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A Fast and Aurate Heuristi for the Single Individual SNPHaplotyping Problem with Many Gaps, High Reading ErrorRate and Low CoverageLoredana M. Genovese, Filippo Gerai and Maro PellegriniIstituto di Informatia e Telematia del CNR, Via G. Moruzzi 1, 56100-Pisa (Italy).loredana.genovese�gmail.om, filippo.gerai�iit.nr.it, maro.pellegrini�iit.nr.itAbstrat. Single nuleotide polymorphism (SNP) is the most frequent form of DNA vari-ation. The set of SNPs present in a hromosome (alled the haplotype) is of interest in awide area of appliations in moleular biology and biomediine, inluding diagnosti andmedial therapy. In this paper we propose a new heuristi method for the problem of hap-lotype reonstrution for (portions of ) a pair of homologous human hromosomes from asingle individual (SIH). The problem is well known in literature and exat algorithms havebeen proposed for the ase when no (or few) gaps are allowed in the input fragments. Thesealgorithms, though exat and of polynomial omplexity, are slow in pratie. Therefore fastheuristis have been proposed. In this paper we desribe a new heuristi method that is ableto takle the ase of many gapped fragments and retains its e�etiveness even when theinput fragments have high rate of reading errors (up to 20%) and low overage (as low as3). We test our method on real data from the HapMap Projet.1 IntrodutionThe single nuleotide polymorphism or SNP (pronouned �snip�) is the most ommon variation inthe human DNA. In fat a reent study of 2001, has shown that similarity among human DNAsequenes is over 99% and only a few bases (just 1.42M bases overall) are responsible for thevariations in human phenotypes [13℄.A SNP is a variation of a single nuleotide in a �xed point of the DNA sequene and in a boundedrange of possible values. The sequene of SNPs in a spei� hromosome (or a large portionof a hromosome) is alled generially Haplotype. Sine most ells in humans are diploid, eahhromosome (exept the X and Y hromosomes in males) omes in two almost idential opies,one inherited from the mother and one from the father. Thus the haplotype of a hromosome isfully desribed by two sequenes of SNPs in the two opies of the hromosome.The Single Individual SNP Haplotype reonstrution problem may be viewed as the problem ofrebuild the two strings forming the haplotype from a set of fragments obtained by shotgun sequen-ing of the hromosomes' DNA strands. The most important aspet of the problem is that with theurrent tehnology it is di�ult and/or impratial to keep trae of the assoiation of the fragmentswith their hromosome, thus this assoiation has to be reonstruted omputationally and it is apreliminary neessary phase to the atual fragment assembly to reonstrut the haplotype.Unlike the lassial DNA fragment assembly problem, in whih the position and orientation of frag-ments is unknown, in the parental haplotype reonstrution problem the position of eah fragmentis �xed and known. Further aspets that must be onsidered that render the problem di�ult (andomputationally interesting) are the following:1) Reading errors. The omplex nature of the biologial/hemial/optial proesses involved inshotgun sequening implies that a non negligible error probability is attahed to eah singleSNP reading.



