
A comparison between public-domain search engines
Marina Buzzi, IIT-CNR, Pisa, Italy

Pasquale Lazzareschi, IIT-CNR, Pisa, Italy

1 Abstract

The enormous amount of information available today on the Internet requires the use of

search tools such as search engines, meta-search engines and directories for rapid

retrieval of useful and appropriate information.

Indexing a website’s content by search engine allows its information to be located

quickly and improves the site’s usability. In the case of a large number of pages

distributed over different systems (e.g. an organization with several autonomous

branches/departments) a local search engine rapidly provides a comprehensive overview

of all information and services offered.

Local indexing generally has fewer requirements than global indexing (i.e. resources,

performance, code optimization), thus public-domain SW can be used effectively.

In this paper, we compare four open-source search engines available in the Unix

environment in order to evaluate their features and effectiveness, and to understand any

problems that may arise in an operative environment.

Specifically, the comparison includes:

• The SW features (installation, configuration options, scalability);

• User interfaces;

• The overall performance when indexing a sample page set;

• Effectiveness of searches;

• State of development and maintenance;

• Documentation and support.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37832058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Introduction

Generally speaking, search engines perform three main functions: crawling the Web (or

the Intranet), indexing the collected pages and searching for keywords specified by users

within the indexes, as shown in Figure 1.

Due to the Web’s enormous size, its multimedial nature and rapid mutations, today

search engine engineers face numerous challenges in each component of its architecture,

which have great impact on performance, user interaction and quality of search engine

results. However, these strict requirements are relaxed if a search engine is utilized for

indexing an Intranet instead of the entire Web, and thus public-domain SW can be used

effectively.

...

 Web/Intranet
...

Searching IndexingCrawling

Fig. 1–Logical scheme of search engine architecture

Choosing to use a local search engine offers several advantages:

1. Completeness of the information and services indexed due to the possibility of

crawling the entire set of the organization’s data;

2. Transparency, since the open source code of public domain search engines allows us

to understand how ranking algorithms function, and permit us to tune ranking

parameters;

3. Flexibility. It is possible to customize and incorporate user interfaces in website and

web applications;

4. Cleanness of results since Sponsored Links are not present.

The drawback is that crawling only the Intranet (and not the whole web, as Google does)

the ranking algorithms are unable to consider global factors such as the impact of page

popularity (i.e. the number of external incoming links), which positively affect the

precision of results.

In this paper we compare four public domain search engines, available for the Linux

environment: Nutch, DataparkSearch, mnoGoSearch and ht//Dig, and evaluate their

features by applying the indexing to a set of websites belonging to our organization, i.e.

the Italian National Research Council. Our analysis is limited to the Linux environment

although some of these SW are also available for Windows either free or under license.

This paper is divided into four sections. Section 3 contains a brief description of the three

main components of a search engine (crawling, indexing and searching); Section 4

introduces features of the SW analyzed: Nutch, mnoGoSearch, DataparkSearch and

ht//Dig; and in Section 5 the evaluation in a Linux environment of the four search engines

is described and discussed. Lastly, the paper closes with conclusions and remarks on

experiments performed and experience gained.

3 Search engine components

3.1 Crawling

Web crawler design presents many different challenges: architecture, strategies,

performance and more. One of the most important research topics concerns improving

the selection of “interesting” (for the user) web pages, according to importance criteria.

Another relevant point is content freshness, i.e. maintaining freshness and consistency of

temporary stored copies. For this, the crawler periodically repeats its activity, going over

stored contents (re-crawling process). Crawlers are SW components which visit portions

of web trees, according to certain strategies, and collect retrieved objects in local

repositories. Usually a crawler starts from a set of “interesting” URLs, collects new

URLs from pages visited and continues to explore until resources are available [2].

Search engines use crawlers to collect local copies of web pages [6].

A very important problem is keeping the local collection “fresh”, which means a high

probability that a stored copy is equal to the original object. At regular intervals the

crawler repeats its inspection of web pages in order to refresh modified contents as well

as to discover new pages. Many strategies for optimizing re-crawling have been studied

but the variety of different contexts and the highly dynamic nature of the WWW make it

difficult to model the web effectively. Web pages have a life cycle: they are born, change

and can also disappear; they change with very different update rates, which can vary over

time, thus becoming difficult to model effectively. In addition, the freshness of stored

copies is influenced by many factors such as type of retrieval, updating method, visit

frequency and object-replacing policy [4].

