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A Framework for Incentive Compatible Topology
Control in Non-Cooperative Wireless

Multi-Hop Networks
Stephan Eidenbenz Paolo Santi

Abstract— In this paper we consider the problem of building
and maintaining a network topology with certain desirable
features in a wireless multi-hop network where nodes behave like
selfish agents. We first provide examples showing that existing
topology control approaches are not resilient to strategic node
behavior, indicating the need of considering possible selfish node
behavior at the design stage. Given this observation, we propose
a general framework that can be used as a guideline in the design
of incentive compatible topology control protocols. As examples
of application of our framework to specific topology control
protocols, we present incentive compatible distributed algorithms
for building the minimum spanning tree (MST) and the k-closest
neighbors graph, which are very well-known topology control
approaches. To the best of our knowledge, the ones presented
in this paper are the first incentive compatible realizations of
topology control presented in the literature.

I. I NTRODUCTION

Topology formation and maintenance are key tasks for any
wireless multi-hop network. In fact, nodes in a wireless multi-
hop network typically have the capability of adjusting their
transmit power below a maximum value. Since decreasing
the transmit power has the positive effect of reducing the
interference level in the network and the power consumption
at the node, but an excessive reduction of the node transmit
power levels could lead to network disconnection, the goal
of the topology formation task is to appropriately set the
node transmit power levels in such a way that the resulting
network topology has the desired features while reducing the
interference level and the node power consumption as much
as possible. In addition, as nodes can move and dynamically
join/leave the network, the task of topology maintenance
comes into play, with the goal of reconfiguring the node
transmit power levels so that to maintain the desired network
topology.

Several protocols for distributed topology formation and
maintenance in wireless multi-hop networks, calledtopology
control protocols, have been recently introduced in the lit-
erature. Formally, the topology control task (TC for short)
can be described as follows. We are given a communication
graph G = (N,E), where N is the set of network nodes
and E is the set of all possible links in the network, i.e.
the set of all wireless links(u, v) that are sustainable when
nodeu transmits at maximum power and the other network
nodes (including nodev) are silent. For this reason,G is
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also called themaxpower graph. The topology control task
consists in selecting a subset of the edges inE such that
the selected link set satisfies a number of desirable properties
such as connectivity, sparseness, planarity, etc. To account for
node mobility and dynamic join/leave of network nodes, it is
typically assumed that the topology control task is executed
periodically, or on demand when excessive link failures occur
that point to topology changes. Once the desired network
topology has been determined, it is assumed that packets are
sent through the network along the selected subset of links
only.

Although a great variety of topology control concepts and
protocols have been proposed in the literature (see, e.g., [2],
[5], [7], [14], [15], [16], [20], [21], [23]), all of them are
based on the assumption that individual network nodes act in
an altruistic, non-selfish way for the common good of having
a well-functioning network. Unfortunately, this assumption
does not hold in all application scenarios in which nodes are
owned by different, independent, profit-maximizing entities,
such as an ad hoc phone user, certain types of wireless mesh
networks, and so on. As it will be discussed in detail in Section
II, selfish node behavior has a disruptive effect on topology
control protocols, since the individual goals of a network node
often conflict with the goals of the network designer. As a
consequence of this, current approaches to the topology control
problem are doomed to perform poorly in a non-cooperative
wireless multi-hop network, unless adequate countermeasures
are taken.

While the problem of stimulating cooperation in wireless
networks has been addressed at various levels of the network
architecture (e.g., at the MAC [9], [18], [22], routing [1], [3],
[8], [11], [24], [25], and application layer [4], [12]), to the best
of our knowledge the problem of building and maintaining
the network topology in a non-cooperative wireless multi-hop
network has not been addressed so far. The only paper that
considers the issue of cooperation in topology formation is
[10], where the authors study the Nash Equilibria1 of some
topology control games. However, the analysis reported in [10]
is based on a centralized approach to the topology control
problem, and does not give any clue on how nodes could be
motivated to cooperate in the construction of a certain desired
network topology. Another related branch of research focused
on studying cooperation issues in the power control problem

1Quite informally, a setS = {S1, . . . , Sn} of strategies for nodes
u1, . . . , un is a Nash Equilibrium if no nodeui has an incentive to deviate
from its strategySi, provided the other nodes do not change their strategy.
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Fig. 1. Disruptive effect of selfish node behavior in constructing the MST: the globally optimal solution (the MST on the left) is sub-optimal from nodeu’s
selfish point of view. Hence, nodeu has an incentive to build a different topology (the spanning tree on the right), which is optimal fromu’s viewpoint, but
globally sub-optimal. Edges are labeled with their weight, which is proportional to the link length. Links in the constructed topology are in bold.

arising in cellular networks, which consists in varying the
transmit power level at the base station and/or at the mobile
phone so that to optimize the link quality [17], [26]. However,
the focus in power control is different than in the case of
topology control: namely, optimizing a single transmission
between a mobile user and the base station, instead of forming
and maintaining a communication graph with certain desired
features.

We believe solving the problem of stimulating cooperation
in the task of building and maintaining the network topology is
fundamental to a successful realization of the wireless multi-
hop paradigm in a non-cooperative environment, as this task
is a necessary building block on which protocols at higher
and lower layers rely. In other words, it is quite unrealistic to
assume (as, for instance, has been done in [11]) that network
nodes act selfishly in performing the routing task, while they
are willing to cooperate in the task of topology control.

In this paper, we introduce a framework to stimulate selfish
network nodes to cooperate in the formation and maintenance
of the network topology. Our framework is based on game-
theoretic concepts from mechanism design, and it can be
used as a guideline in the design of incentive compatible
topology control protocols for wireless multi-hop networks.
As examples of application of our framework, we present an
incentive compatible implementation of two popular topology
control approaches, and we formally prove that it is in the
best interest of the network nodes to behave according to the
specifications of our proposed incentive compatible topology
control protocols.

The rest of this paper is organized as follows. In Section
II, we present examples of the disruptive effect of selfish
node behavior on topology control, thus motivating the need
for considering selfish node behavior at the design stage. In
Section III, we introduce our framework for an incentive com-
patible realization of topology control. Then, we present the
application of our framework to two popular topology control
approaches: MST-based topology control (Section IV) and

closest neighbor-based topology control (Section V). Finally,
Section VI concludes the paper.

II. T HE CASE FOR INCENTIVE COMPATIBLETC

In this section, we present examples of the disruptive effect
of selfish node behavior on some of the topology control
protocols introduced in the literature. Before presenting the
examples, we have to define a model of selfish node in a
multi-hop wireless network.