2) Coverage of fragments. Algorithms using fragments to reonstrut a string rely heavily onthe fragment's overlaps and on the redundany of information provided by several fragmentsovering the same SNP position, to perform in silio orretion of reading errors. Thus a ritialparameter of the input data is the minimum (or average) overage of SNPs by fragments. Thisnumber is also related to the throughput of the sequening equipment.3) Gaps in fragments. Ideally eah fragment overs onseutive SNP positions in the order ofthe SNPs of a hromosome. However in pratie we may have many fragments with gaps dueto several phenomena.3.1 Ambiguous Readings. In the reading of fragments it may happen that is impossible todetet the value of a SNP with a su�ient on�dene. It is better to model this ambiguousase with a small gap rather than introdue spurious values.3.2 Matepair sequenes. Some shotgun sequening methodologies produe pairs of frag-ments that are from the same hromosome, do not overlap and whose distane is knownup to a ertain degree of preision. Matepair sequenes are used to ope with the preseneof repeat subsequenes that ompliate the reonstrution e�orts This extra informationattahed to the produed fragments an be onsidered logially equivalent to a single frag-ment with one gap.Our ontribution In this paper we propose a heuristi algorithm for the SIH problem thatis fast, handles well gaps, and is able to deal with high reading error rates and low fragmentoverage. We demonstrate these properties via experiments on real human data from the HapMapprojet [6℄. Advaned Personalized Mediine is one of the goals of urrent researh trends and inthis area new geneti diagnosti methods are ritial. It is thus important to support diagnostitehnologies that an be used as muh as possible in the �eld (loser to the patient, and far fromthe traditional high teh labs). Away from the ontrolled environment of a lab it is likely that theurrent portable tehnology for sequening will produe less reliable data. Moreover, if a real timeand high throughput response is needed to are for the needs of many individuals in a short timespan, one might not be able to guarantee a high overage of the fragments and low reading errorrates.. Our algorithm is a step forward in the diretion of extrating e�iently useful informationeven from low quality data.1.1 Formalization of the problemFrom the omputational point of view the problem of the haplotype reonstrution was de�ned in[8, 14℄. It an be easily desribed as follow: let S = s1, s2, . . . , sn a set of SNPs (spei� positionsin a DNA string) and F = f1, f2, . . . , fm a set of DNA fragments. Eah SNP an be overed bya ertain number of fragments and an take only two values (The values of the haplotype in thatposition). The natural way of representing fragments is to store them in an m x n matrix M alledSNP matrix. The element Mi,j ontains the value of the SNP sj in the fragment fi or the speialharater − if that SNP is unspei�ed in the fragment. If the element Mi,j = − we say that itis a hole or, equivalently, that the fragment fi ontains an hole at position j. Let fi ∈ F and
1 ≤ a ≤ b ≤ n suh that ∀k ∈ [a, b], Mi,k 6= − and ∀k ∈ [1, m]/[a, b], Mi,k = −, the fragment fi isalled gapless. We say that M is gapless if all its fragments are gapless.We say that two fragments fi and fj have a ollision if the following ondition is true: ∃k ∈ [1, n]suh that Mi,k 6= Mj,k ∧Mi,k 6= −∧Mj,k 6= −. Given the matrix M the on�it graph G = (V, E)is de�ned as follow: for eah row of M there is a vertex labelled with the orrespondent fragment
fi. If fi has no ollision with fj , insert an edge between Vi and Vj . An example of on�it graph isin Figure 1. When the matrix M does not ontains errors G is bipartite. In this ase the haplotypereonstrution is easy to solve. The rows of M an be split in two disjoint sets aording to the



f1 f4

f5

f6f3

f2

H2 = GATCGGATH1 = ATTACCTT
f2 = -TTGC-A-
f4 = GA-CG-AT
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Fig. 1. On top left a ouple of haplotypes, on bottom left the matrix M with the fragments (ontainingerrors and gaps) and on the right the orresponding on�it graph.bipartition of G. By onstrution of graph G the i-th harater of all elements of a set induedfrom bipartition have the same value or is a gap. Thus for eah set we build an haplotype simplyhoosing as value for SNP si the value of the i-th harater (not equal to −). If M is not errorfree, the graph G may be not bipartite. The single individual haplotype reonstrution problem,an be redued to one of the following problems [2℄:� Minimum Fragment Removal (MFR): determine a minimal number of fragments (rows ofthe matrix M) whose removal from the input set indues a bipartite graph.� Minimum SNP Removal (MSR): determine a minimal number of SNPs (olumns of thematrix M) whose removal from the input set indues a bipartite graph.� Longest Haplotype Reonstrution (LHR): determine set of fragments (rows of theMatrix M) whose removal from the input set indues a bipartite graph and the length of theindued haplotype is maximized.� Minimum Error Corretion (MEC): determine a minimal set of entries of the matrix Mwhose orretion to a di�erent value indues a bipartite graph.Our approah. We give a heuristi method for the minimum error orretion problem MEC. Itis a heuristi method sine we have no guarantee of attaining the minimum, nor any guarantee onthe approximation to the minimum that we an ahieve. Note however than MEC is the hardestof the problems listed above. Our method is organized in phases (four phases) and it is greedy innature (making hoies that are optimal in a loal sense). In eah phase we perform three tasks: 1)detet likely positions of errors 2) alloate fragments to the two partially built haplotype strings,and 3) build partial haplotype string deiding via majority on ambiguous SNPs. The di�ereneamong the three phases is twofold: on one hand we an use the knowledge built up in the previousphases, and on the other hand in passing from one phase to the next we relax the onditions forthe deisions to be taken regarding tasks 1), 2) and 3).1.2 Organization of the paperIn Setion 2 we review the state of the art for the SIH problem. In Setion 3 we desribe ouralgorithm. In Setion 4 we desribe the experiments and their results.



