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Evaluation of the Accuracy of a Bounded Physical
Interference Model for Multi-Hop Wireless
Networks

Douglas M. Blough,

Abstract—In this paper, we consider the accuracy of bounded
physical interference models for use in multi-hop wireless net-
works. In these models, physical interference is accounted for but
only for a subset of nodes around each receiver, and interference
from farther transmitters is ignored. These models are very
often used, both in theoretical analyses and simulations, with
an “interference range” that defines the distance from a receiver
beyond which interference is ignored. In this paper, we prove that,
if the interference range is chosen as any unbounded increasing
function of the number of nodes in the network, the total
ignored interference converges to zero as the number of nodes
approaches infinity. This result is proven under both constant
node density and uniform random node distribution assumptions.
We also prove that, if the interference range is considered to
be a constant, e.g. a multiple of the transmission range, the
total ignored interference does not converge to zero and, in fact,
can be several orders of magnitude greater than the noise for
networks of moderate size. The theoretical results are enhanced
by simulations, which evaluate the bounded models relative to the
true physical interference model and demonstrate, empirically,
that slowly increasing interference ranges are necessary and
sufficient to achieve good accuracy. Our results also demonstrate
that a scheduling algorithm that considers a fixed interference
range will produce schedules with a very high percentage of
failing transmissions, which would have substantial negative
impacts on performance and fairness in such networks.

I. INTRODUCTION

Multi-hop wireless networks are now used in many different
contexts, from mobile ad hoc networks to wireless sensor
networks to wireless mesh networks. In such networks, spatial
reuse of a wireless communication channel, in which two
links that are sufficiently far apart are used concurrently in the
same channel, is possible. Maximizing spatial reuse is highly
desirable in order to try to maximize achievable throughput
in the network. This is particularly the case, for example, in
wireless mesh networks where typical applications demand
high performance and throughput optimization is critical. Un-
fortunately, the amount of spatial reuse that can be exploited is
strictly limited by interference that is generated when multiple
simultaneous transmissions occur in the same channel.

Wireless interference has been traditionally modeled in
terms of the communication graph, where nodes within 1
or 2 hops from a communicating link interfere with its
transmission, and thus must be silent. Later, a somewhat more
realistic model of interference, called the protocol model [7],
has been considered. Here, a geometric notion of interference
range is defined — the receiver of a link must not be
within the interference range of another concurrent transmitter.
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These models suffer from the limitations that () interference
is considered in a ‘binary’ sense (interference either totally
eliminates the ability to communicate or is non-existent), and
(i) interference is considered only between pairs of nodes or
links. In reality, wireless interference is much more complex.
Whether a communication is successful depends on whether
signal power exceeds the sum of the interference powers plus
noise by a threshold that is a property of the physical layer ra-
dio design. This SINR (signal to interference plus noise ratio)-
based model is known as the physical interference model [7].
The complexity here is that interference is neither binary
nor pairwise; aggregated interference from all communicating
nodes must be considered to decide whether a communication
is successful. Theory aside, recent performance studies with
802.11-based mesh networks also demonstrate that multiple
interferers must be considered to evaluate interference limited
capacity of a link [4].

While physical interference models that account for all
possible transmissions throughout the network are the most
accurate, such models are very complex. This complexity
manifests itself in several ways, e.g. NP-hardness of many im-
portant problems when considering physical interference [18]
and use of approximated physical interference models in
wireless network simulations [13], [16] to prevent simulation
times from being slowed down by large factors. It is precisely
the type of approximated physical interference model that is
used in packet-level wireless network simulators that is the
focus of our study in this paper. The models used in the
simulators can be considered a hybrid between physical and
protocol interference models, where physical interference is
considered but only within a bounded range of a receiver
(similar to the interference range assumption in the protocol
interference model).

In what follows, we formalize bounded physical interference
models and do a thorough study of their benefits and limita-
tions with respect to true physical interference modeling. To be
more specific, we consider models where physical interference
from nodes within a circular region surrounding a receiver is
accounted for, but interference outside this region is ignored.
The models are parameterized by the size of this “close-in”
region, which we refer to as the close-in radius. We prove that,
if the close-in radius is set to be a constant (independent of the
number of nodes n in the network), the neglected interference
remains large enough to cause significant errors in the accuracy
of the model. This corresponds to the standard assumption in



the protocol interference model and in all network simulations
of which we are aware. We also prove that, if the close-in
radius is an arbitrary unbounded increasing function of n, that
the neglected interference vanishes as n — 0o, meaning that
the approximate interference model approaches the accuracy
of the true interference model asymptotically. We end with
simulation results that validate the theoretical results and
indicate a strong potential for practical application of our
results when random transmission sets are used (representative
of CSMA/CA networks, we believe) and point out some chal-
lenges with application in STDMA networks, where densely-
packed schedules of node transmissions are constructed.

