

C

Consiglio Nazionale delle Ricerche

Cluster Generation and Cluster Labelling for
Web Snippets: A Fast and Accurate

Hierarchical Solution

FF.. GGeerraaccii,, MM.. PPeelllleeggrriinnii,, MM.. MMaaggggiinnii,, FF.. SSeebbaassttiiaannii

IIT TR-01/2006

Technical report

Febbraio 2006

Iit

Istituto di Informatica e Telematica

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37832073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Cluster Generation and Cluster Labelling for Web Snippets:
A Fast and Accurate Hierarchical Solution

Filippo Geraci1,2, Marco Pellegrini1, Marco Maggini2, Fabrizio Sebastiani3
(1) Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche

Via G Moruzzi, 1 – 56124 Pisa, Italy
(2) Dipartimento di Ingegneria dell’Informazione, Università di Siena

Via Roma, 56 – 53100 Siena, Italy
(3) Dipartimento di Matematica Pura e Applicata, Università di Padova

Via GB Belzoni, 7 – 35131 Padova, Italy

{f.geraci,m.pellegrini}@iit.cnr.it maggini@ing.unisi.it fabrizio.sebastiani@unipd.it

ABSTRACT
This paper describes Armil, a meta-search engine that groups
into disjoint labelled clusters the Web snippets returned by
auxiliary search engines. The cluster labels generated by
Armil provide the user with a compact guide to assessing
the relevance of each cluster to her information need. Strik-
ing the right balance between running time and cluster well-
formedness was a key point in the design of our system. Both
the clustering and the labelling tasks are performed on the
fly by processing only the snippets provided by the auxil-
iary search engines, and use no external sources of knowl-
edge. Clustering is performed by means of a fast version of
the furthest-point-first algorithm for metric k-center cluster-
ing. Cluster labelling is achieved by combining intra-cluster
and inter-cluster term extraction based on a variant of the
information gain measure. We have tested the clustering ef-
fectiveness of Armil against Vivisimo, the de facto industrial
standard in Web snippet clustering, using as benchmark a
comprehensive set of snippets obtained from the Open Di-
rectory Project hierarchy. According to two widely accepted
“external” metrics of clustering quality, Armil achieves bet-
ter performance levels by 10%. We also report the results
of a thorough user evaluation of both the clustering and
the cluster labelling algorithms. On a standard 1GHz ma-
chine, Armil performs clustering and labelling altogether in
less than one second.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Clustering ; H.3.4 [Information
Storage and Retrieval]: Systems and software—Web (WWW);
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services

General Terms
Algorithm, Design, Experimentation, Measurements

Keywords
Web snippets, clustering, meta-search engines, metric spaces,
information gain

1. INTRODUCTION
An effective search interface is a fundamental component
in a Web search engine. In particular, the quality of pre-
sentation of the search results often represents one of the
main keys to the success of such systems. Most search en-
gines present the results of a user query as a ranked list
of Web snippets. Ranking algorithms play a crucial role in
this approach, since users usually browse at most the 10
top-ranked items. Snippet quality is also an important is-
sue, since good-quality snippets allow the user to determine
whether the referred pages match or not her information
need. In order to provide a useful hint about the real content
of the page, a Web snippet includes both the page title and
a short text fragment, that often displays the query terms
in context.Meta-search engines (MSEs) integrate the items
obtained from multiple “auxiliary” search engines, with the
purpose of increasing the coverage of the results. However,
without an accurate design, MSEs can even worsen the qual-
ity of the information access experience, since the user is in
principle confronted with an even larger set of results. Thus,
key issues to be faced by MSEs concern the exploitation of
effective algorithms for merging the ranked lists of results
retrieved by the different auxiliary search engines (while at
the same time removing the duplicates), and the design of
advanced user interfaces based on a structured organization
of the results, so as to help the user to focus on the most
relevant subset of results. This latter aspect is usually im-
plemented by grouping the results into homogeneous groups
by means of clustering or categorization algorithms.

This paper describes the Armil system1 , a meta-search en-
gine that organizes the Web snippets retrieved from auxil-
iary search engines into disjoint clusters and automatically

1An armillary sphere (also known as a spherical astrolabe,
armilla, or armil) is a navigation tool in the form of a
model of the celestial sphere, invented by Eratosthenes
in 255 BC. Renaissance scientists and public figures
were often portrayed with one hand on an armil, since
it represented the height of wisdom and knowledge (see
http://en.wikipedia.org/wiki/Armillary sphere).
The Armil system can be freely accessed at
http://ubi8.imc.pi.cnr.it/.

constructs a title label for each cluster by using only the text
excerpts available in the snippets. Our design efforts were
directed towards devising a fast clustering algorithm able to
yield good-quality homogeneous groups, and a distillation
technique for selecting appropriate and useful labels for the
clusters. The speed of the two algorithms was a key issue in
our design, since the system must organize the results on the
fly, thus minimizing the latency between the issuing of the
query and the presentation of the results. Second-level clus-
tering is also performed at query time (i.e. not on demand)
to minimize latency. In Armil, an equally important role
is played by the clustering component and by the labelling
component. Clustering is accomplished by means of an im-
proved version of the furthest-point-first (FPF) algorithm
for k-center clustering [6]. To the best of our knowledge
this algorithm had never been used in the context of Web
snippet clustering or text clustering. The generation of the
cluster labels is instead accomplished by means of a com-
bination of intra-cluster and inter-cluster term extraction,
based on a modified version of the information gain mea-
sure. This approach tries to capture the most significant
and discriminative words for each cluster.

One key design feature of Armil is that it relies only on the
information returned by the auxiliary search engines, i.e. the
snippets; this means that no external source of information,
such as ontologies or lexical resources, is used. We thus
demonstrate that such a lightweight approach, together with
carefully crafted algorithms, is sufficient to provide a useful
and successful clustering-plus-labelling service. Obviously,
this assumption relies on the hypothesis that the quality of
the results and of the snippets returned by the auxiliary
search engines is satisfactory.