A selfish node aims at increasing the benefit it gets from
executing the protocol, while reducing as much as possible
the incurred costs in the constructed topology. In the context
of topology control, it is reasonable to assume that a node
maximizes its benefit when it is connected to as many other
nodes as possible (i.e., when the network is connected), and
that a node incurs a cost which is proportional to the number
and/or power cost of the links incident into it in the selected
network topology. A formal definition of utility of a node in
the context of topology control is deferred to the next section.

Note that network connectivity is a global property which
cannot be verified locally, so a nodeu might not be able to
check whether a certain power level setting atu results in a
globally connected topology. To account for this, we consider
two different models of selfish node:i) the global model, in
which a nodeu somehow knows whether a certain power level
setting atu results in a globally connected topology, and(ii)
the local model, in which a nodeu can only verify local
properties of the generated network topology (e.g. number
and positions of neighbors in the constructed topology). Note
that the global model, although possibly unrealistic in many
application scenarios, is worth of investigation since the selfish
node is assumed to be ‘more powerful’ than in the local model.
In other words, if a certain topology control protocol is shown
to be resilient to selfish node behavior in the global model, it
retains the same property in the weaker local model.

Let us now turn our attention to some of the topology
control approaches introduced in the literature. One of the
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Fig. 2. Disruptive effect of selfish node behavior in constructing the KCN topology: the globally optimal solution (on the left) is sub-optimal from nodeu’s
selfish point of view. Hence, nodeu has an incentive to build a different topology (on the right), which is optimal fromu’s viewpoint, but globally sub-optimal.
To make the drawing more readable, we omitted the edge weights, which are assumed to be proportional to the link length. Links in the constructed topology
are in bold.

most studied approaches to the topology control problem is
based on the computation of the MST on the maxpower graph,
where links are assigned weights according to some criteria
(e.g., link length, power cost, expected interference on the
link, and so on). The interest in the MST is motivated by the
fact that it is the topology of least total cost that maintains
the network connected. Example of protocols based on this
concept can be found in [7], [15], [20], [21].

Consider the situation depicted in Figure 1-a), which repre-
sents the MST computed on a certain maxpower graph under
the assumption that all the nodes act unselfishly. In this situ-
ation, the goal (which is altruistically pursued by all network
nodes) is to build a connected topology of minimum cost.
Note that this globally optimal solution might be suboptimal
from a certain node’s point of view. For instance, consider
nodeu in Figure 1-a). The cost incurred byu in the MST is
4.8, which equals the cost of the MST edges incident into
u. However, if the goal of nodeu were to maximize its
utility, the topology represented in Figure 1-b) would be the
optimal choice. In fact, with this network topology nodeu
would still be connected to all the other network nodes (i.e.,
its benefit would be maximized), but the incurred cost would
be minimized (1.3, instead of 4.8).2 Note that the topology of
Figure 1-b) is suboptimal under a network-wide perspective,
since its total cost is 9.3 instead of 8.1.

Thus, we are in a situation in which the desired designer
goal (building a connected topology of minimum cost) is in
contrast with the selfish goal of a network node (building a
topology which maximizes its own utility). The consequence
of selfish node behavior on MST-based topology control is
disruptive: a selfish node has no interest in cooperating to
the MST construction, while it is instead motivated to build a
different, suboptimal network topology. The situation is even
worse if several nodes act selfishly, since in this case the
constructed network topology in general can be very different
from the optimal topology, and it might even not satisfy

2Here, we are implicitly assuming the global selfish node model, according
to which a nodeu can somehow verify that the topology represented in Figure
1-b) is connected.

fundamental properties such as connectivity.

It is interesting to note that the MST corresponds to a Nash
Equilibrium of the Strong Connectivity Game analyzed in [10],
where the goal of each node is to connect to every other node
while reducing its transmit power level as much as possible.
This fact indicates that, if nodeu belongs to the MST, it has
no incentive to unilaterally changing its links, thus apparently
contradicting the above observation about the disruptive ef-
fective of selfish node behavior on topology control. Indeed,
the fact that the MST is a Nash Equilibrium is not in contrast
with our observation, since in this paper we are considering the
problem ofestablishinga topology with the desired features:
the initial topology is the maxpower graphG (which is not a
Nash Equilibrium), and the nodes have to agree on a better
topology for sending packets. In this context, it is important
to provide incentive to the nodes so that the composition of
their local selfish behaviors results in the desired network
topology. The fact that the final network topology is a Nash
Equilibrium reinforces the argument that, once the MST has
been established (using the IC-MST algorithm presented in
Section IV), nodes have no incentive in changing the network
topology.

Let us now consider another popular approach to the TC
problem, which is based on the simple idea of building a
topology in which each node is directly connected (using only
bi-directional links) to a fixed numberk of nodes. This idea
has been exploited, for instance, in [5], [16], [21]. From a
theoretical viewpoint, it has been proven in [27] that if the
selected neighbors are thek closest neighbors andk = c lnn,
wheren is the number of network nodes andc is a constant
greater than 5.1774, then the resulting network topology is
connected with high probability (under the assumption that
nodes are distributed uniformly at random in the deployment
area). In a more practical setting, Blough et al. have proven
in [6] that connecting to 4-5 closest neighbors is sufficient to
obtain a connected network (w.h.p.) for values ofn up to 500.
In the following, we denote the network topology in which
every node is connected to thek closest neighbors by KCN.
Note that, since we require links to be bi-directional, some of



4

the nodes in KCN might have a degree higher thank.
Let us consider the example shown in Figure 2-a), wherek

is set to 3. In Figure 2-a), every node is connected to at least
the 3 closest neighbors. Since links must be bi-directional,
some of the nodes in the constructed topology can have more
than 3 neighbors, as it is the case of nodeu in the example
reported in Figure 2-a). What happens if nodeu act selfishly,
instead of altruistically participating in the construction of the
KCN topology? To answer this question, assumeu behaves
according to the local selfish node model, i.e. it can only
verify local properties of the network topology. In this context,
since nodeu cannot directly verify its ultimate goal (i.e.,
being connected to all the other nodes), it must rely on a
local property which, under certain hypotheses, guarantees a
high likelihood of generating a connected network. This is the
case of thek closest neighbors property, which can be verified
locally. Summarizing, we can assume that nodeu maximizes
its benefit when it has a bi-directional direct link to each of its
k closest neighbors. As in the previous example, the incurred
cost of nodeu equals the sum of the weights of the edges
incident into it in the constructed topology. Given this model,
it is immediate to see that the network topology reported in
Figure 2-b) is optimal under nodeu’s selfish viewpoint, since
the benefit is still maximized (u has bi-directional links to its
k = 3 closest neighbors), and the incurred cost is minimized
(exactly three edges are incident intou in the constructed
topology, and these are shortest possible edges incident intou).
As in the previous example, the optimal topology under node
u’s selfish perspective is suboptimal under a network-wide
perspective, since the total cost of the constructed topology
is higher than that of KCN. Hence, also in this case the
effect of selfish node behavior on the topology control protocol
is disruptive: if one or more nodes behave selfishly, the
constructed topology can be very different from the desired
topology, possibly impairing a fundamental property such as
network connectivity.

