

C

Consiglio Nazionale delle Ricerche

The SCREAM Approach for Efficient
Distributed Scheduling with Physical

Interference in Wireless Mesh Networks

GG.. BBrraarr,, DD.. BBlloouugghh,, PP.. SSaannttii

IIT TR-08/2006

Technical report

Agosto 2006

Iit

Istituto di Informatica e Telematica

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37832066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The SCREAM Approach for Efficient Distributed Scheduling with

Physical Interference in Wireless Mesh Networks

Gurashish Brar
School of ECE

Georgia Inst. of Technology
Atlanta, GA

Douglas M. Blough
School of ECE

Georgia Inst. of Technology
Atlanta, GA

Paolo Santi
Istituto di Informatica
e Telematica del CNR

Pisa, Italy

Abstract— It is known that CSMA/CA channel access schemes
are not suitable to meet the high traffic demand of wireless mesh
networks. One possible way to increase traffic carrying capacity
is to use a spatial TDMA (STDMA) approach in conjunction
with the physical interference model, which allows more aggres-
sive scheduling than the protocol interference model on which
CSMA/CA is based. However, a major difficulty in using STDMA
with physical interference is the inherent complexity of this
interference model. While an efficient, centralized solution for
STDMA with physical interference has been recently proposed,
no satisfactory distributed approaches have been introduced so
far. In this paper, we first prove that no localized distributed
algorithm can solve the problem of building a feasible schedule
under the physical interference model. Motivated by this, we
design a global primitive, called SCREAM, which is used to
verify the feasibility of a schedule during an iterative distributed
scheduling procedure. Based on this primitive, we present two
distributed protocols for efficient, distributed scheduling under
the physical interference model, and we prove an approximation
bound for one of the protocols. We also present extensive packet-
level simulation results, which show that our protocols achieve
schedule lengths very close to those of the centralized algorithm
and have running times that are practical for mesh networks.

I. INTRODUCTION

In wireless mesh networks, wireless backbone nodes must
convey a large amount of traffic generated by wireless clients
to a few nodes that act as gateways to the Internet. For
these networks, the main design concern is increasing the
traffic carrying capacity of the wireless backbone as much
as possible. The main factor that limits capacity in mesh
networks is interference, which is a consequence of using a
shared communication medium. Hence, an accurate modeling
of interference is fundamental in order to derive theoretical
and/or simulation-based results of some practical relevance.
In the literature, two main interference models have been
proposed [10]: the protocol and the physical interference
models.

In the protocol model, a communication from node u
to node v is successful if no other node within a certain
interference range from v is simultaneously transmitting. Due
to its simplicity, and to the fact that this model can be used
to mimic the behavior of CSMA/CA networks such as IEEE
802.11 [1], the protocol interference model has been mostly
used in the literature. In the physical interference model,
a communication between nodes u and v is successful if
the SINR (Signal to Interference and Noise Ratio) at v (the

receiver) is above a certain threshold, whose value depends
on the desired channel characteristics (e.g., data rate). This
model is less restrictive than the protocol interference model
and higher network capacity can in general be achieved by
applying the physical interference model. 1

Recent research indicates that CSMA/CA is not suitable
to meet the high traffic demand of wireless mesh networks.
The reason for this is that CSMA/CA is a very conservative
mechanism: due to the combination of carrier sensing and col-
lision avoidance techniques, many network nodes are silenced
when a certain communication takes place. This is the reason
why existing implementations of 802.11-based mesh networks
disable the collision avoidance mechanism (i.e., the RTS/CTS
message exchange) [3], or completely new TDMA-like MAC
protocols are proposed for mesh networks [16], [19].

The above discussion motivates use of the physical interfer-
ence model in investigations of the capacity of wireless mesh
networks. A major difficulty lies in the complexity of han-
dling physical interference. In fact, most of the related work
on scheduling with physical interference presents centralized
algorithms that are either exponential time or for which time
complexities are not given [7], [8], [11], [18]. None of these
algorithms have proven approximation bounds. Other works
dealing with the physical interference model consider only a
simplified scenario with unit traffic demand on each link [13],
[14], which is not representative of real-world wireless mesh
network deployments. In a recent paper [4], we published
the first centralized scheduling algorithm for the physical
interference model that runs in polynomial time and has a
proven approximation factor relative to the optimal schedule.
Currently, there is no known distributed algorithm with a
proven approximation factor. In fact, to our knowledge, [9]
is the only existing distributed scheduling algorithm that ac-
counts for physical interference. [9] uses a localized approach
where only interferers within a short network distance of a
receiver are considered. We prove in this paper that localized
algorithms can not guarantee to produce a feasible schedule
under the physical interference model.

In this paper, we take a novel approach to distributed

1The physical interference model is representative of a scenario that does
not use CSMA techniques; instead, transmissions should be carefully sched-
uled, using TDMA-like channel access schemes, so that only sender/receiver
pairs that do not conflict with each other transmit simultaneously.

scheduling, which is based on a global primitive that we refer
to as a SCREAM. In our approach, nodes iteratively build
a feasible schedule one slot at a time, and the SCREAM
primitive is used to quickly determine whether communica-
tions being attempted in a slot are feasible. In this way and
using ideas from our centralized scheduling algorithm [4],
we are able to design a distributed scheduler that is efficient
in running time and maintains the proven approximation
bound of [4]. We also present a variant of our scheduling
algorithm that has slightly reduced performance (in terms of
schedule length) but runs substantially faster. For each of the
proposed algorithms, we present detailed simulation results
that demonstrate that their schedule lengths are very close
to the centralized algorithm, while their execution times are
practical for typical mesh network sizes.

II. NETWORK MODEL AND ASSUMPTIONS

We consider a wireless mesh network composed of n nodes
(wireless routers). The links among nodes are represented
by the communication graph G = (V,E), where V is the
set of nodes, and edge e = (u, v) ∈ E if and only if a
link between nodes u and v exists in absence of interference
from any other network node. We do not assume any specific
radio propagation model, nor that all the nodes use the same
transmission power. Hence, unidirectional links can be present
in the physical communication graph. However, to provide
fair comparisons against 802.11, we assume that link-layer
reliability (using ACKs) is employed even for STDMA [15].
We, therefore, assume that unidirectional links are not used
even if they are present and, hence, we ignore them in G.