1.1 The clustering algorithm
Clustering and labelling are both essential operations for a
Web snippet clustering system. However, each previously
proposed such system strikes a different balance between
the two aspects. Some systems view label extraction as the
primary goal, and clustering is a by-product of the label ex-
traction procedure. Other systems view the formation of
clusters as the most important step, and the labelling phase
is considered as strictly dependent on the clusters found.
We have followed this latter approach. In order to cluster
the snippets in the returned lists, we map them into a vec-
tor space endowed with a distance function, which we treat
as a metric; then a modified furthest-point-first algorithm
(M-FPF) is applied to generate the clusters. The M-FPF al-
gorithm generates the same clusters of the “standard” FPF
algorithm, but uses filters based on the triangular inequal-
ity to speed up the computation. As such, M-FPF inherits
a very important property of the FPF algorithm, i.e. it is
2-competitive for the k-center problem. In other words, for
any fixed number k, M-FPF produces a k-clustering (i.e. a
partition of the items into k non-overlapping clusters) such
that the maximum cluster diameter is at most twice as large
as that of the “optimal” k-clustering (i.e. the one that min-
imizes such maximum diameter). The competitive property
of M-FPF is even stronger: the approximation factor of 2
cannot be improved with any polynomial approximation al-
gorithm, unless P = NP . The strength of this formal
property has been our main motivation for selecting M-FPF
as the algorithmic backbone for Armil. The second interest-
ing property of M-FPF is that it does not compute centroids

of clusters. Centroids tend to be dense vectors and, as such,
their computation and/or update in high-dimensional space
is a computational burden2. M-FPF relies instead only on
pairwise distance calculations between snippets, and as such
better exploits the sparsity of the snippet vector represen-
tations.

1.2 The cluster labelling algorithm
The cluster labelling phase aims at extracting from the set of
snippets assigned to each cluster a sequence of words highly
descriptive of the corresponding group of items. The quality
of the label depends on its well-formedness (i.e. whether the
text is syntactically and semantically plausible), on its de-
scriptive power (i.e. how well it describes what is contained
in the cluster), and on its discriminative power (i.e. how
well it differentiates what is contained in the cluster with
respect to what is contained in other clusters). The possi-
bility to extract good labels directly from the available snip-
pets is strongly dependent on their quality and, obviously,
on the homogeneity of the produced clusters. In order to
pursue a good tradeoff between descriptive and discrimina-
tive power, we select candidates words for each cluster by
means of IGm, a modified version of the Information Gain
measure [3]. For each cluster, IGm allows the selection of
those words that are most representative of its contents and
are least representative of the contents of the other clusters.
Finally, in order to construct plausible labels, rather than
simply using the list of the top-scoring words (i.e. the ones
that maximize IGm), the system looks within the titles of
the returned Web pages for the substring that best matches
the selected top-scoring words.

Once each cluster has been assigned a set of descriptive
and discriminative words (we call such set the cluster sig-
natures), all the clusters that share the same signature are
merged. This reduces the arbitrariness inherent in the choice
of their number k, that is fixed a priori independently of the
query.

1.3 Outline of the paper
The paper is organized as follows. In Section 2 we review re-
lated work on techniques for the automatic re-organization
of search results. Section 3 introduces the data representa-
tion adopted within Armil and sketches the properties of the
M-FPF clustering algorithm and of the cluster labelling al-
gorithm. In Section 4 the architecture of Armil is described
in detail. The results of the system evaluation are reported
in Sections 7 and 6. Finally, in Section 8 conclusions and
prospective future research are discussed.

2. PREVIOUS WORK
Tools for clustering Web snippets have recently become a fo-
cus of attention in the research community, also as a result
of the success of commercial Web services such as Coper-
nic, Dogpile, Groxis, iBoogie, Kartoo, Mooter, and Vivisimo.
Academic research prototypes are also available, such as

2The clustering literature also discusses the notion of clus-
ter “medoid”; similarly to a centroid, a cluster medoid plays
the role of cluster representative, but typically has a sparse
representation. Unfortunately, the methods proposed in the
literature for finding high-quality medoids are not compati-
ble with the real-time nature of the envisioned online Web
service.

Grouper [17, 18], EigenCluster [2], Shoc [20], and SnakeT [5].
Generally, details of the algorithms underlying the commer-
cial Web services are not in the public domain.

Maarek et al. [13] give a precise characterization of the chal-
lenges inherent in Web snippet clustering, and propose an
algorithm based on complete-link hierarchical agglomerative
clustering that is quadratic in the number n of snippets.
They introduce a technique called “lexical affinity” whereby
the co-occurrence of words influences the similarity metric.

Zeng et al. [19] tackle the problem of detecting good cluster
names as preliminary to the formation of the clusters, us-
ing a supervised learning approach. Note that the methods
considered in our paper are instead all unsupervised, thus
requiring no labelled data.

The EigenCluster [2], Lingo [15], and Shoc [20] systems all
tackle Web snippet clustering by performing a singular value
decomposition of the term-document incidence matrix3; the
problem with this approach is that SVD is extremely time-
consuming, hence problematic when applied to a large num-
ber of snippets. By testing a number of queries on Eigenclus-
ter we have observed that, when operating on many snippets
(roughly 400), a reasonable response time (under 1 second)
is attained by limiting the number of generated clusters to a
number between 5 and 10, and avoiding a clustering decision
for over 50% of the data. Zamir and Etzioni [17, 18] pro-
pose a Web snippet clustering mechanism (Suffix Tree Clus-
tering – STC) based on suffix arrays, and experimentally
compare STC with algorithms such as k-means, single-pass
k-means [14], Backshot and Fractionation [4], and Group
Average Hierarchical Agglomerative Clustering (GAHAC).
They test the systems on a benchmark obtained by issuing
10 queries to the Metacrawler meta-search engine, retain-
ing the top-ranked 200 snippets for each query, and manu-
ally tagging the snippets by relevance to the queries. They
then compute the quality of the clustering obtained by the
tested systems by ordering the generated clusters according
to precision, and by equating the effectiveness of the system
with the average precision of the highest-precision clusters
that collectively contain 10% of the input documents. This
methodology had been advocated in [9], and is based on the
assumption that the users will anyway be able to spot the
clusters most relevant to their query. Average precision as
computed with this method ranges from 0.2 to 0.4 for all
the algorithms tested (STC coming out on top in terms of
both effectiveness and efficiency). Interestingly, the authors
show that very similar results are attained when full docu-
ments are used instead of their snippets, thus validating the
snippet-based clustering approach.