2 State of the artSNP's and Haplotypes have beome reently a fous of researh (See the HapMap projet [6℄) be-ause of their potential for assoiating observable phenotypes (e.g. resiliene to diseases, reativityto drugs) to individual geneti pro�les [16℄. The tehnology for deteting the position of SNP's inthe human genome has been developed [13, 10℄ and ontinues to be re�ned to produe more au-rate SNP maps. Two large and ative areas of researh involving haplotypes are the determinationof the geneti variability in a population (see surveys in [2℄,[7℄) starting from genotyping data, andthe assoiation of geneti variability with phenotypes.In this paper we disuss the problem of determining the haplotype of a single individual basedon fragments from shotgun sequening of his/her DNA whih is known as the Single IndividualSNP Haplotyping Problem (SIH)1. This problem has been takled both from a theoretial point ofview [8, 14, 3, 1, 4℄ and from a more pratial one [15, 12, 9℄. Weighted versions of the problem arestudied in [17℄.The SIH problem is learly not formally an input/output problem as de�ned usually in omputersiene2, therefore preise omplexity statements an be made only for the derived problems suhas: MEC, LHR, MFR and MSR. MEC even with gapless fragments is NP-hard [3℄, and it is APX-hard for fragments with at most 1 gap [4℄. There is an O(log n)-approximate polynomial timealgorithm [12℄. LHR with gapless fragments an be solved exatly in polynomial time [3℄; it isNP-hard and APX-hard for fragments with at most 1 gap [4℄. MFR is NP-hard for fragments withat most 1 gap, and MSR is NP-hard for fragments with at most 2 gaps [8℄. If we have a bound
k on the total number of gaps, for k onstant, MFR and MSR are polynomially solvable [14℄. Ingeneral MFR and MSR are APX-hard.The polynomial time algorithms proposed for the above problems are at least ubi (in the gaplessase) therefore a faster heuristi method has been proposed in [12℄ that is based on an inrementalonstrution. We improve upon [12℄ by giving a method that is as fast in pratie and more auratewhen the reading error rate inreases and/or the fragment overage dereases. Interestingly, evenif exat polynomial algorithms are known for MFR on gapless input in [14℄, simulation data showthat the heuristi method of [12℄ ahieves better auray in solving the original SIH problem. Forthis reason we take [12℄ as baseline algorithm even when dealing with fragments with gaps.Wang et al. [15℄ desribe a Geneti Algorithm for this problem that in some reported experimentsgives good performane for short haplotypes (about 100 SNPs). It is unlear how this methodwould performs on longer haplotypes and with lower overage rate. As future work we plan aomparison of our method with the one in [15℄.3 Our HeuristiWe start by building the SNP matrix M with m rows and n olumns where eah row is a fragment.The element in position Mi,j is the j-th SNP in fragment fi or −, if it is a gap. Our heuristi buildsthe haplotype onsensus with a pre-proessing (phase zero) and three main phases (1-3):Ph-0 We perform a statistial analysis of potential on�its among pairs of olumns in M ;Ph-1 in phase Ph-1 we selet a �rst group of olumns with the highest possible on�dene to beerror-free and we build an initial solution from them;1 Also alled the Haplotype Assembly Problem.2 SIH informally relates the output of the algorithm to an unknown DNA string whose "approximation"is the purpose of the algorithm. The formal input to the algorithm is a set of fragments that are relatedto the unknown string via physial error-prone proesses. Thus there is no mathematially formalizedrelationship between the input and the riterion for evaluating the output of the algorithm.