We assume that no transmit power control technique is used,
i.e. all the nodes send packets using a fixed transmit power
level (which, however, can be different for every node). We
model interference using a variation of the physical interfer-
ence model [10] introduced in [4], which we summarize for
completeness. Differently from [10], the model of [4] accounts
for link-layer reliability. In particular, it is assumed that a
packet sent by node u is correctly received by node v if
and only if the packet is successfully received by v, and
the ACK sent by node v is correctly received by node u.
Furthermore, for a transmission from node x to node y that is
concurrent with the packet on (u, v), the model accounts for
the interference both from node x’s data packet and from node
y’s ACK. In this paper, we consider a minor variation of the
model of [4], where slots are divided into two sub-slots, one
for data packet transmission and one for ACK transmission,
so that data packets and ACKs do not overlap. Thus, a packet
sent from u to v is correctly received if and only if:

Pv(u)
N +

∑
x∈V ′ Pv(x)

≥ β and
Pu(v)

N +
∑

y∈V ′′ Pu(y)
≥ β ,

where V ′ contains all nodes that are transmitting data packets
in the same slot as u, V ′′ contains the corresponding nodes
that send ACKs to the nodes in V ′ in that slot, Pr(t) denotes
the received power at r of the signal transmitted by node
t, N is the background noise, and β is a constant that

depends on the desired data rate, modulation scheme, etc.
Based on this interference model, we say that a set E′ ⊂ E
of transmissions is feasible if and only if all of them can be
scheduled concurrently and correctly received.

We now introduce the concept of interference diameter,
which is used in the definition of our protocols.

Definition 1 (Sensitivity Graph): For a given communica-
tion graph G = (V,E), the sensitivity graph GS = (V,ES) is
defined on the same node set V . Directed edge (u, v) ∈ ES

if and only if node v can detect some activity on the channel
when node u is transmitting, and all the other nodes remain
silent.

It is easy to see that the sensitivity graph is a super-graph
of the communication graph G = (V,E).

Definition 2 (Interference Diameter): The interference di-
ameter of a network represented by the sensitivity graph GS =
(V,ES) is defined as the maximum hop distance between any
two nodes in GS . Formally,

ID(GS) = max
u,v∈V

dGS (u, v) ,

where dGS (u, v) is the hop length of the minimum length
directed path connecting u to v in GS . If GS is not strongly
connected, we define ID(GS) =∞.

Since we can assume that the communication graph of a
wireless mesh is strongly connected, and the sensitivity graph
is a super-graph of the communication graph, from now on we
assume that GS is also strongly connected, i.e. the interference
diameter is finite.

The traffic generated at each node in the mesh is conveyed to
one or more pre-defined gateway nodes, which provide access
to the Internet. In this paper, we assume that traffic is routed to
the gateways along reverse trees RT rooted at the gateways,
which thus form a routing forest RF . A node that is not a
gateway decides which tree to join depending on a simple
criteria, i.e. minimum hop distance to the root, breaking ties
randomly. Note that the set of edges forming RF must be a
subset of E. In the following, we use the term edge to refer
to an edge in RF only. Each node has some traffic demand
associated with it. Since each node u is part of exactly one tree,
the aggregated demand on the link connecting node u with its
parent in RT equals the sum of the demands generated at the
nodes belonging to the subtree rooted at u.

The protocols described in this paper allocate | demand(e) |
slots for each edge e ∈ RF . For each edge e = (u, v), one
of the nodes u or v (whichever is at higher depth in the RT)
is in charge of allocating slots so as to satisfy the demand on
e. Since we have established a one-to-one mapping between
nodes and edges (except the root nodes – i.e., gateways –,
which are not associated with any edge), from now on we
use the terms edge or node interchangeably. Note that, up
to straightforward modifications, the protocols presented in
this paper can be used to schedule an arbitrary link set (not
necessarily a forest).

We assume all nodes have their clocks synchronized to
a global time, within a reasonable degree of accuracy.

In subsequent algorithm descriptions we use the function
GlobalSync() to wait for the next time period which is
globally synchronized. In Section VI, we investigate the effect
of clock skew on the protocols’ performance.

III. DISTRIBUTED SCHEDULING PROTOCOLS

In this section, we present two distributed protocols based
on the centralized greedy scheduling algorithm presented in
[4]:

1) Partially Deterministic Distributed Protocol (PDD);
2) Fully Deterministic Distributed Protocol (FDD).

The algorithms proceed in rounds, scheduling one slot in
each round. At the beginning of each round, a node is selected
as the controlling node for the slot through leader election.
The algorithms guarantee that at least the edge associated
with the controller is scheduled in the slot, which implies
algorithm termination. The set of scheduled links is augmented
in a greedy fashion, by adding nodes to the slot in steps.
In a given step, there is some set of edges that are already
scheduled (call these the “previously scheduled edges”), and
a new set of edges (called “active edges”) are computed in
a distributed fashion and tentatively added to the slot. For
all previously scheduled edges and active edges, a two-way
handshake is performed. If any previously scheduled edge
fails its handshake, it initiates a SCREAM (see Section III-
A), and each active edge removes itself from the slot when it
hears the SCREAM. If all the handshakes between previously
scheduled edges are successful (indicated by the absence
of a SCREAM), the active edges whose handshakes were
successful are included in the slot. The other active edges
(whose handshakes failed) are discarded. Active edges that
are not added to the schedule can be re-scheduled only in the
next round. When no new set of active edges can be selected,
the slot is sealed, and the next round is initiated. This process
continues, adding one slot to the schedule at each round, until
all node demands are satisfied.

