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A boundary representation for extracting sharp
surfaces from regularly-gridded 3d objects

Robert Edward Loke

Abstract— Geometry extraction from volume data is important
in many applications. On a regular 3d grid, current approaches
do not consistently preserve object details such as sharp corners
and edges of 26-connected objects. We describe a boundary rep-
resentation in which we geometrically constrain the connectivity,
so that such details can be maintained. Application of our model
for object surfacing compares favorable to current surfacing
methods.

Index Terms— Curve, surface, solid, and object representations

I. INTRODUCTION

In surface rendering, object boundaries are visualized by
first extracting a geometric model of isosurfaces or segmented
object regions in a volume and then by rendering the model.
Surface rendering and modeling have innumerable applica-
tions, such as finite element analysis and computational fluid
dynamics, in different application areas. In CAD for e.g.
gaming, designed objects must be efficiently represented in
order to reduce the enormous amount of triangles which is
required to visualize entire scenes. Surface rendering is nowa-
days also often used for volume visualization. One advantage
of surface rendering is that, independent from the existence
of hardware accelerators, e.g. Pfister et al. (1999), it is fast
if compared to volumetric visualization techniques such as
the one by Levoy (1988). Furthermore, it enables a highly
interactive analysis by “flying” through and around the data
in a region of interest. Software libraries such as OpenGL
(Open Graphics Library) or VRML (Virtual Reality Modeling
Language) provide interfaces for surface visualization.

Current challenges in surface rendering are to design algo-
rithms which

• are general enough and valid/satisfactory for both 6- and
26-adjacency relations of objects,

• detect and preserve object features like sharp corners and
edges, irrespective of the object orientation, and

• can be applied to manifold as well as to non-manifold
objects.

A traditional concern in algorithm design is the efficiency
of surface representation without deformations and aliasing
effects.

In order to obtain the geometric model of boundaries in a
volume, surfaces can be built by approximation techniques
or by surface construction. Volume boundaries can be ap-
proximated using, for example, splines [3], [4], wavelets
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[5], [6], digital geometry [7], [8], parametric surfaces in-
cluding nonuniform rational b-spline—NURBS—patches [9]–
[11], implicit surfaces [12]–[15], and other [16], [17]. Implicit
surfaces are connected, closed and can easily be optimized,
allowing a fast rendering. However, the main drawbacks of
approximation techniques are that, depending on the number
of points, their computation is slow and that their shape is
difficult to control, especially around characteristic features
like e.g. sharp object edges. Because we will only consider
surface construction in the remaining of this paper, we want
to note that, after surface construction, approximation surface
models could still be built starting from polygon models
[12], [15]. Current approaches to surface construction can
be categorized into isosurfacing and boundary triangulation.
Isosurfacing methods such as Marching Cubes and Discretized
Marching Cubes (DMC) were originally designed in order to
visualize isosurfaces in volume data. These methods are of
great practical use because they work for arbitrary data. For
example, even for isolated points and lines a surface is built.
However, the original versions did not have a mathematical
background; only later this background was provided (see
next section). Boundary triangulation methods fit the geometry
through the boundary of an object using sets of possible
object/background configurations. Known boundary represen-
tations are Morgenthaler surfaces and simplicity surfaces.
These methods traditionally have a strong mathematical basis
but are not always of direct practical value, i.e. they are
not applicable to arbitrary datasets because configurations can
occur in the data which do not yield any surface output.

Current methods in both surface construction approaches do
not preserve important shape details such as sharp edges and
corners. We propose a practical algorithm which exploits an
intuitive boundary representation in order to triangulate object
boundaries. In a new discrete boundary model we restrict the
connectivity between the boundary points such that object
details are maintained. The model is related to the simplicity
surfaces of Couprie and Bertrand. Contrary to other methods
we do not work directly on the object itself but on its 6-border.
In combination with three filters for concave corners this
allows us to preserve sharp object details without introducing
unwanted aliasing. The algorithm can be applied to arbitrary
data in order to extract surfaces.