II. RELATED WORK

Since interference is a major factor limiting performance
in wireless networks, the problem of interference-aware pro-
tocol design has been deeply investigated in the literature. In
particular, scheduling transmissions in a wireless network has
been subject of intensive research, due to its central role in
understanding the transport capacity limits of the network. A
seminal work in this area is [7], in which Gupta and Kumar
study the transport capacity of wireless networks under two
different interference models, the physical and the protocol
interference model. Contrary to the physical model, the proto-
col interference model is a bounded model, since decision on
whether a certain communication is successful depends only
on the presence of concurrent transmitters within a bounded
area centered at the receiver. Another bounded interference
model commonly used in the literature is the graph-based
interference model, in which a certain communication graph
representing communication links is assumed, and only links
whose endpoints are up to a certain hop distance h on the
communication graph from link (u,v) can interfere with
(u,v).

Due to their simplicity, and to the fact that they some-
how resemble the behavior of 802.11 MAC layer, bounded
interference models have been mostly used in the literature
to design interference-aware protocols. This is the case, for
instance, of the protocols presented in [1], [11], [14], [15].
Given the complexity of dealing with (unbounded) physical
interference, only a few protocols based on this model have
been proposed so far. In particular, [5], [6], [9] consider
the problem of scheduling, but they provide solutions which
are computationally infeasible even for small size network.
Recently, some of the authors of this paper have presented
the first computationally efficient algorithm for scheduling
transmissions under the physical interference model [3]. A
notable feature of the GreedyPhysical scheduling algorithm of
[3] is that it has a proven approximation bound on performance
with respect to the optimal scheduler.

Another branch of research which is closely related to the
study reported in this paper is concerned with investigating
complexity of scheduling problems under different interfer-
ence models. Just to cite two recent works, [17] studies the
complexity of optimally scheduling transmissions under graph-
based interference models, while [18] is concerned with the

complexity of both scheduling and one-shot scheduling unde%
the physical interference model. We also want to mention a
recent work by Inaltekin and Wicker [8], in which the total
interference at a certain node under the physical interference
model is estimated. However, differently from our work, the
analysis of [8] is focused on evaluating the effect of the
‘singularity at 0’ on the interference level. As a consequence
of that, the study reported in [8] is based on a different network
model.

In this paper, we consider a bounded physical interference
model, in which the SINR values at the nodes is considered
to determine whether a transmission is successful, but only
interference caused by ‘close-in’ transmitters in accounted for
when computing the SINR. In particular, the focus of this
paper is in investigating the effect of ignoring interference
beyond a certain distance on accuracy of the interference
model. To the best of our knowledge, the only paper implicitly
using the notion of bounded physical interference model is
[3], in which this notion is used to derive the approximation
bound on GreedyPhysical’s performance. However, the bound
on the minimum value of the close-in range necessary to
‘safely’ ignore far-away interference presented therein is much
looser than the ones presented in this paper, and holds only
for random uniform node deployment.

It is worth observing that a bounded physical interference
model is typically used by network simulators (e.g., ns2 [13]
and GTNeTS [16]) to approximate physical layer behavior
without slowing down too much the simulation running time.
Hence, the results presented in this paper give insights on the
impact of using a bounded physical interference model on
accuracy of simulation results.

III. A BOUNDED PHYSICAL INTERFERENCE MODEL

In this section, we formally define a bounded physical
interference model and compare it against the ’true’ physical
interference model. In the true physical interference model [7],
the successful reception of a message sent by node u and
destined to node v depends on the SINR at v. To be specific,
denoting by P,(z) the received power at v of the signal
transmitted by node x, a packet along link (u,v) is correctly
received if and only if:

Py(u)
N + ZwGV’f{u} Pv(w)

where N is the background noise, V' is the subset of nodes
in V that are transmitting simultaneously, and 3 is a con-
stant threshold (often called the SINR threshold or packet
capture threshold) that depends on the desired data rate,
the modulation scheme, etc. In the true physical interference
model, every concurrent transmission in the network must

>0, )

!“Singularity at 0" arises in those asymptotical studies in which an increas-
ing number of nodes is distributed in a fixed region. In this situation, distance
between sender and receiver can become arbitrarily close to zero, leading to
an inconsistence in the physical interference model. Note that ‘singularity at
0’ does not arise in the study reported in this paper.



be explicitly considered when evaluating whether any single
given transmission is succesful.

In the bounded physical interference model considered in
this paper, henceforth referred to as the BPI model, we
explicitly consider all concurrent transmissions within a given
region enclosing the receiver of a particular transmission.
We refer to the region considered by the BPI model for a
particular receiver as its close-in region. In the BPI model,
concurrent transmissions outside of a receiver’s close-in region
are ignored.