Another problem is that of selecting more “interesting” objects, for the users. A search

engine is aware of hot topics because it collects user queries. The crawling process

prioritizes URLs according to importance criteria such as similarity (to a driving query),

back-link count, PageRank or their combinations/variations [5], [2]. Najork et al. showed

that breadth-first search collects high-quality pages first and suggested a variant of

PageRank [12]. However, currently search strategies are unable to exactly select the

“best” paths because their knowledge is only partial. Due to the enormous amount of

information available on the Internet, total-crawling is at the moment not possible, and

thus prune strategies must be applied. Focused crawling [3], [8] and intelligent crawling

[1], for instance, are emerging techniques for discovering web pages relevant to a specific

topic or set of topics.

3.2 Indexing

Data collected by crawlers are stored and indexed. The indexer module extracts all the

words from each page and records the URLs where each word occurred (e.g. generates

the vocabulary). This generates very large structures (e.g. inverted indexes) that provide

all the URLs of pages where a given word appears. In addition, the indexer module may

also create other kinds of indexes aimed at optimizing the query phase (e.g. for

immediate access to relevant pages).

The page repository contains pages collected by crawlers in their activities (i.e. retrieved

from the Web/the Intranet). Search engines maintain a cache of the pages visited (whole

or partial content) in order to provide an excerpt of the result pages. These activities (i.e.

storage and retrieval on very large scale) require special treatment such as data

compression and fast indexing. The indexing can be a separate step or be integrated into

the crawler phase.

3.3 Searching

The query engine module manages search requests from users. The main problem is how

to reliably filter a sufficient number of irrelevant results when a user typically specifies

only one or two keywords, and the set of results is typically very large. A specific module

is dedicated to ranking, i.e. sorting the results so that elements in the first positions have a

high probability of being what the user is seeking. Ranking is crucial for retrieving

appropriate results. In fact, the traditional techniques applied in IR (similarity-based

algorithms) are not suitable for the Web due to its size, structure (hyperlink) and dynamic

nature. Specific algorithms such as Page Rank and its numerous variations, which may

significantly improve retrieval precision in Web searches, have been proposed in recent

years.

The graphical interface for user queries is also very important for user interaction. In the

last few years there has been an increasing awareness of the importance of making UIs

accessible to anyone, in any condition, regardless of any disability. Any person should be

able to perceive, understand, navigate, and interact with the Web [15] and if possible

contribute to its development. Unfortunately at present only a very small part of the

enormous amount of information available on the Internet is accessible, and web

interaction may require considerable effort for the visually disabled, who interact by

means of assistive technologies (e. g. screen reader and voice synthesizer). However,

accessibility is necessary but alone is insufficient to guarantee easy and satisfactory

interaction for anyone; thus usability criteria should be applied from the earliest stages of

user interface design.

As previously mentioned in the introduction, public domain search engines offer the

considerable advantage of making the source code available and thus making it possible

to customize the UIs to fulfill accessibility and usability criteria [15].

4 Public domain search engine

In this section we introduce the four public domain search engines we tested. A summary

of their features is then included in Table 1.

4.1 Nutch

Nutch [13] is a search engine developed under the Apache Lucene project. This project is

dedicated to develop open-source search software. Specifically, Lucene provides a library

of Java-based indexing and search technology while Nutch provides web search

application software built on Lucene.

Nutch is written in Java so requirements for its installation include:

Java 1.4.x;

Apache's Tomcat 4.x (for the searching interface via web);

An appropriate free disk space (up to a GB);

A high-speed connection.

Although the search engine is able to crawl the entire web we only describe the

configuration for Intranet crawling: i.e. to efficiently crawl a limited group of web

servers, up to around one million pages.