Examples similar to the ones reported above can be easily
found for virtually all of the topology control approaches
proposed in the literature. Although not exhaustive of the many
opportunities for selfish node behavior in topology control
protocols, we believe the examples described in this section
provide sufficient evidences of the need for considering selfish
node behaviorat the design stageof a topology control
approach. In the following, we propose an incentive-based
framework for designing topology control protocols that can
be applied to most of the TC approaches introduced in the
literature.

III. A GENERAL FRAMEWORK FOR INCENTIVE

COMPATIBLE TC

Before introducing our framework, we need to model the
topology control task as a game. We recall that the topology
control task can be concisely defined as follows. We are given
the maxpower graphG = (N,E), where N is the set of
network nodes andE is the set of all possible wireless links
that can be sustained in the network. Each linke = (u, v) in
the maxpower graph is assigned a weightwe, which is defined

according to some criteria (e.g., link length, link power cost,
expected interference on the link, and so on). The goal of TC
is to select a subsetE′ of the edge set, such that the induced
communication graph satisfies some desirable properties (e.g.,
connectivity, sparseness, low interference level, and so on),
while the cost ofE′ is reduced as much as possible. The cost
of E′ can be defined as the sum of the weights of the edges
in E′, or as the maximum of the weights of the edges inE′,
or in other ways.

In the remainder of this paper we make the following
assumptions:

A1. the edge weight is defined as follows:

we = ne · Puv , (1)

where Puv represents the minimum transmit power
needed to sustain the linke = (u, v) with the desired
properties (e.g., at most a given BER at a certain data
rate), andne denotes the number of packets that will be
sent across linke until the next topology control protocol
execution.

A2. the cost function on the selected edge setE′ is defined
as the sum of the weights of the edges inE′. Formally,

c(E′) =
∑
e∈E′

we .

We remark that assumption A1. above is made for the sake
of presentation only, and that the framework proposed in this
paper remains valid for arbitrarily defined edge weights.

Parameterne in (1) depends on the set of sessions which
take place in the time interval between two successive exe-
cutions of the topology control protocol, and on how these
sessions are routed through the network. Unless accurate
information about the expected data traffic and the routing
algorithm are known, it is difficult to predict the value ofne

for each link in the network. For this reason, in the following
we assume allne’s in the graph to be equal, and, consequently,
we removene from the definition of edge weight. Again,
we remark that this assumption is made for the sake of
presentation only, and that our framework can be applied with
no modification in case of differentne values on the links.

A final assumption made in our model concerns the wireless
medium, which is assumed to be symmetric:Puv corresponds
to the minimum power required to sustain both the link from
u to v and the reversed link fromv to u. Note that this
is the only assumption we make about the properties of the
wireless channel. In particular, wedo notassume that the radio
coverage area is a perfect circle, nor that nodes have the same
maximum transmit power.

In order to come up with a game-theoretic model for topol-
ogy control, we need to determine what the utility functions
of our players (i.e., network nodes) are, and what strategies
they could follow in order to maximize their gain. Our goal
as protocol designers is then to create a mechanism based on
monetary transfers that makes behaving in accordance with
the prescribed topology control protocol adominant strategy3

3A strategyS for a playerp is said to bedominantif, no matter what the
strategies the other players play,S is the utility-maximizing strategy forp.
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for the nodes. A topology control protocol (including the rules
for the monetary transfer) that satisfies this property is said to
be incentive compatible4.

When defining a utility function, we have to distinguish
a case in which a node is content with the outcome of the
game (in our setting, the outcome of the game is the selected
edge setE′), as opposed to an uncontent case. As discussed
in Section II, the status of being content or not depends on
the type of information the node has access to: in the global
selfish node model, the player is assumed to be able to verify
global network properties, while in the weaker local selfish
node model the player can only verify local properties of the
network topology. Example of situations in which a node is
content can be ‘I have a connection to all the other network
nodes’ (global model), and ’I have a direct, bi-directional link
to at least myk closest neighbors’ (local model). However,
we outline that the framework described here in principle can
be applied independently of the property which makes a node
content.

To define the utility function of the player, we need also to
determine the incurred costs of the player for a given outcome
of the game. According to our global cost model, we assume
that the incurred cost of nodeu for the outcomeE′ equals
the sum of the cost of the links ofE′ incident intou. This
cost model is coherent with a per-packet approach to topology
control, in which nodes can change the transmit power level on
a per-packet basis. In this context, the sum of the links ofE′

incident intou is an estimation of the cost nodeu incurs for
sustaining the links inE′. How to generalize our framework
to different definitions of incurred cost of the player is subject
of ongoing research.

We are now ready to define the utility function used in our
topology control game:

Definition 1 (Utility function): Let u be a node inG =
(N,E), and letE′ ⊆ E be the set of links in the topology
built (possibly on a subset of the network nodes) at the end of
the protocol execution. LetG be the (global or local) goal that
nodeu is pursuing, and letTu

G denote the set of topologies that
make nodeu content according to goalG. Theutility of node
u for a given constructed topologyE′ is defined as follows:

U(u, E′) =


−

∑
e=(u,v)∈E′ we+
−pay(u, E′) + pr(u, E′) if (N,E′) ∈ Tu

G
−M otherwise

(2)
If node u is content with the network topology(N,E′), it

incurs a cost ofwe for each adjacent edgee = (u, v) ∈ E′,
representing the fact that it will have to transmit packets along
these links until the topology is updated. Our framework define
monetary transfers that we summarize in the utility function
as a paymentpay(u, E′) that nodeu will have to make in
order to be allowed to participate in the network, as well as
a premium paymentpr(u, E′) that u will receive from other
nodes, which represents the ‘added value’ thatu brings to
the network. Finally, if nodeu is not content with network
topology (N,E′), it gets a negative utility of−M , where

4The termstruthful and strategy-proofare also used in the game theory
literature.

M is a large constant representing the fact that the node
was not able to achieve its goal. Since we are considering
a scenario in which nodes are selfish, but at the same time
they are willing to connect to each other, we assume that
M � pay(u, E′), pr(u, E′) and of all the edge weights.