More formally, the BPI model is defined as follows:

Definition 1: In the BPI model with close-in region CR, a
packet along link (u,v) is correctly received if and only if

P v (U) > 6
N+ vevincr—fu Po(w) ~ ’

We are concerned with deriving conditions on the close-
in regions such that an assumption that total interference
outside these regions can be ignored is accurate. To be specific,
we would like to derive necessary and sufficient conditions
such that total interference from outside any given close-in
region approaches zero as the number of nodes in the network
approaches infinity.> We also refer to the total interference
from outside the close-in region as far-away interference.

As is common in the literature, we consider circular close-
in regions, which can be characterized by a single parameter,
referred to as the close-in radius (equivalent to the concept
of interference range used in many papers). Note that our
model definition allows non-circular regions, but we focus on
analysis under the common assumption of circular regions
in the remainder of the paper. Given close-in regions that
are approximately circular, one can easily construct slightly
larger circular regions enclosing them in order to apply the
results derived herein. Circular regions can also be used
with propagation models such as log-normal shadowing by
constructing regions that are circular with respect to virtual
distance. We recall that in the log-normal shadowing model,
the attenuation of the received signal (in dB) at a certain
distance d from the transmitter is modeled as the sum of a
deterministic quantity which obeys log-distance path loss with
a certain path loss exponent «, and of a random component
that is modeled as a random variable with Normal distribution,
zero mean, and variance o. We can interpret this model as
converting the actual distance between transmitter and receiver
into a ‘virtual distance’, which is computed as the distance
between the sender and the receiver if attenuation of the signal
(computed according to the log-normal shadowing model)
was governed only by log-distance path loss. Note that the
‘virtual distance’ can be either smaller than (when the random
component of the attenuation is positive) or larger than (when
the random component of the attenuation is negative) the
actual distance.

2Total interference in this context refers to the sum of the received
powers in the left hand side of Inequality 1 coming from nodes
outside the close-in region.

. . . . . . 3
Given our consideration of circular close-in regions, our

analysis focuses on necessary and sufficient conditions on the
close-in radius such that far-away interference can be ignored.
The BPI model is parameterized by the close-in radius, which
we consider to be a function of the number of nodes in the
network for the purposes of asymptotic analyses. We denote
the BPI model with a close-in radius of s(n) by BPI,,).

Note that the BPI model can be termed “optimistic” with
respect to the true physical interference model in that it
strictly underestimates the total interference at a particular
receiver. This could have negative impacts, for example,
when such a model is used to derive schedules for wireless
networks employing spatial-reuse TDMA (STDMA) [12]. In
STDMA, optimistic assumptions on interference could lead
to construction of an infeasible transmission schedule, i.e.
a schedule in which some transmissions will fail due to
underestimation of interference. We evaluate the impact of the
BPI model with different assumptions about close-in radius
both for randomly chosen transmission sets and for “well-
scheduled” transmission sets, i.e. transmission sets that are
carefully chosen by a provably good scheduling algorithm
designed to work with physical interference [3].

An interesting problem in this area is to develop a good
“conservative” interference model, which is guaranteed to
overestimate far-away interference but with a very small
error. Such a model would be “safe” for scheduling but the
interference upper bound must be very tight in order to not
degrade performance substantially due to reductions in spatial
reuse. Since a major problem in deriving tight upper bounds on
far-away interference is to accurately upper bound the number
of concurrent transmitters in different parts of the network, this
problem appears to be closely related to the problem of one-
shot scheduling®, which was recently proved to be NP-hard
under physical interference [18].

IV. ANALYSIS
A. Preliminaries

We are given a communication graph G = (V, E), where
V' is the set of nodes in the multi-hop wireless network and E
is the set of intended communication links, i.e. we assume
that all traffic in the network will use links in the given
set I/ even if other potentially viable links are present. A
feasible transmission set T is a set of transmitter, receiver
pairs such that: i) every node appears at most once as a
transmitter or receiver in T'; i3) V(¢t,r) € T, (t,r) € E; and
1i1) V(t,r) € T, the SINR inequality (for whichever physical
interference model is under consideration) is satisfied at r
when all transmitters in 7" are transmitting simultaneously and
no other nodes are transmitting.

In the analysis, we assume the following concerning radio
signal propagation: al. Radio signal propagation obeys the
log-distance path loss model, with path loss exponent o > 2;
and, a2. All nodes use the same transmit power P, which

3In the one-shot scheduling problem, one is interested in scheduling
as many transmissions as possible in a single slot.



is such that the resulting transmission range r (in absence
of interference) is at least 1. The last part of Assumption a2
amounts to normalizing the unit of distance in the network to
be equal to the transmission range.