Configuring Nutch for Intranet crawling is an easy three-step process described in the

available tutorial:

Create a directory with a flat file of root urls;

Edit the file conf/crawl-urlfilter.txt and replace MY.DOMAIN.NAME with the

name of the domain you wish to crawl;

Run the Crawl with the appropriate options (directory to put the crawl in, number

of threads that will fetch in parallel, link depth from the root page that should be

crawled, maximum number of pages that will be retrieved at each level up to the

depth).

but due to the lack of complete documentation (no manual is available), advanced

configuration, set-up of external parser for .doc and .pdf documents and information

about how to activate re-crawling has been retrieved with difficulty.

4.2 MnoGoSearch

MnoGoSearch [11] is an SQL based search engine. The Unix source files are distributed

free under the terms of the GNU General Public License while the Windows version is

distributed as shareware under license (30- day trial available).

It was first released in 1998 under the name UDMSearch; in October 2000 it was

acquired by Lavtech.Com Corp. and the name was changed to mnoGoSearch.

MnoGoSearch is written in C and may use several SQL databases such as MySQL,

PostgreSQL, Oracle, etc. In our experiment we utilized mnoGoSearch version 3.2.38 with

MySQL 4.1.

MnoGoSearch has a built-in parser for html and plain text documents; external parsers or

converters are available for other mime types (for example mnoGosearch can be

configured to call an external program such as catdoc to convert a MSWord document to

plain text, which can be indexed by the built-in parser).

Documentation is available online and support can be obtained by subscribing to

“mailing lists”, browsing the “web boards”, looking through the “bug track system” or

purchasing a mnoGoSearch support.

The installation steps are described in the documentation but require some knowledge of

Unix/Linux program development. The source code must be downloaded, unpacked,

configured, compiled and installed. A database userID with create privilege is needed to

generate the new MySQL database and create a new MySQL userID with privileges on

the new database. System administrator is required to install the search interface cgi-bin

program.

MnoGoSearch use configuration files in plain text format. The distribution provides

samples of these files, that must be re-named and customized.

4.3 DataparkSearch

DataparkSearch Engine [7] is an SQL-based search engine available only for Unix-like

platforms, released under the GNU General Public License.

DataparkSearch is derived from mnoGoSearch so the core of the search engine is

common to both the SW. However, they present major differences in storage modes and

ranking functions, which reflect on the precision of performance and results. Specifically,

DataparkSearch updated mnoGoSearch v. 3.2.15. As detailed in the following, our

experiments revealed differences both in the number of objects indexed and in the query

results. DataparkSearch is designed to organize search within a website, group of

websites, intranet or local system.

Support is provided by documentation (a manual is available on-line), via mailing list and

forum. Furthermore, a System for the registration of bugs is available.

Installation requirements are very similar to mnoGoSearch as well as basic configuration

(see Tables 1 and 2).

4.4 ht//Dig

Ht//Dig [9] is a search engine written in C++ developed at San Diego State University as

a tool for searching information published on the web servers of the campus network. It

was designed to satisfy search needs for a single company, or campus, but it can be easily

utilized for indexing several web servers. ht//Dig relies on the Berkeley database and is

not suitable for indexing the entire web since their structures and algorithms are not

optimized for storing, indexing and retrieving the massive load of data available today on

the Internet. It is available only for Unix-like platforms, and is released under the GNU

General Public License.

It is possible to tailor the search results to user needs by means of providing HTML

templates and the searches can be performed using various configurable algorithms. A

system administrator is required to set up the web server for search.

The documentation includes online manuals, FAQ and considerable other information.

However, development activity is low: the last stable version 3.1.6 was released in

February 2002 and the last beta v. 3.2.0b6 in June 2004.

5 The Comparison

In our experiment we indexed the domain .cnr.it. The Italian National Research Council

is a governmental organization dedicated to the promotion, coordination and regulation of

scientific research and technological progress in Italy. It is composed of 14 Departments,

108 Research Institutes and 18 Research Areas located throughout Italy. Each Institute

has its own website and sometimes projects or important research activity also have their

own websites.