Ph-2 in the seond phase we selet those olumns that we are able to disambiguate using the solutionobtained in the previous phase;Ph-3 in the last phase we try to omplete the solution using weaker onditions for assigning olumnsto the �nal solution.In this setion we will give priority to an intuitive understanding of the several phases and steps,skipping on some more formal details to be expanded in the full paper.3.1 Phase zero: PreproessingFor eah olumn of M we build a group Gi ontaining a ertain number of sets. Eah set is initializedwith the indexes of all the rows whih have in position i a harater di�erent from −. So Gi anontain from 0 up to 4 sets (the empty set and one for eah base: a, c, g, t).Observation 1 If Gi has 0 sets, olumn i is empty. In this ase there is no data to reonstrutthe haplotype for olumn i. If Gi has just 1 set, all the harater in olumn i are the same. If Gihas more then 2 sets, olumn i ontains errors.If Gi ontains three of four sets, we an suppose that the one or two smaller sets are due toerrors. Unfortunately we an only detet the presene of errors, but we have not enough informationto orret them. In this ase we remove from the matrix M the information about the possiblyunorret values and update Gi aordingly. Note that in ases where Gi ontains a large set andtwo smaller ones of the same size, we an not remove those sets beause we ould likely be removingorret data.If we suppose a onstant overage of eah lous by both the haplotypes, in the ase Gi has twosets and one of them is muh bigger than the other, we an suppose that lous to be homozygoteand the data in the smaller set is a reading error. Clearly in this ase we an predit the rightontent of the matrix M in these positions.After �ltering out the above easy ases we are left to deal with groups of two sets of nonnegligible size. Given two groups Gi = (Si,1, Si,2) and Gj = (Sj,1, Sj,2) having exatly 2 sets andsuh that i 6= j, we all on�it matrix the squared matrix Ei,j of order 2:
Ei,j =

(

Si,1 ∩ Sj,1 Si,1 ∩ Sj,2

Si,2 ∩ Sj,1 Si,2 ∩ Sj,2

)When only one diagonal of E has its elements non-zero and it is of full rank, there are nodetetable errors. Otherwise we have a on�it between olumn i and j. The deteted errors ouldbe in one or both olumns.Observation 2 If Ei,j has only one element equal to ∅ we an suppose that the orrespondingdiagonal element ontains the reading errors and its ardinality is the number of suh errors. Forexample if in Ei,j only the element Si,2 ∩ Sj,1 is 0 then there are |Si,1 ∩ Sj,2| errors in at least oneof the olumns i and j in the rows of indexes in Si,1 ∩ Sj,2. The assumption that the elements in
Si,1 ∩ Sj,2 are the errors in Ei,j beomes more plausible if its ardinality is signi�antly smallerthan the others.Observation 3 In presene of errors in Ei,j we an not establish if the error is in olumn i or jor both. We an loate the error if one of the following onditions hold:� If ∀k 6= j Emin(i,k),max(i,k) does not ontain errors, than errors must to be in the olumn j



