

C

Consiglio Nazionale delle Ricerche

Design and implementation
of an EPP load generator

MMaarriinnaa BBuuzzzzii,, MMaarrccoo CCoonnttii,, EEnnrriiccoo GGrreeggoorrii,, GGiiuusseeppppee VVaalleennttee

IIT TR-02/2005

Technical report

Febbraio 2005

Iit

Istituto di Informatica e Telematica

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37832122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract
The RFC3730 describes the Extensible Provisioning Protocol (EPP), an XML-based
protocol created for providing a standard Internet domain name registration protocol
on behalf of domain name registrars and registries.
The goal of our study is to understand the key elements in performance of an EPP
system designed to automate the domain name registration process. For
accomplishing this task, as first step, we designed and implemented an EPP Load
Generator which creates synthetic traffic of domain name registrations.
In this report the architecture of the EPP load generator is discussed in detail.

Introduction

The main goal of our study is to understand the key elements in performance of an
EPP (Extensible Provisioning Protocol) system designed to provide an automated
domain registration process. Generally speaking, the term benchmarking refers on
running a set of representative programs on different computers and networks and
measuring the results. Time and rate are the basic measures of system performance.
From the user’s viewpoint, the execution time is the best indicator of system
performance. From the system’s manager viewpoint is relevant the number of
transactions the server is able to manage per minute [3]. In our study, to be able to
understand the server’s capacity, we create a controlled test-bed environment which
allows us to analyze EPP server performance in a simple and effective way. We are
mainly interested in observing Quality of Service perceived by ISPs (average
response time) and carrying out Server Tuning, with particular focus on discovering
bottlenecks.
The registration of domain names involves numerous SW components for user
authentication, accounting, transaction, data storage, backups, and thus the overall
architecture is quite complex. In this kind of scenario, system simulation (EPP server,
application server and database) is very difficult and, if not adequately designed, may
furnish unrealistic results. An alternative is to measure live systems (Fig.1). However
this approach of directly evaluating the performance of a server suffers from
difficulties related to the highly unpredictable behavior of the Internet and the need
for non-intrusive measurement of a live system.

Fig. 1: an EPP server in the real world

A balance between these two approaches is
through generation of synthetic EPP traffic in
Fig. 2. Specifically, the EPP traffic is generat
c1..cm clients while the WAN behavior is emu
means of SW (i.e. the dummynet option furn
Several studies have been carried out in web
knowledge not any in EPP performance. How
protocol relays on TCP connections, some c
can be analogously done for EPP load gene
traffic with a small number of client machines
scheme, used in past studies [4], [6] that equ
processes/threads in the test systems (addin
Fig. 2: EPP server in a WAN emulated environment
 possible by evaluating the server
 a controlled environment, as shown in
ed by load generators which run on the
lated introducing network delays by
ished by BSD OS).
 server performance, but in our
ever since in our scenario the EPP

onsiderations for HTTP traffic generation
ration. Generating heavy and realistic
 is difficult. A simple load-generating
ates client load with the number of client
g client processes to increase the total

client request rate) is limited by some characteristics of the TCP protocol [5]. Thus, to
generate a significant rate of requests beyond the capacity of the server, using this
simple scheme, one must employ a huge number of client processes. This simple
approach does not work well; in fact when generating synthetic HTTP requests, care
must be taken that resource constraints on the clients do not accidentally distort the
measured server performance. The primary factor in preventing client bottlenecks
from affecting server performance results is to limit the number of simulated clients
per client machine. In addition, it is important to avoid I/O operations in the simulated
clients, as discussed later.
In the following sections we describe the first phase of our research. We first illustrate
basics of the EPP protocol and then discuss the architecture of an EPP load
generator.