The only difference between PDD and FDD is in the way
the set of active nodes is selected: according to a randomized
strategy in case of PDD, and through a network-wide leader
election algorithm in case of FDD. While the fully deter-
ministic allocation strategy used in FDD allows proving an
important approximation result about the computed schedule
quality, PDD is considerably faster than FDD, while at the
same time providing a scheduling performance close to the
one provided by PDD (see Section VI).

Both FDD and PDD rely on a network-wide leader election
algorithm. The cost of leader election is dramatically reduced,
compared to existing schemes, using a new distributed prim-
itive called SCREAM, which we describe next. A significant
advantage of SCREAM is that it is resilient to collisions and,
therefore, has a deterministic execution time. This provides
a foundation for bounding execution time of the higher-level
protocols that use it.

A. The SCREAM primitive

Let var(i) be a Boolean variable stored at node ui. The
SCREAM primitive provides a network-wide OR operation
on the Boolean variables stored at each node in the network.
That is, after the SCREAM primitive is run, each node holds
the result of var(1) ∨ var(2) ∨ · · · ∨ var(n).

The SCREAM primitive runs through K
SCREAM SLOTS, where K ≥ ID(GS). The primitive
uses two functions:

1) Scream(): Transmits SMBytes on radio interface;
2) Listen(): Listens for Activity on radio interface. Re-

turns true if Activity detected, false otherwise.
The SCREAM primitive is built from the above two func-

tions as follows:
1: SubRoutine bool : SCREAM(var)
2: relay = var
3: for sslot = 1→ K do
4: GlobalSync()
5: if relay then
6: Scream()
7: else
8: relay = Listen()
9: end if

10: end for
11: return relay

It is important for every node in the network to participate
in the above SCREAM subroutine even if they do not have
a variable var value to contribute. These nodes participate
passively and simply relay the scream.

The SCREAM primitive is based on the carrier sensing
mechanism to detect activity in the medium. We rely on the
basic assumption that carrier sensing is resilient to collisions.
In Section V, we present results from experiments performed
on Mica 2 motes, which demonstrate the feasibility of the
SCREAM primitive.

B. Leader Election

This algorithm assumes that every node has a unique id
(e.g., its MAC address). Let id bits be the number of bits
required for representing the id. The following algorithm
performs leader election by selecting the node with the highest
unique id. The LeaderElect(IDi) function takes as input the
unique id IDi of the invoking node ui, and returns true if ui

is the leader, and false otherwise.
1: SubRoutine bool : LeaderElect(IDi)
2: votedout = false
3: for j = (id bits− 1)→ 0 do
4: GlobalSync()
5: if IDi(j) ∧ ¬votedout then
6: SCREAM(true)
7: else
8: votedout = SCREAM(false) ∨ votedout
9: end if

10: end for
11: return votedout

DORMANT

CONTROL

ACTIVE

TRIEDALLOCATED

COMPLETE

win leader election

node demand > 0

demand satisfied

selected as active

successful
HandShake

failed
HandShake

node demand > 0

demand satisfied

new slot
considered

TERMINATE

all nodes in
COMPLETE

state

Fig. 1. State transition diagram of the PDD and FDD algorithms.

In the above algorithm, IDi(j) refers to the j-th bit of IDi.
The algorithm iterates through the bits in the unique id, starting
from the most significant bit. During each iteration, a network
wide OR is performed on the bit values of all unique ids at the
corresponding index. If the OR result does not match the local
bit value, the node is voted out and for the rest of the iterations
contributes with a 0 bit value. It is immediate to see that, at the
end of LeaderElect’s execution, only the node with highest
ID has not been voted out, and wins the election. It is also
immediate to see that the above algorithm has O(K · lnn)
time complexity, assuming id bits = lnn.

We are now ready to describe the PDD and FDD protocols.

C. Partially Randomized Distributed Protocol (PDD)

During PDD’s execution each node can be in one of the
following mutually exclusive states:

1) CONTROL: controller of the current slot;
2) ALLOCATED: allocated to the current slot;
3) ACTIVE: active node, whose edge is tentatively in-

cluded in the current slot;
4) TRIED: an active node which could not join the current

slot because of failed handshake;
5) DORMANT: a node which has not been picked up yet

in any of the active subsets;
6) COMPLETE: a node whose demand has been satisfied;
7) TERMINATE: the algorithm has terminated
Figure 1 shows PDD’s state transition diagram.

The following algorithm describes PDD in further
detail:
Input: K, upper bound on network interference diameter
Output: Slot: set of reserved slots

scheduleLength: the length of the schedule
1: Slot← φ
2: scheduleLength← 0
3: curSlot← 0
4: curDemand← 0
5: state← DORMANT
6: Released← true
7: repeat
8: if Released then
9: if state 6= COMPLETE then

10: if LeaderElect(IDi) = true then

11: GlobalSync()
12: state← CONTROL
13: result← SCREAM(true)
14: else
15: GlobalSync()
16: if SCREAM(false) = false then
17: state = TERMINATE
18: end if
19: end if
20: else
21: LeaderElect(0) # Passive participation
22: end if
23: end if
24: if state 6= TERMINATE then
25: GreedyScheduleSlot(curSlot, state)
26: Released = CheckControlRelease(state)
27: end if
28: curSlot← curSlot+ 1
29: scheduleLength← scheduleLength+ 1
30: until state 6= TERMINATE

The following pseudo code, describes scheduling of a single
slot with a CONTROL node already elected. All nodes
which are not in the COMPLETE or CONTROL state
are returned to the DORMANT state. The SelectActive
function is used to build the Active set of nodes. The
ACTIV E|CONTROL|ALLOCATED nodes then perform
the two-way-handshake on each currently allocated link, in-
cluding the tentatively allocated ones. Following this, if none
of the CONTROL|ALLOCATED nodes veto, the suc-
cessful ACTIV E nodes are included in the set of allocated
edges for the slot. The unsucessful ACTIV E nodes change
their state to TRIED. The subroutine terminates when no
more active nodes can be selected, i.e. when the stillActives
variable becomes false.