Lawrie and Croft [12] view the clustering/labelling prob-
lem as that of generating multilevel summaries of the set
of documents (in this case the Web snippets returned by
a search engine). The technique is based on first build-
ing off-line a statistical model of the background language
(e.g. the statistical distribution of words in a large corpus
of the English language), and on subsequently extracting
“topical terms” from the documents, where “topicality” is
measured by the contribution of a term to the Kullback-
Leibler divergence score of the document collection relative

3The Eigencluster system is available on-line at
http://www-math.mit.edu/cluster/

to the background language. Intuitively, this formula mea-
sures how important this term is in measuring the distance
of the collection of documents from the distribution of the
background language. Additionally, the “predictiveness” of
each term is measured. Intuitively, predictiveness measures
how close a term appears (within a given window size) to
other terms. In the summaries, terms of high topicality
and high predictiveness are preferred.The proposed method
is shown to be superior (by using the KL-divergence) to a
naive summarizer that just selects the terms with highest
tf ∗ idf score in the document set.

Kammamuru et al. [11] propose a classification of Web snip-
pet clustering algorithms into monothetic (in which the as-
signment of a snippet to a cluster is based on a single dom-
inant feature) and polythetic (in which several features con-
cur in determining the assignment of a snippet to a cluster).
The rationale for proposing a monothetic algorithm is that
the single discriminating feature is a natural label candidate.
The authors propose such an algorithm in which the snippets
are seen as sets of words and the next term is chosen so as to
maximize the number of newly covered sets while minimiz-
ing the hits with already covered sets. The paper reports
empirical evaluations and user studies over two classes of
queries, “ambiguous” and “popular”. The users were asked
to compare 3 clustering algorithms over the set of queries
and, for each query, were asked to answer 6 questions of a
rather general nature on the generated hierarchy.

Ferragina and Gulli [5] propose a method for hierarchically
clustering Web snippets, and produce a hierarchical labelling
based on constructing a sequence of labelled and weighted
bipartite graphs representing the individual snippets on one
side and a set of labels (and corresponding clusters) on the
other side. Data from the Open Directory Project (ODP)4 is
used in an off-line and query-independent way to generate
predefined weights that are associated on-line to the words of
the snippets returned by the queries. Data is collected from
16 search engines as a result of 77 queries chosen for their
popularity among Lycos and Google users in 2004. The snip-
pets are then clustered and the labels are manually tagged
as relevant or not relevant to the cluster to which they have
been associated. The clusters are ordered in terms of their
weight, and quality is measured in terms of the number of
relevant labels among the first n labels, for n ∈ {3, 5, 7, 10}.
Note that in this work the emphasis is on the quality of the
labels rather than on that of the clusters (although the two
concepts are certainly related), and that the ground truth
is defined “a posteriori”, after the queries are processed.

3. THE CLUSTERING ALGORITHM AND
THE LABELLING ALGORITHM

We now describe in detail the methods used by Armil for
Web snippet clustering and cluster labelling.

3.1 The clustering algorithm
We approach the problem of clustering Web snippets as that
of finding a solution to the classic k-center problem: Given
a set S of points in a metric space M endowed with a met-
ric distance function D, and given a desired number k of
resulting clusters, partition S into non-overlapping clusters
C1, . . . , Ck and determine their “centers” µ1, . . . , µk ∈ M so

4http://www.dmoz.org/

that the radius maxj maxx∈Cj D(x, µj) of the widest cluster
is minimized. The k-center problem can be solved approx-
imately using the furthest-point-first (FPF) algorithm [7,
10], which we now describe. Given a set S of n points, FPF
builds a sequence T1 ⊂ . . . ⊂ Tk = T of k sets of “cen-
ters” (with Ti = {µ1, . . . , µi} ⊂ S) in the following way. At
iteration i

1. for every point pj ∈ S \ Ti−1, FPF determines

µ(pj) = arg min
µs

D(pj , µs)

i.e. the center in Ti−1 closest to pj ; µ(pj) is called the
neighbour of pj ;

2. of all points pj , FPF picks

µi = arg max
pj

D(pj , µ(pj))

i.e. the point for which such minimal distance is max-
imum, and makes it a center, i.e. adds it to Ti−1, thus
obtaining Ti.

The final set of centers T = {µ1, . . . , µk} defines the result-
ing k-clustering, since each center µi implicitly identifies a
cluster Ci as the set of data points whose neighbour is µi.

Most of the computation is actually devoted to computing
distances: if this is done in a straightforward manner, i.e.
computing the distance of each point from each center in
Ti−1, thist takes O(n) time per iteration, so the total com-
putational cost of the algorithm is O(nk). In [6] we have
thus defined an improved version of this algorithm that ex-
ploits the triangular inequality in order to filter out useless
distance computations. This modified algorithm (M-FPF),
which we now describe, works in any metric space, hence in
any vector space5.

Consider, in the FPF algorithm, any center µx ∈ Ti and
its associated set of closest points N(µx) = {pj ∈ S \
Ti | µ(pj) = µx}. We store N(µx) as a ranked list, in order
of decreasing distance from µx. When a new center µy is
added to Ti, in order to identify its associated set of clos-
est points N(µy) we scan every N(µx) in decreasing order of
distance, and stop scanning when, for a point pj ∈ N(µx), it
is the case that D(pj , µx) ≤ 1

2
D(µy, µx). By the triangular

inequality, any point pj that satisfies this condition cannot
be closer to µy than to µx. This rule filters out from the scan
points whose neighbour cannot possibly be µy, thus signif-
icantly speeding up the identification of neighbours. Note
that all distances between centers in Ti must be available;
this implies an added O(k2) cost for computing and main-
taining these distances.

3.1.1 Using medoids
The M-FPF is applied the a random sample of size

√
nk

of the input points. Afterwards the remaining points are
associated to the closest center. We obtain improvements in
quality by making an iterative update of the ”center” when
a new point is associated to a cluster. Within a cluster
Ci we find the point ai furthest from µi and the point bi

5We recall that any vector space is also a metric space, but
not vice-versa.

furthest from ai (intuitively this is a good approximation to
a diametral pair). The medoid mi is the point in Ci that
has the minim value of the function

|D(ai, x)−D(bi, x)|+ |D(ai, x) + D(bi, x)−D(ai, bi)|,
over all x ∈ Ci.

6 When we add a new point to Ci, we
check if the new point should belong to the approximate
diametral pair (ai, bi), and if so we update mi accordingly.
The association of the remaining points is done with respect
to the medoids, rather than the centers.