The final step in the definition of our topology control game
is determining the set of possible strategies for a player. To
this purpose, we observe that every topology control protocol
relies on nodes determining the weightswe of the links to
their neighbors. Such weights are typically calculated either
through successively growing the emission energy in a test
phase and then determining minimum energy emission levels
by having receiver nodes reply to such a test packet, or simply
by announcing GPS-based coordinates to all neighbors by
emitting at maximum power. In a coordinate-based solution,
it is usually assumed that a link weight is a known function
of the Euclidean distance between the two nodes.

In the most general setting, we can thus assume that a node
has at least the option of falsely declaring the weightswe of
its adjacent links. Many other possible cheating behaviors of
selfish nodes are possible, but they depend on the specific
topology control protocol at hand. For this reason, we do
not consider them in our general framework, but we carefully
discuss them in the following sections, which are devoted to
protocol-specific incentive compatible realizations of topology
control.

The field of mechanism design offers a standard solution,
called a VCG-based mechanism [19], to incentivize all nodes
to participate without lying about the weights of their adjacent
links. We present this general scheme here and show in
subsequent sections how it can be implemented efficiently for
a few specific topology control approaches.

Given a communication graphG = (V,E) and a topology
control protocolA, let EA = E′ denote the set of edges that
are in the topology constructed by protocolA, and letE−u

A
denote the set of edges that are in the topology constructed by
protocolA when executed on the maxpower graph that does
not contain nodeu (i.e., the graph with node setN − {u}).
Finally, for any link setE′′ let |E′′| denote the sum of the
weights of all edges inE′′, i.e., |E′′| =

∑
e∈E′′ we. Then, we

define the premium for nodeu as follows:

pr(u, E′) = |E−u
A | − |E′|+

∑
e=(u,v)∈E′

wu
e , (3)

wherewu
e is the cost of edgee as declared by nodeu.

Note that these premiums need to be funded in some way.
While there are several ways of doing this, a standard solution
is to equally subdivide these costs among all the|N | = n
nodes participating in the network (see e.g. Chapter 9 in [13]).
Thus, we define the payment function as follow:

pay(u, E′) =
∑

u∈N pr(u, E′)
n

.

This completes the definition of our general framework for
an incentive-compatible implementation of topology control:
a nodeu in the network receives a premium which equals
the ‘added value’ that nodeu brings to the network (i.e.,
the difference between the cost of the computed topology
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without u and the cost of the topology includingu), plus
the declared cost incurred byu for joining the network. The
overall amount of money which must be paid to the nodes is
equally subdivided among the network nodes.

Note that the premium that a node receives might exceed,
be equal to, or be less than the payment due by the node.
However, even if a node ends up the game paying some money
to be part of the network, this situation is still preferable to
not joining the network, as this would drive down the utility
function of the node to−M (we recall thatM is much larger
than the due payment and of the edge weights).

Observe that the premium that a node receives depends on
the costs incurred by nodeu in the computed topologyas
declared by nodeu itself. So, a selfish node might be tempted
to falsely declaring these costs, so that to increase its utility.
While a formal proof that this cheating behavior does not
increase the utility of the node is deferred to the analysis of the
protocol-specific incentive compatible TC implementations,
we give here the intuition behind this proof.

The premium received by a node as defined in (3) is
composed of three terms: the first term is not influenced by
node u’s declaration, since it is the cost of the topology
computed on the graph which does not containu; the third
term can actually be increased by overdeclaring the cost of the
edges incident intou. However, if these costs are overdeclared
by, say,∆ > 0 overall, also the cost of the computed topology
|EA| is increased of the same amount, and the premium due to
nodeu is decreased by∆. So, nodeu has no way of increasing
its utility (we remark that the two other terms in the utility
function ofu do not depend on the declared edge weights) by
falsely reporting its edge weights.

The framework described in this section is based on the
well-known VCG mechanism, which has the nice feature of
motivating nodes not to lie when reporting their weights.
However, this comes at the price of paying nodes in excess
to their real cost for being part of the network (in fact,
|E−u

A | − |EA| is in general a positive quantity), disclosing
an economic inefficiency of the mechanism: the sum of the
payments due to the nodes (which equals the sum of the
premiums paid to the nodes) is in general higher than the
cost of the generated topologyE′. Unfortunately, it has been
shown that, under realistic assumptions, there is no way of
removing this inefficiency if the goal is to design an incentive
compatible mechanism [19].

IV. I NCENTIVE COMPATIBLE MST TOPOLOGY CONTROL

A. Problem definition and model

In this section we consider the problem of building and
maintaining the MST of the maxpower graphG in a scenario
in which the network nodes are selfish agents. To simplify
the presentation of our protocol, we assume that no two
edgese1, e2 in G exist such thatwe1 = we2 . Note that this
assumption can be accomplished by ordering node IDs in
lexicographical order, and by breaking ties according to the
IDs of the endpoints of the edge. Under this assumption, the
MST of G is uniquely defined.

To model selfish agents, we assume that each node is
assigned with autility function, which represents the benefit

that the node gets in participating in the MST construction.
The utility function is the same for all the network nodes, and
it is defined as follows:

Definition 2 (Utility function for MST construction):Let u
be a node inG = (N,E), and let T = (NT , ET ) be the
topology built (possibly on a subset of the network nodes) at
the end of the MST protocol execution. The utility of nodeu,
which is inspired by the general framework of Section III, is
defined as follows:

U(u, T ) =


−

∑
e=(u,v)∈ET

we

2 −
−pay(u, T ) + pr(u, T ) if u ∈ NT

−M otherwise
(4)

In the above definition we are assuming the global selfish
node model. This is consistent with the nature of the MST,
whose computation requires global knowledge. Differently
from the general framework, we are also assuming that the
cost of an edge is equally subdivided between its endpoints.

The goal of each node participating in the protocol ex-
ecution is to maximize its utility function (selfish agent).
To achieve its goal, a node can deviate from the behavior
prescribed by the protocol, for instance by not sending a
message, or by reporting false information, or by sending a
message more than once. However, nodes are not allowed to
coordinate their cheating behaviors in order to form a coalition
(no collusion). Our goal, as the protocol designer, is to devise
a mechanism (more specifically, a pricing rule) such thatevery
node participating in the protocol maximizes its utility when a
certainsocial optimumis achieved. This property is known as
incentive compatibility in the game theory literature. In simple
words, incentive compatibility ensures that the combination
of the agents’ selfish behaviors results in a desirable “social”
behavior.

Returning to the problem at hand, our designer goal is to
device a protocol such that the function

Soc(T ) =
∑
u∈N

U(u, T ) ,

which represents thesocial utility function, is maximized when
the constructed topologyT is the MST built onG.

B. TheIC-MST protocol

Our incentive compatible protocol for building the MST,
called IC-MST, is essentially an incentive compatible imple-
mentation of the Prim’s algorithm for building the MST, and
it is defined as follows.