We consider the two following network deployment scenar-

i0s:

— Constant density scenario: A number n of nodes is
deployed in a region R, with the only condition that node
density is assumed to be upper bounded by a constant p.
More specifically, for each subregion R’ C R such that
the area a(R’) of R’ is at least 7, there are at most pa(R')
nodes in R’.

— Random uniform scenario: A number n = (8 +¢)C'InC
of nodes is deployed uniformly at random in a square
area R of side [ = \@ where ¢ is an arbitrary positive
constant.*

B. Constant density scenario

We start with proving the following upper bound on the
interference generated by nodes outside a close in radius s >
2r centered at the intended receiver of a communication.

Theorem 1: Assume the constant density scenario, and let
u be an arbitrary node in the network which is at the receiver
end of a communication link; the interference generated by
nodes located at distance d > s from u, where s > 2r is the
close-in radius, is upper bounded by

Clay="080 . L.
ST 4-5(2)>

Proof: Consider an infinite hierarchy C = {C,Cy, ...}
of circles centered at u, where the radius of Cy is s, and the
radius of Cy is sv*, for some constant v > 1. It is easy to
see that hierarchy C covers all the plane, i.e., all the network
nodes. Let us now bound the contribution to interference from
transmitters located in Apy; = Cxi1 — Ck. The area of Ay
is 752v%*(v2 — 1), and the number of transmitters in Ay
is at most pms?v?*(v2 — 1) (this comes from the constant
density assumption). The contribution to the interference level
at node u due to each one of these transmitters (call it w) is
upper bounded by ﬁ, since we are assuming a decay of
power inversely proportional to d(u,w)®, and d(u,w) > sv*.
Hence, the total contribution to interference due to transmitters
in Agy1 is upper bounded by s - prs?v?*(v? — 1) =
=z 2o viffa__i) . The upper bound to the total interference level
at u due to transmitters at distance larger than s from u can
be obtained by evaluating

—+o0
Z 7TpP ’U2 -1
sa—2  gk(a=2) "’
k=0
oY 2
) -1
which converges to ;f’,PQ . %

The bound above depends on the parameter v chosen to build
the hierarchy of circles. We observe that a lower value of v

4With some minor technicalities, the proof presented in the follow-
ing can be adapted to the case where the deployment area is a disk
of area C.

results in a better bound, given the finer hierarchy that is useé
in the construction. However, the hierarchy cannot be made
‘too fine’, since otherwise the upper bound on the density
of nodes might be violated: in fact, the upper bound on the
density of nodes holds only if the area of the region of interest
is ©2(1). To ensure this property, we set v in such a way that
the area of A; (and, consequently, those of Ay, with k£ > 1)
is at least equal to the area of a circle of radius » = 1; by
observing that s > 2r, we get v = é The upper bound on

interference then becomes C(a) = :fi . %% [ |
4-5(%

The following corollary shows that settiné the close-in
radius to any unbounded increasing function of n is a sufficient
condition for asymptotic accuracy of the BPI model.

Corollary 1: 1If the close-in radius s is chosen in such a
way that s = f(n), where f(n) is an arbitrary unbounded
increasing function of n, then the total interference at an
arbitrary receiver node u due to nodes located at distance
greater than s from u converges to 0 as n — oo.

The next lemma shows that if the close-in radius s is
chosen to be a constant, it is not asymptotically safe to
ignore interference beyond distance s from the receiver, i.e. an
unbounded increasing function of n is a necessary condition on
the close-in radius for asymptotic accuracy of the BPI model.
To prove this result, we extend the constant density scenario
to also include a lower bound on node density.

— Extended constant density scenario: For each subregion

R’ C R such that the area a(R’) of R’ is at least 7, there
are at least 7a(R’) nodes in R, where 7 < p.

Theorem 2: Assume the extended constant density scenario,
and assume s is set to an arbitrary constant i > 1. Then, there
exists a node deployment and a transmission set 71" for that
deployment such that: ¢) T is a feasible set under the BPI
model; and ¢7) the total interference at some receiver u due to
nodes located at distance greater than s from u converges to
C'(a) > 0 as n — oo, where

2—a
C'(a) = mPh . g1 .
( hJ + 2) 22 —2

Proof: Assume node are placed on a square grid of
side y/n, and adjacent nodes in the grid are placed exactly at
distance = 1 (the transmission range). It is immediate to see
that grid node placement satisfies to condition for extended
constant density scenario. The close-in radius s is set to an
arbitrary constant h > 1. Consider the following transmission
set T: transmitters are located |h| + 2 hops away from each
other in the grid along the horizontal and vertical direction
(see Figure 1); for each transmitter node u in 7', one of the
neighbors of u in the grid is selected as the intended receiver.
It is easy to see that transmission set 1" is feasible under the
OPI with close in radius A: in fact, for every intended receiver
node v in T, the closest interferer is at distance > h from v;
hence, all interferers are ignored when computing the SINR at
every receiver node in 7', and the transmission set is feasible.
Let us now lower bound the interference at a certain receiver
node v due to nodes outside the close-in range under the true
physical model. By using a hierarchy similar to the one used
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Fig. 1. Transmission set used in the proof of Theorem 2. The figure refers to
the case s = 2.