Specifically we set up the configuration files of the selected search engines to:

1. Start crawling from 139 urls (those of the CNR institutes, research areas and

administration departments);

2. Limit the crawler depth to 10 levels from the start urls (seeds);

3. Limit the object’s size to 2 megabytes;

4. Use external parser or converter for Msword, and pdf document formats;

5. Limit the crawler to the domain .cnr.it.

The experiments were carried out on an Intel Xeon 3.4 Ghz machine, with 2GB RAM,

and OS Debian Linux v. 3.1, Apache 2.0.54, Tomcat 4.1.31, Java 1.4.2 and MySQL

4.1.11. All the system software were in the default configuration.

5.1 Search engine features

Table 1 summarizes basic search engine features (Development activity, License,

Installation, Configuration, Multiplatform, Scalability, Documentation and Support) as

publicly documented while Table 2 describes our experience in installing, configuring

and running the SW, highlighting any problem encountered in our specific experiments.

Despite some initial problems we encountered on Nutch (for retrieving information about

how enabling plug-ins and activating re-crawling) and with ht//Dig (since its last beta

version does not run in our experiment) we were finally able to activate the search

engines with homogeneous configurations (as far as possible), in order to render the

evaluation significant. MnoGoSearch did not reveal any problems, while DataparkSearch

sometimes halted the crawling process without any error message but once re-started, it

continued crawling from the last level processed.

 Nutch mnoGoSearch DataparkSearch ht//Dig

Development
activity

High. Last version 0.7.2
released on 31 March
2006

High. Last version 3.2.38
released on 15 March
2006

High. Last version 4.38
released on 13 March
2006

Low. Last stable version
3.1.6 (1 February 2002).
Last beta 3.2.0b6 (16 June
2004)

Licence Apache license For Unix/Linux GNU
General Public License.
For Windows ad hoc
license (shareware)

GNU General Public
License

GNU General Public
License

Installation Requires:
Java 1.4.x
Apache Tomcat 4.x
System administrator can
be required for Tomcat

On Unix/Linux must be
compiled from source.
Require: C compiler, a
SQL database (MySQL,
PostgreSQL, Oracle, ect).
System administrator can
be required to create the
database and set up the
web server for search

Must be compiled from
source.
Require: C compiler, a
SQL database (MySQL,
PostgreSQL, Oracle, ect)
System administrator can
be required to create the
database and set up the
web server for search

Must be compiled from
source.
Require C++ compiler
System administrator can
be required to set up the
web server for search

Configuration Plain text and xml files to
be customized manually.
The distribution includes
samples

Plain text files. The
distribution includes
templates that must be
renamed and customized
manually

Plain text files. The
distribution includes
templates that must be
renamed and customized
manually

Plain text file. The
distribution provides a
template that must be
customized manually

Multiplatform Should run on all systems
where Java runs

Unix/Linux as source
code.
Windows executable

Only Unix/Linux Only Unix/Linux

Scalability From Intranet to the
entire Web

Millions of pages Up to a million pages Up to a million pages

Documentation Online documentation
include: FAQ, tutorial
and wiki. The tutorial
describes only the first
installation and run.
It is not easy to learn how
to update (re-crawl).
Complete manual lacking

Online documentation
include: complete manual,
FAQ and mailing list

Online documentation
include: complete
manual, wiki and mailing
list

Online manuals, FAQ and
a lot of other information

Support Mailing lists mailing lists, web boards,
bug track system or
purchase a mnoGoSearch
support

Mailing lists and online
bug system

Mailing lists and online
bug reporting system

Table 1 – SW features: Development activity, Licence, Installation, Configuration, Multi-platform,

Scalability, Documentation and Support

 Nutch mnoGoSearch DataparkSearch ht//Dig

Installation Easy. Requires only
download and unpack of
distribution file. For the
web interface it is
necessary to copy the
Nutch web application in
the Tomcat web
application directory

Described in the manual.
Easy for those with
experience in development
of Unix application.
System administrator
required to create the
database and set up the
web server for search

Described in the manual.
Easy for those with
experience in
development of Unix
application.
System administrator
required to create the
database and set up the
web server for search

Described in the manual.
Version 3.2.0b6 is easy
for those with experience
in development of Unix
application. Version 3.1.6
required hacking the
configure file. System
administrator required to
set up the web server for
search