SubRoutine: GreedyScheduleSlot(curslot, state)
if state 6= COMPLETE|CONTROL then
state← DORMANT

end if
repeat

if state = DORMANT# Build Active set then
if SelectActive() = true then
state← ACTIV E

end if
end if
GlobalSync()
{# Handshake time step}
HSfail← false
if state = ACTIV E|ALLOCATED|CONTROL
then
HSfail← DoHandShake()

end if
{# Verification time step}
if state = ALLOCATED|CONTROL then
HSfail← SCREAM(HSfail) #Veto Power

else

HSfail← SCREAM(false)
end if
stillActives← false # Check if active set empty
if state = ACTIV E then
stillActives← true
if HSfail = false then
state← ALLOCATED

else
state← TRIED

end if
end if
GlobalSync()
stillActives← SCREAM(noMoreActive)

until stillActives = false

The SelectActive() function chooses the set of active
nodes. In PDD, we use a probabilistic approach to determine
active nodes, i.e. nodes that are in the DORMANT state
become ACTIVE with a certain probability p.

The DoHandShake() function performs the two-way
handshake on the communication edge e = (u, v) being
scheduled, which is associated with the head node. The head
of the edge sends a data packet in the first sub-slot to the tail
node. In case the tail node correctly receives the packet, it
sends back to the head an ACK packet in the next sub-slot.
Upon correct reception of the ACK, the head node declares the
two-way handshake successful, and the function returns false.
In case of unsuccessful handshake, the function returns true.

To determine whether the demand of the CONTROL node
has been satisfied at the end of a round, a network wide
OR is performed using the SCREAM primitive with only
the CONTROL node having a true value if its demand is
satisfied. In this way, all the nodes know whether the control
has been released and a new leader for the next slot to be
scheduled must be elected.

D. Fully Deterministic Distributed Protocol (FDD)

The FDD protocol follows the exact procedure as PDD.
The only difference between the two protocols is in the
SelectActive() function. In FDD, a single new node is
selected as ACTIVE at each step, where the active node is
determined through network-wide leader election.

IV. ANALYSIS

A. Impossibility of localized distributed scheduling

In this section, we prove that no localized distributed
algorithm can be used to compute a feasible schedule under the
physical interference model. We first need some definitions.

Definition 3 (Link hop distance): Given any two links l1, l2
in the network, their hop distance is the minimum hop distance
between their endpoints in the communication graph.

Definition 4 (Link k-neighborhood): Given any link l, the
k-hop neighborhood of l is the set of all links at most k hops
away from l.

Definition 5 (Locality): A distributed scheduling algorithm
is localized if and only if it computes a schedule under the
chosen interference model by taking a decision on whether a

certain link l can be scheduled in a certain slot ti based only
on the information regarding links in the k-hop neighborhood
of l, where k in an arbitrary constant (k ∈ O(1)).

Theorem 1 (Impossibility result): No localized distributed
algorithm can compute a feasible schedule under the physical
interference model for the general case of networks with
arbitrary node distribution and arbitrary radio propagation
model.

Proof: [Sketch] Assume A is a localized distributed
algorithm for computing a feasible scheduled under the phys-
ical interference model. By assumption, when considering a
specific link l to be scheduled, the decision on whether link
l can be scheduled in slot ti is taken only by considering
information regarding links in the k-hop neighborhood of l.
Consider a certain link l′ outside the k-hop neighborhood of l.
Note that, given the assumption of arbitrary node distribution,
we can always build an example in which the hop diameter
of the network is Θ(n) (e.g., nodes along a line), and choose
l and l′ such that their hop distance is Θ(n) (e.g., links at the
opposite sides of a line). Since by assumption k = O(1), we
have that such a l, l′ link pair always exists. Given then the link
pair l, l′, and given the locality assumption on algorithm A,
we have that the decision on whether l should be scheduled in
slot ti is oblivious to whether l′ is also scheduled in the same
slot. Assume now that slot ti is feasible if link l is scheduled
concurrently to the currently scheduled links Ei for ti, but
it is infeasible if both l and l′ are scheduled concurrently to
links in Ei. Note that, given the assumption of arbitrary node
distribution and radio propagation model, an example in which
this situation occurs can always be built. Due to the locality
assumption, algorithm A has no possibility to know whether l′

is also scheduled in ti when taking the decision about link l,
possibly leading to the construction of an infeasible schedule.

Note that the above theorem can be easily extended to a
weaker notion of locality, in which nodes can communicate
up to hop-distance f(n), with f(n) ∈ o(n).

B. Characterization of the interference diameter

The SCREAM primitive constitutes a fundamental building
block of the distributed scheduling algorithms. In order for
this primitive to work properly (i.e., to implement a network-
wide OR operation), we need to upper bound the interference
diameter of the network. We recall that the SCREAM primitive
is invoked with a parameter K, which determines the duration
of the primitive expressed as the number of slots. In order for
SCREAM to correctly implement network-wide OR, we must
have K ≥ ID(GS) (the proof of this fact is straightforward).
To reduce time complexity, we must ideally set K = ID(GS).
This leads to the problem of estimating (an upper bound to)
the interference diameter of a certain sensitivity graph.

In the following, we present upper bounds on the interfer-
ence diameter of the sensitivity graph in different scenarios,
under the following assumption:

– CS range: we assume that (u, v) ∈ ES if and only
v is within the carrier sensing range rCS of node u.

For simplicity, we also assume that all the nodes in the
network have the same CS range. With this assumption,
GS can be regarded as an undirected graph.

In general the CS range rCS is at least as large as the
communication range2 rc. The larger rCS is with respect to
rc, the denser is the sensitivity graph GS with respect to
the communication graph G, and the lower the interference
diameter. Since we are interested in providing an upper bound
on the interference diameter, we should consider the minimum
possible meaningful value of rCS with respect to rc, i.e. rCS =
rc. For this reason, from now on we assume rCS = rc, and
we use the simpler notation r to denote both the CS and the
communication range. Note that, under the above assumption,
the sensitivity graph GS coincides with the communication
graph G. Thus, from now on the concept of interference
diameter will be applied to the communication graph G.