in the proof of Theorem 1, by observing that the density
of transmitter nodes per unit of area in transmission set 7T’
is W, and that each of these transmitters generates an
interference level at least ﬁ when considering area
Apj+1, we can lower bound the total interference at the node
v in the center of the grid as follows:

k
P h27a Z ’U2 -1
(L] +2) fmg @D

k=0

vn
2h
nPh?"*  w?-1
([h]+2)% v —0?
that, by setting v = \/2, we guarantee that the area of A; is
at least as large as the area of a circle of radius h, and the
lower bound on transmitter density is satisfied. ]

It is easy to see that, for realistic parameter values, C’ ()
is very high. For instance, by setting P = 100mW, a =
3, h = 2r (corresponding to the standard assumption that
the interference range is twice the transmission range), and
r = 250m, we get C’(a) = —55.2148dBm, which is at least
two order of magnitude higher than the standard noise value.
The above value is the limit of the total interference, which
could actually be approached only for very large networks. But
even if we consider relatively small networks and truncate the
summation in the proof of Theorem 2 accordingly, we obtain
a relatively high value of the total interference. For instance,
with n = 49 and the same parameters as above, we obtain a
lower bound to the interference at the node in the center of
the grid equal to —55.2166dBm, which is very close to the
asymptotic value of C’ ().

Corollary 1 and Theorem 2 imply that s = f(n), where
f(n) is an arbitrary unbounded increasing function of n, is the
minimum possible setting of the close-in radius that ensures an
asymptotically negligible error of the BPI model with respect
to the true physical interference model. Another implication
of Corollary 1 and Theorem 2 is a good upper bound on the
density of transmitter nodes in the constant density scenario.
More specifically, Corollary 1 implies that a transmission

where k = log,, . For n — oo, the above lower bound

converges to . The lemma follows by observing

set Tt(,) in which intended receivers are separated froni
the closest interferers by at least distance f(n), where f(n)
is an arbitrary increasing function of n, is asymptotically
feasible, implying that a transmitter density of O(%) is
asymptotically feasible. On the other hand, by Theorem 2,
a transmitter density of 2(n) in asymptotically infeasible.

It is also worth observing that the speed of convergence
towards the interference bounds stated in theorems 1 and 2
depends on «: higher values of « lead to a faster convergence
to the asymptotic value of far-away interference. On the other
hand, o > 2 is a necessary condition for convergence of far-
away interference towards a finite value. This observation is
in accordance with the study reported in [8].

C. Random uniform scenario

Let us now consider the random uniform scenario. We will
make use of the following concentration result, proved in [2]:

Lemma I: Consider any partitioning of the deployment
region R into C cells of area 1, and assume n = (8+¢)C'InC
nodes are distributed uniformly at random into R. Then, the
maximally occupied cell contains at most f(C') nodes w.h.p.”,
where f(C') is defined as follows:

£(C)=elnC —In (\/m) +9(C) |

where ¢(C) is an arbitrary increasing function of C' with
g(C) € O(log C).

We are now ready to prove an upper bound to the total
interference due to nodes at distance at least s > 2r from a
certain receiver.

Theorem 3: Assume the random uniform scenario, and let
u be an arbitrary node in the network which is at the receiver
end of a communication link; the interference generated by
nodes located at distance d > s from u, where s > 2r is the
close-in radius, is upper bounded by

_6f(o)yp 2%

C’rand<a) ga—2 2% D) )

w.h.p.

Proof: Consider an infinite hierarchy C = {Co,C1, ...}
of circles centered at u, where the radius of Cy is s, and
the radius of Cy is sv®, for some constant v > 1. It is
easy to see that hierarchy C covers all the plane, hence the
deployment region R. Let us now bound the contribution to
interference from transmitters located in Apy; = Cyyq — Cy.
The area of Ay is 75?0 (v2 — 1), and, if we consider a
square cell partitioning of R with cells of unit side, it contains
at most 2s2v?¥(2v% — 1) cells. This bound is obtained by
subtracting the area of the square inscribed into circle Cy
from the area of the square circumscribed to circle Ciyi.
From Lemma 1, it follows that the number of nodes in
Ajyq is f(O)m25%0%%(20% — 1) w.hp. The contribution to
the interference level at node u due to each one of these
transmitters (call it w) is upper bounded by ﬁ, since
we are assuming a decay of power inversely proportional to

STn this paper, w.h.p. means with probability that converges to 1 as C' — oo.



d(u,w)®, and d(u, w) > sv*. Hence, the total contribution to
interference due to transmitters in Ag; is upper bounded
by 2{: (ILig Eiqii;)), w.h.p. The upper bound to the total
interference level at v due to transmitters at distance larger

than s from w can be obtained by evaluating

i" 2f(C)P (0% —1)
prt ge—2 Uk(a—2) ?
which converges to 2£ P ”“53”71;”, w.h.p.

