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Abstract. Efficient and effective analysis of large datasets from microarray 
gene expression data is one of the keys to time-critical personalized medicine. 
The issue we address here is the scalability of the data processing software for 
clustering gene expression data into groups with homogeneous expression 
profile. In this paper we propose FPF-SB, a novel clustering algorithm based on 
a combination of the Furthest-Point-First (FPF) heuristic for solving the k-
center problem and a stability-based method for determining the number of 
clusters k. Our algorithm improves the state of the art: it is scalable to large 
datasets without sacrificing output quality.  

Introduction 

Personalized Digital Human Modeling is one of the new challenges at the frontier of 
medical practice, medical research and computer science. The relatively recent family 
of microarray based technologies holds the promise of personalized diagnosis based 
on tracing the metabolism of cells of individual patients. However, several obstacles 
still lay on the path to exploiting the full potential of these technologies [23]. One 
issue is, for instance, the scalability of the data processing software for clustering 
gene expression data into groups with homogeneous expression profile. In this paper 
we tackle this problem by proposing FPF-SB, a clustering algorithm based on a 
combination of the Furthest-Point-First (FPF) heuristic for the k-center problem [11] 
and a stability-based method for determining the number of clusters k [22]. The 
experiments we report here demonstrate that our novel algorithm is scalable to large 
datasets without sacrificing output quality. 
 
The FPF heuristic is known to attain a result that is within a factor two of the 
optimum clustering according to the k-center criterion. This theoretical guarantee, 
coupled with a small computational complexity and with a careful implementation, 
makes this algorithm an ideal candidate for attaining scalability without sacrificing 



quality. The FPF algorithm constructs the clusters incrementally (that is the k-
clustering is obtained by a refinement of the (k-1)-clustering) but it needs to know the 
number k of clusters in advance. For this reason, we apply a stability-based technique 
for cluster validation by prediction strength [22] that guides the selection of the “best” 
number of clusters in which the dataset should be partitioned. Our experiments point 
out that FPF-SB does maintain the original FPF scalability properties.  
We apply the FPF algorithm directly to the input real data, overcoming the limitations 
of a similar approach [7] in which only a restricted set of artificially generated data 
points is used (meant to uniformly cover the parametric space of possible 
experimental outcomes). This approach has been shown not to be scalable.  
The scalability of our algorithm can find applications in a number of different 
settings, in terms of both dataset dimension and number of experiments that need to 
be performed (hence, running time). Concerning the former, the technology of Tiling 
Arrays is capable of producing a complete profile of the transcript index of an 
individual genome (up to 50,000 transcript sequences and 60 tissues and cell lines can 
be mapped in a single chip experiment [17]). Such a technology, adapted towards the 
needs of personalized medicine, promises to be able to screen a vast range of different 
pathological conditions. FPF might be used in this context, where the great amount of 
data to be managed is one of the main issues for the existing techniques.  
In some applications there is the need to repeat the experiments many times and to 
have a prompt result. For example, data taken at different times from the same patient 
in a healthy state and in a pathological state could be clustered to highlight differences 
in the metabolism due to the pathology, filtering out the background effects of healthy 
individual metabolic profile.  
 
State of the art. The papers by Eisen et al. [6], Alon et al. [1] and Wen et al. [24] 
have shown the rich potential of microarray gene expression data clustering as an 
exploratory tool for finding relevant biological relationships amidst large gene 
expression datasets. Since the late nineties a growing body of knowledge has been 
built up on several algorithmic aspects of the clustering task (see, e.g., a general 
survey in [15]). Among the most popular approaches we can broadly find those 
“distance based” such as k-means [21], Self Organized Maps (SOM) [20], 
Hierarchical Agglomerative Clustering (HAC) [6], and several variants thereof. A 
second broad class of algorithms is graph-based (CLICK [18], CAST [3] and CLIFF 
[25] all use weighted min cuts (with variants among them)). Other large families are 
those models-based [16], fuzzy-logic-based [2], or based on principal component 
analysis (PCA) [12]. Among the main issues for clustering there are the problem of 
guessing the optimal number of clusters [22] and that of cluster validation [10][26]. In 
biological data analysis a further issue is to provide metrics supported by ad hoc 
external biological knowledge [14].  
There is no clear winner in the area of clustering algorithms for gene expression data 
as any method has strong and weak points: high quality usually results into high 
computational costs, while high efficiency usually results into poor quality, in both 
cases affecting the scalability. In our approach we show that the two goals (quality 
and scalability) are not in contrast: high scalability need not entail lower quality. 
 