3.1.2 The distance function
Each snippet is turned into a “bag of words” after remov-
ing stop words and performing stemming. In [6] we report
experiments using, as a similarity function, (i) the cosine
similarity measure applied to vectors of terms weighted by
tf ∗ idf , and (ii) a slight modification of the standard Jac-
card Coefficient, which we call Weighted Jaccard Coefficient
(WJC); in those experiments, (ii) has performed at the same
level of accuracy as (i), but has proven much faster to com-
pute. The WJC takes advantage of the intrinsic structure
of the snippets, by weighting different parts of the snippet
(page title, text fragment, URL) differently; more precisely,
weight 3 is assigned to the page title, weight 1 to the text
fragment, while the URL is ignored (since, in previous ex-
periments we had run, the text of the URL had proven to
give no contribution in terms of cluster quality). So, our
WJC distance is defined as

d(s1, s2) =

8<: 1 if |s1 ∩ s2| = 0
0 if 2p(s1, s2) ≥ |s1|+ |s2|
1− p(s1,s2)

|s1|+|s2|−p(s1,s2)
otherwise

where

p(s1, s2) =
X

i∈s1∩s2

w(s1, i) + w(s2, i)

2

and w(s, i) is the weighted number of occurrences of word
i in snippet s. In this paper we use a generalized Jaccard
distance described in [1]. Given two ”bag-of-words” snippet
vectors s1 = (s1

1, ...s
h
1) and s2 = (s1

2, ...s
h
2), the generalized

Jaccard distance is:

D(s1, s2) = 1−
P

i min(si
1, s

i
2)P

i max(si
1, s

i
2)

.

We take advantage of the structure of the snippets, by weight-
ing different parts of the snippet (page title, text fragment,
URL) differently; more precisely, weight 3 is assigned to the
page title, weight 1 to the text fragment, while the URL is
ignored (since, in previous experiments we had run, the text
of the URL had proven to give no contribution in terms of
cluster quality). Note that using uniform weights the above
formula coincides with the standard Jaccard distance.

3.2 The labelling algorithm
We select terms candidate for labelling the generated clus-
ters through a modified version of the information gain func-
tion [3]. For term t and category c, information gain is de-
fined as

IG(t, c) =
X

x∈{t,t̄}

X
y∈{c,c̄}

P (x, y) log
P (x, y)

P (x)P (y)

6This formula mimics in a discrete setting the task of finding
the cluster point closest to the median point to the segment
(ai, bi).

Intuitively, IG measures the amount of information that
each argument contains about the other; when t and c are
independent, IG(t, c) = 0. This function is often used for
feature selection in text classification, where, if IG(t, c) is
high, the presence or absence of a term t is deemed to be
highly indicative of the membership or non-membership in a
category c of the document containing it. In the text classi-
fication context, the rationale of including in the sum, aside
from the factor that represents the “positive correlation”

between the arguments (i.e. the factor P (t, c) log P (t,c)
P (t)P (c)

+ P (t̄, c̄) log P (t̄,c̄)
P (t̄)P (c̄)

), also the factor that represents their

“negative correlation” (i.e. the factor P (t̄, c) log P (t̄,c)
P (t̄)P (c)

+

P (t, c̄) log P (t,c̄)
P (t)P (c̄)

), is that, if this latter factor has a high

value, this means that the absence (resp. presence) of t is
highly indicative of the membership (resp. non-membership)
of the document in c. That is, the term is useful anyway,
although in a “negative” sense.

However, in our context we are interested in terms that pos-
itively describe the contents of a cluster, and are thus only
interested in positive correlation. Therefore, we drop the
factor denoting negative correlation from the IG formula,
yielding the modified version

IGm(t, c) = P (t, c) log
P (t, c)

P (t)P (c)
+ P (t̄, c̄) log

P (t̄, c̄)

P (t̄)P (c̄)

that coincides with the positive correlation factor of IG.
We use IGm to select, for each cluster, words that are rep-
resentative of the cluster and, at the same time, allow to
discriminate among clusters.

4. OVERVIEW OF THE SYSTEM
We discuss here in more detail the architecture of Armil.
Overall the computation flow is a pipeline consisting in (i)
data collection and cleaning, (ii) first-level clustering, (iii)
candidate word extraction for labelling, (iv) second-level
clustering, and (v) cluster labelling. Let us review these
steps in order.

(1) Querying one or more search engines: The user
of Armil issues a query string that is re-directed by Armil
to the selected search engines (at the moment the user can
select Google and/or Yahoo!). As a result Armil obtains a
list (or several lists) of snippets describing Web pages that
the search engines deem relevant to the query. An impor-
tant system design issue is deciding the type and number
of snippet sources to be used as auxiliary search engines.
It is well-known that the probability of relevance of a snip-
pet to the user information need quickly decays with the
rank of the snippet in the list returned by the search en-
gine. Therefore the need of avoiding low-quality snippets
suggests the use of many sources each supplying a low num-
ber of high-quality snippets. On the other hand, increasing
the number of snippet sources raises the pragmatic issue
of handling several concurrent threads, the need to detect
and handle more duplicates, and the need for a more com-
plex handling of the composite ranking by merging several
snippet lists (both globally and within each cluster sepa-
rately). Since we consider Armil a “proof-of-concept” proto-
type rather than a full-blown service, we have chosen only
two (high-quality) sources, Google and Yahoo!. We limit the
total number of snippets to be collected to 200 (of which 80

from Yahoo! and 120 from Google; these numbers optimize
the total waiting time). We produce the initial composite
ranking of the merged snippet list by a very simple method,
i.e. by alternatively picking snippets from each source list.

(2) Cleaning and filtering: The input is filtered by re-
moving non-alphabetic symbols, digits, HTML tags, stop
words, and the query terms. These latter are removed since
they are likely to be present in every snippet, and thus are
going to be useless for the purpose of discriminating dif-
ferent contexts. We then identify the prevalent language
of each snippet, which allows us to choose the appropriate
stop word list and stemming algorithm. Currently we use
the ccTLD of the url to decide on the prevalent language of a
snippet. For the purpose of the experiments we only distin-
guish between English and Italian. For snippets of English
Web pages we use Porter’s stemming algorithm, while for
[other language] ones we use a simple rule-based stemmer
we developed in-house. Currently, no other languages are
supported.