Configuring the
crawler

Manual edit of
configuration files. The
tutorial, available on the
website, covers only
basic configuration for
crawling an intranet.
Difficult to find
documentation about
setup plug-ins for mime
types different from
text/html and text/plain

Manual edit of
configuration files. The
distribution includes
configuration template
files that can be easily re-
named and customized
manually

Manual edit of
configuration files. The
distribution include
configuration template
files that can be easily re-
named and customized
manually

Manual edit of
configuration files. The
distribution includes
configuration sample files
that can be easily
customized manually

Configuring the
search interface
(web server)

System administrator is
required for Tomcat.
More effort is required
for integration in other
web server (Apache)

System administrator is
required for web server
setup

System administrator is
required for web server
setup

System administrator is
required for web server
setup

Running the
crawler

Easy for Intranet
crawling. Not easy to find
documentation for re-
crawling

Easy. Can be started
multi- tread or multi-
process

Easy. Can be started
multi- tread or multi-
process

Easy

Problems Lack of a complete
manual

None in our experiments Sometimes the crawler
(indexer) stops without
apparent cause. Using
storage mode cache (the
fast one) we have to
change the system limit
of open files to 10000.
Anyway it can be re-
started without losing the
previous work

Version 3.2.0b6 does not
run in our experiment (url
not found error); thus we
use the previous stable
version

Table 2 – Our experience in Installation, Configuring the crawler, Configuring the web, Running the

crawler, Problems

5.2 Performance

Concerning the overall performance indexing a set of pages, we crawled (and re-crawled)

the websites belonging to the domain .cnr.it by using the selected search engines in

configurations that were as homogeneous as possible as shown in Table 3. ht//Dig, in

fact, does not support multi-thread and does not store copies of retrieved pages as well as

DataparkSearch.

 Download
file size
limit

File size
limit of
stored copy

threads

Max hops
(crawling
levels)

Mime
types

URL
filter

Starting URLs

Nutch 2100 KB Apparently
no limit

10 10 text, html,
msword,
pdf

.cnr.it homepages of CNR
Institutes, sections,
areas, and
administration
departments

mnoGoSearch 2100 KB 64 Kbytes 10 10 text, html,
msword,
pdf

.cnr.it homepages of CNR
Institutes, sections,
areas, and
administration
departments

DataparkSearch 2100 KB No local copy
(only
excerpt)

10 10 text, html,
msword,
pdf

.cnr.it homepages of CNR
Institutes, sections,
areas, and
administration
departments

ht//Dig 2100 KB No local copy
(only
excerpt)

1 10 text, html,
msword,
pdf

.cnr.it homepages of CNR
Institutes, sections,
areas, and
administration
departments

Table 3 – Configuration parameters

The total number of indexed files varies from 122,983 (ht//Dig) to 80,098

(DataparkSearch). As shown in Table 4, the search engines, although having fairly

similar configurations (stop rules, filter definitions, 10 crawling levels, etc.) presented

some differences in the number of:

(a) retrieved objects

(b) errors due to object not found, connection refused, host down (note that an host

down may hide thousands of pages)

(c) files with mime-types discarded.

CNR is connected to the Italian Academic and Research Network "GARR-B" which has

a backbone at 10Gbps, and links to 2,5 or 1 Gbps and 622, 155, or 34 Mbps. We carried

out the experiments from the Pisa CNR Research Area, connected at the GARR network

with three 2.5 Gbps links and one 155 Mbps link.

It is obvious that the results are calculated only on a specific case and thus they are not

statistically significant, but since experiments are executed in the same system under

similar conditions they may provide a useful indication for system administrators.

Specifically the network traffic and condition (status DNSs, routers, hosts, etc.), which

may vary depending on the time, is a condition beyond the control of the system

administrator, which may greatly impact results. However, with regular re-crawling, the

effects of temporary errors tend to disappear.