Microarray for digital human modeling and personalized medicine. Research on 
Digital Human Modeling and Simulation1 is expected to produce models of human 
biology at all relevant physical scales such as, among the others, proteins, cells, and 
tissues. Among the computational tools that will be required by digital human models, 
microarray algorithms will play an important role in order to, e.g., analyze diseased 
versus normal tissues, profiling tumors and studying gene regulation during 
development [13]. Also, in case of disease modeling, data extraction and processing 
will have to be repeated many times (say, before and after a therapy or drug 
exposure), which is of course another reason for the availability of very efficient 
algorithms. In medical practice, the adoption of patients' molecular information can 
give a boost to personalized medicine, and the methods that will make this possible 
include gene variations and expression level analysis [27]. While cost effectiveness 
and the availability of the data processing facilities needed by personalized medicine 
may be a decade ahead from now [28], the coming years will likely see an increasing 
number of medical protocols based on patients genotype and gene expression level 
information. 

Preliminaries  

Clustering. Let N={e1,..,en} a set of n vectors of m components, a partition 
Ñ={N1,…,Nk} of N is a clustering, where each Nt, for t {1,2,…,k}, is called a cluster. 
Given a clustering Ñ, two elements ei,ej N are mates according to Ñ if they belong to 
a cluster Nt Ñ. Thus, mates are “similar” in a sense that may vary depending on the 
application. 
 

Distance function. Given two vectors ei,ej N (with components es,t, s {i,j} and 1  
t  m), we denote with di,j their distance and we say that they are similar (resp. 
different) if di,j is small (resp. large). We use a distance measure based on the Pearson 
Coefficient, one of the most used in the context of gene expression microarray data 
clustering, defined as follows:  
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where μi and μj are the means of ei and ej, respectively.  
 
The Pearson Coefficient is a measure of similarity but it is not a distance. To come up 
with a measure suitable for the metric space method, we define i,j= 1 - P(ei,ej), 0  i,j 

 2. Even if i,j is widely accepted as a valid dissimilarity measure in gene expression 
analysis, it still violates the triangle inequality constraint. However, since di,j, the 

                                                             
1 http://www.fas.org/dh/publications/white_paper.doc. 



square root of i,j, is proportional to the Euclidean distance between ei and ej [5], it can 
be used with algorithms that need a metric space. 
 

The k-center problem. We approach the problem of clustering microarray data as the 
one of finding a solution to the k-center problem, defined as follows:  
 
Given a set of points N on a metric space M, a distance function d(p1,p2) 0 satisfying 
the triangle inequality, and an integer k, a k-center set is a subset C N such that 
|C|=k. The k-center problem is to find a k-center set that minimizes the maximum 
distance of each point p N to its nearest center in C; i.e., minimizes the quantity 

maxp N minc C d(p,c). 
 
The problem is known to be NP-hard,  approximable within a factor 2 by FPF [11], 
and not approximable within a factor 2-  for any  >0 [8]. 
 
In our case, N is represented as a n m matrix, where n is the number of gene probes in 
the dataset and m is the number of conditions tested on each probe, the metric space 
M is Rm where di,j is the distance measure defined above. We apply a variation of the 
FPF algorithm computing k by way of the Stability-Based method in [22]. 

Main Algorithm 

In this section, we describe FPF-SB by first presenting a variant of the FPF algorithm 
and then our implementation of the stability-based method for determining k. 
 

Clustering algorithm. FPF is based on a greedy approach: it increasingly computes 
the set of centers C1 … Ck, where Ck is the solution to the problem. The first set C1 
contains only one randomly chosen point c1 N. Each iteration i, with 1 i  k-1, has 
the set of centers Ci at its disposal and works as follows: 

 
1. for each point p N \ Ci compute its closest center cp, i.e., cp satisfies: 

),(min),( cpdcpd
iCcp = ; (2) 

 
2. determine the point p N \Ci that is farthest form its closest center cp and let it be 
ci+1; i.e., ci+1 satisfies: 

;),(max)( \1 1 pCNpci cpdccd
ii+ =

+
 (3) 

 
3. Ci+1 = Ci  {ci+1}. 
 
At each iteration a new center is added to the set of centers that is being computed. 
The algorithm stops after k-1 iterations giving as result the set Ck. Observe that, at 
step i+1, there is no need to recalculate the distance of p to all centers, but just the 
distance d(p,ci), the distance to the unique center ci added during the previous 



iteration. Then, just compare this distance with d(p,cp), the minimum distance to 
centers of Ci. According to the result of this comparison, cp can be updated or not. 
Hence, if for each p the value d(p,cp) is stored, then each iteration can be executed in 
O(n) space and a k-center set can be computed in O(kn) distance computations. 
To actually compute a clustering associated to such a k-center set, N is simply 
partitioned into k subsets N1,…,Nk, each corresponding to a center in Ck and such that 