(3) First-level clustering: We build a flat k-clustering
representing the first level of the cluster hierarchy, using the
k-center algorithm and the Generalized Jaccard Coefficient
as described in Section 3. An important issue is deciding
the number k of clusters to create. Currently, this number
is fixed to 30, but it is clear that the number of clusters
should depend on the query and on the number of snippets
found. A general rule seems difficult to find; therefore, be-
sides providing a default value,, we allow the user to increase
or decrease the value of k to her liking. Clusters that con-
tain one snippet only are probably outliers of some sort, and
we thus merge them under a single cluster labelled “Other
topics”.

(4) Cluster re-ranking: A cluster small enough that the
list of its snippets fits in the screen does not require a so-
phisticated order of presentation. However, in general users
are greatly facilitated if the snippets in a cluster are listed
in order of their likely importance to the user. We identify
the ”core” of the cluster by applying the M-FPF algorithm
within the cluster, using as termination criterion the emer-
gence of a cluster with roughly half of the cluster points.
The point in the ”core” are shown in the listing before those
not in the core. Within core and non-core points we use
a relative ranking obtained by a linear combination of the
native ranking generated by the auxiliary search engines.

(5) Candidate words identification: For each cluster we
need to determine a set of words candidate for appearing in
its label; these will hereafter be referred as keywords. For
this purpose, for each word that occurs in the cluster we sum
the weights of all its occurrences in the cluster and pre-select
the 10 words with the highest global score. We refer to this
as local keyword selection, since it is done independently for
each cluster. For each of the 10 selected terms we compute
IGm, as explained in Section 3.2. The three terms with the
highest score are chosen as keywords. We refer to this as
global keyword selection, because the computation of IGm

for a term in a cluster is dependent also on the contents of
the other clusters. Global selection has the purpose of ob-
taining different labels for different clusters. At the end of
this procedure, if two clusters have the same signature we
merge them, since this is an indication that the target num-

ber of clusters k may have been too high for this particular
query7.

(6) Second-level clustering: Although the clustering al-
gorithm could in principle be iterated recursively in each
cluster up to an arbitrary number of levels, we limit our
algorithm to only two levels, since this is likely to be the
maximum depth a user is willing to explore in searching for
an answer to her information needs. Second-level clustering
is applied to first-level clusters larger than a predetermined
threshold (at the moment this is fixed to 10 snippets, ex-
cluding duplicates). For second-level clustering we adopt a
different approach, since metric-based clustering applied at
the second level tends to detect a single large “core” cluster
and several small “outlier” clusters. The second-level part
of the hierarchy is generated based on the keywords found
during first-level clustering. For the identified set K of three
keywords we consider all its subsets as candidate signatures.
A snippet x is assigned to a signature s if and only if all the
signature elements are in x and no keyword in K \ s is in x.
If a signature is assigned too few snippets (e.g. 1) it is con-
sidered as an outlier and it is not shown to the user. Also,
if most of the snippets at the first level end up associated
to a single signature, then the second-level clusters are not
shown to the user since the second-level subdivision would
not be any more useful than that the first-level subdivision.

(7) Labelling: Lists of keywords are not an intuitive way
of conveying meaning. Therefore we choose to use the key-
words just as a basis for generating well-formed phrases that
will be shown to the user as real cluster labels. Given the
title of the Web page contained in the snippet, considered
as a sequence of words (this time including stop words) we
consider all its contiguous subsequences and we give each
subsequence a score as follows: keywords are given a high
positive score, query words a low positive score, all other
words a high negative score. For labelling a cluster, among
all its snippets we select the shortest substring of a snippet
title among those having the highest score.

(8) Duplicate removal: Since Armil collects data from
several search engines it is possible that the same URL
(maybe with a different snippet fragment of text) is present
in duplicate. We consider this fact as an indication of the
importance of the URL. Therefore, duplicates are accounted
for in determining weights and distances. Since clustering
is based on title and text, it is possible that the same URL
ends up in different clusters, for which it is equally relevant.
However, if duplicate snippets appear in the same cluster,
they are listed only once. Thus duplicate removal is done
just before the presentation to the user.

(9) User Interface: The user interface is important for the
success of a Web-based service. We have adopted a scheme
common to many search engines and meta-search engines
(e.g. Vivisimo), in which the data are shown in ranked list
format in the main frame while the list of cluster labels
are presented on the left frame as a navigation tree. The
interface also allows the user to select the number of clusters,
by increasing or decreasing the default value of 30.

7More precisely, we consider the two original clusters with
the same signature as second-level clusters, and we produce
for each a different second-level label.

5. ANECDOTAL EVIDENCE
In this section we report an analysis of the output of the
system on selected queries. In particular we highlight some
very high quality clusters obtained.

5.1 Query: armstrong
The query “armstrong” returns 174 snippets organized in 28
clusters, with a clustering time of 0.94 seconds (see Figure
1). Cluster #2, labelled “Armstrong Ceilings”, contains 12
snippets, among which 5 are relative to a company manu-
facturing ceilings and floors, 4 to companies manufacturing
other hardware equipment (e.g. molds, pumps, tools), and
one to companies manufacturing medical equipment. Clus-
ter #3, labelled “Lance Armstrong Foundation”, contains
14 snippets, of which 12 are related to the sport champion.
Cluster number #4, labelled “Luis Jazz”, contains 20 snip-
pets all related to the well-known jazz musician and mostly
in English, while Cluster #6, with the same label, contains
12 snippets of which 9 are relative to the same musician
but mostly in Italian, and 3 are relative to other musicians
named Armstrong. Cluster #12, labelled “Neil Armstrong”,
has 7 snippets of which 6 are related to the well-known as-
tronaut. Cluster #19, labelled “George”, contains 4 snip-
pets, two of which are related to the life of General George
Armstrong Custer. Cluster #18, labelled “Edwin Howard
Armstrong”, contains 6 snippets, three of which are devoted
to Edwin Howard Armstrong, the inventor of the frequency
modulation radio broadcasting technique.

5.2 Query: madonna
The query “madonna” returns 175 snippets organized in 19
clusters (after manual adjustment) in 0.88 seconds (see Fig-
ure 2). Cluster #4, labelled “santuario della madonna del
divino”, contains 9 snippets, of which 6 are relative to holy
shrines. Cluster #5, labelled “su louise veronica madonna
ciccone”, contains 11 snippets, all of them high-quality sites
devoted to the well-known popstar. Cluster #7, labelled
“Madonna di Campiglio”, contains 13 snippets, of which 11
are related to the Italian ski resort. Cluster #10, labelled
“music”, contains 51 snippets, most of which related to the
popstar.