The upper bound of Ci.q,q(c) is obtained by setting v = /2
in the above formula, which ensures that the area of A; (and,
consequently, of all the Ays) is at least 1, i.e., it contains at
least one cell. ]

Corollary 2: If the close-in radius s is chosen in such a
way that s = f(n), where f(n) is an arbitrary function of n
such that ljﬁ)(gny)b — 0 as n — oo, then the total interference at
an arbitrary node u due to nodes located at distance greater
than s from u converges to 0 as n — oo, w.h.p.

Observe that, compared to the constant density scenario, we
have a slightly stronger requirement on the close-in radius to
have convergence to 0 of the total interference generated from
nodes outside the close-in radius. Namely, f(n) cannot be an
arbitrary increasing function of n, but an increasing function
of n which grows to infinity faster than logn. This additional
constraint is due to the higher node density in the random
uniform scenario (©(log C') nodes per unit of area, instead of
O(1) as in the constant density scenario).

Theorem 4: Assume the random uniform scenario, and as-
sume s is set to an arbitrary constant i > 1. Then, there
exists a transmission set T for such that: ¢) T is a feasible set
under the BPI; model; and i) the total interference at some
receiver u due to nodes located at distance greater than s from

u converges to C/, .(a) > 0 as n — oo w.h.p., where

, 4Ph?>~
rand(a) = 2(9a __ :
(o] £ 122 =4 ©

Proof: Due to space limitations, we only give a sketch
of the proof. The idea is to subdivide the deployment region
into C cells of side 1. By setting n as in the random uniform
scenario, we have from Theorem 2, page 96, of [10] that the
minimum number of nodes in a cell is Q(log C') w.h.p. We can
then build a transmission set 1" as follows. We consider cells
which are | h]+1 away from each other, and we randomly pick
a sender and a receiver from each one of these cells (we can
do that, since the cell contains 2(log C') nodes w.h.p.). It is
immediate to see that this transmission set is feasible under the
BPI model with s = h, since the minimum distance between
any receiver and the closest interferers is larger than s. The
lower bound on the interference caused by nodes outside the
close-in region on a specific receiver node can be obtained by
using a construction and arguments similar to the one used in
the proof of Theorem 2. ]
Similarly to the constant density scenario, by using realistic
parameters (P = 100mW, « = 3, and h = 2r), we
have C) . .(a) = —61dBm, which is at least two orders of
magnitude larger than the typical noise value.

V. SIMULATION RESULTS

In this section, we first evaluate the accuracy of the BPI
model on randomly chosen transmission sets in order to
demonstrate agreement with the theoretical analyses of the
preceding section. We then focus on a more detailed evaluation
of the impact of the BPI model on scheduling when the
physical interference model is used to construct the schedule.

A. Simulations with Random Transmission Sets

In order to verify the theoretical analyses, we considered
n-node networks configured as a /n X /n grid with an
average separation between nodes of 250 meters (the nominal
transmission range for 802.11b). In order to eliminate some
discretization effects, once nodes were placed in a grid with
exactly equal separation between each pair of neighboring
nodes, we slightly perturbed the node positions. We did this by
setting the final node location to be a point that was uniformly
distributed within a circle of radius 50 meters around the initial
node location. This produced a maximum separation between
neighboring nodes of 350 meters. Transmit power was set to
100 milliwatts, noise was set to -90 dBm, and § was set to
10 dB, which corresponds to the value needed for a data rate
of 11 Mbps with 802.11b. We considered values of « of 2.5
(considered to be a typical rural outdoor environment), 3.0 (a
typical urban outdoor environment), and 3.5 (a cluttered urban
outdoor environment).

