image. In Figure 10 we
report, for the FVC2002 database and the “Hybrid Database”, the number of
the minutiae in the candidate template needed to be sent to the card to stop
the match and obtaining a final match decision; the graph bars show this distri-
bution between correct matches performed to test FRR. Fewer minutiae means
less time employed to match two fingerprints and we can observe that a number
between 1 and 4-5 minutiae corresponds to an on card matching time of about
1-8 seconds. The results obtained over the “Hybrid Database” are quite better
than the FVC2002 FX2000 database, since its image quality is evidently higher.

Fig. 10: Number of minutiae needed to stop the match,
with respect to the tests performed to measure FRR (tests between corresponding

fingerprint images).

After that, we have tested our algorithm with the same configuration and
using all the images (110 instead of 100) in the FVC2002 FX2000 database,
for a total of 9,075 matches, distributed in 5,995 to test FAR and 3,080 to test
FRR; the performances on 100 images at the beginning of this section have
been slightly improved, showing a good stability of the algorithm in the results:
reached EER is at 8.2%, FAR100 at 10.4% and FAR1000 at 12.2%.

Moreover, we have additionally tested the algorithm using the first FVC2002
fingerprint database, the one scanned with TouchView II optical sensor. Using
the same exactly configuration optimized for the second database and the first
100 images (7,750 match tests), we have achieved similar performances: EER at
8.5% , FAR100 at 10.6% and FAR1000 at 12.3% (this last result is even better
respect to the previous database). In this way we have proved that these good
results can be carry out from at least two different fingerprint scanners, more
attesting the stability of our procedure.

We have also performed some other tests using our “Internal Database”: we
have accomplished all the possible tests between different fingers (for a total
51,040 matches to test FAR) and between the same fingers (for a total 1,120



matches to test FRR). The results obtained are between half and one third
respect those achieved on the FVC2002 database:

– EER 3.8%.
– FAR100 4.3%.
– FAR1000 4.5%.

One very important aspect to be highlighted is that using the two stopping
conditions exposed in Section 3.2 has showed excellent security results: respect
to all the used databases, only less than 4-5% of total false matches accepted
have been introduced by relaxing the problem and stopping the execution before
the complete minutiae lists scan; this result has been obtained by setting a high
threshold value to reach at least 100 false acceptance errors.

A comparison with related work. We have also compared our work with
the algorithm in [51], developed to be executed in a similar Java Card� envi-
ronment. To obtain a significant comparison, we have tested our algorithm with
the “Hybrid database” granted to us by the authors. Since even the “Hybrid
database” has been collected with the FX2000 scanner, we have properly used
the same configuration optimized for the FVC2002 FX2000 database exposed in
Section 3.3. With this configuration we have achieved the following results:

– EER 0.4%.
– FAR100 0.4%.
– FAR1000 0.5%
– ZeroFAR 0.5%.

The tests have been executed using the FVC2002 guidelines for the match
distribution between FAR and FRR tests; with this working conditions we have
halved the EER percentage of 0.8% achieved for the Java Card � algorithm
exposed in [51] (see Table 1), even if this algorithm uses two different matching
module and at last merges their results.

Algorithm EER on “Hybrid Database”

Hybrid matching algorithm in [51] 0.8%
Our algorithm 0.4%

Table 1: EER comparison between our algorithm and the algorithm in [51].

This last experiment also confirms that the quality of the database images
(good, in this case) can greatly influence the global reliability performances.

Moreover, we have seen that using a good quality enrollment image improves
considerably the overall security performances: FAR1000 value can be nearly
reduced to one third to about 4-5%, with respect to FVC2002 results and elimi-
nating for example the partial overlapping problem. This functioning hypothesis



is not pervasive at all and it’s easily applicable, since the enrollment phase is
accomplished only one time at the release/inizialization of the smartcard, and
can be also controlled by a quality checker software module or possibly even by
a human operator. Instead we place no restrictions on the quality of the image
acquired during the verification phase. So, a MOC application for our match-
ing algorithm can fully benefit from this hypothesis in the terms of speed and
reliability performances.

In Table 2 we show all the reliability results previously presented, where “-
” means that the result is not achievable with the used particular parameters
configuration.

Table 2: Overall performance results.

Fingerprint database EER FAR100 FAR1000 ZeroFAR

FVC2002 FX2000 db (100 img) 8.5% 10.6% 12.5% -
FVC2002 FX2000 db (110 img) 8.2% 10.4% 12.2% -

FVC2002 TouchView II db (100 img) 8.5% 10.6% 12.3% -
“Internal database” 3.8% 4.3% 4.5% -
“Hybrid Database” 0.4% 0.4% 0.5% 0.5%

5 Conclusion

In this paper we have proposed a new fingerprint minutiae matching algorithm,
thought and developed to face the Java Card� platform restrictions. Our al-
gorithm, tolerant to typical match problems like the rotation, translation and
ridge deformation, achieves a very good speed performance for the smartcard
environment (1-8 seconds for the most of positive match tests). The high relia-
bility, as determined from our analysis obtained from several different databases,
can be further greatly improved using a good enrollment image: a FAR less than
0.1% and a FRR of about 4-5% (the FAR1000 score) make the algorithm imple-
mentation feasible in the live-scan applications for the identity verification, like
a MOC system. With very good quality enrollment and reference images, like
those in [51] database, the performances can reach a ZeroFAR result of about
0.5%.

Our algorithm shows an asymmetric behavior respect to the verification ex-
ecution time: the procedure is stopped as soon as the templates are considered
to belong to the same finger, and so the algorithm stops before in correct FRR
tests and later in the correct FAR ones; in the case of errors, this behaviour is
exactly the opposite.

The MOC realization attests moreover a better security, since the match
decision is taken inside the card: the template never leaves the card and therefore
it cannot be intercepted, blocking in this way possible “man-in-the-middle” type
attacks.



We have chosen the Java Card� platform to make the implementation fully
portable towards all the Java Card� compliant smartcards; moreover this plat-
form provides a good security and a high level programming language, completely
independent from the particular card operating system.

A MOC architecture with our matching algorithm has been already suc-
cessfully introduced in a digital signing tool developed at the Institute for In-
formatics and Telematics (National Research Council of Pisa): the biometric
verification unblocks the certificate stored in the card and associated with the
smart card owner; consequently it can be retrieved from the PC to digitally sign
a document.

Our future works could involve the image treatment to better define the
fingerprint ridges, improving in this way the algorithm reliability; moreover we
could add a core point structure to introduce some global information in the
template representation and using it in the algorithm. We could observe even
the inclusion of a different matching algorithm, like the one described in [28], to
perform a multimodal verification.
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