5.3 Query: allergy
The query “allergy” returns 100 snippets organized in 27
clusters in 0.94 seconds (see Figure 3).

Cluster #3 labelled “Asthma” contains 8 snippets, of which
6 related to asthma and allergy. Cluster #5 labelled “Al-
lergy Journal” contains 4 snippets, all of which relate to
periodic medical publications. Cluster #6 labelled “guide
to allergies and allergy” contains 7 snippets, of which at
least 5 offer general advise on allergy treatments. Cluster
#11 labelled “food allergy” contains 5 snippets, all of which
related to food allergies.

6. EXPERIMENTAL EVALUATION OF THE
CLUSTERING ALGORITHM

We have performed an experiment aimed at assessing the
performance of the clustering algorithm that Armil uses.

6.1 The baseline

Figure 1: Labels generated by Armil for the query
“armstrong”.

As baseline against which to compare the clustering capa-
bilities of Armil, we have chosen Vivisimo8. Vivisimo is con-
sidered an industrial standard in terms of clustering quality
and user satisfaction, and in 2001 and 2002 it has won the
“best meta-search-award” assigned annually by the on-line
magazine SearchEngineWatch.com. Vivisimo thus represents
a particularly difficult baseline, and it is not known if its
clustering quality only depends on an extremely good clus-
tering algorithm, or rather on the use of external knowledge
or custom-developed resources. To the best of our knowl-
edge, this is the first published experiment comparing on an
objective basis (see below) the clustering quality of an acad-
emic prototype and Vivisimo. Vivisimo’s advanced searching
feature allows a restriction of the considered auxiliary search
engines to a subset of a range of possible auxiliary search
engines. For the purpose of our experiment we restrict our
source of snippets to the ODP directory.

6.2 Measuring clustering quality
Following a consolidated practice, in this paper we mea-
sure the effectiveness of a clustering system by the degree
to which it is able to “correctly” re-classify a set of pre-
classified snippets into exactly the same categories without
knowing the original category assignment. In other words,
given a set C = {c1, . . . , ck} of categories, and a set Θ of n

8http://vivisimo.com/

Figure 2: Labels generated by Armil for the query
“madonna”.

snippets pre-classified under C, the “ideal” term clustering
algorithm is the one that, when asked to cluster Θ into k
groups, produces a grouping C′ = {c′1, . . . , c′k} such that, for
each snippet sj ∈ Θ, sj ∈ ci if and only if sj ∈ c′i. The orig-
inal labelling is thus viewed as the latent, hidden structure
that the clustering system must discover.

Following [16, page 110], the measure we use is normalized
mutual information, i.e.

NMI(C, C′) =
2

log |C||C′|
X
c∈C

X
c′∈C′

P (c, c′)·log
P (c, c′)

P (c) · P (c′)

where P (c) represents the probability that a randomly se-
lected snippet sj belongs to c, and P (c, c′) represents the
probability that a randomly selected snippet sj belongs to
both c and c′. Higher values of NMI mean better clustering
quality. The clustering produced by Vivisimo has partially
overlapping clusters (in our experiments Vivisimo assigned
roughly 27% of the snippets to more than one cluster), but
NMI is designed for non-overlapping clustering. Therefore,
in measuring NMI we eliminate from the ground truth,
from the clustering produced by Vivisimo, and from that
produced by Armil, the snippets that are present in multiple
copies.

However, in order to also consider the ability of the two sys-
tems to “correctly” duplicate snippets across overlapping
clusters, we have also computed the normalized complemen-
tary entropy [16, page 108], in which we have changed the
normalization factor so as to take overlapping clusters into
account. The entropy of a cluster c′l ∈ C′ is

E(c′l, C) =

|C|X
k=1

−|c
′
l ∩ ck|
|ck| log

|c′l ∩ ck|
|ck|

Figure 3: Labels generated by Armil for the query
“allergy”.

The normalized complementary entropy of c′l is

NCE(c′l, C) = 1− E(c′l, C)

log |C|
NCE ranges in the interval [0, 1], and a greater value implies
better quality of c′l. The complementary normalized entropy
of C′ is the weighted average of the contributions of the

single clusters in C′. Let n′ =
P|C′|

l∈1 |c′l| be the sum of the
cardinalities of the clusters of C′. Note that when clusters
may overlap it holds that n′ ≥ n. Thus

NCE(C′, C) =

|C′|X
l∈1

|c′l|
n′

NCE(c′l, C)

NCE values reported below are thus obtained on the full
set of snippets returned by Vivisimo.

6.3 Establishing the ground truth
The ephemeral nature of the Web is amplified by the fact
that search engines have at best a partial view of the avail-
able pages relevant to a given query. Moreover search en-
gines must produce a ranking of the retrieved relevant pages
and display only the pages of highest relevance. Thus es-
tablishing a “ground truth” in a context of the full Web is
problematic.Following [8], we have made a series of experi-
ments using as input the snippets resulting from queries is-
sued to the Open Directory Project (ODP – see Footnote 4).

The ODP is a searchable Web-based directory consisting
of a collection of a few million Web pages (as of today,
ODP claims to index 5.1M Web pages) pre-classified into
more than 590K categories by a group of volunteer human
experts. The classification induced by the ODP labelling
scheme gives us an objective “ground truth” against which
we can compare the clustering quality of Vivisimo and Armil.
In ODP, documents are organized according to a hierarchi-
cal ontology. For any snippet we obtain a label for its class
by considering only the first two levels of the path on the
ODP category tree. For example, if a document belongs
to class Games/Puzzles/Anagrams and another docu-
ment belongs to class Games/Puzzles/Crosswords, we
consider both of them to belong to class Games/Puzzles.
This coarsification is needed in order to balance the number
of classes and the number of snippets returned by a query.

Queries are submitted to Vivisimo, asking it to retrieve pages
only from ODP. This is done to ensure that Vivisimo and
Armil operate on the same set of snippets, hence to ensure
full comparability of the results. The resulting set of snip-
pets is parsed and given as input to Armil. Since Vivisimo
does not report the ODP category to which a snippet be-
longs, for each snippet we perform a query to ODP in order
to establish its ODP-category.

6.4 Outcome of the comparative experiment
The queries used in this experiment are the last 30 of those
reported in Appendix A (the first 5 have been excluded since
too few related snippets are present in ODP). In Table 1 we
report the NMI and NCE values obtained by Vivisimo and
Armil on these data. Vivisimo produced by default about
40 clusters; therefore we have run Armil with a target of
40 clusters (thus with a choice close to that of Vivisimo)
and with 30 (this number is the default used in the user
evaluation).