In these initial simulations, for each value of n considered,
we chose a mean transmission set size such that roughly half of
transmission sets of that size chosen at random were feasible
under the true physical interference model. We then considered
random sets with sizes normally distributed around the mean.
For each random transmission set considered, we determined
whether the set was feasible under both the true physical
interference model and the BPI model, and whenever there
was a disagreement between the two models, this was counted
as an error for the BPI model.®

With the setting as described, we first kept the close-in
radius as a constant 500 meters. This corresponds to the rule-
of-thumb widely used in analyses and simulations, where the
interference range is set to twice the nominal transmission
range. We then considered a slowly-growing close-in radius.
To be specific, we made the close-in radius proportional to
n01, choosing the constant so that at the smallest value of n,
the radius was equal to 500 meters (i.e. the same as for the
constant close-in radius case). Figure 2 shows the percentage
error for the BPI model resulting from these simulations.
From the figure, we clearly see the trends predicted by our
theoretical analyses. For constant close-in radius, the BPI
model’s error quickly converges to a constant, depending on
«. The error is about 42% for o« = 2.5, 25% for o = 3.0,
and 15% for a = 3.5. Clearly, errors of this size could
cause significant problems with results produced under the

SIn practice, since the BPI model is strictly optimistic, errors only occurred
in one direction, i.e. if the set was infeasible under the true model, it was also
infeasible under the BPI model.
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assumption of constant interference range. When the close-
in radius is proportional to n%!, it is also clear that the error
converges toward zero. However, the convergence is quite slow
for a = 2.5. These results show that considering interference
range to be a slowly growing function of n is a promising
approach to limiting complexity while maintaining accurate
interference modeling, when « is not too small.

B. Simulations of Physical-Interference-Based Scheduling

In constructing a schedule for use within spatial-reuse
TDMA (STDMA) [12], interference is the limiting factor.
Recently, we proposed a scheduling algorithm for Mesh net-
works, referred to as Algorithm GreedyPhysical, that accounts
for physical interference and has a proven approximation ratio
with respect to the optimum scheduler [3]. In this section,
we investigate the impact of the BPI model on scheduling
by generating schedules with GreedyPhysical using the BPI
model, and evaluating them against the true physical inter-
ference model. We note that scheduling can be considered to
be a worst-case scenario for approximate physical interference
models because scheduling algorithms try to pack the maxi-
mum possible number of transmissions into a single slot and,
thus, they tend to maximize the total amount of interference
in the network.

B.1 Simulation Set-up

Algorithm GreedyPhysical was designed to work with Mesh
networks in which clients access the network via a set of
wireless routers that are connected to each other to form a
backbone wireless network. The backbone wireless network
carries traffic between a designated set of routers, known as
gateways, and the clients. Since all traffic goes between clients
and gateways, routing is typically done via a forest, rooted at
the gateway nodes. In these evaluations, we assume a simple
shortest-path forest is used, where the set of shortest paths
from each router (which aggregates traffic from/towards its
registered clients) to its closest gateway node are merged into
a forest. Given the routing forest and a set of traffic demands,
one for each router, the total demand on a link is given by the

sum of all router demands in the subtree below that link, i.e7.
router demands are aggregated as one moves up the tree. Given
the link demands, GreedyPhysical constructs a schedule that
includes each link in the forest a sufficient number of times
in order to satisfy all of the demands. A single slot in the
schedule consists of a transmission set, which is a feasible
transmission set under whatever interference model is used by
GreedyPhysical to calculate feasibility.

If we execute Algorithm GreedyPhysical under the BPI
model, some of the schedules that it produces will contain
infeasible transmission sets under the true physical interfer-
ence model, due to the optimistic nature of the BPI model.
In the results that follow, we evaluate the percentage of
transmissions that fail in an average schedule produced by
GreedyPhysical under the BPI model, when the transmission
sets are evaluated under the true physical interference model.
This is a measure of the impact of the BPI model’s inaccuracy
on the final schedule produced. If the BPI model is used with
GreedyPhysical in a real network and the percentage of failed
transmissions can be reduced to a small value, e.g. below 10%,
then the original schedule produced by GreedyPhysical can be
extended slightly and any transmissions that fail can be moved
into the additional slots.

The setting used with GreedyPhysical for the remainder of
this section is as follows. For a given n, nodes are distributed
as a y/n X y/n grid to form the wireless backbone network. A
randomly selected set of wireless routers (nodes), consisting
of 10% of the total number of routers, is chosen to be the set
of gateway nodes. Once the gateway nodes are determined,
a shortest path forest is constructed connecting the (non-
gateway) routers to their nearest gateway. Each router is
then assigned a demand that is uniformly distributed between
1 and 10 units, representing the total demand from clients
connected directly to that router. Demands are then aggregated,
as described earlier, in order to produce the link demands.
Simulations are done for various values of n, «, and the close-
in radius. Both a simple log-distance path loss model and a
lognormal shadowing model are used.

When considering lognormal shadowing, we consider the
close-in radius to be defined in terms of virtual distance. This
corresponds to selecting a set of transmitters with at least a
certain minimum received power at a given receiver instead of
the transmitters within a certain geometric distance. Since the
intent of bounded interference models is to select the “most
interfering” nodes and neglect the others, we believe this is
a natural way to define the close-in region with shadowing.
In an actual network, if received power is used to estimate
distance, then the situation matches exactly our definition.