In order to simplify the presentation, we assume that there
exists a network node (theinitiator) that initiates the protocol
at a certain time, and that the initiator node is unique (i.e.,
no other node in the network can initiate IC-MST execution).
This assumption is reasonable, for instance, in wireless Mesh
networks, where the initiator is a wireless Access Point,
and the goal is to establishing (possibly multi-hop) wireless
connections with mobile nodes in the vicinity of the AP. In
this scenario, building a MST rooted at the AP is a reasonable
choice.

IC-MST proceeds in rounds, adding a new node (with a
corresponding edge) to the constructed topology at each round,
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until all the network nodes are connected (n − 1 rounds in
total). At each round, nodes are requested to pay an amount
of money, which is delivered in a secure way to the initiator.
The initiator also collects its own money. After roundn− 1,
there is a last round called thepremium round, during which
the initiator delivers (in a secure way) the premiums to all the
network nodes (including itself).

At round 1, the initiator starts the protocol execution, finding
the edgee1 of minimum cost incident into it, and the second
best edgee2

1. The node at the other endpoint of edgee1

joins the network topology, forming a network with 2 nodes
(denotedT1). Edgee1 is stored in the first element of the array
Edges[ ], which keeps track of the network edges (this array
and the arrays for payment tracking are stored at the initiator
node). The initiator then collects the payments, which amount
to we2

1
. The money due is equally shared between the two

nodes inT1. Furthermore,we2
1

is stored in the first element
of the arrayPayments[ ], which keeps track of the payments
performed in the various rounds.

At the generic roundi, the initiator asks each node in the
current treeTi−1 to report the weights of the edges incident
into it whose other endpoint is not inTi−1. If no such edge
exists, we are done (all then nodes are included in the
topology), and the initiator starts the premium round (see
below). If a nodeu is adjacent toh > 2 edges with nodes
not in Ti−1, it is sufficient that it reports to the initiator the
cost of the two edges of mininum cost. If these costs were
already reported byu to the initiator in a previous round,
node u simply does not report any cost. After all the costs
have been collected, the initiator selects the minimum cost
edge ei = (u, v) as the new edge to be added toTi−1.
Edge ei is stored inEdge[i], and the node at the endpoint
of ei which was not inTi−1 (say, nodev) is added to the
newly formed topologyTi. Before computing the payments,
the initiator sends a message to nodev, asking him to send the
list of its neighbors, along with the corresponding link costs.
This message, which is necessary to prevent some types of
cheating behavior (see the proof of Theorem 1), is encrypted
and digitally signed by nodev, so that the initiator can rely on
this information. After topologyTi has been built, the initiator
computes the payments due by the nodes inTi (including
itself), according to the current rule:

Payments[i] = Payments[i− 1] + we2
i

pay(v) =
Payments[i]

i + 1

pay(u) =
Payments[i]

i + 1
− Payments[i− 1]

i
for each u ∈ Ti−1 ,

wherePayments[i− 1] denotes the total payments collected
up to roundi − 1, Payments[i] denotes the total payments
collected up to roundi, andwe2

i
is the cost of the second best

edge connecting a node inTi−1 with a node outsideTi−1.
The above defined payment rule is inspired by the general

framework introduced in Section III. In principle, we want to
ensure that all the nodes joining the network equally share the
cost of setting up the network topology. This rule should apply

T
2

u

v

5

7

8

w

Fig. 3. Example of IC-MST’s execution. The initiator node is light gray.

independently of the round in which a node joins the network,
since otherwise nodes would be motivated to either anticipate
or delay the moment at which they join the network. This
explains why we keep track of the total payments collected up
to roundi− 1: since these have been equally shared amongst
the nodes inTi−1, when a new node joins the network the
additional payment due by a node inTi−1 equalsPayments[i]

i+1
(the total amount of money that it must pay), decreased by
Payments[i−1]

i (the amount of money already paid by the
node). On the contrary, the new node joining the network is
charged the entire due paymentPayments[i]

i+1 .
Note that at each round the total cost is increased by the

cost of the second best edge joining a node inTi−1 with a
node outsideTi−1. Again, this rule is inspired by the general
framework for incentive compatible topology control described
in Section III.

Finally, we have to define the premium round, which is
again dictated by our general framework. The initiator scan
the arrayEdges[ ] starting from the first element. For each
edgeei = (u, v), it computes the premiums due to nodes as
follows:

pr(u) = pr(v) =
Payments[i]− Payments[i− 1]

2
.

Note thatPayments[i]−Payments[i− 1] corresponds to
the cost of the second best edge joining a node inTi−1 with a
node outsideTi−1. This premium is equally divided between
the nodes at the endpoints of the edge. The premiums due to
the nodes are summed up as new edges are considered, until
all the edges in the network topology have been considered.
Then, the initiator delivers to each node (including itself) the
corresponding premium in a secure way.

Figure 3 reports an example of IC-MST’s execution. At
round 2, the network topology is composed of the initiator
(light gray node), and of nodesu andw. Let us assume that
the total payments paid by the nodes up to round 2 amount to
10, i.e.Payments[2] = 10. The next edge to be included in
the topology is(u, v), since it is the edge of minimum cost
joining a node inT2 with a node outsideT2. However, the
total of the payments is increased by 7, i.e. the cost of the
second best edge. Hence, we havePayments[3] = 17, and
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the payments to the nodes are computed as follows:

pay(v) =
Payments[3]

4
=

17
4

pay(u) = pay(w) = pay(initiator) =

=
Payments[3]

4
− Payments[2]

3
=

=
17
4
− 10

3
=

11
12

An important point to discuss is how the edge weights are
computed in IC-MST, since implementing this task improp-
erly might impair the incentive compatibility property of our
protocol.

The idea is to force each node to either overdeclare, or
underdeclare, or correctly declare the cost of all the edges
incident into it. In other words, we want to avoid that a
nodeu can, say, correctly declare the cost of a certain edge
(u, v), while at the same time overdeclaring the cost of another
edge (u, w). To this purpose, edge weights are computed
by exchanginghello messages between the nodes: when the
initiator starts the protocol execution, it sends a hello message
at maximum transmit power, indicating that it is starting the
construction of the network topology. The message includes
the initiator’s ID and the transmit power used to send the
message. All the nodes within its radio coverage area5, after
waiting for a random time (this is to avoid collisions), reply
with another hello message sent at maximum power, reporting
the ID and transmit power of the sender. When the initiator
receives a hello message from a neighbor node, sayv, it
compares the transmit powerPv included in the message
with the received powerPR

v . The difference between these
power levels, namelyPv − PR

v , corresponds to the path loss
experienced by the wireless link connecting the initiator with
v, and the minimum power needed to sustain a link with
the desired features tov can be computed accordingly. If the
required power to sustain the link tov exceeds the initiator’s
maximum transmit power6, then nodev is not included in the
initiator’s neighbor list, as the link tov is unidirectional and
only bi-directional links are considered in our approach.