The Extensible Provisioning Protocol

The RFC3730: the Extensible Provisioning Protocol (EPP) has been published by the
IETF Network Working Group on March 2004. EPP is a client-server XML-based
protocol designed for creation and management of objects stored in a shared central
repository. Although the protocol was originally created for providing a standard
Internet domain name registration protocol on behalf of domain name registrars and
registries, it is generic and should be applied in different fields. Specifically, this
protocol furnishes a mean of interaction between a registrar's applications and
registry applications [2].
EPP v. 1.0 provides four basic service elements: service discovery, commands,
responses, and an extension framework.
Basically an EPP client sends a command to the EPP server and receives a
response from the server. It is important to notice that EPP commands are atomic
and idempotent, i.e. multiple execution of the same command have the same effect
on system state as executing the command only once. The EPP server processes
commands in the order they are received from an EPP client, since to preserve the
temporal order of client command arrival is fundamental to correctly solve collisions
in domain name registration. Commands and response are XML messages, with the
MIME type: application/epp+xml.
EPP commands are split in three categories:
• Session Management Commands allow clients to establish and close persistent

sessions with an EPP server:

o <login>
o <logout>

• Query Commands carry out read-only operations for retrieval of object

information:

o <check>
o <info>
o <poll>
o <transfer>

• Transform Commands perform read-write operations for object creation and

management. If the transform command requires an offline review, the server

acknowledges that the requested action is pending and notifies (the client) when

offline processing of the action has been actually completed.

o <create>
o <delete>

o <renew>
o <transfer>
o <update>

Since the aim of this work is to carry out a study on a EPP architecture in order to
test server performance and discover bottlenecks under the hypothesis of a very
strong competition between ISPs for domain name registrations, we focus our
measurements on generating a high load of the <create> command in order to bring
the EPP server beyond its capacity and observe the response time.
A typical single domain name registration operation requires following client-server

interactions:

o C: <hello>
o S: <greetings>
o C: <login>
o S: <login> response
o C: <create>
o S: <create> response
o C: <logout>
o S: <logout> response

Each EPP message exchanged between client and server must be a well formed
XML file starting with the <epp> tag and ending with the </epp> tag:
<epp xmlns="urn:ietf:params:xml:ns:epp-1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:ietf:params:xml:ns:epp-1.0
 epp-1.0.xsd">
</epp>

EPP load generator

Our analysis focuses on the most
important operation that a registrar
would perform: the creation of a
domain name. This operation is very
delicate, since we have to figure out if
a client in any location (and with any
bandwidth available, in a specific
range) is some way disadvantaged in
the competition with other clients for
domain name registration.
The first thing we all agreed on as we
approached the code was to
introduce something to record the
times, during interaction with the EPP
server. Our first hypothesis was to
introduce two timing indexes, but to
explain this we need to take a close
look at the interaction between EPP
client and server. Fig. 3 shows the
basic interaction between client and
server when a domain is created. We
named commands as
{command}.xml, where
{command}.xml is a string obtained by

prepending the length of the so called “EppString” that represents the command to
the command itself, as required by the EPP protocol. We omitted the SSL handshake
since it is managed atomically by the Java implementation and its details are not
relevant for our study. We used letters to indicate the instants measurable by the
client, as those constitute all the timing values noticeable on the client’s side.
Obviously, our first thought was to measure the total duration of the connection,
which is from A to H. In addition, it would surely be significant to break down that time
into all the intervals indicated on the figure, to discover any bottleneck, but we
preferred to start measuring the overall connection time to search for bottlenecks as
we will explain when talking about the implementation.

Architecture
The first phase of our work simply concerned extending the capabilities of the EPP
client example furnished by our DNS Belgium partners to implement the load
generator, so we just introduced a connection time value to be logged from each

client. We would connect each client separately with a
cycle in a bash script. This was only the first attempt
and we knew well that this was not going to work,
because after a few clients (71 on a 1.07 GHz
PowerPC G4) we ran out of memory and we were
unable to stop them.
The first thought was to move to multithreading, to
raise the number of clients loadable by a single host,
reduce the number of hosts to distribute the clients on
and so probably reach the server’s “saturation” earlier.
The load generator we built was intended to carry out
the activity shown in Fig. 4. It was clear that for the
software structure needed to realize a good piece of
code satisfying these requisites, a class was no longer
enough. Then, we decided to design a package that
would implement everything needed for our
measurements, but also for the post-processing of the
values obtained during them. This resulted in the five
classes shown in Fig. 5, grouped together in a p
we called EppLoadGenerator:

ackage

Fig. 5: EppLoadGenerator package classdiagram Fig. 4: load generation activity

• LoadGenerator is the main class, which coordinates all the generator’s activity