The structure of the paper is as follows. First we introduce
the necessary terminology and elaborate on related research
in Section II. In Section III we give an operational definition
for object boundaries with concavity and describe the discrete
boundary model with its triangulation. In Section IV we
conclude and give some directions for future work.
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Fig. 1. Left: 2D illustration of a block of 3×3×3 voxels (gray squares):
Shown are four cuberilles between nine points (the coordinates of each point
are equal to the center of its corresponding voxel) and an object (black
dots) within a background (white dots). The fat black line denotes a standard
MC isosurface obtained with the DMC implementation. With discrete surface
methods, one obtains two surfaces: one for the boundary of the object (fat
gray line) and one for the boundary of the background (fat white line). The
figure shows the surface contours when our method is applied; i.e. sharp at the
convex edge and sharp at the concave edge. Right: Adjacency relations and
the eight cuberilles which are uniquely defined in a 3×3×3 neighborhood.
The labels denote 6-, 18- and 26-adjacent points. The point in the center of
the neighborhood is in common in all cuberilles.

II. RELATED RESEARCH AND TERMINOLOGY

There are two main surface construction approaches which
convert a volumetric representation into a surface representa-
tion: an isosurface generation with a MC type of algorithm
[18] that finds a surface after thresholding and detection of
intersected cells, or a discrete surface generation, for instance
for a binary volumetric representation that results from a
segmentation and a connected component labeling [19]. With
the discrete surface generation, the vertices of the surface
elements are positioned at the voxel centers, while for the
isosurface generation, the vertices are on the edges between
the voxel centers, at positions where the isosurface intersects
the cell between the voxels. Figure 1 clarifies this difference
between MC and the discrete surface representation. Cuberilles
refer to the cells of the discrete grid between the points which
are defined by the voxel centers. Eight unique cuberilles can
be referred to in a 3×3×3 voxel neighborhood. The figure also
clarifies the notion of n-adjacency. Each point has a 3×3×3
neighborhood with points which are 26-adjacent to the central
point from which 6 points have a Manhattan distance of one,
12 points a distance of two, and 8 points a distance of three
steps in orthogonal directions. Two points are n-adjacent if
they are n-neighbors. The 6-neighborhood (respectively, 18-
, 26-neighborhood) of a point at (x, y, z) is comprised by
those points for which |x − a| + |y − b| + |z − c| = 1 (2,
3), with (a, b, c) arbitrary coordinates. In this paper, we define
two points to be n-connected (n = 6, 18, 26) if there exists
a path between the points such that all subsequent points on
the path are maximally n-adjacent one to another. Thus, 6-
connected points are also 18-connected and 26-connected, but
18-connected ones not 6, and 26-connected ones not 18 nor
6.

In the last two decades a lot of research has been dedicated
to improving the MC data isosurfacing algorithm. Topology
improved [20], [21] and efficiency enhanced—in terms of a
reduced triangle count—versions [22]–[24] are all based on
locally triangulating cuberilles [25]. Other versions decom-
pose the cuberilles into voxels [26] or tetrahedra [27], use

boxes instead of cuberilles [28], use polyhedra or polygonal
volume primitives instead of triangles [29], [30], use rules
instead of a lookup table for cuberille configurations [31],
use heterogeneous grids to guarantee topologically coherent
surfaces [32], or optimize the search of relevant cuberilles [33],
[34]. The DMC algorithm [22] is a hybrid between isosurfaces
and discrete surface models. The cell/edge intersections are
not found on isovalue positions but at mid-edge positions.
This simplifies the surface topology, reduces the number of
degenerated triangles and simplifies merging small triangles
in larger surface patches (over several cuberilles).

Discrete surface models were introduced in the early eight-
ies [35], [36] before the MC algorithms became popular. They
define surfaces through the boundary of an object by consid-
ering various boundary voxel configurations which separate
the object interior from the background (object exterior). The
discrete surface representation does not interpolate between
the voxel coordinates of the object boundary and those of
the boundary of the background (or those of the boundary
of the object interior). This simplifies—similar as the DMC
method—object triangulations, avoids degenerated triangles
and helps merging triangles into larger patches. A drawback
of not interpolating may be a decreased imaging resolution.
However, we expect that this will be overcome by future
improvements in scanning devices and technology, which will
lead to higher data resolutions, and hence will reduce the
error. Furthermore, when volumes will get larger in the future,
there will be a growing need of faster rendering algorithms
and algorithms which minimize the triangle counts of the
renditions.