Note that receiving a hello message for the first time triggers
the recipient node to send a hello message in turn (with a
random delay). After all the nodes in the network have sent
their hello message, all the edge weights in the communication
graph can be correctly computed.

At any time during IC-MST execution, a node which
does not behave according to the protocol specifications can
be identified as a cheater and excluded from the network
topology. For instance, a node which tries to send several hello
messages to induce false edge weights at its neighbors can
easily be identified as a cheater by the nodes in its vicinity,
and excluded from the network topology. This repudiation
mechanism is fundamental to ensure the incentive compati-
bility property of IC-MST (see proof of Theorem 1 below).

5We recall that we are not assuming that the coverage area is a perfect
circle, nor that all the nodes have the same maximum transmitting range.

6In general this is possible, since nodes can have different maximum
transmit powers.

C. Protocol Analysis

Theorem 1:Assume the maxpowerG is strongly connected
and has minimum node degreeδ ≥ 2. Then IC-MST is
incentive compatible, i.e. a network node maximizes its own
utility when it behaves according to IC-MST’s specifications.

Proof: First, we observe that it is in the interest of a
selfish node to join the network topology (otherwise it gets
utility −M ). Given this fact, how can a node maximize its
utility function?

Observe that the last term in the definition of utility function
(4) can be rewritten as follows:

pr(u, T ) =
∑

e=(u,v)∈T

pr(e) .

The pricing rules ensures that, for any given edgee in the final
topologyT , both endpoints ofe receive a premium exceeding
the cost of the edge. In other words, for each edgee = (u, v) ∈
T , we havepr(e) − we

2 > 0. It follows that nodeu will to
include as many edges incidents into it as possible in the final
network topology.

A node participating in IC-MST can cheat in several dif-
ferent ways. We show that none of this cheating possibilities
leads to an increase of the node utility.

At the beginning of the protocol execution, a node (say,
u) is requested to send a hello message at maximum power,
including in the message the transmit power used. Nodeu
might not send the help message at all, but in this case it
would not be included in the network topology, driving its
utility down to−M . If nodeu sends the message at a power
less than the maximum, it exposes itself to the risk of not
reaching nodes that it would have otherwise reached if sending
the message at maximum power, possibly failing to connect to
the network even if this would be possible. On the other hand,
the weight of an edge is computed based on the received power
at the receiver end, and on the transmit power as included
in the hello message by the sender (not the actual transmit
power). Sending the hello message with a decreased power
would result in a lower received power at the receiver end,
driving up the cost of all the edges incident intou. In turn, this
lowers the likelihood of having many ofu’s edges in the MST,
driving down its utility function. Ifu overdeclares the transmit
power in its hello message it increases the weight of all the
edges incident intou, with a negative effect on its utility. On
the other hand, ifu underdeclares the transmit power, all its
incoming links would be compromised, as its neighbor nodes
would use an incorrect (too low) transmit power to send the
messages tou. Hence,u would be disconnected from the
network, driving its utility down to−M . We also observe
that u has no interest in both anticipating nor delaying the
transmission of the help message, as the moment at which it
joins the network topology has no effect on the payments due
to the initiator, nor on the premiums received. Finally,u cannot
send the hello message more than once, as, in case it would
send several hello messages, its neighbors would immediately
identify nodeu as a cheater, excluding it from the network
topology (we are assuming no collusion). Thus, we have
proved that a selfish node has no interests in deviating from
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IC-MST’s specifications during the hello message exchange
phase.

Let us now consider the subsequent stages of IC-MST’s
execution. Let us consider the moment in which a certain node
u is first inserted into the network topology. The fact that it
is inserted in the network topology depends on the weights
of the edges incident into it, which are computed during the
hello message exchange phase. Since we have shown above
that this phase is performed correctly by a selfish node, these
weights are computed correctly. Note that in principle node
u might increase its utility by overdeclaringonly the cost of
the second best edge connecting it to a node in the current
topology, but this is not possible, because the mechanism that
we use to compute the edge weights ensures that either all the
weights of the edges incident into a node are overdeclared,
or all of them are underdeclared, or all of them are declared
correctly. After nodeu is included in the network topology
for the first time, it is requested to send an encrypted message
to the initiator, declaring its neighbor list and corresponding
edge costs. Ifu does not send this message, the initiator can
identify u as a cheater, excluding it from the network topology.
Furthermore, sending bogus information exposes nodeu to
the risk of being identified as a cheater, as the initiator keeps
track of the neighbor lists obtained from the other nodes and
can easily perform a cross check (here, the assumption of no
collusion between nodes is necessary). So, we have proved
that it is in nodeu’s best interest to behave according to IC-
MST’s specifications when it is first included in the network
topology.

The final case to consider is when nodeu is already part
of the network topology, and a new node joins the network.
In principle, nodeu might increase its utility by not reporting
the cost of the second best edge, saye, incident into it (we
recall that reporting a bogus cost would exposeu to the
risk of being identified as a cheater and excluded from the
network topology). However, also in this case the initiator will
eventually receive from the node at the other end of edgee
the list of neighbors, including nodeu and the corresponding
edge cost. By cross checking this information, the initiator
can easily identifyu as a cheater and excluding it from the
network (this is true under the assumption of no collusion).
This proves that a selfish node has no interest in cheating also
when it is already part of the computed topology.

To prove the theorem, it is sufficient to observe that in the
last round the premiums are delivered in a secure way, as well
as the payments due by the nodes in the various rounds of IC-
MST’s execution.

Note that the incentive compatibility property of IC-MST
relies on the fact that payments/premiums can be gath-
ered/delivered to the nodes in a secure way. Indeed, how to
implement secure crediting in wireless multi-hop networks is a
research field in itself (see, for instance, [25]). While a detailed
discussion of this issue is beyond the scope of this paper, we
sketch here a repudiation-based mechanism that can be used
to motivate nodes to propagate the payment info to/from other
nodes in the tree. We have two critical points in IC-MST:i)
when a new edgee = (u, v) is added at a certain step, nodes

u and v must deliver payments to the initiator; andii) the
delivery of premiums during the premium round. Regardingi),
we first notice that, since for every edge in the MST incident
into it a node always receives a premium that exceeds the
payment for the edge, nodeu andv will to send the payments
to the initiator. The payment message is encrypted, so that
intermediate nodes in the pathP to the initiator can only
forward or drop the message, but they cannot modify it. If
one of the nodes inP drops the message, the initiator realizes
that something is wrong (it is in fact expecting the payments
for edgee), and it can exclude all the nodes inP from the
network topology. Hence, an intermediate node is motivated
to forward the payment to avoid being excluded from the
network topology. The argument forii) is similar: At the end
of the premium round, the initiator individually asks to each
node (using digitally signed messages) if it has received the
premium: if a nodeu responds ‘no’ (or does not respond at
all), all the nodes in the pathP from the initiator to nodeu
are excluded from the network. The use of digital signatures
for the reply message prevent nodes inP from forging u’s
reply.