 Time to crawl
the .cnr.it
domain

Number of
correctly indexed
objects

Errors: not found,
connection refused,
can’t resolve

Content type
different from
text/html,
text/plain, pdf
or msword

Nutch 8h 32m 112,918 8,513 3,848
mnoGoSearch 5h 20m 95,163 9,594 3,289
DataparkSearch 14h 22m 80,098 9,486 1,753
ht//Dig 18h 55m 122,983 14,327 3,687

Table 4 – Crawling times, indexed objects and errors

To optimize performance, DataparkSearch was set-up with cache storage mode [7] and

mnoGoSearch with blob storage mode [11].

5.3 Effectiveness of user queries

We verified the efficiency of the search modules by formulating the following ten

queries:

1. nanotechnologies

2. cardiology

3. grid computing

4. accessibility usability

5. research activities

6. “research activities” (Quotation marks force the proximity of the two words)

7. IIT Director

8. CNR president

9. Istituto di Tecnologie Didattiche

10. Bologna Research Area Library

 Nutch mnoGoSearch DataparkSearch ht//Dig
nanotechnologies 201 161 99 447
cardiology 91 109 98 179
grid computing 398 287 345 1,040
accessibility usability 71 64 44 120
research activities 3,652 917 434 12,680
“research activities” 1,418 181 198 12,680
IIT Director 21 25 18 37
CNR president 818 512 43 496
Istituto di Tecnologie
didattiche

314 63 6 586

Bologna Research Area
Library

69 109 29 234

Table 5 – Number of results per query

Note that ht//Dig generated more results since it was configured for stemming, i.e. the

search for research activities generates results for the strings: '(research or researched or

researching or researcher or researches or researchers) and (activities or activity)'.

As response time we measured the time from query submission to the result return. To do

so we used the wget command to submit queries and the unix time command to get the

elapsed time. As shown in Table 7 all the response times are acceptable since they reach

at maximum about 1 sec.

Query keywords Nutch mnoGoSearch DataparkSearch ht//Dig
nanotechnologies 0.166 0.056 0.051 0,047
cardiology 0.040 0.067 0.047 0.030
grid computing 0.041 0.059 0.049 0.192
accessibility usability 0.074 0.059 0.029 0.033
research activities 0.056 0.065 0.041 1.066
“research activities” 0.035 0.065 0.070 1.057
IIT Director 0.081 0.066 0.059 0.026
CNR president 0.054 0.099 0.077 0.226
Istituto di Tecnologie didattiche 0.153 0.148 0.189 0.202
Bologna Research Area Library 0.157 0.075 0.091 0.247

Table 6 – Times of queries in sec.

These times were measured for a single query sent to an idle server. However we were

interested in understanding how quality of service for the user may vary when the search

engine is serving an increasing number of parallel queries

5.4 Quality of service

Increasing the rate of parallel requests, the server may reach saturation so it becomes

unable to send a response in a reasonable time and the client may go in time-out.

Figure 2 and 3 show the medium and maximum response times when the number of

queries increases. On the x axis are represented the number of queries sent to the server

and on the y axis the response time in seconds. We started the test by sending a set of 10

contemporary queries and then increasing the request rate sending 20, 30, 40, 50,… 200

requests. Since the queries are generated on a single system they are not truly parallel;

however, after the initial period the server reaches the steady state and receives a number

of simultaneous requests to serve. However, in order to verify whether a single client

might be a performance bottleneck we generated the same load, sending simultaneous

requests to the server from two clients, obtaining analogous results.

In our experiment, Nutch and ht//Dig were able to sustain a load of less than 50 queries

(with a reasonable response time) while DataparkSearch and mnoGoSearch gave a better

performance, reaching the same response time at 180 requests. It is obvious that the

saturation point depends mainly on the specific implementation but also from the

resources of the machine where the SW runs and the tuning parameters of server software

(Apache, Tomcat, Mysql, etc.), so with a more powerful system or a carefully tuned

server the saturation point may translate ahead, or on a less powerful machine it may be

reached sooner. Nutch, among the software considered, is the only one designed for a

distributed architecture as well, and in such an environment the results could be different.

Last, note that ht//Dig generated more results since it was configured for stemming (the

number of results is larger) thus performance can be affected.