}.|{ jpj ccNpN ==  (4) 

In other words, the cluster Nj is composed of all points for which cj is the closest 
center, for each j=1,…,k. Here we use the FPF algorithm with the technique 
improvement described in [22]. Taking advantage of the triangle inequality, the 
modified algorithm avoids considering points that cannot change their closest center. 
To this aim, at each iteration i we mantain, for each center cj Ci, the set Nj of points 
for which cj is the closest center, defined as in (4), for j=1,…,i (i.e., we build the 
clusters associated to intermediate solutions). We store the points in Nj in order of 
decreasing distance from cj. When we scan the set of points to find the closest center, 
we follow the order given by the Nj’s: given p Nj, with 1  j <i, if d(p,ci)  0.5 d(cj,ci) 
then we stop scanning Nj, as there cannot be any other point closer to ci than to cj. The 
distances between centers must be stored, requiring additional O(k2) space. As a 
consequence, storage consumption is linear in n only provided that k  n1/2. 
 

Stability-based technique. The FPF algorithm must be fed with the number k of 
clusters into which N has to be partitioned. To appropriately estimate this number, 
here we use an efficient variant of the prediction strenght method developed by 
Tibshirani et al. [22]. First we briefly describe the original prediction strength method, 
and then give details of our implementation. To obtain the estimate, the method 
proceeds as follows. Given the set N of n elements, randomly choose a sample Nr of 
cardinality . Then, for increasing values of t (t=1,2,...) repeat the following steps: (i) 
using the clustering algorithm, cluster both Nds=N \ Nr and Nr into t clusters, obtaining 
the partitions Ct(ds) and Ct(r), respectively; (ii) measure how well the t-clustering of 
Nr predicts co-memberships of mates in Nds (i.e., count how many pairs of elements 
that are mates in Ct(ds) are also mates according to the centers of Ct(r)). 
Formally, the measure computed in step (ii) is obtained as follows. Given t, 
clusterings Ct(ds) and Ct(r), and elements ei and ej belonging to Nds, let D[i,j]=1 if ei 
and ej are mates according to both Ct(ds) and Ct(r), otherwise D[i,j]=0. Let 
Ct(ds)={Ct,1(ds),..., Ct,t(ds)}, then the prediction strength PS(t) of Ct(ds) is defined as: 
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where the number of pairs in )(, dsCt l
 is given by its binomial coefficient over 2. In 

other words, PS(t) is the minimum fraction of pairs, among all clusters in Ct(ds), that 
are mates according to both clusterings, hence PS(t) is a worst case measure. The 
above outlined procedure terminates at the largest value of t such that PS(t) is above a 
given threshold, setting k equal to such t. 



In our implementation, we first run the FPF algorithm on Nr up to t= , storing all the 
computed centers c1,…,c . Such preprocessing costs O(  |Nr|) = O(  2). We then run k-
center with input set Nds. Suppose at step t we have computed the clusters Ct,1(ds), ..., 
Ct,t(ds) and suppose, for each dsNe , we keep the index i(e,t) of its closest center 
among c1,…,ct. Such index can be updated in constant time by comparing d(e,ci(e,t-1)) 
with d(e,ct), i.e., the distance of e from the “current” center and that to the new center 
ct. Now, for each )(, dsCt l

, t,...,1=l , we can easily count in time O(| )(, dsCt l
|) 

the number of elements that are closest to the same center cj, j=1,…, t, and finally 
compute the summations in formula (5) in time O(|Nds|). After the last iteration, we 
obtain the clustering of N by simply associating the points c1,…,c  to their closest 
centers in Ck(ds). The overall cost of our modified procedure is O(  2 + k(n- ) + k ) 
= O(kn) for  = O(n1/2). Note that, differently from the original technique, we stop this 
procedure at the first value of t such that PS(t) < PS(t-1) and set k=t-1. We 
empirically demonstrate that our choice of termination condition gives good results. 