Other parameters were set as in the random transmission
set simulations, i.e. transmit power was set to 100 mW, noise
was assumed to be -90 dBm, and 3 was set to 10 dB.

B.2 Simulation Results for Scheduling

We begin by investigating the accuracy of the BPI model
with respect to the close-in radius for different values of n.
Figure 3a shows the percentage of failed transmissions in
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the schedule generated by GreedyPhysical versus the close-
in radius for n = 100 and three values of «. Figure 3b shows
the same quantity except with log-normal shadowing.

In these figures, one can see that, as expected, the value of
« has a significant impact on the error. It is also evident that
log-normal shadowing actually reduces the error of the BPI
model, in that a much lower percentage of transmissions fail
at small to moderate values of the close-in radius. Equivalently,
for a given desired percentage of failed transmissions, a much
smaller close-in radius suffices with log-normal shadowing.
We believe this is because, with log-normal shadowing and
considering the virtual distance from any given receiver to
other nodes, there is a higher density of nodes closer to the
receiver. Thus, the situation when considering virtual distance
is somewhat skewed away from the constant density scenario
toward one in which there is some clustering around the
receiver. This has the effect of bringing more nodes within
the close-in radius, which then increases the accuracy of the
BPI model. We have verified this clustering effect in the
simulations we conducted.

Figure 4 shows the percentage of failed transmissions with
the same parameters as above except that n = 900. The
same dependence on « is clearly visible. While the difference

with log-normal shadowing is somewhat smaller than in the
previous case, there is still a substantial increase in accuracy
when log-normal shadowing is used.

We now compare the accuracies of the BPI model with
fixed close-in radius and with increasing close-in radius,
as it applies to physical-interference-based scheduling using
GreedyPhysical. Here, we considered the propagation model
without log-normal shadowing, since this actually worsens the
performance of the BPI model compared to with shadowing.
Figure 5 shows the percentage of failed transmissions versus n
for these two versions of the BPI model, o« = 3.5, and several
different scaling functions for the close-in radius. We know
from the earlier plots that close-in radius needs to be fairly
high in this situation, so we set the baseline close-in radius
to 1000 meters, which is four times the nominal transmission
range. With the close-in radius fixed to this value, we see that
the “error” converges to a constant, i.e. a transmission failure
rate of about 58%. When the close-in radius increases with n,
the failure rate decreases. However, a fairly fast increase of the
close-in radius (proportional to y/n) is required to decrease the
percentage of failed transmissions below 10% for the values
of n considered in these data sets.
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VI. DISCUSSION AND FUTURE WORK

We have seen very good agreement with the theoretical
analysis when simulating random transmission sets. With fixed
close-in radius, the error of the BPI model quickly converges
to a constant, which can be quite large even for a fairly large
«. In addition, error converges toward zero when the close-
in radius is set to as slowly increasing a function as n®!,
and convergence is quite fast except for the smallest value
of o considered. We believe that the random transmission
set scenario should be fairly representative of CSMA/CA
protocols under relatively high load situations. Thus, our
results indicate a potential for the BPI model (with increasing
close-in radius) to be quite useful in evaluations of CSMA/CA
protocols under more realistic interference assumptions. One
example of this would be, in CSMA/CA simulations using
packet-level simulators such as ns-2 and GTNetS, to scale the
interference range slowly as network size is increased, rather
than using the standard assumption of interference range that
is a multiple of the fixed transmission range. However, more
simulations should be done to study the random scenario since
our results have considered only one typical setting in this
case.

When considering a challenging environment for physical
interference modeling, namely well-scheduled, i.e. densely
packed, transmission sets, the picture is somewhat different
for the BPI model. While the fixed close-in radius assumption
is clearly even worse in this situation than with random
transmission sets, there are some challenges in applying the
theoretical results in practice. While we do see convergence
toward zero error in the scheduling simulations, convergence
is significantly slower than for random transmission sets, even
for close-in radius growing as fast as n% and a high value
of a. One promising result in this case is that log-normal
shadowing actually helps the BPI model, due to its tendency
to produce a higher concentration of nodes relatively close to a
given receiver when considering virtual distance. Experimental
validation of this effect in a real shadowing environment would

be very helpful in determining the most realistic model tg
use in evaluating accuracy in this situation. The practical
constraints imposed by well-scheduled transmission sets indi-
cate that the approach to approximating physical interference
via conservative models that provably overestimate the total
far-away interference is one that should be considered. The
challenge here is deriving good upper bounds on far-away
interference, which will require some analysis of the densest
possible packing of transmissions, which is related to the NP-
hard problem of one-shot scheduling.
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