Medium response time

0
2
4
6
8

10
12
14
16

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Nutch mnoGoSearch DataparkSearch HtDig

Fig. 2 - Medium response time

Maximum response time

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Nutch mnoGoSearch DataparkSearch HtDig

Fig. 3 – Maximum response time

5.5 Precision of query results

Concerning the precision of the query responses, since all results were ordered by ranking

and the verification process was manual, we only analyzed the first page of results (10

items). Furthermore, we highlighted if the first result was pertinent or at least suitable.

Let us define the precision of results as the number of pertinent (or suitable) results

divided by the number of items analyzed. Thus by definition the precision is ≤ 1. For

example, we analyzed 10 results; if all elements are pertinent we have precision 10/10 =1,

if only 5 results are pertinent we obtain precision 5/10 = 0.5.

Queries Nutch mnoGoSearch DataparkSearch ht//Dig

nanotechnologies 1st pertinent
p =1

1st pertinent
p =1

1st pertinent
p =1

1st pertinent
p =1

cardiology 1st pertinent
p =1

1st pertinent
p =1

1st pertinent
p =1

1st pertinent
p =1

grid computing 1st pertinent
p =1

1st suitable
p =1

1st pertinent
p =1

1st pertinent
p =1

accessibility
usability

1st pertinent
p =1

1st pertinent
p =1

1st pertinent
p =1

1st pertinent
p =1

research activities 1st pertinent
p =1

1st suitable
p =1

1st suitable
p =1

1st pertinent
p =1

“research activities” 1st pertinent
p =1

1st suitable
p =1

1st pertinent
p =1

1st pertinent
p =1

IIT Director 1st pertinent
p =0.5

1st pertinent
p =0.8

1st suitable
p =0.5

1st pertinent
p =1

CNR president 1st suitable
p =0.5

1st pertinent
p =0.9

--
p =0

1st suitable
p =0.4

Istituto di Tecnologi
didattiche

1st pertinent
p =1

1st pertinent
p =0.6

1st suitable
p =0.5

1st pertinent
p =0.9

Bologna Research
Area Library

1st pertinent
p =0.5

1st pertinent
p =1

1st pertinent
p =0.4

1st pertinent
p =0.7

Table 7 – Results precision of first ten results ordered by ranking

In the query set analyzed, DataparkSearch does not reach an acceptable degree of

precision while mnoGosearch performed slightly better than ht//Dig and Nutch (as

showed in Table 7).

5.6 Elements of accessibility and usability

We analyzed the UI accessibility (for the simple search and the result page) by using the

W3C Markup Validation Service [14], a free service that checks HTML and XHTML

pages for conformance to W3C Recommendations [15] and other standards.

As shown in Table 8 only the UI of ht//Dig for simple search passed the validation;

however the errors in the HTML code may be easily corrected. This kind of freedom is

very important since most commercial search engines do not permit modification of their

interfaces.

 Simple search Result page
Nutch Failed validation, 12 errors Failed validation, 8 errors
mnoGoSearch Failed validation, 2 errors Failed validation, 44 errors
DataparkSearch Failed validation, 7 errors Failed validation, 54 errors
ht//Dig Tentatively passed validation

(HTML 4.0 Transitional)
Failed validation

Table 8 -User interfaces: result of the W3C validation service;

Concerning usability, mnoGoSearch and DataparkSearch offer very basic UIs for a

simple search. ht//Dig has a little more complex interface that includes three pop-up

windows at the top for selecting search options (Match, Format, and Sort by). Nutch UI

includes irrelevant images that should be removed.

Regarding UIs of the result pages, mnoGoSearch and DataparkSearch have numbered the

results. This feature is useful for orienting blind individuals. Nutch UI has only a push

button for proceeding to the next page of results and this feature is annoying for a person

who wishes to go directly to another page of results. The other search engines provide

direct links to the first 10 pages of results. Last, ht//Dig shows only the first 100 results.

A more detailed discussion should be addressed regarding accessibility for disabled

persons. For instance, all analyzed search engine result pages are unstructured, navigation

via Tab keys is strictly sequential, access keys are lacking, etc.; thus the interfaces should

be improved in order to simplify interaction for the blind as described in [10].