Experiments 

Evaluation. We performed experiments on yeast datasets and other species. We 
compare our algorithm with some of the most used and valid clustering algorithms for 
microarray gene expression data, namely CLICK, k-means, SOM, and the basic FPF 
algorithm. CLICK, k-means and SOM algorithms have been run under EXPANDER2 
(EXpression Analyzer and DisplayER) [18], a java-based tool for analysis of gene 
expression data, that is capable of clustering and visualizing the correspondent results. 
Among the clustering algorithms used for comparison, CLICK is the only one that 
does not need to know the number of clusters in advance, while both k-means and the 
basic FPF need k à priori, and SOM requires the grid dimension (not always 
corresponding to the required number of clusters3). Since FPF-SB and CLICK usually 
suggest a different k, we run k-means, SOM and FPF with both values of k. 
In order to assess the validity of our method we evaluate the clusterings by means of 
the z-score computed by ClusterJudge tool [10], also available on line4. This tool 
scores yeast (Saccharomyces cerevisiae) genes clusterings by evaluating the mutual 
information between a gene’s membership in a cluster, and the attributes it possesses, 
as annotated by the Saccharomyces Genome Database (SGD)5 and the Gene Ontology 
Consortium6. In particular, ClusterJudge first determines a set of gene attributes 
among those provided by Gene Ontology, that are independent and significant; then it 
computes the mutual information of the proposed clustering and that of a reference 
random clustering. Finally it returns the z-score (MIreal - MIrandom)/ random , where 
MIrandom is the mean of the mutual information score for the random clustering used, 

                                                             
2 http://www.cs.tau.ac.il/~rshamir/expander. 
3 Note, for example, that in Table 2 the grid for Spellman et al. dataset was set to 9x3 resulting in only 18 

clusters instead of 27. 
4 http://llama.med.harvard.edu/cgi/ClusterJudge/cluster_judge.pl. 
5 http://www.yeastgenome.org. 
6 http://www.geneontology.org. 



and random is the standard deviation. The higher the z-score the better the clustering. 
Given the randomized nature of the test, different runs produce slightly different 
numerical values, however the ranking of the method is stable and consistent across 
different applications of the evaluation tool. For this reason, for each dataset used we 
repeated three times the evaluation of the output of all the different algorithms, here 
reporting the average z-score. Even if the ClusterJudge methodology is available only 
for yeast genes, it is independent of both the algorithm and the metric used to produce 
the clustering, and thus is in effect validating both choices.  
 
We tested our algorithm on some of the most used yeast datasets in literature [4,6,19] 
and our results show that, on the average, we achieve a better score than that obtained 
by the other clustering algorithms, while using far fewer resources, especially time. 
 
Datasets. The algorithm was tested on three well studied yeast datasets. The first is 
the yeast cell cycle dataset described by Cho et al. in [4]. In their work the authors 
monitored the expression levels of 6,218 Saccharomyces cerevisiae putative gene 
transcripts (ORFs). Probes were collected at 17 time points taken at 10 min intervals 
(160 minutes), covering nearly two full cell cycles7. The second dataset, described by 
Spellman et al. in [19], is a comprehensive catalog of 6178 yeast genes whose 
transcript levels vary periodically within the cell cycle (for a total of 82 conditions) 8. 
The third dataset, described by Eisen et al. [6], contains 2467 probes under 79 
conditions, and consists of an aggregation of data from experiments on the budding 
yeast Saccharomyces cerevisiae (including time courses of the mitotic cell division 
cycle, sporulation, and the diauxic shift)9. 
 

Experimental results. The results reported here have been obtained on an 1.4 GHz 
AMD ATHLON XP workstation with 1.5 GB RAM running Linux kernel 2.6.11.4.  
Table 1 summarizes the properties (number of probes and number of conditions) of 
the three datasets, while experimental results are reported in Tables 2 and 3. For each 
experiment we report the number of clusters k, the computation time in seconds and 
the value of the z-score.  
Note that CLICK is the only algorithm, among those that we have tested, that 
sometimes produces singletons in its clustering (136 in Cho et al. dataset, 17 in 
Spellman et al. dataset and none in Eisen et al. dataset) and put them into a single 
cluster labeled cluster zero. Hence, to correctly evaluate CLICK results we created a 
new cluster for each of these singletons. 
 

                                                             
7 The complete dataset, now containing 6601 Saccharomyces cerevisiae putative gene transcripts 

(ORFs), is available  at http://genomics.stanford.edu/yeast_cell_cycle/cellcycle.html. 
8 The complete dataset and description are available at http://cellcycle-www.stanford.edu. 
9 The data is fully downloadable from http://genome-www.stanford.edu/clustering. 



Dataset Cho et al. Spellman et al. Eisen et al. 