Let us now introduce the concept of neighbor density, which
will be used to classify the different scenarios considered in
the following.

Definition 6: Let G = (V,E) be the communication graph
of a network composed of n nodes with communication range
r = r(n). The neighbor density ρ(G) of G is the average node
degree in G, i.e. the average number of 1-hop neighbors of a
network node.

In the next subsection, we consider three different scenarios,
with increasing neighbor density: square grid deployments
(ρ(G) = Θ(1)), random uniform deployments (ρ(G) =
Θ(log n)), and infinite density deployments (ρ(G) = Θ(n)).
The analyses of these scenarios seem to indicate (we have no
formal proof of this fact, though) that the following relation
between the neighbor density and the interference diameter
occurs:

ID(G) = O

(√
n

ρ(G)

)
,

i.e. the higher the neighbor density, the lower the interference
diameter. This fact is quite interesting, since it indicates
that a high network density, which is often considered as
detrimental under many respects (e.g., capacity limitation),
is advantageous to reduce the interference diameter of the
network, and hence speeds up scheduling computation.

1) Square grid deployments: Square grid deployments can
be considered as a minimal neighbor density scenario: by
properly choosing the communication range and the grid step,
neighbor density can be made as low as O(1). In particular,
in the following we assume a square grid deployment, with
the communication range exactly set to the value of the grid
step. With this configuration, each node in the network S
has exactly four neighbors, independently of the number of
network nodes, i.e. ρ(S) = Θ(1).

Before proving the main result of this section, we need some
preliminary definitions.

Definition 7 (Square grid augmentation): Assume a square
lattice of arbitrary step s > 0 is super-imposed on the two-

2Implicit in this discussion is the fact that we are assuming a deterministic
radio propagation model, such as the log-distance path model.

l

y

x

upper path

lower path

Fig. 2. Square grid augmentation of line segment l (shaded region), and
corresponding upper and lower paths.

D

u

v
y

x

Fig. 3. Square grid diameter of a square grid convex region.

dimensional Euclidean plane, and define a cell as a single
square which is part of the lattice. For any line segment l
in the plane, the square grid augmentation Augm(l) of l is
defined as the region of the plane obtained as the union of the
cells which are traversed by l.

Definition 8 (Lattice paths): Let u, v be two arbitrary
points of the above defined lattice, and let l be the line
segment connecting u and v. The upper lattice path of l is
defined by connecting all the lattice points in Augm(l) whose
y coordinate is above segment l, and the lower lattice path of
l is defined by connecting all the lattice points in Augm(l)
whose y coordinate is below segment l. If segment l is parallel
to the y axis, we arbitrarily define the upper lattice path the
one on the left of l, and the lower path the one on the right
of l.

An example square grid augmentation of a line segment and
the corresponding upper and lower paths is reported in Figure
??.

Definition 9 (Square grid interior): Let R be an arbitrary
closed region of the two-dimensional plane. The square grid
interior Int(R) of R is defined as the set of points in the
above defined lattice lying in the interior of R.

Definition 10 (Square grid convexity): Let R be an arbi-
trary closed region of the two-dimensional plane. R is said

to be square grid convex if an only if, for any two points u, v
in Int(R), we have that at least one of the lattice paths of the
segment uv is contained in the interior of R.

Definition 11 (Diameter): Let R be any closed region of
the two-dimensional Euclidean plane. The diameter of R is
defined as the maximum length of a line segment connecting
two points in R. Formally,

diam(R) = max
u,v∈R

d(u, v) ,

where d() is the Euclidean distance.
An example of square grid diameter is reported in Figure

??.
We are now ready to prove the main result of this section.
Theorem 2: Assume n nodes are deployed in a square grid

lattice of step r (the communication range) inside a certain
two-dimensional closed region R. Let us denote with G =
(V,E) the resulting communication graph. If R is square grid
convex, then ID(G) ≤

√
2 · diam(R)

r .
Proof: Let us consider an arbitrary line segment l whose

both endpoints are in Int(R). Since R is square grid convex,
at least one of the lattice paths associated to l in entirely
included in Int(R). Hence, for any pair of nodes u, v in G, an
upper bound on their ‘interference distance’ can be derived by
upper bounding their hop distance in one of the lattice paths
associated to the line segment l connecting them. Denote with
β the angle between line l and the x axis. Without loss of
generality, assume 0 ≤ β ≤ π

2 (the proof for the other cases
is the same, up to symmetries). It is easy to see that the hop
length in the square grid of both lattice paths associated to
line l of length l̄ equals

l̄

r
· sinβ +

l̄

r
cosβ =

l̄

r
· (sinβ + cosβ) .

The upper bound on the interference diameter easily follows
by observing that l̄ ≤ diam(R) and that sinβ + cosβ ≤

√
2.

Observe that the bound stated in Theorem 2 is tight: in
fact, if R is a square perfectly aligned with the lattice, we
have that diam(R) = r

√
2n, and ID(G) = 2

√
n. Hence, the

interference diameter of a square grid network with n nodes

deployed in a square region R is Θ(
√
n) = Θ

(√
n

ρ(G)

)
.

2) Random uniform deployments: The analysis of the ran-
dom uniform deployment scenario is based on the well-known
subdivision of the deployment region into equally sized cells,
and on the use of occupancy theory.

In particular, similarly to [4], we assume the following:
– the deployment region R is the unit square [0, 1]2.
– n nodes with communication range r = r(n) =

√
ln n
πn

are distributed uniformly at random in R.
With the above assumption, it is known that the resulting

network is connected w.h.p.3, and the communication range
r(n) is the minimum possible value (in asymptotic terms) of

3In this paper, w.h.p. means with probability converging to 1 as n goes to
infinity.

the communication range which is necessary for connectivity
w.h.p. It is easy to see that the neighbor degree of the resulting
network is Θ(log n) w.h.p., and this is the minimum possible
node degree needed for connectivity w.h.p. in random uniform
networks.