Quite some mathematical ingenuity has been invested in the
study of boundary voxel configurations to find out under which
conditions a discrete surface has similar topological properties
as a regular manifold surface model, i.e. correctly separates
the interior from the exterior. This is relevant for thinning
and skeletonization [37]–[39], ray casting volumetric objects
[40]–[42], and surface construction [43], [44]. The study of
these properties is known as digital topology [35], [45] and
has resulted in several boundary definitions by Morgenthaler
and Rosenfeld [46], Malgouyres [47], Kovalevsky [48] and
Couprie and Bertrand [49]. The latter introduced the notion
of simplicity surface and showed that this surface has some
nice properties: (1) any Morgenthaler closed 26-surface [46]
is a simplicity surface; (2) any strong 26-surface [47], [50] is
a simplicity surface; and (3) any simplicity surface satisfies
the Jordan property, i.e. its complement has two connected
components (proof yet to be published).

The definition of a simplicity surface is based on the notion
of “simple” points. Simple points are boundary points that are
topological redundant and as such not part of a simplicity
surface. Figure 2 shows a 3×3×3 object with one empty
central voxel (the interior point). All points on the corners and
edges of the 3×3×3 cell structure are simple points, because
removing these points will not change the topology. The
resulting 26-surface (i.e. an octahedron) will be the minimal
enclosure/cover for the interior (Figure 2b). This is the only
“valid” boundary in a mathematical sense. It will be clear
that if we want the resulting surface to be the cover of the
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complete 3×3×3 cell structure (what in most practical cases
would be the desired result) then we should exclude the 26-
connected surfaces in those cases where 6- and 18-adjacencies
are sufficient (as in our model). However, if we have an oblique
or curved surface, then we would like to use the diagonal
shortcuts of the 26-adjacency in order to avoid the staircasing
of the 6-surface representation. Couprie and Bertrand give
several operational definitions for simple points and they prove
that a simplicity surface can be built out of only 8 different
2×2×2 voxel configurations [49]; see also Section III-C. On
the basis of these configurations it could be easy to define
a triangulation method for discrete surfaces. However, the
definition of simplicity surface is not of much value from a
practical point of view, because in arbitrary data still undefined
configurations may occur and because we do not always want
to remove the simple points.

Fig. 2. A 6- and 18-connected boundary. Black/white dots denote whether
the voxels which correspond to the points belong to the object/background.

A practical discrete surface generation method which is
applicable to arbitrary data and which has a clear mathematical
basis like other boundary triangulation methods was proposed
by Kenmochi et al. [51] (below we refer to this method as the
Kenmochi method). They define the boundary of a discrete
solid as the boundary of the set of connected tetrahedra that
constitutes the volumetric object. To construct the boundary,
the object is first decomposed into a set of tetrahedra, and
after removing the “double” surfaces shared by neighboring
tetrahedra, the “single” outside faces constitute the overall
boundary. They also presented a construction method that
directly generates the composite boundary and deals with
degenerated cases as dangling edges and folded surfaces. Ken-
mochi et al. give a slice-by-slice and cell-by-cell construction
method that directly generates a correct surface using 14
triangulation patterns for 2×2×2 voxel configurations. The
Kenmochi method differs from the discrete surface models
which have been described before in that the voxels belong
either to the object or to the background (object exterior), and
not to the object boundary, to the object interior or to the
background. Thus, this method is not a boundary approach
but an object approach.

The Kenmochi method is a sound and useful method.
However, we can make some interesting observations: the
method only works for “fat” objects, i.e. objects which can be
decomposed into tetrahedra; although the Kenmochi method
maintains sharp corners in case of convex configurations, it
generates oblique faces in concave situations due to the fact
that the method generates tetrahedra in corners. For instance,
Fig. 3 shows alternative triangulations of Kenmochi pattern

P7a (the name of the configuration is taken from [51]) which
for oblique surfaces is not desired, but which in some cases,
such as sharp concave corners, better preserves the object
detail.