Vivisimo Armil(40) Armil(30)
NCE 0.667 0.735 (+10.1%) 0.683 (+2.3%)
NMI 0.400 0.442 (+10.5%) 0.406 (+1.5%)

Table 1: Results of the comparative evaluation.

The experiments indicate an substantial improvement of
about 10% in terms of cluster quality of Armil(40) with re-
spect to Vivisimo.9. This improvement is an important result
since, as noted in 2005 in [5], “[T]he scientific literature of-
fers several solutions to the web-snippet clustering problem,
but unfortunately the attainable performance is far from
the one achieved by Vivisimo.” It should be noted moreover
that Vivisimo uses a proprietary algorithm, not in the public
domain, which might make extensive use of external knowl-
edge. In contrast our algorithm is open and disclosed to the
research community.

9For the sake of replicating the experiments all the
search results have been cached and are available at
http://psp1.iit.cnr.it/~mcsoft/armil/armil.html

7. USER EVALUATION OF THE CLUSTER
LABELLING ALGORITHM

Assessing “objectively” the quality of a cluster labelling
method is a difficult problem, for which no established method-
ology has gained a wide acceptance. For this reason a user
study is the standard testing methodology. We have set up
a user evaluation of the cluster labelling component of Armil
in order to have an independent and measurable assessment
of its performance. We performed the study on 22 volunteer
master students, doctoral students and post-docs in com-
puter science at our departments. The volunteers have all a
working knowledge of the English language.

The user interface of Armil has been modified so as to show
clusters one-by-one and proceed only when the currently
shown cluster has been evaluated. The queries are supplied
to the evaluators in a round robin fashion from a list of
35 predefined queries. For each query the user must first
say whether the query is meaningful to her; an evaluator
is allowed to evaluate only queries meaningful to her. For
each cluster we propose three questions: (a) Is the label syn-
tactically well-formed?; (b) Can you guess the content of the
cluster from the label?; (c) After inspecting the cluster, do
you retrospectively consider the cluster as well described by
the label? The evaluator must choose one of three possible
answers (Yes; Sort-of; No), and her answer is automatically
recorded in a database. Question (a) is aimed at assess-
ing the gracefulness of the label produced. Question (b) is
aimed at assessing the quality of the label as an instrument
predictive of the cluster content. Question (c) is aimed at
assessing the correspondence of the label with the content of
the cluster. Note that the user cannot inspect the content
of the cluster before answering (a) and (b).

Selection of the queries. We have selected 35 of the most
popular queries submitted to Google in 2004 and 2005 (see
http://www.google.com/press/zeitgeist.html); in the se-
lection we have avoided queries whose meaning was too spe-
cific to a particular sub-culture in the Web space. The se-
lected queries are listed in Appendix A.

Discussion of the results. Each of the 35 queries has
been evaluated by two different evaluators, for a total of 70
query evaluations and 1584 cluster evaluations. The results
are displayed in the following table:

Yes Sort-of No
(a) 60.5% 25.5% 14.0%
(b) 50.0% 32.0% 18.0%
(c) 47.0% 38.5% 14.5%

Summing the very positive and the mildly positive answers
we can conclude that, in this experiment, 86.0% of the la-
bels are syntactically well formed, 82.0% of the labels are
predictive and 85.5% of the clusters are sufficiently well
described by their label. By checking the percentages of
No answers, we can notice that sometimes labels considered
non-predictive are nonetheless considered well descriptive of
the cluster; we interpret this fact as due to the discovery
of meanings of the query string previously unknown to the
evaluator.

The correlation matrices in Table 2 show more precisely the

correlation between syntax, predictivity and representative-
ness of the labels. Entries in the top part give the percent-
age over all answers, and entries in the bottom part give
percentage over rows.

b-Yes b-Sort-of b-No

a-Yes 42.67% 12.81% 5.11%
a-Sort-of 5.74% 15.27% 4.41%
a-No 1.64% 3.78% 8.52%
a-Yes 70.41% 21.14% 8.43%
a-Sort-of 22.58% 60.04% 17.36%
a-No 11.76% 27.14% 61.08%

c-Yes c-Sort-of c-No

b-Yes 33.52% 12.81% 3.72%
b-Sort-of 11.36% 16.85% 3.66%
b-No 2.14% 8.90% 7.00%
b-Yes 66.96% 25.59% 7.44%
b-Sort-of 35.64% 52.87% 11.48%
b-No 11.88% 49.30% 38.81%

c-Yes c-Sort-of c-No

a-Yes 35.98% 18.93% 5.68%
a-Sort-of 8.64% 12.81% 3.97%
a-No 2.39% 6.81% 4.73%
a-Yes 59.37% 31.25% 9.37%
a-Sort-of 33.99% 50.37% 15.63%
a-No 17.19% 48.86% 33.93%

Table 2: Correlation tables of questions (a) and (b)
(top), (a) and (c) (middle), (b) and (c) (bottom).

The data in Table 2 (top) show that there is a strong corre-
lation between syntactic form and predictivity of the labels,
as shown by the fact that in a high percentage of cases the
same answer was returned to questions (a) and (b).

The middle and bottom part of Table 2 confirms that while
for the positive or mildly positive answers (Yes, Sort-of)
there is a strong correlation between the answers returned to
the different questions, it is often the case that a label con-
sidered not predictive of the content of the cluster can still
be found, after inspection of the cluster, to be representative
of the content of the cluster.

7.1 Running times
Our system runs on a processor AMD Athlon (1Ghz Clock)
with 750Mb RAM and operating system FreeBSD 4.11 -
STABLE. The code was developed in Python V. 2.4.1.

Excluding the time needed to download the snippets from
the auxiliary search engines, the 35 queries have been clus-
tered and labelled in 0.72 seconds on average; the slowest
query took 0.92 seconds.

8. CONCLUSIONS AND FUTURE WORK
Why is Armil not “yet another clustering search engine”?
The debate on how to improve the performance of search
engines is at the core of the current research in the area of
Web studies, and we believe that so far only the surface of
the vein has been uncovered. The main philosophy of the
system/experiments we have proposes follows these lines: (i)
principled algorithmic choices are made whenever possible;
(ii) clustering is clearly decoupled from labelling; (iii) at-
tention is paid to the trade-off between response time and

quality while limiting the response time within limits ac-
ceptable by the user; (iv) a comparative study of Armil and
Vivisimo has been performed in order to assess the quality of
Armil’s clustering phase by means of effectiveness measures
commonly used in clustering studies; (v) a user study has
been set up in order to obtain an indication of user satis-
faction with the produced cluster labelling; (vi) no use of
external sources of knowledge is made.