� If ∃k suh that Ei,j has an error, Emin(j,k),max(j,k) has an error and Emin(i,k),max(i,k) has noerrors, than we dedue that the error is in the j-th olumn.In the ase of the example in observation 2, if also one of the onditions of observation 3 holds,we dedue that the errors are in the rows Si,1 ∩ Sj,2 in the olumn j. So we an orret the errorby removing from M the inorret values and updating Sj,2 via removing Si,1 ∩ Sj,2.If none of the onditions in observation 3 hold we an not disriminate between olumns i and jso we an remove the errors at the ost of a loss of information by assigning: Sj,2 = Sj,2 \Si,1∩Sj,2and Si,1 = Si,1 \ Si,1 ∩ Sj,2.We have observed empirially that the error orreting riteria of Phase 0 are e�etive when theinput has a very low reading error rate. As the error rate inreases the bulk of the disambiguationis on the next phases 1-3.3.2 First phaseThe main goal of the �rst phase is the seletion of a set of pair of groups with the highest possibleprobability of ontaining no inonsistenies and extrat from them two sets of fragments that willbe the ore of the �rst (partial) solution.Candidate list seletion The optimal set of andidate pairs to selet is that in whih eah grouphas no on�its with all the other groups. Unfortunately, if the perentage of errors in M is highthis set an be empty. Moreover a orret group an be involved in a on�it with another groupdue to reading errors in the latter. This ause the removal of all the pairs in whih that groupappears. Higher overage tends to inrease this bad e�et on the size of the andidate set. In fatthe probability that a group with no errors has a on�it with a group with errors is proportionalto the overage.If the optimal andidate set of groups pairs is empty, we must to �nd the set with the higheston�dene to be a good andidate set. First of all we ompute the mean number of on�its amongpairs of groups. As andidate set we pik all the pairs for whih all the following onditions hold:a) both its groups have two sets,b) the number of on�its in whih its groups are involved is less than the mean,) the matrix E of its groups is diagonal and of full rankExtration of initial ore From the andidate list obtained in the previous paragraph, we buildnow two disjoint set of rows of M that will be used as ore of the �nal solution.We build a series of hains of pair in this way: the �rst pair of a new hain is the �rst unusedpair of the andidate list. Then we add a pair to the hain if at least one group of the pair isalready in the hain until no more pairs an be added to the hain. The proedure stops when allthe pairs are in a hain. At the end we selet the longest hain.The onstrution of the series of hains is straightforward. First of all, we sort the andidatepairs in lexiographi order and plae them in a vetor L = [C0, . . . , C|L|]. We build also a vetor
V in whih we store all the indexes j ∈ [1, |L|] of L suh that the the �rst elements of onseutivepairs are di�erent, Cj [0] 6= Cj−1[0]. We set as �rst element of V the value 0 and as last element of
V the value |L|.We build also a vetor v of size m ontaining several status �ags: position i is set to �to visit�if the group i-th does not appear in any hain, set to �visited� if it appears in the hain we arebuilding and set to �omplete� if all the pair ontaining the index i were already used. A new hainis built as follows:



1. Find an index i suh that the pair Ci is not already used and set it as the �rst element of thehain.2. All the elements of L not yet used in the range [V [i], V [i + 1] − 1] are added to the hain, ifthey exist. The vetor v is updated aordingly.3. If there is an index j suh that v[Cj [0]] is set to �visited� got step (2.) using i suh that V [i] = j.Otherwise searh a pair where v[Cj [1]] is set to �visited� and goto step (2.) using i suh that
V [i] = j.1. if v has no element set to �visited� the hain is omplete.It is easy to note that the arbitrary hoie of the �rst element do not in�uene the pairs thatwill fall in the hain, but only their order that is not important in our heuristi.Chains have the important propriety:Property 1 If we onsider groups in the same order in whih they appear in a hain, one of thefollowing onditions holds:1. Si,1 ∩ Si+1,1 6= ∅ ∧ Si,2 ∩ Si+1,2 6= ∅ ∧ Si,1 ∩ Si+1,2 = ∅ ∧ Si,2 ∩ Si+1,1 = ∅2. Si,1 ∩ Si+1,2 6= ∅ ∧ Si,2 ∩ Si+1,1 6= ∅ ∧ Si,1 ∩ Si+1,1 = ∅ ∧ Si,2 ∩ Si+1,2 = ∅We are now ready to build a sort of �super-group� G = (S1,S2) in whih S1 will be used tobuild the �rst haplotype onsensus, and S2 for the seond haplotype. If G0 is the �rst element ofthe longest hain, S1 is initialized with the elements of S0,1 and S2 is initialized with the elementsof S0,2.Property 1 suggests a simple way to assign the sets of eah onsidered group to a set Si. In fatif, for example, the elements in set Si,1 are assigned to S1 and Si,1 ∩Si+1,1 6= ∅ holds, the elementsin set Si+1,1 an also be assigned to S1.All the groups whose sets are assigned to G are marked as �used� and will not be onsidered inthe next phases.If the onsidered olumns of M , (remember that Gi refers to olumn i of M), have no errorswe have that S1 ∩ S2 = ∅. Otherwise3 there are errors in the rows of M whose indexes are in theintersetion and in at least one of the olumns onsidered. If there is an element j in both the Si'sand we do not remove it from one of these sets, the fragment fj would give its ontribute to boththe haplotypes, whih is inorret. In order to hoose to whih haplotype to assign the fragment