Fig. 3. Three different triangulation patterns which are possible for Kenmochi
configuration P7a. The one to the left is applied in the Kenmochi method.
Black/white dots denote whether the voxels which correspond to the points
belong to the object/background.

III. DISCRETE BOUNDARY REPRESENTATION

A. Definitions

A volumetric representation consists of a three-dimensional
grid of voxel positions, where each voxel stores one or multiple
values. We limit the discussion here to regular 3d grids that
constitute a discrete space with voxels that are either black
(the object) or white (the object exterior, i.e. background). Let
us assume that a connected component labeling has been run
with 26-connectivity for the object and 6-connectivity for the
background. From discrete topology [52], [53] we know that
the 6-border of a 26-connected object is again 26-connected.
Let us define the object boundary as the set of all points
(recall from Section II that a point uniquely corresponds to
a voxel and that the coordinates of a point are equal to the
voxel center) which belong to the object and which have a
6-adjacent neighbor which belongs to the background.

In order to add border points for concave edges and corners
which are not included in the object boundary we have defined
a detection technique. This technique could already be applied
“on” the discrete (voxel) grid, before applying the boundary
triangulation. For binary objects such a preprocessing could
be quickly applied and, in visualization pipelines, it could
be combined with or be integrated in the 3d segmentation
or connected component labeling.

We apply three masks in order to detect concavities; see
Fig. 4. They operate in the 5×5×5 neighborhood of a point
P . In a first pass, the mask at the top is applied in each of the
three perpendicular xy, xz and yz planes of P on the discrete
grid, in each plane four times to cover all edges. In a second
pass, the two masks at the bottom are applied in each of the
eight corners of the neighborhood of P . P is included in the
boundary if all conditions which are imposed by one of the
masks hold. Thus, we first extend the object border with all
points at concave edges and then with points at all concave
corners. These two passes are necessary because concave
edges which are included in the boundary in the first pass
may be needed to determine concave corners in the second
pass. Points are only included in the boundary if all conditions
in one of the masks applies, i.e. if the background forms a
convex edge or a convex corner and the object correspondingly
forms a concave edge or a concave corner. Concave edges and
corners are only included when they are completely adjacent
to their convex counterparts in the background. Such a strict
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Fig. 4. Three detectors for determining the concave borders of a discrete
object. The depicted masks are slided over the object on the 3d grid: in a first
pass the mask at the top in order to determine all concave edges; in a second
pass the two masks at the bottom in order to determine all concave corners.
Any gray point which satisfies one of the depicted mask settings is added
to the 6-border of an object. Black (gray) dots denote that the corresponding
voxels belong to the boundary (object); white dots denote the background
(object exterior and interior). Positions on cuberille corners without dots can
be ignored.

definition is needed in order to avoid any unwanted aliasing.
Figure 13 shows an example of the processing when we apply
the mask at the top to a regular 2D image. The boundary
is extended at concavities without introducing any unwanted
aliasing.

In the following, boundary refers to the set of all defined
boundary points and background to the set of all points which
is contained by the regular 3d grid minus the boundary. Thus,
the background includes both the object interior and the object
exterior.

B. Boundary model

We propose a method to construct surfaces of discrete
objects by building surface patches locally at the object
boundary, using a matching of the boundary/background in
each of the eight unique cuberilles in the 3×3×3 neighborhood
of each boundary point. This allows to reduce the number
of required triangles because in such a larger neighborhood
the patches obtained in each cuberille can be linked and

Fig. 5. Restricting connectivity between 6-, 18- and 26-adjacent points
(denoted as black dots). Adjacent points are only directly connected if
there are no connectivity shortcuts (black) on the position of the white
dots. Positions on cuberille corners without dots do not affect the adjacency
relationship.