Probes 6601 6178 2467 
Conditions 17 82 79 

Table 1. Summary of dataset properties. 

Dataset Cho et al. Spellman et al. Eisen et al. 

Algorithm k Time z-score k Time z-score k Time z-score 

FPF-SB 8 12 77 16 94 61.6 8 15 62.9 
CLICK 30 660 52.3 27 4200 52.9 8 240 38 
k-means 30 720 66.3 27 1140 52.5 8 120 34.2 
SOM 29 300 54.9 18 240 49.1 8 60 59 
FPF 30 22 46.8 27 80 47.9 8 7 62.9 

Table 2. Experimental results comparing FPF-SB with algorithms that need k as input 
parameter (using CLICK’s guess of k). 

Dataset Cho et al. Spellman et al. Eisen et al. 

Algorithm k Time z-score k Time z-score k Time z-score 

FPF-SB 8 12 77 16 94 61.6 8 15 62.9 
k-means 8 420 92.5 16 900 63 8 120 34.2 
SOM 8 180 75.9 16 420 52.1 8 60 59 
FPF 8 5 77 16 43 61.6 8 7 62.9 

Table 3. Experimental results comparing FPF-SB with algorithms that need k as input 
parameter (using FPF-SB’s guess of k). 

 
Concerning Table 2, we observe that FPF-SB achieves a better z-score on all three 
datasets using far less computation time. The first two rows of the table show the 
results obtained with FPF-SB and CLICK, the two algorithms that do not need k as 
input. It can be seen that the two algorithms make a very different choice of k, except 
for the Eisen et al. dataset. The results show that FPF-SB outperforms CLICK, both in 
terms of actual computational time (in seconds)10 and z-score, even when the guess of 
k is the same. FPF-SB outperforms all the other algorithms when fed with CLICK’s 
guess of k. 
The results reported in Table 3 show that, with the number of clusters suggested by 
FPF-SB, the quality of the clusterings computed by k-means and SOM, as judged by 
the z-score, is always better than in the previous case. This suggests that our 
implementation of the stability-based method produces a good guess of k in a 
computationally efficient way. Note also that we can evaluate the time spent by FPF-
SB for the computation of k by comparing its running time with that of the basic FPF 
algorithm when computing the same number of clusters. Empirically, we evaluated 
this time as 55% of the total time on the average. However, the overall computation 
time is still much less than that of all the other algorithms. 

                                                             
10 As expected, since CLICK asymptotically runs in O(n3). 



The results also show the scalability of FPF and FPF-SB in terms of actual 
performance. Note that the size of a dataset is correctly measured as the product n·m 
(the dimension of the point space where the clusterings are computed). The actual 
running time is thus proportional, to first order, to the product m·n·k. It can be easily 
seen that the increase in running time of the Spellman et al. and Eisen et. al. datasets 
over the Cho et al. (the smallest one) can be quite accurately predicted using the ratio 
of the corresponding asymptotic costs, plus the time needed to compute k (the 
stability-based part). For instance, FPF-SB prediction for Spellman et al. dataset is 96 
seconds11. 
Moreover, our experiments give us a way to estimate the multiplicative constant 
hidden by the big-O notation and, thus, make a reliable prediction of the running time 
of FPF and FPF-SB in actual seconds, for any given dataset. This constant can be 
obtained by taking the maximum ratio, among all datasets, between the measured 
time (expressed in secs) and m·n·k. We obtained the constants 13.4 for FPF-SB and 
6.5 for FPF. Hence, given any dataset consisting of n genes and m conditions, we can 
estimate (an upper bound to) the time needed by FPF-SB (resp. FPF) to compute a k-
clustering in 13.4 x 10-6x m·n·k seconds (resp. 6.5 10-6x m·n·k seconds) 11. 

Conclusions 

Efficient and effective analysis of large datasets from microarray gene expression data 
is one of the keys to time-critical personalized medicine. The issue we address here is 
the scalability of the data processing software for clustering gene expression data into 
groups with homogeneous expression profile. In this paper we propose FPF-SB, a 
new clustering algorithm that efficiently applies to microarray data analysis, being 
scalable to large datasets without sacrificing output quality. 
In order to validate both the choice of the algorithm and the metric used to produce 
the clusterings we used ClusterJudge, an independent tool that only scores yeast 
(Saccharomyces cerevisiae) genes clusterings. Therefore, one of our future tasks will 
be to find methodologies for the evaluation of clusterings of gene datasets from other 
species (human, mouse, rat, etc.). 
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