fj, we simply ount how many times j appear in the sets assigned to S1 and S2 and assign j tothe set with the highest number of assignments.3.3 Seond phaseIf we sueed in partitioning all the rows of M we are ready to build the �nal haplotype onsensususing the method in sub-setion 3.5. Experiments with high error rates show that at the end of theprevious phase we are able to assign a large part of the rows of M , but not all of them beause wehad not enough information to unambiguously assign some fragment to a set Si.In this phase we already have a partial solution that ould give us more information and wean use weaker onditions to assign elements of the groups to G. The �rst information we distillfrom the partial solution is an estimation of the mean ratio between the ardinality of sets of thefragments belonging to the two haplotype strings. We ompute this ratio only for those groupsthat were involved in the partial solution beause they have higher probability to be orret withrespet to the others. We an now safely assume that if the ratio between the ardinality of thesets of an unused group is far enough from the mean, the lous represented from that group is3 As before, high reading error rates redue the e�ay of previous �ltering steps.



homozygote and the elements in the smaller set of that group are all errors and an be orretedupdating M aordingly.Considering G as a group, we an build a vetor of on�it matries E = E1, . . . , En, suh that
Ei is the on�it matrix relative to G and Gi. Note that these matries are more informative thanthose of previous phase beause they are representative of a greater part of the input and not onlyof two olumns. In ase of on�its in Ei we an with high probability say that the errors are in
Gi and not in G. This beames more evident in the ase of a matrix Ei that have just one elementequal to 0 and the value in the diagonal with the 0 is muh smaller than the values in the otherdiagonal. A matrix of this form was disarded in the previous phase, beause the error positionwas not preditable with enough on�dene. Instead, here the information provided by G gives usthe ability to dedue the exat position of the errors in the i-th olumn of M and orret them.The main goal on this phase is to add as many possible elements to Gi trying to orret someerrors in M for improving the haplotype onsensus. The proedure ats as follow:1. Let α = ∅, β = ∅2. For all those groups Gi with i ∈ [1, n] not yet marked, with 2 sets and suh that Ei is diagonaland of full rank: if Si,1 ∩ S1 6= ∅ and Si,1 ∩ S2 = ∅ add the elements of Si,1 to α and Si,2 to β.Otherwise, due to the fat Ei is diagonal, must hold that Si,2 ∩ S1 6= ∅ and Si,2 ∩ S2 = ∅. Inthis ase simply add the elements of Si,1 to β and Si,2 to α. Gi beomes marked.3. If an element j appear in both α and β, we simply ount how many times j is present in thesets assigned to α and β and assign j to the set with the highest number of assignments.4. Assign all the elements of α to S1 and the elements of β to S2.5. Reompute the on�it matrix for the groups that are still not marked and restart from step(1.) until no more groups an be marked.6. Corret errors that an be deteted in M and restart from step (1.) until no more groups anbe marked.3.4 Third phaseAt the end of phase two, if there is some other group that is not marked yet, there is no furtherweaker ondition that we an use to add those groups to G safely. The goal in the third phase is notto add elements to G one by one, but to build another super-group G from the remaining unmarkedgroups and merge it with G, if possible. This strategy relies on the fat that an aggregation ofolumns is more robust to errors with respet to a single olumn. The hoie to reuse the previousphases seems the most reasonable, but we must use weaker onstraints.We an not use the tehniques of the �rst phase to initialize G beause at the end it ould notinterset G (or the intersetion ould be too small). The problem of the intersetion between G andthe G is important. In fat if all the sets of both have null intersetion there is not a way to join
G and G. Instead, if the intersetion is small, beause of errors, by mistake we an join eah set of
G with the wrong one of G.The safest way to initialize G, is seleting the unmarked group with the highest possible inter-setion with G. Analyzing the matries Ei from the previous phase for the unmarked groups, theone with the highest sum of the elements in a diagonal is the best andidate to initialize G.After the initialization of G, we an use the previous phase to add other elements. Here twoonstraints are relaxed: it is no more neessary that the on�it matries are of full rank; detetederrors in M are not orreted, but simply the wrong data is removed from M .Let a and b suh that |Sa ∩ S1| > |Sa ∩ S2| and |Sb ∩ S1| < |Sb ∩ S2| and a 6= b, we assign to
S1 all the elements of Sa not in S2 and assign to S2 all the elements of Sb not in S1.