6 Conclusion

In this paper we have analyzed four open source search engines available for Unix-like

environments. Specifically we installed, configured and tested the four SW on a Linux

system, and indexed the websites of the Italian National Research Council (domain

.cnr.it).

Results showed that all the analyzed SW may be used for indexing Intranet websites with

a limited number of objects (up to a million) but they present differences both in

performance and query precision.

Concerning performance, in our experiment we observed that mnoGoSearch and

DataparkSearch achieved the best results, being able to sustain a load of 180 parallel

queries, while Nutch and ht//Dig reached saturation very early (50 parallel requests).

However ht//Dig generated more results per query (since it was configured for

stemming), thus performance may be affected.

Regarding precision in query results, mnoGoSearch obtained a high degree of precision

in the results of the selected queries, followed by ht//Dig and Nutch. In our experiment

the degree of precision of DataparkSearch was not acceptable. However DataparkSearch

permits modifying some parameters for tuning and customizing the calculation of the

ranking function, so further tests should be carried out.

Concerning crawling time, mnoGoSearch was the fastest, followed by Nutch. Anyway, it

indexed far fewer files than Nutch so the set of all results per query was less.

Regarding robustness of crawling and indexing pages, mnoGoSearch and Nutch did not

present problems, as did DataparkSearch and ht//Dig. Furthermore, ht//Dig appeared to

be abandoned: the last (beta) version was released in 2004 whereas the last version of the

other search engines selected was published in 2006.

Lastly, each of the search engines analyzed provides web UIs for user queries which may

be easily modified and customized by the system administrator, to be integrated in the

home page of the organization’s web site.

In conclusion, at this time mnoGoSearch appears to be the most suitable tool for indexing

an Intranet. This product is sufficiently consolidated since it was developed starting in

1998. However in the near future, Nutch, which is quite new (first released as Apache

Lucene sub-project only last year) should also be the most promising SW for indexing

local Intranet, if performance optimization is achieved. Actually Nutch was designed to

run in a distributed architecture. We only analyzed the SW on a single machine; further

studies should be carried out to evaluate its performance and behavior in a distributed

environment.

7 References

[1] C. Aggarwal, F. Al-Garawi, P. Yu, “Intelligent crawling on the World Wide Web with arbitrary

predicates”, WWW 2001, pp. 96-105.

[2] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, S. Raghavan, “Searching the Web”, ACM

Transactions on Internet Technology, Vol. 1, Num. 1, August 2001, pp. 2-43.

[3] S. Chakrabarti, K. Punera, M. Subramanyam, “Accelerated focused crawling through online relevance

feedback”, WWW 2002, pp. 148-159.

[4] J. Cho, H. Garcia-Molina, “The Evolution of the Web and Implications for an Incremental Crawler”,

VLDB 2000, pp 200-209.

[5] J. Cho, H. Garcia-Molina, L. Page, “Efficient Crawling Through URL Ordering”, WWW7/Computer

Networks 30 (1-7): 161-172 (1998).

[6] C. Chung, C. Clarke, “Topic-oriented collaborative crawling”, CIKM 2002, pp. 34-42.

[7] DataPark Search Engine http://www.dataparksearch.org/

[8] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, M. Gori, “Focused Crawling Using Context

Graphs”, VLDB 2000, pp. 527-534.

[9] ht//Dig Search Engine. http://www.htdig.org/

[10] Leporini, B., Andronico P., Buzzi M. (2004). Designing Search Engine User Interfaces for the visually

impaired. ACM International Cross-Disciplinary Workshop on Web Accessibility 2004, NY, USA, pp. 57-

66.

[11] MnoGoSearch Engine. http://www.mnogosearch.org/

[12] M. Najork, J. Wiener, “Breadth-first crawling yields high-quality pages”, WWW 2001, pp. 114-118.

[13] Nutch Search Engine. http://lucene.apache.org/nutch/

[14] W3C QA Markup Validation Service v0.7.2. http://validator.w3.org/

[15] W3C. Web Accessibility Initiative http://www.w3.org/WAI/

http://www.dataparksearch.org/
http://www.htdig.org/
http://www.mnogosearch.org/
http://lucene.apache.org/nutch/
http://validator.w3.org/