Further research is needed in two main areas. First, we
plan to assess to what extent a modicum of external knowl-
edge can improve the system’s performance without speed
penalties. Second, it is possible to introduce in the cur-
rent pipeline (input snippets are clustered, keywords are ex-
tracted, labels are generated) of the architecture a feedback
loop by considering the extracted keywords/labels as prede-
fined categories, thus examining which snippets in different
clusters are closer to the generated labels. Snippets close to
the label of cluster Cx but in a different cluster Cy could be
shown on the screen as related also to Cx. This would give
the benefits of soft clustering without much computational
overload. Finally, methods for detecting automatically the
desired number of clusters will be studied.

9. REFERENCES
[1] M. S. Charikar. Similarity estimation techniques from

rounding algorithms. In STOC ’02: Proceedings of the
thiry-fourth annual ACM symposium on Theory of
computing, pages 380–388, 2002.

[2] D. Cheng, R. Kannan, S. Vempala, and G. Wang. On a
recursive spectral algorithm for clustering from pairwise
similarities. Technical Report MIT-LCS-TR-906,
Massachusetts Institute of Technology, Cambridge, US,
2003.

[3] T. M. Cover and J. A. Thomas. Elements of information
theory. John Wiley & Sons, New York, US, 1991.

[4] D. R. Cutting, J. O. Pedersen, D. Karger, and J. W. Tukey.
Scatter/Gather: A cluster-based approach to browsing
large document collections. In Proceedings of SIGIR-92,
15th ACM International Conference on Research and
Development in Information Retrieval, pages 318–329,
Kobenhavn, DK, 1992.

[5] P. Ferragina and A. Gulli. A personalized search engine
based on Web-snippet hierarchical clustering. In Special
Interest Tracks and Poster Proceedings of WWW-05, 14th
International Conference on the World Wide Web, pages
801–810, Chiba, JP, 2005.

[6] F. Geraci, M. Pellegrini, P. Pisati, and F. Sebastiani. A
scalable algorithm for high-quality clustering of Web
snippets. In Proceedings of SAC-06, 21st ACM Symposium
on Applied Computing, Dijon, FR, 2006. Forthcoming.

[7] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theoretical Computer Science,
38(2/3):293–306, 1985.

[8] T. H. Haveliwala, A. Gionis, D. Klein, and P. Indyk.
Evaluating strategies for similarity search on the Web. In
Proceedings of WWW-02, 11th International Conference on
the World Wide Web, pages 432–442, Honolulu, US, 2002.

[9] M. A. Hearst and J. O. Pedersen. Reexamining the cluster
hypothesis: Scatter/Gather on retrieval results. In
Proceedings of SIGIR-96, 19th ACM International
Conference on Research and Development in Information
Retrieval, pages 76–84, Zürich, CH, 1996.

[10] D. S. Hochbaum and D. B. Shmoys. A best possible
approximation algorithm for the k-center problem.
Mathematics of Operations Research, 10(2):180–184, 1985.

[11] K. Kummamuru, R. Lotlikar, S. Roy, K. Singal, and
R. Krishnapuram. A hierarchical monothetic document
clustering algorithm for summarization and browsing
search results. In Proceedings of WWW-04, 13th
International Conference on the World Wide Web, pages
658–665, New York, NY, 2004.

[12] D. J. Lawrie and W. B. Croft. Generating hierarchical
summaries for Web searches. In Proceedings of SIGIR-03,
26th ACM International Conference on Research and
Development in Information Retrieval, pages 457–458,
2003.

[13] Y. Maarek, R. Fagin, I. Ben-Shaul, and D. Pelleg.
Ephemeral document clustering for Web applications.
Technical Report RJ 10186, IBM, San Jose, US, 2000.

[14] J. MacQueen. Some methods for classification and analysis
of multivariate observations. In Proceedings of the 5th
Berkeley Symposium on Mathematical Statistics and
Probability, volume 1, pages 281–297, 1967.

[15] S. Osinski and D. Weiss. Conceptual clustering using Lingo
algorithm: Evaluation on Open Directory Project data. In
Proceedings of IIPWM-04, 5th Conference on Intelligent
Information Processing and Web Mining, pages 369–377,
Zakopane, PL, 2004.

[16] A. Strehl. Relationship-based Clustering and Cluster
Ensembles for High-dimensional Data Mining. PhD thesis,
University of Texas, Austin, US, 2002.

[17] O. Zamir and O. Etzioni. Web document clustering: A
feasibility demonstration. In Proceedings of SIGIR-98, 21st
ACM International Conference on Research and
Development in Information Retrieval, pages 46–54,
Melbourne, AU, 1998.

[18] O. Zamir, O. Etzioni, O. Madani, and R. M. Karp. Fast
and intuitive clustering of Web documents. In Proceedings
of KDD-97, 3rd International Conference on Knowledge
Discovery and Data Mining, pages 287–290, Newport
Beach, US, 1997.

[19] H.-J. Zeng, Q.-C. He, Z. Chen, W.-Y. Ma, and J. Ma.
Learning to cluster Web search results. In Proceedings of
SIGIR-04, 27th ACM International Conference on
Research and Development in Information Retrieval, pages
210–217, Sheffield, UK, 2004.

[20] D. Zhang and Y. Dong. Semantic, hierarchical, online
clustering of Web search results. In Proceedings of
APWEB-04, 6th Asia-Pacific Web Conference, pages
69–78, Hangzhou, CN, 2004.

APPENDIX
A. QUERIES USED IN THE USER EVALU-

ATION
skype, winmx, nintendo revolution, pamela anderson, twin
towers, wallpaper, firefox, ipod, tsunami, tour de france,
weather, matrix, mp3, new orleans, notre dame, games, brit-
ney spears, chat, CNN, iraq, james bond, harry potter, simp-
sons, south park, baseball, ebay, madonna, star wars, tiger,
airbus, oscars, london, pink floyd, armstrong, spiderman.

	COVER1.pdf
	Consiglio Nazionale delle Ricerche
	F. Geraci, M. Pellegrini, M. Maggini, F. Sebastiani
	Iit