• EppClient is basically the same client implemented from our DNS Belgium

partners, but automated to perform a domain creation, return the time values

we’re interested in and die

• in EppMessages we separated the “EPP aware” side of the client to enhance it

somewhat

• EppLogger manages the output of the generator directly from the client or with

previous computations if desired

• FileGrabber is designed to manage EppLoadGenerator log files for further post-

processing

We will now provide more details about each single class (except for the FileGrabber,
whose use will be clear when we will talk about distributing load generators) to
explain their features and the choices we had to make during the implementation
phase.

EppClient
The Java implementation we started from modeled a rough EPP client, that
performed basic operations like login and logout, but was also able to read xml
formatted files and send them as other commands. Everything necessary for the
connection was provided: a client certificate and a method to perform the SSL
handshake, as well as an account on DNS Belgium’s tryout server with which we
were able to create the contact and billing info needed to register domains and
perform any other operation. The structure of the client was perfect to start working
on the load generator because of its simplicity and modularity: any single operation
was performed as a self explicative method within the class EppClient. All we did
about this class was to extract the part concerning EPP messaging (as we will see in
EppMessages), insert the timestamps measurements we need, and make the client
perform the operations shown in Fig. 3 (and at the bottom of Fig. 4) automatically,
without any interaction with the user.

LoadGenerator
The LoadGenerator class is the core of the package. It basically creates an array of
EppClient classes, created as threads. This fact made the clients naturally prone to
synchronization: we could start a certain number of clients/threads and then put them
on wait just before the connect method. Having them all interrupted made it easy (a
while condition was enough) to unlock them with a given error, that we set as 1000
milliseconds because we want to look at a certain number of connections per
second. This is part of what we mean with the synchronization activity in: this activity
will be clarified when discussing about distributing load generators, since there are
actually two levels of synchronization in our implementation of the load generator.
Here we only explain is the second level, which aims at thread level synchronization.

EppMessages
The EppMessages class provides some control on connection behavior: this point is
essential because if for example the creation of a domain fails, the data collected
from the test would not be consistent because the measured time does not include
the time needed to write on the database (and do the necessary lock on the resource
on the server’s side). Considering possible bottlenecks, we also thought about the
disk on the client (or at this point we should better say the generator), so putting
these thoughts together we implemented this class, which is composed of static
fields and methods that solve many problems. Specifically the EppMessages class
carries out following functions:
• groups the xml commands together, so that they are loaded in memory from the

Java VM and reading them from files on the local disk is no longer necessary

• associates an integer value to each command, so that command selection

becomes cheaper than it would be if it was realized as a comparison between

strings

• sets the domain name as iit{timestamp}.be, so that the create operation can be

fully automated

• provides a minimal interpretation of the server responses, by parsing the EPP

strings received from the server and checking the code in the <result> field of the

<response>. If the code is not the one expected in the successful case, it returns

the content of the <msg> field of the <result>, together with the analogous

<dnsbe:msg> field of the <extension> part of the response for easier

interpretation.

EppLogger

The EppLogger class was initially designed to log the output. Since we did not know
a priori which values would be significant, we thought that the best thing to do was to
create a tool as scalable as possible. The EppLogger is basically a matrix of times
(except for the last value in each row, which represents an index) with a set of
methods to operate on it and to extract the values and the statistics that we want to
know. The rows of the matrix represent the clients, the columns represent the values
to log (the last value of each client is not really a value to log but an index
representing the order of termination of the clients); the LoadGenerator can pilot this
matrix as we wish: it can create it and fill it with the whole values shown in Fig. 5 as
well as it can just fill it with the total connection times of each client.
This brings us to a choice we had to make: we had to find a trade-off between
logging everything, and making the clients run fast. If we make each client log the 8
values shown in Fig. 3, then we would have to lock the times’ matrix 8 times for each
client: this would surely be a bottleneck (and we tested it) and it would be a
bottleneck during the connection, which means that the increase of time produced
would be included in the times logged and we do not want that. The alternative would
be to keep a variable for each time value on each client, but there is no need to
explain that this would be a cost too, since we are probably going to generate a very
high number of clients. We chose to keep the implementation very light, but at the
same time be prepared for anything: we kept the matrix architecture making each
client fill it with the connection time after the connection was closed, so the mutual
exclusion of the operation would not influence any time logged. Introducing more
time variables in the client is rapid to do, and the times matrix is still scalable enough
to be managed as we wish.
The active operation of the logger occurs after clients terminate: the LoadGenerator
tells it to manage the values we want to log. Specifically it:
• orders them by completion instant of the client;