Theorem 2:The social optimum is achieved when the
topologyT computed by IC-MST is the MST of the maxpower
graphG.

Proof: We recall that the social utility function is defined
as follows:

Soc(T ) =
∑
u∈N

U(u, T ) .

Assuming that the generated topologyT is connected (oth-
erwise at least one of the nodes’ utility would be−M , driving
down the social utility), the social utility function can be
rewritten as follows:

Soc(T ) =
∑
u∈N

− ∑
e=(u,v)∈ET

we

2
− pay(u, T ) + pr(u, T )

 .

Observe that, given our definition of the pricing scheme,
the sum of the payments over all the network nodes equal the
sum of the premiums paid to the nodes, i.e.∑

u∈N

(−pay(u, T ) + pr(u, T )) = 0 .

It follows that

Soc(T ) =
∑
u∈N

− ∑
e=(u,v)∈ET

we

2

 = −
∑

e∈ET

we ,

implying that the functionSoc(T ) is maximized (i.e., the
social optimum is achieved) whenT is the MST.

Theorem 3:The IC-MST protocol hasO(n2) message
complexity.

Proof: All the edge weights can be computed after all
the network nodes have sent their hello message, i.e. withn
messages overall.
During roundi, a node inTi−1, sayu, is requested to report the
weights of its best edges to nodes outside the current network
topology, which can be combined into one message which is
passed to the parent ofu in the current topologyTi−1 (we
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recall that all the intermediate topologies built by IC-MST are
trees). The parent ofu waits for all its children to report their
weights, then it computes the best two weights out the ones
received by its children and its own, and forward a unique
message up in the tree. This process is repeated until all the
information has been conveyed to the initiator node. Hence,
at roundi at mosti messages are exchanged to propagate the
information to the initiator, with a total ofO(n2) messages
during then−1 rounds needed to build the network topology.
It is easy to see that a similar approach can be used to collect
the payments from the nodes inTi, sendingO(n2) messages
overall during then− 1 rounds.
In the final round, the premiums are delivered to the nodes
along the tree in a top-down fashion, sendingO(n) messages
overall. It follows that the message complexity of IC-MST is
O(n2).

V. I NCENTIVE-COMPATIBLE KCN TOPOLOGY CONTROL

In this section we consider the problem of computing and
maintaining the KCN topology in a scenario in which the
network nodes are selfish agents. We recall that the KCN
topology of parameterk is a graph in which every node has
a direct, bi-directional link to at least itsk closest neighbors.
More in particular, KCN is obtained from the maxpower graph
G = (N,E) as follows: for each edgee = (u, v) ∈ E, include
e in KCN if and only if u is one of thek closest neighbors
of nodev, or v is one of thek closest neighbors of nodeu.

Although in the final KCN topology all links are bi-
directional, in the process of building the KCN graph it is
important to distinguish between incoming and outgoing edges
of a node. Hence, in the remainder of this section(u, v)
denotes a directed edge from nodeu to nodev. Furthermore,
we use the following notation: for any given nodeu, Nu

k

denotes the set of thek closest neighbors of nodeu, andNu
T

denotes the set ofu’s bi-directional neighbors in the topology
T computed by the topology control algorithm. Note that
Nu

k ⊆ Nu
KCN .

The utility function is the same as the one defined in the
general framework of Section III, where a selfish node is
content with a certain topologyT = (N,E′) if and only
if Nu

k ⊆ Nu
T . Note that here we are using the local selfish

node model. In order to implement closest neighbor-based
topology control, we also assume that the weightwe of edgee
equals its length raised to some positive path loss exponentα.
Indeed, the protocol presented here can be used with arbitrary
definitions of edge weight, then it can be used to implement
a wider class of topology control approaches, where the goal
is to have bi-directional connections to at least thek ‘best’
neighbors, where ‘best’ means with minimum edge weight.

In order to define the premium function, we introduce
the concept ofreplacement linkfor a certain nodeu. Let
v1, . . . , vk be the k closest nodes tou, and let vk+1 be
the k + 1-closest node tou. If any of the nodesvi, with
i = 1, . . . , k, would not be part of the network, nodeu should
establish a link with nodevk+1 in order to be content. For
this reason,(u, vk+1) is the replacement link of nodeu for all
edges(u, vi), with i = 1, . . . , k. In the following, the cost of

u=z3

v1

v2

v3

v4

w

z1
z2

z4

Fig. 4. Example of replacement links (gray edges). Parameterk is set to 3.

the replacement link of nodeu for edge(u, v) is denoted by
w
−(u,v)
u .
An example clarifying our definitions of replacement link

is reported in Figure 4. Edge(u, v4) is u’s replacement link
for edges(u, v1), (u, v2) and(u, v3): if any of these edges is
deleted from the graph, nodeu must establish a link to node
v4 in order to be content. Edge(w, z4) is w’s replacement link
for edge(w, u): if edge(w, u) is deleted from the graph, node
w must establish a link to nodez4 in order to be content.

We recall that from the definition of the general framework
we have:

pr(u, KCN) = |KCN−u| − |KCN |+
∑

(u,v):v∈Nu
KCN

wu
(u,v) ,

whereKCN−u represent the KCN topology computed with-
out nodeu, andwu

(u,v) represents the weight of edge(u, v) as
declared by nodeu. Due to the localized nature of the KCN
graph, the cost of theKCN−u topology can be rewritten as
follows:

|KCN−u| = |KCN |−
∑

(u,v):v∈Nu
KCN

wu
(u,v)+

∑
(v,u):u∈Nv

k

w−(v,u)
v ,

from which we have:

pr(u, KCN) =
∑

(v,u):u∈Nv
k

w−(v,u)
v .

In words, nodeu receives a premium for each edge(v, u)
such thatu is one of thek closest neighbors of nodev, and
the amount of the premium for each such edge(v, u) equals
the cost of the replacement link of nodev for link (v, u).