3.5 Haplotype onsensusAt the end of the previous phase, some fragments ould still be assignable to both haplotypestrings. They will be assigned a posteriori after the proess of onsensus onstrution to the mostsimilar haplotype. We split M in two sub-matries: M1 ontaining all the rows with indexes in S1and M2 ontaining the rows with indexes in S2 Naturally it is impossible to establish whih of theparent's haplotype is dedued from S1 and whih from S2.We all pivot of M at position i the element Pvi
M (di�erent from a hole) that appears morefrequently. If the olumn i of M has no elements, its pivot will be a hole.The onsensus haplotype indued from S1 is a sequene in whih the i-th element is Pvi

M1 andthe onsensus haplotype indued from S2 is obtained in the same way from M2.4 ExperimentsIn our experiment we ompared the following algorithms:A) Our heuristi, as desribed in setion 3;B) Our implementation of Fast Hare following the desription in [12℄;C) The trivial reonstrution algorithm by majority voting that has the true fragment assignmentas part if its input (Baseline).We implemented the algorithms in Python. Tests have been run on a Intel(R) Pentium(R) D CPU3.20GHz with 4GB of RAM and with operating System Linux. All algorithms ompleted their taskin less than 10 seonds for the data of largest size onsidered (strings of 1000 SNP's).4.1 Input data and fragment generationIn previous papers [8, 12℄ experiments were based on SNP matries obtained from the fragmentationof arti�ially generated haplotype data. The most ommon approah to the generation of the SNPmatries was suggested in [11℄. The reent researh projet HapMap [13℄ has produed a map of thehuman haplotypes that is now publily available [5℄. Thus we were able to generate the fragmentmatries from real data instead of using syntheti input haplotypes. Using real data, the Hammingdistane between the two haplotypes is not a free parameter of our hoie in the generation of M .For the extration of the SNP matrix from the haplotypes we were inspired by the approah sug-gested in [11℄ taking in aount standard parameters in urrent tehnology for shotgun sequening.The free parameters we set in our experiments are: (a) the length l of the haplotype setion to bereonstruted, (b) the overage c of eah haplotype and () the error rate e. Current tehnologyfor shotgun sequening is able to manage fragments of the order of one hundreds of bases. In Liet al.[9℄ the average distane in bp of two SNP's in the DNA sequene is quanti�ed as 300 bp onaverage, and eah fragment is of 650 bp's. Eah fragment overs a number of SNP's in the rangeroughly [3, 7], thus we hose the length of eah fragment in this range.Our generation shema is as follow for eah experiment: we selet the haplotype strings froma random hromosome among the human hromosomes numbered in [1..22℄ (thus exluding thegender hromosomes), we get a ontiguous substring of length l from the �rst haplotype startingfrom a random loation and its homologous substring from the seond haplotype. As in [11℄ eahsuh string is repliated c times. Next, errors are inserted uniformly at random in the haplotypesubstrings with probability e. At this point the strings are split in fragments by seleting iterativelythe next ut point at an integer distane from the previous one hosen uniformly at random in therange [3, 7], starting from the �rst base. Note that the number of fragments is not determined a