Fig. 6. The six basic object boundaries P1-P6 and their surface mappings.
Black and white dots denote that the points belong to the boundary or not.
In the configuration to the left, positions on cuberille corners without dots
do not affect the boundary connectivity. At least one point at these positions
must be from the background.

optimized at the neighborhood center. In order to be able to
match the boundary in the cuberilles and to link the patches
at the central boundary point in the neighborhood we have
developed a new model to define the surface topology. In this
model adjacent points are only directly connected if there is
no lower-adjacency path possible (Fig. 5). This results in nine
topologically different configurations to let us differentiate
between all possible object/background topologies (Figs. 6,
7, 8 and 9).

The configurations have been determined by considering
all topologically different boundary connectivities in a cu-
berille, using 6-, 18- and 26-connectivity for objects, and 6-
connectivity for the background. In our model, two boundary
points can be connected when they are: (A) 6-adjacent, (B)
18-adjacent and do not have a 6-adjacent boundary neighbor
in common, or (C) 26-adjacent and do not have a 6- nor an
18-adjacent boundary neighbor in common (see Fig. 5). When
they do have a 6- or an 18-adjacent neighbor in common (in
case B or C), they should not be connected directly—only
indirectly via another neighbor, i.e. a connectivity shortcut.
The advantage of strictly defining the boundary connectivity
in this way is that sharp edges and corners in the boundary
can be preserved and correctly modeled.

Based on these definitions, we can build 6-, 18- and 26-
connected skeletons or build surface patches for 6- and 18-
connected closed curves. Here, we concentrate on the surface
mapping of object boundaries. In surface mapping, only 6-
and 18-connectivity make sense, because (according to our
definition of connectivity) 26-connected boundaries can not
yield any surfaces, only skeletons. Hence, a point at the object
boundary is at least 6- and at most 18-connected to each
other point of the boundary in its 26-neighborhood. Figure 6
shows the six basic boundary configurations. According to
our definition of connectivity, the boundaries are 6-connected
(P1), 18-connected (P2), 6- and 18-connected (P3, P4 and
P5) and, again, 6-connected (P6). Thus, 26-adjacent points
are always 6- and/or 18-connected via connectivity shortcuts,
e.g. in P4 the 26-adjacent boundary points are 18-connected.
Configurations P3, P5 and P6 we call connectivity shortcut
configurations, because they 6-connect 18-adjacent boundary
points in configurations P2, P4 and P5. Figures 7, 8 and 9
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Fig. 7. The 7th object boundary P7 and its surface mappings. The triangula-
tion of the cuberille in the center (see top figure) depends on the connectivity
graph which is derived from the six adjacent cuberilles. If an adjacent cuberille
is empty (denoted by four small white dots) the corresponding connectivity
path can be erased from the graph (see text). If an adjacent cuberille is not
empty (i.e. the four small dots would not all be white) the corresponding
connectivity path must be maintained in the graph. Once the connectivity
graph has been determined the triangulation pattern is fixed.

Fig. 8. The 8th object boundary P8 and its surface mappings.

Fig. 9. The 9th object boundary P9 and its surface mapping.

show the three compound boundary configurations which can
be derived from Fig. 6 by setting, in P2, P3 and P5, those
points which do not affect the boundary connectivity from
white to black.

Figures 6, 7, 8 and 9 also show the patches which are used in
the surface mapping. For P1, P2 and P4, the smallest possible
patches have been used. For the connectivity shortcut configu-
rations P3, P5 and P6, the definition of surface patches is less
trivial. Here, we simply use patches with one additional vertex
in the patch center, the vertex coordinates being equal to the
mean of all boundary points in the cuberille. This is the most
trivial way to model the boundary shortcuts. Another, more
advanced approach, which can be used to further improve
the surface modeling, is described in Section IV. For P7 and
P8, the boundary triangulation is not uniquely defined in the
cuberille. The surfaces can consist of two, three or four patches
and the position of the patches can vary. We found that the
surface mapping depends on the six adjacent cuberilles (R, L,
T, D, F and B) for P7 and on three adjacent cuberilles (L, D
and B) for P8 (see Section III-C for a theoretical explanation).
Therefore, we have developed an algorithm which exploits the
connectivity of the boundary in the cuberille with the boundary
in the adjacent cuberilles. In the algorithm we represent the
connectivity between the points inside the cuberille with a
graph. This graph we call the connectivity graph G. Let G