Similarly to the general framework, premiums are funded
by evenly subdividing all payments among the network nodes,
i.e.

pay(u, KCN) =
∑

u∈N pr(u, KCN)
n

Note that the assumption of equally subdividing all pay-
ments among the nodes implies the existence of a centralized
authority that collects payments and distributes premiums to
the nodes. This task was performed by the initiator node in the
IC-MST protocol. Since in KCN there is no initiator node, we
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simply assume the existence of such a Centralized Authority,
and that nodes can send/receive payments from the CA in a
secure way.

We can now present the IC-KCN distributed algorithm for
an incentive compatible computation of the KCN graph. The
algorithm is executed by each nodeu ∈ N .

ALGORITHM IC-KCN (for nodeu)

1) Compute distances to neighbors; exchange digitally
signed distance information with neighbors; w.l.o.g. let
the link-weight ordered set ofh > k neighbors be
v1, . . . , vh; let wi = w(u,vi); note that nodeu could
cheat in this computation by either underdeclaring or
overdeclaring the weights to its neighbors.

2) Include links(u, v1), . . . , (u, vk) in u’s local view of the
TKCN topology;

3) For each neighborvi ∈ {v1, . . . , vk}: request estab-
lishment of the reverse link(vi, u) in TKCN ; include
digitally signed (by neighbors) distance information for
neighborsv1, . . . , vk+1 in the message; compute the cost
of the replacement link for(vi, u) (which equalswk+1),
and communicate this cost to the CA in a secure way;

4) Upon receiving link establishment requests for link
(u, vi) for 0 < i ≤ h, including vi’s signed neighbor
distance information: check digital signatures and issue
a premium request for link(u, vi) to the CA. If digital
signature is incorrect, ignore neighborvi in the future;
otherwise, establish link(u, vi).

5) Wait for crediting from the CA: send the requested
payments, and receive the premiums; after that, the
node is ready for operating on the established network
topology.

Distance to neighbors (and, consequently, link weights) can
be computed using a similar technique to the one used in IC-
MST: each node sends a hello message at maximum power,
reporting its ID and the power used to send the message.
Although a node can falsely report the value of the transmit
power used to send the hello message, the advantage of using
this technique is that we can ensure that a node either truthfully
report, or overdeclare, or underdeclare the weights of all its
incident edges.

Similarly to the case of IC-MST, we assume that nodes are
selfish, but they cannot collude with each other.

Theorem 4:Assume the maxpower graphG is strongly
connected and has minimum node degree equal toh > k.
Then, the protocol IC-KCN executed with parameterk is
incentive compatible, i.e., for any selfish nodeu it is in its best
interest to behave according to the protocol specifications.

Proof: (Sketch) First, by applying similar arguments as
in the proof of Theorem 1, we can show that a node cannot
increase its utility by falsely reporting its transmit power level
in the hello message. Thus, a node can correctly compute the
distances to its neighbors, and correctly compute the list of its
k closest neighbors.
Nodeu has no interest in trying to establish outgoing links to
neighbors further than thek closest ones, since premiums are
received only for incoming links to nodeu. So, by trying to

establish more and/or longer outgoing links nodeu can only
decrease its utility.
Node u cannot increase its utility by falsely reporting the
weight of its replacement link, since this weight does not
concur to the formation of its premium. Falsely reporting the
weight of the replacement link might increase (or decrease) the
premium of one ofu’s neighbors but, since we are assuming
no collusion,u has no interest in doing that.
Node u has no interest in reject a link establishment request
from an incoming neighborv, since nodeu receives a premium
for establishing the reverse link(u, v) that exceeds the cost of
(u, v). Hence, accepting the link establishment request from
nodev increases the utility of nodeu.
Finally, the node is willing to receive payment/premium from
the CA, since, even if the balance between payments and
premiums negative, the node is content, and its utility is greater
than if the node were excluded from the network.

Theorem 5:The IC-KCN protocol executed with parameter
k hasO(n · k) message complexity.

Proof: To prove the theorem it is sufficient to note that:

– distance between nodes is computed by having each
node sending a hello message at maximum power, hence
exchangingn messages overall (excluding collisions);

– every node in the network sends exactlyk reverse link
establishment messages;

– every node exchangesO(k) messages with the CA for
reporting cost of the replacement link, premium requests,
and billing.

Note thatk < n−1, so the message complexity of IC-KCN
is O(n2). Indeed, in many situationsk can be assumed to be
O(log n) (see [27]), and the message complexity of IC-KCN
becomesO(n log n).

On a final note, we have tried several modifications to
the above defined payment rules to enable alocal billing
mechanism (i.e., nodes exchange payment/premium only with
neighbors), thus avoiding the need for a central authority.
Unfortunately, accomplishing this task seems to be very chal-
lenging: all of our approaches ended up in situations in which
a node can cheat and increase its utility. However, if we move
to a more restricted setting in which only overdeclaration is
possible, but not underdeclaration,7 a local billing mechanism,
where a node simply pays its replacement edge cost to itsk
nearest neighbors becomes strategy-proof. We leave the in-
vestigation of how to implement general incentive-compatible
KCN topology control without a central authority as future
work.

VI. CONCLUSIONS

In this paper, we have studied the problem of building and
maintaining a network topology with certain desired features
in a wireless multi-hop network with selfish nodes. We have
shown that this problem can be tackled only if selfish node
behavior is accounted for at the design stage, indicating the

7Such a setting may in fact be closer to reality if one imagines a level-
based neighbor discovery protocol in conjunction with authenticated responses
to challenges.
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need of rethinking the current approaches to the topology
control problem. To address this need, we have introduced a
general framework for designing incentive compatible topol-
ogy control protocols, and we have applied our framework
to designing incentive compatible realizations of two popular
topology control approaches.

Recent technology trends indicate that wireless multi-hop
networks formed by nodes belonging to different authorities
and governed by conflicting interests will become widespread.
This is the case, for instance, of many application scenarios
of wireless Mesh networks, and of the general vision of a
future in which ubiquitous mobile computing will become
reality. In view of these trends, we believe the study reported
in this paper constitutes an important building block of next
generation wireless multi-hop networks.

The implementations of incentive compatible TC presented
in this paper are only examples of application of our frame-
work, that can be applied to other topology control protocols
such as, for instance, cone-based topology control (CBTC,
[23]). Furthermore, the general framework for incentive com-
patible topology control presented in this paper leaves space
for several generalizations. For instance, we can modify the
definition of the utility function to account for different cost
metrics (e.g., max instead of total edge cost). Furthermore, we
can adopt a more general notion of benefit that a node gets
from a certain network topologyT : instead of being either
‘content’ or ‘uncontent’ withT , a node might display a certain
degreed of satisfaction withT , whered is a constant such
that 0 ≤ d ≤ 1. Whether our proposed framework can be
applied with this more general notion of node benefit and with
different cost metrics is an open problem, which is matter of
ongoing research.
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