Let us subdivide R into C = 8
r2 square cells of equal side

r
2
√

2
. The cell side is set such that any two nodes in adjacent

cells (horizontal, vertical, and diagonal adjacency) are within
each other communication range. Using standard arguments
from occupancy theory (see [12]), it is known that by setting
r and C as above every cell contains at least one node w.h.p.
Hence, an upper bound on the interference diameter of the
network is given the number of cells traversed by one of
the diameters of R (i.e., a diagonal connecting two opposite
corners of R). It is easy to see that this number equals 2

√
2πn
ln n .

This bound is tight, since every cell contains at least one node
w.h.p. when the minimal density for connectivity is achieved.
We have thus proved the following theorem:

Theorem 3: Assume n nodes with communication range
r = r(n) =

√
ln n
n are distributed uniformly at random in

R = [0, 1]2. The interference diameter of the resulting com-
munication graph G is ID(G) = Θ(

√
n

log n) = Θ(
√

n
ρ(G)).

Proof: Due to lack of space, the proof of this theorem is
reported in the full version of the paper [5].

3) Infinite density deployments: In infinite density deploy-
ments, it is assumed that, for any node u, and for any distance
d within communication range and any direction β in the
deployment region, there exists a node located at distance d
and direction β from u. This model, which is scarcely relevant
in practice (except for modeling extremely dense networks),
is interesting to evaluate best-case or worst-case scenarios for
wireless networks (see, for instance, [2]).

Assume a network G is deployed in a convex region R with
infinite density, and let r be the nodes’ communication range.
A tight upper bound to the interference diameter of G is given
by diam(R)

r . Let us set r such that the node neighbor degree
is Θ(n), which corresponds to the highest possible neighbor
density (in asymptotic terms). Since in the infinite density
scenario the number of nodes within range r from a certain
node u is given by πr2 (assuming u is far enough from the
border of R), in order to have a neighbor density of Θ(n) we
must have r = O(1), i.e. the node communication range must
be independent of n. This implies that also the interference
diameter of G does not depend on n, i.e. ID(G) = Θ(1),

which again equals Θ
(√

n
ρ(G)

)
.

C. Approximation bound

In this section, we prove that the length of the schedule com-
puted by FDD is at most a factor O(n1− 2

ψ(α)+ε (log n)
2

ψ(α)+ε)
away from the optimal schedule, where ε > 0 is an arbitrarily
small positive constant and ψ(α) is a constant which depends
on α. Similarly to [4], this result holds under the assumption
that network nodes are distributed uniformly at random in a

square of unit area, and that radio signal propagation obeys
the log-distance path model with path loss exponent α > 2.

Theorem 4 (Approximation bound): Let G be a communi-
cation graph with given demands on the nodes. Let Topt be the
minimum possible value of T such that a schedule of length
T is feasible for G under the physical interference model, and
let TFDD be the length of the schedule computed by FDD.
Then, TFDD

Topt
∈ O(n1− 2

ψ(α)+ε (log n)
2

ψ(α)+ε), for any arbitrarily
small constant ε > 0, w.h.p.

Proof: We prove that the schedule computed by FDD
is the same as the one computed by the centralized Greedy-
Physical algorithm of [4], for which the above approximation
bound has been proved in [4]. Indeed, we consider a variation
of GreedyPhysical, in which the edges to be scheduled are
ordered according to decreasing order of the IDs of their
heads. This edge ordering is different from the one used in
GreedyPhysical but, as observed in [4], the approximation
bound holds independently of the initial edge ordering.

GreedyPhysical is a simple greedy algorithm which se-
quentially considers edges in decreasing order, and greedly
allocates the new edge e to the first slot in the current schedule
such that including e in the slot does not make it infeasible.
This process is iterated until the demand on e is satisfied,
and then a new edge is considered. GreedyPhysical terminates
when the demand on each edge is satisfied.

It is easy to see that FDD re-creates this exact greedy
procedure in a fully distributed way. Initially, the node with
highest ID, corresponding to the first edge e1 in the ordering,
gets control of the first slot, and allocates its edge in the
first demand(e1) slots. When a certain slot is considered,
new edges are tried sequentially (i.e., selected as the unique
active node) in decreasing order of their head’s ID. If the
link associated with an active node u does not conflict with
currently scheduled nodes (whose ID can only be higher
than u’s ID), it is included in the current slot. This implies
that every edge ei is included in the first demand(ei) slots
such that ei does not conflict with the currently scheduled
edges, where currently scheduled edges ejs precede ei in the
edge ordering. I.e., the scheduling computed by FDD is the
same scheduling as the one computed by the variation of
GreedyPhysical described above.

D. Computational complexity

We now prove that FDD has polynomial time complexity.
A similar proof, which is not shown due to lack of space, can
be provided also for the PDD algorithm.

Theorem 5 (Time complexity): Algorithm FDD has O(TD ·
ID(G)·n log n) time complexity, where TD is the total traffic
demand in the network and ID(G) is the interference diameter
of the communication graph G.

Proof: FDD proceeds in rounds, allocating a slot in
each round. In the worst case, all links have to be scheduled
sequentially, and a total of TD rounds are needed to compute
the schedule. This gives the TD term in the O() notation.
For each round, a leader election protocol (with complexity
O(ID(G) · log n)) is run initially to determine the controller

u of the slot. Then, each link with some pending demand is
tried concurrently with the link governed by u to check for
feasibility. In the worst case, there are O(n) such links (we
are routing along a routing forest RF), and for each such link
we must first run the leader election algorithm. This implies
that the time complexity of each round is O(ID(G) ·n · log n),
and the theorem follows.