priori but it depends on the length l, on the overage c and on the distribution of the fragmentlengths.Gaps ame from two soures. Input SNP gaps are those present in the original HapMap data.Mate pairs are obtained as follows: random pairs of disjoint fragments belonging to the samehaplotype string are mated in a single gapped fragment (at the end of this phase globally 50% ofthe fragments are 1-gapped).4.2 Outome of the experimentsWe investigate the performane of our algorithm in di�erent settings varying the input parameters.We hoose three di�erent length for the haplotyes: 100 bases as in [12℄, 500 bases like in [11℄ and
1000 bases. To test the e�etiveness of the method we vary the overage of eah haplotype from 3to 10 onsidering that in most reported experiments the overage is about 5 [11℄. To test algorithmsrobustness we used di�erent levels of errors: from 0% to 20%. Eah test was repeated 100 timesand in table 1 is reported the mean number of errors in the reonstruted haplotypes with respetto the strings before error implants.Errors % Algorithm Coverage. l = 100 Coverage. l = 500 Coverage. l = 10003 5 8 10 3 5 8 10 3 5 8 100% Baseline 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Our 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Fast Hare 0.00 0.00 0.00 0.04 0.72 0.40 0.04 0.27 8.94 1.79 2.24 0.045% Baseline 0.97 0.10 0.00 0.00 4.81 0.47 0.01 0.00 11.60 0.99 0.04 0.01Our 0.97 0.15 0.07 0.02 5.60 0.57 0.01 0.04 14.95 1.59 0.13 0.03Fast Hare 1.26 0.18 0.19 0.03 11.79 0.95 0.03 0.03 21.24 2.97 0.26 0.5510% Baseline 4.05 0.75 0.03 0.01 21.14 3.74 0.24 0.03 43.38 7.85 0.60 0.13Our 5.39 0.88 0.44 0.03 26.45 4.28 0.33 0.07 60.87 9.95 2.59 0.29Fast Hare 9.32 1.54 0.41 0.02 45.52 5.91 0.43 0.07 123.92 15.17 1.43 0.4615% Baseline 9.78 2.26 0.34 0.08 47.71 12.57 1.49 0.38 95.40 25.42 2.66 0.77Our 12.21 2.83 0.43 0.25 66.55 25.70 2.21 0.96 134.74 35.61 4.59 2.46Fast Hare 18.41 3.40 1.55 0.83 102.60 25.34 2.65 0.88 268.09 58.81 4.63 1.5920% Baseline 15.13 5.71 1.19 0.35 80.97 27.90 5.04 1.68 159.74 56.90 10.86 3.53Our 20.44 7.77 2.16 0.93 120.53 52.38 10.17 4.74 220.52 94.26 23.12 13.54Fast Hare 32.63 11.51 3.40 1.68 224.46 64.14 12.32 4.16 469.54 150.18 22.21 11.05Table 1. Quality measurements on the ompared algorithms. Mean over 100 runs of the number oferrors in the reonstruted haplotypes for error rate in [0.0,0.2℄, overage in [3,10℄, and haplotypes length
l = 100, 500, 1000.Analysis of the experiments. In absene if errors (but with gaps) our method was able toreonstrut the haplotypes exatly in all ases. The reonstrution error rate inreases for all threemethods as the reading error rate inreases and it dereases with the inrease of overage. In orderto give a syntheti view of the data in Table 1 we use the Merit Funtion f :

f =











0 if Our = FH
1 − Our−B

FH−B
if Our < FH

−
(

1 − FH−B
Our−B

) if Our > FH

(1)where Our is the error ount of our algorithm, FH is the error ount for Fast Hare and B isthe error ount for the baseline algorithm. Note that when Our and FH tie f has value zero.



When Our is better than FH , f assumes a value in the range [0, 1], the higher the absolute value,the better is our algorithm w.r.t. Fast Hare. Symmetrially when Fast Hare is better than Ouralgorithm f assumes values in the range [−1, 0] the higher the absolute value, the better is FastHare w.r.t. our algorithm. This indiator is almost always in our favor (see Figure 2). With highoverage (8,10) and high error, Fast Hare and our method substantially tie on very long stringssine the di�erene in absolute reonstrution error is about one/two SNPs over 1000.
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