of P7 be {ab, ac, ad, bc, bd, cd} and G of P8 be {ab, ac, ad};
see again Figs. 7 and 8. If an adjacent cuberille is empty
(i.e. all four additional points belong to the background) we
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can erase the corresponding path from the graph, because
then that path does not necessarily has to make part of the
surface. For example (see Figs. 7 and 8), if cuberille B is
empty we can erase ac from G. For P7 (P8), this can be
done for each of the six (three) adjacent cuberilles. After
inspecting all cuberilles, G contains only those paths that
should be connected in the surface. Figures 7 and 8 show all
topologically different surfaces which result from this analysis
(totally, there exist 26 different connectivity graphs for P7 and
23 for P8 but these can be reduced to the depicted 11 graphs
for P7 and the depicted 4 graphs for P8). Note that for the
cuberille which corresponds to the second, fourth and eighth
connectivity graphs two different triangulations are possible.
For example, the second can be triangulated with abc and abd

or with abc and acd. In order to improve the surface modeling
in these ambigue situations the surface fit could be improved
by considering additional context information (see Section IV).
However, this is not needed to guarantee that we generate
Euclidean surfaces at all closed edges in these cases. Also note
that not all surfaces are manifold, because edges occur where
more than two surface patches meet. For P9, the surface is non-
manifold, because it has one edge where three surface patches
meet. See Section III-C for a discussion on non-manifold
surfaces. In practice, we can for each cuberille already code
the “emptyness” with regard to its adjacent cuberilles on the
discrete voxel grid in a preprocess such that the triangulation
only depends on the boundary in and the byte stored for each
cuberille.

C. Topological interpretation and validation

Configurations P1-P8 generate manifold surfaces for closed
object boundaries and non-manifold surfaces for object bound-
aries which are not closed such as the endings of a discrete
plane. P7 and P8 also generate manifold surfaces for closed
objects and P7-P9 generate non-manifold surfaces for com-
plex object boundaries which can be interpreted as multiple
boundary crossings. Although the latter surfaces are non-
manifold they have the property that they are closed. For P7,
the subconfigurations are: 1 for manifold of closed object, 5
and 8 for manifold of closed object boundary, 2, 3, 4 and 6
for non-manifold surfaces of boundary endings, and 7, 9, 10
and 11 for non-manifold surfaces of boundary crossings.

Recently, as already mentioned in the introduction, Couprie
and Bertrand (1998) have studied the manifold properties of
26-surfaces. They prove that whether a point is part of a
26-boundary only depends on its 3×3×3 neighborhood, and
that eight possible configurations (Figure 10) are sufficient to
validate that these points form a so-called simplicity surface
and that such a surface in the mathematical sense will be
coherent, i.e. closed, oriented and without gaps. Note that the
eight closed curve is only defined when the adjacent cuberille
in the back is empty. This configuration may correspond to
subconfiguration 1, 2, 3, 4, 5, 6, 8, or 10 in Fig. 7. It has
two possible triangulations. For P7 (P8) and its triangulation,
we also inspect the neighboring cuberilles, but we consider
more surface mappings. Interestingly, while they derived their
configurations following a theoretical approach, we obtained

Fig. 10. Simple closed curves for the configurations which make up
simplicity surfaces adapted from Couprie and Bertrand (1998).

very similar configurations (Figs. 6 and 7) empirically through
looking for efficient surface construction methods for 3×3×3
neighborhoods.