Observe that ID(G) ∈ O(
√
n) in case of square grid

deployments, and ID(G) ∈ O(
√

n
log n) in case of random uni-

form deployments. Then, computational complexity becomes
O(TD ·n3/2 log n) and O(TD ·n3/2(log n)1/2), respectively.
Furthermore, under the assumption that the ratio between the
maximum and minimum demand generated by a node is upper
bounded by a constant, and observing that we are routing along
a forest RF , we have that TD ∈ O(n2), implying time com-
plexities of O(n7/2 log n) and O(n7/2(log n)1/2), respectively.
If the routing trees are balanced, there are O(log n) levels in
each tree, and the aggregated traffic at each level is O(n),
implying TD ∈ O(n log n). Thus, FDD’s time complexities
become O(n5/2(log n)2) and O(n5/2(log n)3/2), respectively.

Note that the scheduling algorithms are applied only to the
backbone nodes in a wireless mesh network and this number is
expected to be in the tens to around a hundred for most mesh
network scenarios. In Section VI, we do a detailed evaluation
and show that the running times are quite feasible for networks
in this size range.

V. MOTE-BASED SCREAM ANALYSIS

In Section III, we described the SCREAM primitive that is
used extensively in the algorithms. This primitive is based on
one hop transmission of a small number of bytes, and on the
ability of neighboring nodes to detect activity (carrier sensing)
on the medium as a direct result of the transmission. It is
imperative that the carrier sensing mechanism employed by
the radio interface be immune to failure due to collisions. In
fact, to achieve a network wide OR operation, the SCREAM
subroutine tends to generate a broadcast flood, resulting in
many collisions. In this section we present the results from
evaluation of a SCREAM implementation on Berkeley Motes.

The goal of this experiment is to show that SCREAM
primitive works in presence of collisions provided an adequate
number of bytes (SMBytes) are transmitted.

A. Experimental Setup

We used the Crossbow Mica2 motes to implement the
SCREAM primitive. The code was written in nesC [6] and im-
plemented on top of TinyOS. We define three types of nodes:
an Initiator, a Monitor and rest as Relays. The Initiator
periodically (100 ms) initiates a SCREAM by transmiting
SMBytes. The Relays continuously listens to the channel for
any activity by comparing the RSSI values with a preconfig-
ured threshold(-60dBm). Relays transmit a SCREAM when
they detect a SCREAM (activity). The Monitor compares the
moving average of the RSSI values received with the threshold
(-60dBm). This ensures that Monitor lags behind the Relays
in detecting the signal from the Initiator

Fig. 4. Percentage Error in SCREAM detection vs SCREAM size (bytes).

Fig. 5. Moving Average of RSSI values.

In the experiments, we used 8 motes (6 as Relays). To
ensure collisions, we placed the Monitor and Relays in a
clique formation and Initiator was placed two hops away
from the Monitor. Each experiment was run long enough
to allow 2000 Screams. The error in scream detection is
percentage of measured SCREAM intervals outside of ±5%
of the expected interval (100 ms).

B. Results

Figure 2 shows the percentage error in detecting SCREAM
vs. SCREAM size (SMBytes). For large SCREAM sizes
(above 20 bytes), the percentage error is negligible. However,
the percentage error increases rapidly for SCREAM sizes
below 10. Figure 3 shows a snapshot of the moving average
of RSSI signal values measured for the SCREAM size of 24
bytes. The moving average in this case was sampled after every
3 RSSI values owing to device and UART limitations. The
figure shows the high quality of SCREAM detection with this
SCREAM size.

VI. SIMULATION RESULTS

A. Simulation Setup

We implemented the PDD, FDD and AFDD on the Geor-
gia Tech Network Simulator [17], which is a packet level
simulator with a complete 802.11 MAC model. Log-normal
propgation model was used with path loss of 3. We consider
two topologies, planned (grid layout) with homogeneous trans-
mission power and unplanned (uniform node distribution) with
heterogeneous transmission power. The results of PDD and
FDD were compared against the centralized GreedyPhysical
algorithm of [4]. We introduce bounded clock skew, where
the clock of every single node is skewed from every other

0

10

20

30

40

50

60

70

0 5000 10000 15000 20000 25000

Density (nodes/sq km)

%
ag

e
im

p
ov

er
 L

in
ea

r

-

FDD
Centralized
PDD prob=0.2
PDD prob=0.8
PDD prob=0.6

Fig. 6. Schedule Length Improvement for Grid

node within a fixed bound. The protocol implementations
compensate for the clock skew among the nodes.

All simulations were done with 64 nodes, with 4 nodes
acting as gateways. The demand on each node was taken from
a uniform distribution in the interval [1, 10]. For each node, a
shortest path to a nearest gateway is computed and the demand
of the node is aggregated over the links on the route. We
compute the schedule length for various density values, where
the density was changed by varying the area and keeping the
nodes fixed at 64. All results reported here are computed with
95% confidence intervals. We use a SCREAM size of 15 bytes
and an interference diameter of 5.

B. Schedule Length Results

Figure 4 compares the schedule lengths of PDD and FDD
to the schedule length of the centralized GreedyPhysical algo-
rithm. We plot the percentage improvement of the computed
schedules over the worst case serialized schedule. The results
show that the FDD protocol closely follows the centeralized
GreedyPhysical algorithm results, as expected, since the FDD
protocol mimics the GreedyPhysical Algorithm in a distributed
manner. For PDD, we plot the results for three different prob-
ability values. The probability here refers to the probability of
a node joining the Active set in the PDD protocol. We notice
that for low probability value of 0.2 PDD does marginally
better than with the higher probability values. On average,
the PDD’s performance is about 10 percentage points worse
than the performance of FDD and centralized GreedyPhysical
Algorithm.

Figure5 shows the schedule lengths using the same setup
as above but with the unplanned deployment. Again, FDD
does as well as the GreedyPhysical algorithm but, in this case,
PDD with high probability value performs about 15 percentage
points worse on average than FDD and GreedyPhysical.