• logs the values;

• logs the instant when the values were recorded;

• appends the mean to the log;

• appends the 90th, the 95th and the 99th percentile to the log;

The first and the third operation are very important.

The first operation is needed to measure the slow start we were talking about: once
this slow start has been measured, we can avoid logging the transient phase by
using the constructor overloading provided within the EppLogger. With it is possible
to construct a logger specifying the transient phase length measured in number of
clients.
The third operation introduces us to another part of the implementation which is
fundamental for testing: distributing load generators.

Distributing load generators
From the beginning, we intended to run the load generator distributed on several
hosts. The synchronization between those hosts would have been easily solved by
using crond to launch the generators, but the fact that we introduced a second level
of synchronization between the threads, as well as the time required to load the Java
VM on each host, made it necessary to find an additional solution to solve the
problem. The diagram shown in Fig. 6 expands the synchronization activity in Fig. 4.
The “setup time” shown is that first level of synchronization we mentioned in the
previous paragraph: it is an interval calculated from the time the load generator starts
(which will have to be the same for all the generators) by looking at each host’s clock.
If the clocks of all hosts are synchronized among themselves, we can assume it to be
an absolute time.

Fig. 6: synchronization activity of the load generator

FileGrabber

Once we solved the problem of running load generators in parallel, it still remained to
log all the activity of those load generators together. That is why we made the logger
save the instant when each value was recorded: with these values we can rebuild the
time sequence in which things occurred on different hosts. To provide logs that are
comprehensive of what happened on all client hosts, we implemented a utility we
called FileGrabber. FileGrabber is a class in the same package of LoadGenerator
that basically reads the files and creates an EppLogger whose times’ matrix contains
all the values collected from the files. We had to enhance the logger to reorder those
values using the timestamps that each client logged, and the rest of the operation
was pretty much the same performed from the logger in its normal activity on a single
host.

As stated above this FileGrabber is a utility since it collects everything that was left
over and that we had to implement in a later phase. It makes distributed logs
transparent to the user, but it also provides global statistical knowledge, such as
confidence intervals on the values logged in the files. This last option does not even
use the logger, and thus acts like a standalone utility. This use of the package
clarifies why we logged mean values of each generator by appending them to a file.
Fig. 7 and Fig. 8 show respectively a class diagram which summarizes the structure
of the entire package and the whole load generation activity (still keeping a high level
in the description).

Fig. 7: EppLoadGenerator classdiagram, a detailed view

Fig. 8: overall activity diagram

References
1. Registro ccTLD .IT- http://www.nic.it/

http://www.nic.it/

2. S. Hollenbeck. RFC 3730, March 2004, http://www.ietf.org/rfc/rfc3730.txt

3. Daniel A Menascé, Virgilio A. F. Almeida. Capacity Planning for Web Services. Prentice Hall.

4. ACME Laboratories Freeware Library, THTTPD Web Server,

http://www.acme.com/software/thttpd.

5. Banga G., Druschel P., Measuring the Capacity of a Web Server Under Realistic Loads, World

Wide Web Volume 2 Issue 1-2. Kluwer, Dordrecht (1999) 69-83.

6. The Standard Performance Evaluation Corporation (SPEC), SPECWeb99 Benchmark,

http://www.spec.org/web99/.

http://www.ietf.org/rfc/rfc3730.txt

	Consiglio Nazionale delle Ricerche
	Iit

	Abstract
	Introduction
	The Extensible Provisioning Protocol
	EPP load generator
	Architecture
	EppClient
	LoadGenerator
	EppMessages
	EppLogger

	Distributing load generators
	FileGrabber

	References