Although the boundaries which can be obtained with our
model seem to be related to simplicity surfaces, there are
also differences. For instance, our configurations P8 and P9
and the sharp corner which can be composed from P1 or the
sharp corner which can be composed from P7 do not occur in
simplicity surfaces. However, whereas in our boundary model
we preserve object details such as sharp corners and edges
by enforcing the surface through these points, in simplicity
surfaces these details are first removed from the boundary.
Interestingly, we can infer different triangulation patterns from
single closed curves. For example, we can triangulate the
second closed curve in Fig. 10 with just one triangle or with
three triangles in order to form a sharp corner (the sharp corner
which can be composed from P7). Also, the third closed curve
can be interpreted as P3 or as P8 and the sixth closed curve
can be interpreted as P6 but also as the sharp corner which
can be composed from P1. Thus, although we can not give a
pure mathematical validation of the additional configurations
which occur in our model, we can indirectly validate them by
relating them to simplicity surfaces.

The boundary configurations which yield non-manifold sur-
faces in our model (such as P9 and those in P7 and P8) can
not be related to simplicity surfaces. However, the modeling
of non-manifold surfaces is important in many applications. In
analyses of datasets on regular grids arbitrary configurations
may occur where non-manifold modeling may be very useful
and important. Also, methods exist for the smoothing, editing
and decimating of non-manifold models, see e.g. [54], [55].
A formal definition which proves that our model is coherent
for non-manifolds is an important issue for future research.

Importantly, we can show that our model can be applied
to arbitrary datasets, because almost all possible boundary
configurations are mapped to surfaces. The only configurations
which are not mapped to surfaces are depicted in Fig. 11. The
configurations to the right are not necessarily mapped by our
model, because the mapping depends on the boundary configu-
rations in the adjacent cuberilles. If the adjacent configurations
make part of our model (i.e. P3, P5, P6, P8 or P9) then all
boundary points in the configurations to the right in Fig. 11
are indirectly connected. If the adjacent configurations make
again part of those listed in Fig. 11 then the boundary points
can be interpreted as surface endings and can be triangulated
with surface patches which are not conform our boundary
representation.
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Fig. 11. Configurations which do not yield (complete) surface mappings.
Under strict conditions, abc, acd, abe, abf and aef may be interpreted as
surface endings and can be triangulated.

IV. DISCUSSION

Preserving object details such as sharp corners and edges is
important in many applications. For example, in archaeology
scans can be made of ancient parts of objects which are
known to belong together, but it may not be known how
they should be put together. With the scans represented on
regular grids methods could be designed which automatically
try to fit together all pieces. Although methods exist for
recovering sharp features in geometry descriptions in a post-
process [56] and for maintaining sharp features in geometry
descriptions based on gradient computations [57], in general
surface construction approaches do not consistently preserve
object details directly in the surface mapping which results in
a much simpler processing. On the contrary, current surface
construction approaches often create unwanted aliasing at
concavities. With DMC, an object can be rounded at concave
corners on one regular grid and can be sharp for convex
corners on another grid. With the Kenmochi method, the
boundary of an object and the boundary of its background are
typically not consistent either. Thus, fitting methods which
employ sharp features in geometry descriptions cannot be
applied. Obviously, this may hinder fitting together all pieces
in the right order. With our method it is possible to consistently
preserve both concave and convex sharp edges and corners of
object boundaries directly in the surface mapping.

For future work we elaborate on the following extensions.
Firstly, as already has been mentioned, we want to operate
the boundary triangulation from the centers in 3×3×3 neigh-
borhoods such that output surface patches can be linked in

Fig. 12. The connectivity shortcuts (P3, P5 and P6 in Fig. 6) from
other viewpoints (left), and different adaptations in which we change the
position(s) of the additional vertex (vertices; gray). The best position(s) should
be adaptively set, for example by using the boundary information which is
available in the other cuberilles in the neighborhood.

order to optimize the triangle output. Secondly, the surface
geometry could be improved by adaptively setting the surface
patches which were used for the connectivity shortcut configu-
rations. When the information in a neighborhood increases the
additional vertices in these patches could be moved to those
locations where the flatness of the surface is optimal. Figure 12
shows some possible patches in which the additional vertices
were adaptively set. One way of implementing this mechanism
is by moving the additional vertex/vertices in these patches
towards the edge/edges.
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Fig. 13. Cars image: segmented regions, 4-borders of all regions and 4-
borders extended with sharp corners.
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