C. Execution Time

We study the execution time of PDD and FDD, based on
the full implementation of the protocols in GTNetS. Figure 6
shows execution times of the two algorithms vs. SCREAM size
and interference diameter. The plots show that the execution
times are only a few seconds even for quite large values of
these parameters, indicating that the algorithms incur very
little overhead for schedule computations that are on the order

0

10

20

30

40

50

60

70

0 5000 10000 15000 20000 25000

Density (Nodes/sqkm)

%
ag

e
im

p
ov

er
 li

ne
ar

--

FDD

PDD prob=0.8

Centralized

Fig. 7. Schedule Length Improvement for Uniform Random Placement

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 10 20 30 40 50 60
Size/Diameter

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

 --
--

--

FDD Scream size (bytes)
PDD Scream Size (bytes)
FDD Diameter
PDD Diameter

Fig. 8. Execution Time vs. SCREAM size and Interference Diameter

of once per minute. As expected, PDD’s execution times are
significantly lower than those of FDD.

Execution times of the algorithms are quite sensitive to
clock skew, however. Figure 7 shows the running time of
FDD and PDD vs the clock skew bound. Both axes are on
log scale. Assuming that the schedule must be recomputed
once per minute, PDD can compute the schedule with less
than 5% overhead for a clock skew up to 100 microseconds.
FDD is somewhat less tolerant of clock skew and should be
used with a clock skew of no more than 10 microseconds
for this frequency of schedule computation. Clock skews on
this order are no problem for GPS-equipped devices and 100
microsecond clock skews are achievable even with distributed
synchronization algorithms for typical mesh network sizes, e.g.
less than 100 nodes.

VII. CONCLUSION

The algorithms of this paper represent the first efficient,
distributed scheduling approach with a proven approximation

1

10

100

1000

1E-06 0.00001 0.0001 0.001 0.01 0.1 1
Clock Skew (seconds)

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

 --
-

FDD
PDD prob=0.2

Fig. 9. Execution Time vs. Clock Skew

bound for the physical interference model. While considerable
work is still to be done to realize wireless mesh network
implementations based on the physical interference model, we
believe the approach presented in this paper constitutes a good
starting point in this direction.

REFERENCES

[1] M. Alicherry, R. Bathia, L. Li, “Joint Channel Assignment and Routing
for Throughput Optimization in Multi-Radio Wireless Mesh Networks”,
Proc. ACM Mobicom, pp. 58–72, 2005.

[2] A. Bader, E. Ekici, “Throughput and Delay Optimization in Interference-
Limited Multihop Networks”, Proc. ACM MobiHoc, pp. 274–285, 2006.

[3] J. Bicket, D. Aguayo, S. Biswas, R. Morris, “Architecture and Evaluation
of an Unplanned 802.11b Mesh Networks”, Proc. ACM Mobicom, pp.
31–42, 2005.

[4] G. Brar, D. Blough, P. Santi, “Computationally Efficient Scheduling
with the Physical Interference Model for Throughput Improvement in
Wireless Mesh Networks”, Proc. ACM Mobicom (to appear), Sept. 2006.

[5] G. Brar, D. Blough, P. Santi, “The SCREAM Approach for Efficient
Distributed Scheduling with Physical Interference in Wireless Mesh Net-
works”, Tech. Rep. IIT-TR12/2006, Istituto di Informatica e Telematica
del CNR, Pisa, Italy, August 2006.

[6] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler,
“The nesC Language: A Holistic Approach to Networked Embedded
Systems”, Proc. Programming Language Design and Implementation
(PLDI), June 2003.

[7] J. Gronkvist and A. Hansson, “Comparison Between Graph-Based and
Interference-Based STDMA Scheduling”, Proc. ACM MobiHoc, pp.
255–258, 2001.

[8] J. Gronkvist, J. Nilsson, and D. Yuan, “Throughput of Optimal Spatial
Reuse TDMA for Wireless Ad-Hoc Networks”, Proc. IEEE Vehicular
Technology Conference, pp. 2156–2160, 2004.

[9] J. Gronkvist, “Distributed Scheduling for Mobile Ad Hoc Networks - a
Novel Approach,” Proc. Int’l. Symp. on Personal, Indoor, and Mobile
Radio Communications, pp. 964–968, 2004.

[10] P. Gupta and P.R. Kumar, “The Capacity of Wireless Networks,” IEEE
Trans. Info. Theory, Vol. 46, No. 2, pp. 388–404, 2000.

[11] K. Jain, J. Padhye, V. Padmanabhan, L. Qiu, “Impact of Interference on
Multi-Hop Wireless Network Performance”, Proc. ACM Mobicom, pp.
66–80, 2003.

[12] V.F. Kolchin, B.A. Sevast’yanov, V.P. Chistyakov, Random Allocations,
V.H. Winston and Sons, Washington D.C., 1978.

[13] T. Moscibroda, R. Wattenhofer, “The Complexity of Connectivity in
Wireless Networks”, Proc. IEEE Infocom 2006.

[14] T. Moscibroda, R. Wattenhofer, A. Zollinger, “Topology Control Meets
SINR: The Schedulin Complexity of Arbitrary Topologies”, Proc. ACM
MobiHoc, pp. 310–321, 2006.

[15] R. Nelson and L. Kleinrock, “Spatial-TDMA: A Collison-free Multihop
Channel Access Protocol,” IEEE Trans. on Communication, Vol. 33, pp.
934–944, Sept. 1985.

[16] B. Raman, K. Chebrolu, “Design and Evaluation of a new MAC Protocol
for Long-Distance 802.11 Mesh Networks” Proc. ACM Mobicom, pp.
156–169, 2005.

[17] G. Riley, “The Georgia Tech Network Simulator,” ACM SIGCOMM
MoMeTools Workshop, 2003.

[18] O. Somarriba, Multihop Packet Radio Systems in Rough Terrain,
Tech.lic. Thesis, Radio Communication Systems, Royal Institute of
Technology, Stockholm, Sweden, Oct. 1995.

[19] Z. Wu and D. Raychaudhuri, “D-LSMA: Distributed Link Scheduling
Multiple Access Protocol for QoS in Ad-hoc Networks,” Proc. IEEE
Globecom, pp. 1670–1675, 2004.

	tr08.pdf
	Consiglio Nazionale delle Ricerche
	G. Brar, D. Blough, P. Santi
	Iit

